iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

The role of ontologies in emergent middleware:

supporting interoperability in complex distributed
systems

Conference or Workshop ltem

How to cite:

Blair, Gordon S.; Bennaceur, Amel; Georgantas, Nikolaos; Grace, Paul; Issarny, Valérie; Nundloll, Vatsala and
Paolucci, Massimo (2011). The role of ontologies in emergent middleware: supporting interoperability in complex
distributed systems. In: Middleware 2011, Springer-Verlag, pp. 410-430.

For guidance on citations see FAQs.

(© 2011 IFIP International Federation for Information Processing

Version: Accepted Manuscript

Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1007/978-3-642-25821-3,1

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/978-3-642-25821-3_21
http://oro.open.ac.uk/policies.html

The Role of Ontologies in Emergent Middleware:
Supporting Interoperability in Complex Distributed
Systems

Gordon S. Blair' , Amel Bennaceurz, Nikolaos Georgantasz, Paul Grace' , Valerie
Issarnyz, Vatsala Nundloll' , Massimo Paolucci’

'School of Computing and Communications, Lancaster University, UK
2INRIA, CRI Paris-Rocquencourt, France
DOCOMO Euro-Labs, Munich, Germany
gordon@comp.lancs.ac.uk

Abstract. Interoperability is a fundamental problem in distributed systems, and
an increasingly difficult problem given the level of heterogeneity and
dynamism exhibited by contemporary systems. While progress has been made,
we argue that complexity is now at a level such that existing approaches are
inadequate and that a major re-think is required to identify principles and
associated techniques to achieve this central property of distributed systems. In
this paper, we postulate that emergent middleware is the right way forward;
emergent middleware is a dynamically generated distributed system
infrastructure for the current operating environment and context. In particular,
we focus on the key role of ontologies in supporting this process and in
providing underlying meaning and associated reasoning capabilities to allow
the right run-time choices to be made. The paper presents the CONNECT
middleware architecture as an example of emergent middleware and highlights
the role of ontologies as a cross-cutting concern throughout this architecture.
Two experiments are described as initial evidence of the potential role of
ontologies in middleware. Important remaining challenges are also documented.

Keywords: interoperability, ontologies, emergent middleware, system-of-
systems

1 Introduction

Interoperability is a fundamental property in distributed systems, referring to the
ability for two or more systems, potentially developed by different manufacturers, to
work together, including the ability to exchange and interpret action requests and
associated data sets. Indeed, interoperability is absolutely foundational —without a
solution to interoperability, distributed systems become impossible to develop and
evolve. In the first generation of distributed systems, interoperability was relatively
straightforward to achieve. Such systems were small-scale, fairly homogenous in
terms of languages, operating system platforms and hardware architectures, and also
under the control of a single organisation and associated administration team. This

was of course unsustainable and very quickly distributed systems expanded in terms
of scale, level of heterogeneity and complexity of administrative control, leading to
the Internet-scale distributed systems that we are familiar with today. A number of
interoperability solutions emerged both in terms of proposed standards for
interoperability and solutions to bridging between standards. Distributed systems
have, however, continued to evolve, and we particularly note two important trends:

1. The level of heterogeneity has increased dramatically in recent years with
developments such as ubiquitous computing potentially coupled with enhanced
modes of interaction (for example using ad hoc networking), mobile computing
where an increasing range of mobile devices provide a window on to greater
distributed system services, and cloud computing where complex distributed
system services are offered in the greater Internet. We refer to this as extreme
heterogeneity, whereby the levels of heterogeneity significantly exceed the
previous generation of distributed systems in terms of the size and capabilities of
end system devices, the operating systems used by different devices, the style of
communication protocols employed to provide network-level interoperability, the
languages and indeed programming paradigms utilized, and so on. Some observers
refer to such systems as Systems of Systems [1], and this certainly captures rather
elegantly the complexity of the resultant system structures.

2. The level of dynamism in such systems has also increased significantly, partly as a
result of the trends noted above, for example the increasing mobility involved in
distributed systems has led to the need to support spontaneous interoperation
whereby devices interoperate with services that are discovered in a given location,
coupled with solutions that need to be intrinsically context-aware (including of
course location-aware access to services). The level of dynamism is also affected
by the need for more adaptive and/ or autonomic approaches, again stemming from
the complexity of modern distributed systems.

The end result is that it is very difficult to achieve interoperability in such complex

distributed systems. Indeed, we can say that distributed systems are in crisis with no

principled solutions to interoperability for such complex and dynamic distributed
systems structures. Note that we can go further in this analysis and not just consider
the ability to interoperate but also the quality of service of interoperability solutions in
terms of a range of non-functional properties, for example related to security or
dependability. This is a very valid dimension to consider but is beyond the scope of
this paper (we return to this in the final section, and in particular our statements on
future work).

It is interesting to note the definition of interoperability from Tanenbaum [2]:

“The extent by which two implementations of systems or components from different

manufacturers can co-exist and work together by merely relying on each other’s

services as specified by a common standard”

This definition emphasizes the role of a global, or at least common, standard and,

while this offers one solution to interoperability, it is not a realistic option for the

complex distributed systems of today. For example, competitive pressures have
inevitably led to competing standards emerging in the marketplace. Where standards
have reached a level of acceptance, for example with web services, it is recognized by
the community that they may be problematic for certain operating environments, for
example, ubiquitous systems. In addition, any given standard can very quickly

become a legacy system as time elapses and requirements evolve.

We argue that with the above pressures we need a fundamental re-think of
distributed systems. In particular, we advocate a solution whereby the necessary
middleware to achieve interoperability is not a static entity but rather is generated
dynamically as required by the current context. We refer to this as emergent
middleware. Furthermore, we investigate the key role of ontologies in supporting this
process and, in particular, in providing the ability to interpret meaning and associated
reasoning capabilities in generating emergent middleware. Ontologies have already
been studied in the context of distributed systems, most prominently in the semantic
web community, offering a means of interpreting the meaning of data or associated
services as they are dynamically encountered in the World-Wide Web. This however
limits the scope of ontologies to support the top-level access to data and services. We
are interested in a more comprehensive role for ontologies in supporting meaning and
reasoning in the distributed systems substrate which supports and enables access to
such services, i.e., in the middleware itself, offering a cross-cutting approach where
ontologies provide support to fundamental distributed systems engineering elements.

This paper focuses exclusively on the role of ontologies in supporting the concept
of emergent middleware (further discussion of the broader area of emergent
middleware can be found in [3]). More specifically, the aims of the paper are:

1. To investigate previous work on interoperability in the middleware community and
in the semantic web community with a view to seeking a unification between these
(to date) largely distinct areas of research;

2. To understand both the role and scope of ontologies in supporting key middleware
functions, particularly related to emergent middleware solutions;

3. To investigate more generally the role of ontologies within a general architecture
for emergent middleware.

The paper is structured as follows. Section 2 examines the interoperability-related
challenges associated with complex distributed systems and the associated responses
both from the middleware and the semantic web community. Section 3 moves into the
solution space, presenting the key components of an emergent middleware approach,
before charting the role of ontologies within this approach. Section 4 presents two
experiments, which together provide evidence of the key role ontologies can play in
different levels of a middleware architecture. Finally, Section 5 contains an overall
analysis and reflections over the experience of working with ontologies in emergent
middleware, including the identification of key areas of future work related to this
area.

2 The Interoperability Problem Space: Challenges and
Responses

The problem space for interoperability must consider the differences of: 1)

applications, and ii) middleware protocols. In both cases, there will typically be

differences in data and behaviour:

¢ Application data differs in terms of format and meaning, e.g., the data value of a
price parameter can be defined in an object or XML document. It can also

mean different things, e.g., the price is in Pounds versus Euros.

* Depending upon application interfaces, the behaviour may be significantly
different, e.g., multiple operations of one interface performing the same
functionality of a single operation of another.

* Middleware protocols providing the same communication abstraction may differ
in the data format and type model, e.g., different RPC protocols capture data and
types using different methods and formats.

¢ There now exists a broad range of communication abstractions (e.g., publish-
subscribe, tuple spaces, message-orientation, group communication) offered by
middleware protocols; these exhibit significant behavioural differences.

We now examine the responses to these challenges from two distinct communities

(the middleware and the semantic web communities) and investigate the extent to

which comprehensive application and middleware interoperability has been achieved.

2.1 Response from the Middleware Community

The first responses by the middleware community to address interoperability
problems proposed standards-based approaches, i.e., common protocols and interface
description languages. CORBA, DCOM, and web services are effective examples of
this approach. However, as previously described, such solutions are not suited to
today’s highly complex distributed systems that exhibit extreme heterogeneity and
dynamic behaviour. The second set of responses then looked at the challenges of
heterogeneous middleware protocols interoperating with one another. One example of
this, software bridge, acts as a one-to-one mapping between domains; taking
messages from a client in one format and then marshalling this to the format of the
server middleware. As examples, the OMG created the DCOM/CORBA Inter-
working Specification [6]. OrbixCOMet is an implementation of the DCOM-CORBA
bridge, while SOAP2CORBA! bridges SOAP and CORBA middleware. Further,
Model Driven Architecture advocates the generation of such bridges to underpin
deployed interoperable solutions. However, developing bridges is a resource
intensive, time-consuming task, which for universal interoperability would be
required for every protocol pair.

Alternatively, intermediary-based solutions take the ideas of software bridges
further; rather than a one-to-one mapping, the protocol or data is translated to an
intermediary representation at the source and then translated to the legacy format at
the destination. Enterprise Service Buses (ESB), INDISS [8], uMiddle [9] and SeDIM
[10] are examples that follow this philosophy, and these allow differences of both
behaviour and data to be overcome. However, this approach suffers from the greatest
common divisor problem, i.e., between two protocols the intermediary is where their
behaviour matches, they cannot interoperate beyond this defined subset. As the
number of protocols grows, this common divisor then becomes smaller, such that only
limited interoperability is possible.

A radically different response involved substitution solutions (e.g., ReMMoC [11]
and WSIF [12]); rather than bridging, these embrace the philosophy of speaking the

! http://soap2corba.sourceforge .net/

peer’s language. That is, they substitute the communication middleware to be the
same as the peer or server they wish to use. A local abstraction maps the behaviour
onto the substituted middleware. This approach allows interoperation among different
abstractions and protocols. However, as with software bridges this is particularly
resource consuming; every potential (and future) middleware must be developed such
that it can be substituted. Further, it is generally limited to client-side interoperability
with heterogeneous servers.

The limitation of all the above responses is that they ignore the heterogeneity of the
application, assuming that there are no differences, due to the adoption of a common
interface. In complex systems, this is clearly not the case.

2.2 Response from the Semantic Web Community

The semantic web community’s responses to the interoperability problem are based
upon the principles of reasoning about and understanding how different systems can
work together. Their key contribution is onfologies. An ontology is defined as a logic
theory, and more precisely as a tuple <A, L, P>, where A is a set of axioms, L is a
language in which to express these axioms, and P is a proof theory, that supports the
automatic derivation of consequences from the axioms. In turn, the proof theory P
allows us to derive consequences, which extract relations that have never been stated
explicitly, but that are implicit in the description of the systems. Ultimately, the proof
theory allows recognition of the deeper “semantic” similarity between structures that
are syntactically very different.

The work in semantic web services demonstrates how ontologies can be used to
address interoperability problems at the application level. Specifically, ontologies
have been used during discovery to express the capabilities of services, as well as the
requests for capabilities; in this case, the proof theory recognizes whether a given
capability fits a given request. A number of semantic middleware technologies
provide this ability, e.g., the Task Computing project [13], and the Integrated Global
Pervasive Computing Framework [14]. One important solution, EASY [15],
implements efficient, semantic discovery and matching to foster interoperability in
pervasive networking environments. Further, ontologies have been used during
composition to address the problem of application data interoperability, as well as the
problem of recognizing whether the conditions for executing the service indeed hold.
The limitation of these responses lies in the assumption of a specific middleware,
namely web services. There is a need to represent heterogeneous middleware and
networking environments, which is almost completely absent in the semantic web
services work.

Ontologies introduce a new meta-level, which can produce its own interoperability
problems. Heterogeneous ontologies push the interoperation problem one level up.
The computational complexity of the proof theories, which is often beyond
exponential, makes ontologies resource expensive. Finally, there is a problem of
generating the ontologies. The problems listed here are fundamental problems with
which the semantic web at large is grappling, and fortunately a number of partial
solutions exist that mitigate these problems. For example, ontology matching can be
used to address the problem of different ontologies, and smart and efficient inference

engines are now available. As a result, ontologies may be used effectively to
automatically address many interoperability problems.

2.3 Summary

It is clear that semantic technologies and interoperability middleware have mostly
been developed in isolation by distinct communities. The middleware community
made assumptions of common application interfaces and focused on middleware
behaviour and data heterogeneity. The semantic web community made the opposite
assumption, that there was a common middleware, and the solutions focused on
differences in application behaviour and data.

In our view, semantic technologies and interoperability middleware must be
comprehensively combined to enable emergent middleware, that is, on-the-fly
generation of the middleware that allows networked systems to coordinate to achieve
a given goal. Semantic technologies bring the necessary means to rigorously and
systematically formalize, analyze and reason about the behaviour of digital systems.
Semantic web service technologies have further highlighted the key role of process
mediation in an Internet-scale open network environment where business processes
get composed out of services developed by a multitude of independent stakeholders.
Then, in a complementary way, interoperability middleware solutions hint towards an
architecture of emergent middleware that mediates interaction among networked
systems that semantically match while possibly behaviourally mismatching, from the
application down to the network layer.

3 The Solution Space

The realisation of emergent middleware faces significant challenges, which we are in
particular investigating as part of the CONNECT project [3]: i) discovering what is
there in terms of application and middleware behaviour and data, ii) enhancing this
information using learning techniques, and iii) reasoning upon the required mediation
and synthesizing the resulting software to enable interoperability between
heterogeneous networked systems. In this section, we first introduce the architecture
of the generated emergent middleware, and then we present the ontology-based
models of the networked systems used by Enablers, i.e., active software entities that
collaborate to realise the emergent middleware. Finally, we describe the architecture
of Enablers that need to be deployed in the network toward allowing networked
systems to interact seamlessly.

3.1 Architecture of Emergent Middleware
Building upon previous interoperability middleware solutions [8, 10, 16], the

architecture of the emergent middleware (as shown in Fig. 1) decomposes into: (i)
message interoperability that is dedicated to the interpretation of messages

from/toward networked systems (listeners parse messages and actuators compose
messages) and (ii) behavioural interoperability that mediates the interaction protocols
run by the communicating networked systems by translating messages from one
protocol to the other, from the application down to the middleware and further to the
network layer.

However, interoperability can only be achieved based on the unambiguous
specification of networked systems’ behaviour, while not assuming any a priori
design-time knowledge about the given systems. This is where the key role of
semantic technologies, i.e., ontologies, comes into play. As discussed in the next
section, ontological concepts are employed to characterise the semantics of exchanged
messages, from the application down to the network layer, and thus allow the analysis
of and reasoning about the external actions performed by systems. This is a major step
in the realization of interoperability, since it allows the mediation of interaction
protocols at all layers, provided their respective functionalities semantically match.

Ontology | Ontalogy \
“Networked [Networked

System System
Modg_l e Model
i Message " - Behavioral ™+ Message " | :

| Interoperability Interoperability if Interoperability : I

Listener &+

MNetworked |

: Listener € Natworked
System2 ;F_H-} Iy

Systam 1

[Acmator

Actuator

Emergent Middleware

Fig. 1. The emergent middleware architecture

3.2 Ontology-based Networked System Model

The networked system model builds upon semantic technologies and especially
semantic web services ontologies [17]. Fig. 2 depicts key elements of the system
model with ontologies cross-cutting these elements. The model decomposes into:

* The Affordances (aka capabilities in OWL-S?) provide a macroscopic view of
networked system features. An affordance is specified using ontology concepts
defining the semantics of its functionality and of the associated inputs and
outputs. Essentially, the affordance describes the high-level roles a networked
system plays, e.g., 'prints a document’. This allows semantically equivalent
action-relationships/interactions with another networked system to be matched; in
short, they are doing the same thing. Then, provided the matching of affordances
that are respectively required and provided by two networked systems, it should
be possible to synthesize an emergent middleware that allows the networked
systems to coordinate toward the realization of the affordance despite possible
mismatches in the messages they exchange and even their behaviour. In practice,
networked systems do not advertise affordances but rather interfaces, as
discussed below. Nevertheless, recent advances on learning techniques,

2 http://www.w3.org/Submission/OWL-S/

combining solutions to the cohesion of system interfaces [18] and semantic
knowledge inference [19], provide base ground that can be exploited to support
the automated inference of affordances from interfaces, although this remains
area for future work.

* The Interface provides a refined or microscopic view of the system by specifying
finer actions or methods that can be performed by/on the networked system, and
used to implement its affordances. Each networked system is associated with a
unique interface. However, there exist many interface definition languages and
actually as many languages as middleware solutions. Nevertheless, existing
languages may easily be translated into a common IDL so as to allow the
matchmaking of interfaces [20]. Still, a major requirement and challenge are for
interfaces to be annotated with ontology concepts so that the semantics of
embedded actions can be reasoned upon. While this is already promoted by web
services standards (e.g., SA-WSDL?), it still remains an exception for
middleware solutions at large. Here too, research on advanced learning
techniques can lead to automated solutions to the semantic annotation of
syntactic interfaces [22].

¢ The Behaviour describes how the actions of the interface are co-ordinated to
achieve a system's affordance, and in particular how these are related to the
underlying middleware functions. The language used to specify the behaviour of
networked systems revolves around process algebra enriched with ontology
knowledge, so as to allow reasoning about their behavioural matching based on
the semantics of their actions, and subsequently support the generation of the
emergent middleware. Such behaviour description has been acknowledged as a
fundamental element of system composition in open networks in the context of
the Web*. However, in the vast majority of cases, networked systems do not
advertise their behaviour. On the positive side, different techniques have emerged
to learn the interaction behaviour of systems, either reactively or proactively [23,
24, 33]. Still, major research challenges remain in the area, as provided
techniques need to be made more efficient as well as be improved, considering,
e.g., the handling of data and non-functional properties.

System
IO..n
Affordance L Behaviour

1 0..n 0.n

| Functionality ‘ | Input ‘ ‘ Output |

Fig. 2. The networked system model

3 http://www.w3.org/TR/sawsdl/
4 www.w3.org/TR/wscl10/

3.3 Enablers for Emergent Middleware

The realization of emergent middleware is supported by cooperating core Enablers as
depicted in Fig. 3.

Networked Networked
System 1 System 2

DISCOVER

Discovery Learning
Enabler Enabler

== ; Domain I
_____ N Ontologies

Synthesis
Enabler

Networked [ENSWSTITEN Networked
SLCUEE Middleware [SEh P

GENERATE

Fig. 3. The architecture of the emergent middleware Enablers

The Discovery Enabler receives both the advertisement messages and lookup
request messages that are sent within the network environment by the networked
systems. The enabler obtains this input by listening on known multicast addresses
(used by legacy discovery protocols), as common in interoperable service discovery
[25]. These messages are then processed; information from the legacy messages is
extracted. At this stage, the networked system model includes at least the interface
description, which can be used to infer the ontology concepts associated to the
affordance in the case they are not specified. The semantic matching of affordances is
then performed to determine whether two networked systems are candidates to have
an emergent middleware generated between them. The semantic matching of
affordances is based on the subsumption relationship possibly holding between
concepts of the compared affordances [26]; briefly, the functionality of a required
affordance matches a provided one if the former is subsumed by the latter. Other
semantic relations such as sequence [29] or part-whole’ can also be beneficial to
concept matching. On a match, the process of emergent middleware generation is
started; the current networked system model is sent to the Learning Enabler, which
adds more semantic knowledge to it. On completion of the model, the Discovery
Enabler sends this to the Synthesis Enabler.

More specifically, the Learning Enabler attaches semantic annotations to the
interface, and uses active learning algorithms to dynamically determine the interaction
behaviour associated to an affordance. Interaction behaviour learning is built upon the
LearnLib tool [27], and employs methods based on monitoring and model-based

5 http://www.w3.0rg/2001/sw/BestPractices/OEP/SimplePartWhole/index.html

testing of the networked systems. It takes the semantic annotations of the interface as
input, and returns the system’s behaviour description.

The role of the Synthesis Enabler is to take the completed networked system
models of two systems and then synthesize the emergent middleware that enables the
networked systems to coordinate on a given affordance. The emergent middleware
specifically implements the needed mediation between the protocols run by the
systems to realize the affordance, which are abstractly characterized by the
behavioural description. The synthesis of the mediator results from the automated
behavioural matching of the two protocols based on the ontological semantics of their
actions. In few words, the mediator defines the possible sequences of actions that
serve translating semantic actions of one protocol to semantic actions of the other.
Obviously, many approaches to behavioural matching and related protocol mediation
may be applied considering the state of the art in the area [30, 31]. Basically, the
solution to automated protocol mediation shall allow for efficient mediator synthesis,
while at the same time enabling interoperability beyond current interoperability
middleware solutions. In particular, protocol mediation shall span all the targeted
protocol layers, dealing with the semantics of both application and middleware
actions [28], as illustrated in the next section. An approach that is particularly
promising and that we are investigating lies in ontology-based model checking [32];
this exploits the power of both ontologies to systematically reason about the
semantics of actions and model checking to systematically reason about the
compatibility of protocols. Still, the more flexible is the compatibility check, the more
complex is the reasoning process. The challenge is then to find the appropriate
tradeoffs so as to foster interoperability in open networks in a computationally
tractable way.

Finally, the emergent middleware is deployed, with the resultant connector
following the architecture as depicted in Fig. 1, with listeners and actuators providing
message interoperability and the synthesized mediator dealing with behavioural
differences and translating the message content between heterogeneous message
fields. Note the listeners and actuators are automatically generated using the Starlink
framework®.

While this section has focused on the core Enablers toward the generation of
emergent middleware, additional enablers are necessary to cope with the uncertainty
associated with emergent middleware. Indeed, the learning phase is a continuous
process where the knowledge about networked systems is being enriched over time,
which implies that emergent middleware possibly needs to adapt as the knowledge
evolves. Furthermore, it is important that emergent middleware respects the quality
requirements of networked systems regarding their interactions, which requires
appropriate dependability and security enablers.

The development, from the supporting theory to concrete prototype
implementation, of such enablers is currently ongoing as part of the CONNECT EU
project’. Despite the tremendous challenges that are raised in unifying and combining
the principles of semantic technologies and interoperability middleware to enable
emergent middleware, we have been developing experimental enablers to validate this

© http://starlink .sourceforge .net/

7 http://connect-forever.eu/

vision. Our initial experiences with the use of ontologies within this broad solution
space are sketched in the next section; these further highlight the important role
ontologies have to play in realising our vision of emergent middleware.

4 Experiments

To provide initial insight into the benefits of using ontologies to support
interoperability, we now present two experiments that show how semantic
technologies can underpin the automatic generation of emergent middleware. The first
experiment examines the use of ontologies to address data and behavioural
heterogeneity at both application and middleware layers. The second experiment
demonstrates how ontologies are used to perform automated matching of message
fields to support interoperability at the network layer.

4.1 Reasoning about Interoperability at Application and Middleware Layers

This experiment illustrates the role of ontologies in handling heterogeneity both at
application and middleware layers. For this purpose, we consider two travel agency
systems that have heterogeneous application interfaces and are implemented using
heterogeneous middleware protocols (one is implemented using SOAP and the other
with HTTP REST). We use application-specific and middleware ontologies to reason
about the matching of both application and middleware behaviour.

The travel agencies example. The first networked system, called EUTravelAgency,

is developed as an RPC-SOAP web service. Thus, data is transmitted using SOAP

request and response envelopes transported using HTTP Post messages. The service
allows users to perform the following operations concurrently:

* Selecting a flight. The client must specify a destination, a departure and a return
date. The service returns a list of eligible flights.

* Selecting a hotel. The client indicates the check-in and check-out dates. The
service returns a list of rooms.

* Selecting a car to rent. The user indicates the period of rental and their preferred
model of car. The service then proposes a list of cars.

* Making a reservation. Once the user has chosen a flight and/or a hotel room
and/or a car, they confirm their reservation. The service returns an
acknowledgment.

The interface signature for EUTravelAgency (abstracted from WSDL 2.0) is given

below, where we provide only the ontology concepts associated with the syntactic

terms embedded in the interface:

SelectFlight({destination, departureDate, returnDate}, flightList)
SelectHotel ({checkIndate, checkOutdate, pref}, roomList)
SelectCar ({dateFrom, dateTo, model}, carList)
MakeReservation({flightID, roomID, carID}, Ack)

The second system is called USTravelAgency and allows users to perform the
following two operations:

* Finding a trip. The client specifies a destination, departure and return date. The
service finds a list of “packages” including a flight and hotel room and car.

* Making a reservation. The user selects a trip package and confirms it. The
service acknowledges the reception of the selection.

The interface signature, although giving only embedded ontology concepts, is

abstracted as follows:

FindTrip({destination,departureDate,returnDate,needCar}, flightList)
ConfirmTrip(tripID,Ack)

The USTravelAgency service is implemented as a REST web service over the HTTP
protocol. The findTrip operation is performed as a HTTP Get and the confirmTrip
operation is performed using a HTTP Post as shown below (the outputs of both
service operations are formatted using JSON?):

GET http://ustravelagency.com/rest/tripervice/findTrip/{destination}/
{departureDate}/{returnDate}/{needCar}
POST http://ustravelagency.com/rest/tripervice/confirmTrip/{tripID}

A client of the EUTravelAgency cannot interact with the USTravelAgency, and
similarly a client developed for the USTravelAgency cannot communicate with the
EUTravelAgency due to the aforementioned heterogeneity dimensions:

* Application data. The EUTravelAgency refers to the Flight, Hotel and Car
concepts, whereas the USTravelAgency makes use only of the Trip concept.
Additionally, the EUTravelAgency specifies the departure and the return dates
using Greenwich Mean Time (GMT), while the USTravelAgency uses Pacific
Standard Time (PST) to describe them.

* Application behaviour. In the EUTravelAgency implementation, users can
independently select a flight, a room and a car, whereas in the USTravelAgency
implementation all of them are selected through a package.

* Middleware data format. The data exchanged in the EUTravelAgency
implementation are encapsulated in a SOAP message, while the input data of the
USTravelAgency are passed through a URL and the output data are formatted
using JSON.

* Middleware behaviour: REST and RPC-SOAP are different architectural styles
and induce heterogeneous control and communication models.

The travel agency ontology. The first step of the experiment of interoperability
between EUTravelAgency and USTravelAgency was to create the domain-specific
ontology associated with the travel agency scenario (Fig. 4 illustrates an excerpt of
this ontology). The ontology shows the relations holding among the various concepts
defined in the interfaces of the two travel agencies. Note that the application-specific
ontology not only describes the semantics and relationships related to data but also the
semantics of the operations performed on data, such as FindTrip, SelectFlight,
SelectHotel, and SelectCar.

In the general case, the application ontology is not defined by the application
developers but by domain experts, to reflect shared knowledge about a specific

8 http://www.json.org/

domain. Many ontologies have been developed for specific domains, e.g., Sinica
BOW? (Bilingual Ontological Wordnet) for English-Chinese integration. In addition,
work on ontology alignment enables dealing with possible usage of distinct ontologies
in the modelling of different networked systems from the same domain, as illustrated
by the W3C Linking Open Data project