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Abstract The gene encoding the minibrain kinase/dual-

speciWcity tyrosine phosphorylated and regulated kinase 1A

(DYRK1A) is located in the Down syndrome (DS) critical

region of chromosome 21. The third copy of DYRK1A is

believed to contribute to abnormal brain development in

patients with DS. In vitro studies showing that DYRK1A

phosphorylates tau protein suggest that this kinase is also

involved in tau protein phosphorylation in the human brain

and contributes to neuroWbrillary degeneration, and that this

contribution might be enhanced in patients with DS. To

explore this hypothesis, the brain tissue from 57 subjects

including 16 control subjects, 21 patients with DS, and

20 patients with sporadic Alzheimer’s disease (AD) was

examined with two antibodies to the amino-terminus of

DYRK1A (7F3 and G-19), as well as two polyclonal anti-

bodies to its carboxy-terminus (X1079 and 324446). West-

ern blots demonstrated higher levels of full-length

DYRK1A in the brains of patients with DS when compared

to control brains. Immunocytochemistry revealed that

DYRK1A accumulates in neuroWbrillary tangles (NFTs) in

subjects with sporadic AD and in subjects with DS/AD.

Overexpression of DYRK1A in patients with DS was

associated with an increase in DYRK1A-positive NFTs

in a gene dosage-dependent manner. Results support the

hypothesis that overexpressed DYRK1A contributes to

neuroWbrillary degeneration in DS more signiWcantly than

in subjects with two copies of the DYRK1A gene and

sporadic AD. Immunoreactivity with antibodies against

DYRK1A not only in NFTs but also in granules in granulo-

vacuolar degeneration and in corpora amylacea suggests

that DYRK1A is involved in all three forms of degenera-

tion and that overexpression of this kinase may contribute

to the early onset of these pathologies in DS.
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Introduction

A broad spectrum of developmental and age-associated

changes in patients with Down syndrome (DS) is consid-

ered to be a result of the overexpression of genes localized

in the DS critical region of chromosome 21. The extra copy
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of the gene encoding amyloid precursor protein (APP)

located on chromosome 21 appears to be the main cause of

the early onset of brain amyloidosis-� in patients with DS.

Overexpression of APP has been associated with an

increase in amyloid � (A�) 42 level in the brain of fetuses

with trisomy of chromosome 21 [64], the development of

diVuse A�-positive plaques in approximately 50% of indi-

viduals with DS younger than 30 years of age [35, 37, 72,

73], Alzheimer-type pathology in the majority of DS sub-

jects older than 40 years of age [55, 69, 73], and an elevated

risk of Alzheimer’s disease (AD)-associated dementia [24,

33, 41, 78].

While early brain amyloidosis-� appears to be directly

associated with an extra copy of the APP gene, the mecha-

nism leading to neuroWbrillary degeneration in patients

with DS is unknown. Recent studies suggest that the Mini-

brain kinase/dual-speciWcity tyrosine phosphorylated and

regulated kinase 1A (DYRK1A) gene, located in the critical

region of chromosome 21 [20, 50, 62] and overexpressed in

DS [21, 27], may play a signiWcant role not only in devel-

opmental brain defects associated with DS [46, 59] but

also in neuroWbrillary degeneration. The discovery that

DYRK1A phosphorylates microtubule-associated protein

tau at several phosphorylation sites and in cultured cells

[40, 74] implicates DYRK1A in abnormal tau phosphoryla-

tion and neuroWbrillary degeneration in patients with AD.

The observation that Thr212 is phosphorylated in fetal tau

and hyperphosphorylated in Wlamentous tau from subjects

with AD [43] supports this hypothesis. Moreover, phos-

phorylation of Thr212 by DYRK1A stimulates in vitro the

rate of phosphorylation of tau about eightfold through

priming tau phosphorylation by glycogen synthase kinase 3

(GSK3) at Ser208 [74]. Phosphorylation of Ser208 has also

been reported in tau in patients with AD [43]. DYRK1A-

induced tau phosphorylation inhibits tau activity to stimu-

late microtubule assembly and promotes its self-assembly

into Wlaments [40]. These Wndings strengthen the position

that DYRK1A may be involved in tau protein phosphoryla-

tion in the human brain and potentially in neuroWbrillary

degeneration.

The aim of this study was to explore the hypothesis that

DYRK1A contributes to neuroWbrillary degeneration in

patients with sporadic AD and that this contribution is

enhanced in DS subjects with trisomy of chromosome

21 and AD. Western blots demonstrated higher levels

of DYRK1A in the brains of patients with DS, whereas

immunocytochemistry with antibodies to DYRK1A

showed the presence of this kinase in neuroWbrillary tan-

gles (NFTs) in patients with sporadic AD. A several-fold

increase in the number of DYRK1A-positive NFTs in

patients with DS/AD supports the hypothesis that

DYRK1A contributes to the early onset of neuroWbrillary

degeneration in DS.

Materials and methods

Tissue for morphological studies

Brains of 57 subjects were examined, including 16 control

subjects 32–92 years of age (12 males and 4 females), 21

subjects with DS from 38 to 72 years of age (12 males and

9 females), and 20 subjects with sporadic AD 73–97 years

of age (11 males and 9 females). Functional assessment

staging (FAST) [51] was used to evaluate the progression

of the clinical course of sporadic AD. Control subjects were

classiWed as FAST stages 1 and 2 (normal adult without

functional decrement documented in available medical

records, and normal aged adult with subjective deWcit in

word Wnding, respectively). At the time of their demise,

three AD subjects were at FAST stage 3 (incipient AD with

deWcits noted in demanding employment settings); three

subjects at FAST stage 4 (mild AD with deWcits in perfor-

mance of complex tasks of daily life); two subjects at FAST

stage 5 (moderate AD manifested with deWcient perfor-

mance in choosing proper attire); four subjects at FAST

stage 6 (moderately severe AD manifested with Wve sub-

stages, including decreased ability to dress properly, to han-

dle mechanics of bathing and toileting, and Wnally with

urinary and fecal incontinence), and eight subjects at FAST

stage 7 (severe AD with several substages, including incip-

ient averbalism, limitation of speech to a single word, and

loss of ambulation). Patients were examined by clinicians

in the Aging and Dementia Research Center at New York

University Medical Center.

Fixation, processing, embedding, and neuropathological 

evaluation

One brain hemisphere from each subject was cut into 1-cm-

thick frontal slabs. Diagnostic tissue samples were cut oV

and Wxed in formalin for routine neuropathological exami-

nation, while the majority of tissue was frozen at ¡80°C for

biochemistry. Neuropathological evaluation was based on

gross brain description and examination of 8-�m-thick sec-

tions from 16 brain regions. Alzheimer-type pathology was

evaluated using criteria developed at a consensus confer-

ence organized by the National Institute on Aging and the

Reagan Institute of the National Alzheimer Disease Associ-

ation [44]. According to Braak and Braak criteria [5], all

control subjects younger than 42 years of age were free of

AD pathology. All older control subjects were aVected with

incipient neuroWbrillary degeneration corresponding to

Braak and Braak criteria limbic stage I. They were free of

amyloid plaques. AD subjects represented a broad spectrum

of neuropathological changes from Braak and Braak limbic

stage II to neocortical stage VI. In the examined cohort, all

subjects with DS older than 38 years of age were aVected
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by both neuroWbrillary degeneration and �-amyloidosis

with neuritic plaques corresponding to Braak and Braak

II–VI.

The other hemisphere was Wxed in 10% buVered forma-

lin for 6 weeks to several months and then dissected into

1-cm-thick frontal slabs. The tissue blocks were dehydrated

in a graded series of ethanol: for 5 days, in 70% ethanol;

then 2 days in 80% ethanol; and Wnally, 1 week in 96% eth-

anol. Dehydrated tissue was inWltrated with polyethylene

glycol (PEG) 400 (Merck #807 485) for 6 days (two

changes of 3 days each at room temperature) and with PEG

1000 for another 6 days (two changes of 3 days each at

42°C). Slabs were embedded in fresh PEG 1000 [25] and

stored in +4°C. Tissue blocks were then cut at a tempera-

ture of 18°C into 50-�m-thick serial sections. They were

stored in 70% ethyl alcohol at room temperature and used

for immunocytochemical and morphometric studies.

The methods applied to this study were approved by the

Institutional Review Board at the New York State Institute

for Basic Research in Developmental Disabilities. All brain

tissue samples were identiWed by case number and exam-

ined blind to clinical and demographic information.

Immunostaining

Serial sections stored in 70% ethyl alcohol were washed

with phosphate buVer solution (PBS) and immunostained

as free-Xoating sections. Several antibodies were used to

detect DYRK1A (Table 1), including two antibodies to the

amino-terminus of DYRK1A: monoclonal antibody (mAb)

7F3 (IBR) [70] and goat polyclonal antibody (pAb)

Dyrk1A G-19 (Santa Cruz Biotechnology Inc.). The car-

boxy-terminus of DYRK1A was detected with sheep pAbs

X1079 from Exalpha Biologicals and sheep antibody

324446 from Calbiochem. Abnormally phosphorylated tau

protein of NFTs was detected with mAb Tau-1. Tau-1 rec-

ognizes an epitope between amino acids 189 and 207 of the

human tau sequence [17]. To obtain optimum staining with

Tau-1, sections were dephosphorylated with alkaline phos-

phatase prior to the application of primary antibody [19]

(Sigma, Type VII-L, 400 �g/ml in PBS, pH 7.4). A�-posi-

tive plaques were immunodetected with mouse mAb 4G8

(NYS, IBR), which recognizes amino acids 17–24 of the

amyloid �-peptide [29]. To enhance the immunoreactivity

of A�, sections were treated with concentrated formic acid

[31].

The endogenous peroxidase in the sections was blocked

with 0.2% hydrogen peroxide in methanol. Non-speciWc

bindings were blocked with 10% fetal bovine serum in PBS

for 30 min. The antibodies were diluted in 10% fetal bovine

serum in PBS and were incubated with sections overnight

at 4°C. The sections were washed and treated for 30 min

with either biotinylated sheep anti-mouse IgG antibody or T
a
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biotinylated donkey anti-goat IgG antibody diluted 1:200.

The sections were treated with an extravidin peroxidase

conjugate (1:200) for 1 h, and the product of reaction was

visualized with diaminobenzidine (0.5 mg/ml with 1.5%

hydrogen peroxide in PBS). After immunostaining, the sec-

tions were lightly counterstained with cresyl violet.

To conWrm the speciWcity of the immunostaining, the

reaction was tested with antibodies not absorbed as well as

those absorbed with appropriate peptides. For absorption,

antibody at the dilution 1:50 or 1:75 (the dilution at which

consistently positive results are achieved on sections) was

combined with a Wvefold (by weight) excess of blocking

peptide. The mixture was incubated for 2 h at room temper-

ature (or overnight at 4°C) and used for immunocytochemi-

cal tests. The eVect of tau protein dephosphorylation was

examined on sections pretreated and those not treated with

alkaline phosphatase.

Co-localization of Mnb/Dyrk1A and NFTs by double 

immunoXuorescence

Fifty-�m-thick brain sections were double-immunostained

for DYRK1A using pAb G19, and for NFTs, using mAb

Tau-1. Sections treated with alkaline phosphatase were

incubated with G19 antibody, followed by a secondary don-

key antiserum against goat IgG conjugated with biotin

(Amersham), and then streptAvidin-FITC (Vector). The

second primary antibody was mAb Tau-1. The reaction was

detected with antibody made in sheep: F(ab)2 fragments

against mouse IgG conjugated to Cy3 (Sigma). The absence

of cross-reactions was conWrmed as described earlier [15,

16]. Images were generated using a Nikon Eclipse E800

microscope and the Nikon PCM 2000 dual-laser scanning

confocal microscopy system and with the C-Imaging-SIM-

PLE32™ image analysis system (Compix Inc.).

Detection of DYRK1A using Western blotting

Frozen tissue samples from the cerebral frontal cortex of

Wve control subjects 31–71 years of age, 12 DS subjects

from 28 to 63 years of age, and four subjects with AD from

71 to 85 years of age were used for the detection of

DYRK1A using Western blotting. Tissue was mortar-

ground in liquid nitrogen. 0.1 g of powdered brain tissue

was lysed in 1 ml of 6 M guanidine chloride buVer (6 M

GuHCl, 10 mM NaH2PO4, 10 mM Tris, 20 mM imidazole,

pH 8) and sonicated. The protein concentration was deter-

mined by bicinchoninic acid assay (BCA) (Pierce Rock-

ford, IL, USA). The total amount of protein extracted

from each brain sample was calculated, and volumes corre-

sponding to 4 mg of protein were mixed with 50 �l of

Ni-Sepharose High Performance (Amersham) slurry and incu-

bated for 2 h at 4°C with constant rotation. Ni-Sepharose

beads were then washed three times with 1 ml 8 M urea

buVer (8 M urea, 100 mM NaH2PO4, 10 mM Tris, pH 5.9)

for each wash. Elution was carried out by boiling for 2 min

in 50 �l of 1£ tricine sample buVer (BioRad) with 50 mM

EDTA. Ten microliter of each eluate was electrophoresed

on 8% tricine SDS-polyacrylamide gel and transferred onto

PVDF membrane. The membranes were blocked in 5%

non-fat milk and incubated overnight with the appropriate

dilution of monoclonal 7F3 [70] and goat polyclonal G19

(Santa Cruz Biotech, Inc.) antibodies. After incubation

with alkaline phosphatase-conjugated secondary antibody

(Amersham), the membranes were developed by color reac-

tion using BCIP/NBT as a substrate. The immunoreactive

bands on digitalized images were densitometrically quanti-

Wed using the 1D Scan EX3.1 software program (Scanalytics

Corp., Rockville, MD, USA).

Morphometry

On consecutive sections from the brains of subjects with

DS/AD and sporadic AD, the numerical density (n/mm3) of

neurons stained with cresyl violet (CV), and of neurons

with NFTs immunostained with antibodies Tau-1 and G-19

was evaluated. NFTs were counted in the four layers of the

entorhinal cortex known to be aVected early and severely

with neuroWbrillary degeneration (transentorhinal/entorhi-

nal stage of neuroWbrillary degeneration) [5], including lay-

ers II (islands of stellate cells), III, V, and VI. Sectors CA1

and CA4 of the cornu Ammonis and the pyramidal layer in

the subiculum proper were selected as representative for the

limbic stage of neuroWbrillary degeneration. Neurons with

NFTs were counted in a frame of 0.0035 mm2 in the entorh-

inal cortex and in a frame of 0.007 mm2 in three subdivi-

sions of the hippocampal formation. The depth of the

examined dissector was 30 �m. Based only on neurons con-

taining Tau-1-positive NFTs, the proportion of neurons

with G-19-positive NFTs was calculated. NFTs were

counted in three histological sections representing the fron-

tal, middle, and caudal portions of the entorhinal cortex and

hippocampal formation. Twenty-Wve test areas were evalu-

ated for each examined subregion at a Wnal magniWcation of

3,100£.

Results

All samples were subjected to partial puriWcation by immo-

bilized metal (Ni2+) ion aYnity chromatography (IMAC).

DYRK1A binds with high aYnity to nickel ions chelated to

sepharose matrix through the histidine-rich domain in the

C-terminal part of the molecule [20, 23]. The samples were

made out of pools of cerebral frontal cortex tissue of Wve

control, 12 DS, and four AD subjects. Figure 1 shows the
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immunoblot of IMAC-puriWed samples representing each

pool, developed with monoclonal 7F3 and polyclonal G19

antibodies, both directed against the N-terminus of

DYRK1A protein. In all three pools, 7F3 and G19 antibody

detected, with similar relative intensity, two closely spaced

bands with the approximate molecular weights of 97 and

94 kDa. Densitometrical quantiWcation of immunoreactive

bands revealed an enhancement of DYRK1A levels in the

DS pool by the factor of 1.47 and 1.9 for 7F3 and G19 anti-

body, respectively. When compared with control subjects,

the AD pool showed visibly less DYRK1A by both anti-

bodies. The data shown in Fig. 1 are part of our published

study [13] in which cases comprising each pool were tested

and evaluated individually. In the course of this study, we

measured the levels of DYRK1A in six brain structures and

found a statistically signiWcant (P < 0.05) increase in the

DS group. The overall increase calculated for all six struc-

tures was 1.43-fold, very close to the predicted gene dosage

value of 1.5.

Immunodetection of DYRK1A in neurons free 

of neuroWbrillary degeneration

Immunostaining with mAb 7F3 revealed Mnbk/Dyrk1A in

the nucleus and cytoplasm of neurons, including neuronal

processes and synapses. However, the reaction varied sub-

stantially, ranging from heavy granular staining in the cell

nucleus and cytoplasm to just traces or even a total lack of

reaction product. The immunoreactivity was neuron type-

and brain structure-speciWc. Cytoplasmic immunoreactivity

with mAb 7F3 in normal brain was characterized in our

previous article [70]. Antibodies to DYRK1A G-19,

X1076, and 324446 also immunolabeled neurons in the

brains of controls, patients with DS, and patients with

sporadic AD. Immunoreactivity was observed mainly in

the cell body, but some reactivity was present in apical

dendrites, especially in sections stained with mAb 7F3

(not shown) and pAb G-19 (Fig. 2a–c).

DYRK1A immunoreactivity in NFTs

Antibody Tau-1 to tau protein and three antibodies to

DYRK1A (G-19, X1079, and 324446) immunolabeled neu-

rons in diVerent stages of NFT formation (Fig. 2d–i). In the

early stage of neuroWbrillary degeneration, formation of

NFTs was associated with enlargement of the cell body and

deformation and displacement of the cell nucleus to the cell

periphery. In this stage, the entire cytoplasm, including

NFTs, showed weak to moderate immunoreactivity to

DYRK1A (Fig. 2d–f). The progression of changes was

associated with a more selective enhancement of reaction in

bundles of cytoplasmic Wbers with the morphology of NFTs

and the proximal portion of dendrites, including apical den-

drites of pyramidal neurons (Fig. 2g–i). In contrast to the

common and strong pAb G-19 immunoreactivity of intra-

neuronal NFTs, and the weaker immunoreactivity with pAbs

to the C-terminus of DYRK1A (X1079 and 324448), NFTs

released from dead neurons (ghost tangles) were always

immunonegative (Fig. 2j–l). Mab 7F3 did not detect intra-

cellular or extracellular NFTs (ghost tangles, Table 2).

Immunostaining with pAb G-19 revealed numerous

DYRK1A-positive NFTs in the entorhinal cortex, limbic

structures, and isocortex in subjects with DS, but many

fewer in patients with sporadic AD (Fig. 3).

The appearance of Tau-1 immunoreactive NFTs in

neuronal bodies was associated with the appearance of

Tau-1-positive deposits in dendrites (neuropil threads). The

increase in the number of Tau-1-positive neuronal bodies

was paralleled with an increase in the number of Tau-1-

immunopositive neuropil threads in DS/AD and sporadic

AD. However, in sections stained with antibodies G-19,

X1079, and 324448, immunolabeling of NFTs in cell bod-

ies was observed in the almost total absence of immunore-

action in neuropil threads for both groups (Fig. 3). The

increase in the number of DYRK1A-positive NFTs in per-

sons with DS and severe Alzheimer-type pathology was not

associated with an increase in the number of immunoposi-

tive neuropil threads.

Colocalization of abnormally phosphorylated tau 

and DYRK1A in NFTs

Intraneuronal co-localization of DYRK1A and NFTs was

conWrmed by double-immunoXuorescence and confocal

microscopy. For Tau-1-negative neurons, the staining for

DYRK1A was granular and the product of immunoreactivity

Fig. 1 Representative Western blot of Ni–aYnity puriWed Dyrk1A

from the pools of the cerebral frontal cortex tissue of control (CTR Wve

cases; 31–71 years), Down syndrome (DS 12 cases; 28–63 years), and

Alzheimer disease (AD four cases; 71–85 years) subjects. Mixing

equal amounts of powdered brain tissue from each case made pools,

which were then processed for Western blotting and densitometric

quantiWcation. Equal loads of two identical sets of samples were sepa-

rated on 8% tricine SDS-polyacrylamide gel and immunoblotted with

a 1:5,000 dilution of monoclonal 7F3 antibody at a 1:10,000 dilution

of polyclonal G19 antibody. The blot was developed by color reaction

using AP-conjugated secondary antibodies and BCIP/NBP substrate.

The density of immunoreactive bands on digitalized images was mea-

sured by the 1D Scan EX3.1 software program. The value of the

DS:CTR ratio was the mean § SD of three independent Western blots.

Densitometry of control and DS samples revealed an enhancement of

DYRK1A levels in the DS pool by a factor of 1.47 for 7F3, and 1.9 for

G19 antibody. Both antibodies revealed less DYRK1A in the AD pool

when compared to controls
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was evenly distributed in the cytoplasm in both the neuronal

body and cell nucleus (Fig. 4a; and higher magniWcation,

Fig. 4aa). In some neurons, the accumulation of abnormally

phosphorylated tau in the early stage of neuroWbrillary degen-

eration (pretangle stage) was associated with the formation of

numerous Tau-1-immunopositive cytoplasmic granules in the

cell body and dendritic tree (Fig. 4b, bb). Some Tau-1-posi-

tive deposits were co-localized with G-19-immunoXuorescent

Fig. 2 Antibodies to the N-ter-

minal (G-19) and the C-terminal 

portion (X1079 and 324446) of 

DYRK1A reveal immunoposi-

tive material in the cytoplasm in 

neurons in CA1 (a), the nucleus 

basalis of Meynert (b), and CA4 

(c) in a 31-year-old control sub-

ject (arrowheads). Early stage of 

neuroWbrillary degeneration was 

associated with an increase in 

the size of neuronal body Wlled 

with G-19-, X1079-, and 

324446-positive NFTs; dis-

placement of the nucleus to the 

cell periphery; and diVuse cyto-

plasmic immunoreactivity in cell 

cytoplasm (arrowheads CA4 

sector in a 52-year-old subject 

with DS/AD; d–f). In the ad-

vanced stage of NFT formation, 

immunopositive material marks 

mainly bundles of NFTs (arrow-

heads CA1 sector in a 52-year-

old subject with DS/AD: g–i). 

However, ghost tangles (arrows) 

are immunonegative when 

stained with these three antibod-

ies (CA1 sector in a 52-year-old 

subject with DS/AD; j–l). 

MagniWcation: a £390; 

b–l £690
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material, but some were not (Fig. 4c, cc). In spite of the strong

immunoreactivity of DYRK1A in both the cell body and pro-

cesses, co-localization of Tau-1- and G-19-positive material

was limited almost exclusively to the cell body. The progres-

sion of neuroWbrillary changes was reXected in an increase in

the amount of Tau-1-positive material and the formation of

bundles of NFTs immunoreactive only with Tau-1 or both

Tau-1 and G-19 (Fig. 4d–f). In some neurons, the portion of

bundles of NFTs was immunoreactive with Tau-1 or G-19

only, or with both antibodies (Fig. 4g–i). Tau-1-positive neu-

ropil threads were almost always G-19-negative. In contrast to

the uniform distribution of a Wne granular product of reaction

with pAb G-19 observed in normal neurons, G-19-immuno-

positive material formed several clusters of rough granules in

astrocytes (Fig. 4d, f).

DYRK1A-immunoreactive NFTs in morphometric study

Figure 5 illustrates the result of the immunocytochemistry-

based quantitative evaluation of G-19-positive NFTs in

subjects with DS/AD and sporadic AD. In subjects with

sporadic AD, the percentage of G-19-positive NFTs was

structure-speciWc: 10%, 16%, and 14% in layers II, III, and

V in the entorhinal cortex, respectively; 24% in the pyrami-

dal layer in the CA1 sector; but only 7% in the CA4 sector

and 12% in the pyramidal layer of the subiculum proper. In

subjects with DS/AD, the numerical density of G-19-posi-

tive NFTs in entorhinal cortex layers II, III, and V was

increased by about 3.7£, 2.0£, and 3.0£, respectively. In

the CA1 and CA4 sectors, their numbers were 1.5£ and

3.6£ higher, respectively, and in the subiculum, the num-

ber was increased by 2.6£.

Neuronal loss and neuroWbrillary degeneration in the

second layer of the entorhinal cortex (EC) of subjects with

DS/AD and sporadic AD is illustrated in Fig. 6. The similar

age at the onset of AD pathology in almost all DS subjects

results in the rather uniform neuronal loss in the second

layer of the EC of DS subjects and the correlation between

the numerical density of CV-positive neurons and age

(r = 0.75). The neuronal loss is paralleled by a decrease in

the numerical density of Tau-1-positive NFTs (r = 0.65).

The immunoreactivity of NFTs with G19 in all DS

subjects, including the youngest in the examined cohort

(38 years), suggests that DYRK1A contributes to the early

onset of neuroWbrillary degeneration in DS subjects. The

increase in the percentage of G19-positive NFTs (consider-

ing Tau-1-positive neurons as 100%) with age (r = 0.51)

suggests that DYRK1A contribution to neuroWbrillary

degeneration in DS increases with age. In three DS sub-

jects, 58, 63, and 67 years, almost all tau-positive NFTs

were G19-positive.

In the AD cohort, the numerical density of CV-posi-

tive neurons in the second layer of the EC decreases

from 30,000–40,000 mm¡3 in the early stages to about

15,000 in the late stages (Fig. 7b–f). In contrast to DS,

sporadic AD starts at a diVerent age, and the correlation

between the number of neurons and age is not signiWcant

(r = 0.29), but the number of neurons correlates with

FAST stage (r = ¡0.87). The decrease in the numerical

density of Tau-1-positive neurons correlates with the

stage of AD (r = ¡0.76), but not with age (r = 0.22). In

sporadic AD, G19-positive neurons represent a low per-

centage of Tau-1-positive NFTs. They were not found in

eight subjects with sporadic AD. In six subjects, the

Table 2 Immunoreactivity in neurons, glial cells, and corpora amylacea with antibodies to DYRK1A

NFTs neuroWbrillary tangles, GVD granulovacuolar degeneration

Structures Antibody

7F3 N-terminus G-19 N-terminus X1079 C-terminus 324446 C-terminus

Neuron

Nucleus +++ + + +

Cytoplasm +++ ++ ++ ++

NFTs ¡ ++++ ++ ++

Neuropil threads ¡ § § §

Ghost tangles ¡ ¡ ¡ ¡

Dystrophic processes in amyloid plaques + + + +

GVD (cores) ¡ ¡ ++ ++

Astrocyte

Nucleus ¡ ¡ ¡ ¡

Cytoplasm ++ ++ ++ ++

Microglia and oligodendrocytes

Nucleus, cytoplasm ¡ ¡ ¡ ¡

Corpora amylacea +++ ++ ++ ++
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number was less than 10%. In only six AD subjects, it

varied from 25 to 67%. In contrast to DS, in sporadic

AD, in the later stages of disease (FAST stages 6 and 7),

the number of G19-positive NFTs was low, or they were

not found.

Dephosphorylation with alkaline phosphatase did not

change the pattern of DYRK1A distribution in NFTs (not

shown) in the brains of people diagnosed with DS/AD or

sporadic AD.

DYRK1A immunoreactivity in astrocytes

Two types of reaction were observed in astrocytes. In the

majority of the subjects with DS, almost all astrocytes

Fig. 3 In a 67-year-old subject 

with DS, the presence of numer-

ous Tau-1-immunoreactive 

NFTs in neuronal bodies and 

apical dendrites (arrows) is par-

alleled with the appearance of 

numerous Tau-1-immunoposi-

tive neuropil threads (arrow-

heads) in the amygdala (AMY), 

the second layer of the entorhi-

nal cortex (EC), and the pyrami-

dal layer in the cornu Ammonis 

(CA1). In a subject with sporadic 

AD and moderately severe clini-

cal pathology at the time of 

demise (FAST 6d), only a few 

NFTs (arrow) are G-19-positive. 

In contrast to Tau-1, which 

stains numerous neuropil 

threads, antibody G-19 does not 

detect neuropil threads. MagniW-

cation a–c £55, d–l £430
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contained a variable amount of clusters of rough granules

that were 7F3- and G-19-positive but Tau-1-negative.

Immunoreactivity with X1079 and 324448 was less consis-

tent and usually weaker than immunolabeling with 7F3 and

G19. In patients with sporadic AD, granular staining in

astrocytes was less pronounced, but astrocytes in the sube-

pendymal zone and in the molecular layer of allocortex and

isocortex often showed mild to strong diVuse staining both

in the astrocyte body and the processes. This pattern of

staining was especially common and strong in astrocytes

in neuritic plaque corona (Fig. 7a–c). Immunoreactivity

with 7F3, G-19, X1079, and 324448 was undetectable in

microglial cells and oligodendrocytes.

DYRK1A immunoreactivity in neuritic plaques

All subjects with DS/AD older than 38 years of age and all

patients with sporadic AD were aVected by amyloidosis,

with numerous neuritic plaques detected with mAb 4G8 in

both cortical and subcortical gray matter (not shown). In a

large proportion of the neuritic plaques detected with mAb

4G8, mAb Tau-1-labeled numerous swollen dystrophic

neuronal processes containing abnormally phosphorylated

tau. Mild/moderate reactions with G-19, X1079, and

324448 were observed in about 20% of these plaques in

areas corresponding to dystrophic neuronal processes

(Fig. 7d–f).

Fig. 4 Section from the cornu 

Ammonis of the 67-year-old DS 

subject immunostained with 

pAb G-19 (green color) and 

mAb Tau-1 (red color) and ana-

lyzed in confocal microscope. 

Fine-granular, evenly distributed 

immunoreactivity is detected 

with pAb G-19 in the body of 

two neurons marked with 

arrowheads (a, aa higher magni-

Wcation of one of these neurons). 

One neuron contains rough-

granular deposits of Tau-1-

positive material (arrow) 

corresponding to an early stage 

of neuroWbrillary degeneration 

(b, bb). Yellow color corre-

sponds to partial co-localization 

of the product of reaction for 

DYRK1A and abnormally phos-

phorylated tau protein (c, cc). 

d–f A normal neuron positive for 

DYRK1A and negative for 

Tau-1 (1); a neuron with NFT 

immunoreactive with Tau-1 only 

(2); and a neuron with NFT 

immunoreactive with both anti-

bodies (3; G-19, green; Tau-1, 

red; co-localization, yellow). 

The cytoplasm of astrocytes is 

Wlled with clusters of G-19-

positive rough granules (arrow-

heads). A neuron in the late 

stage of neuroWbrillary degener-

ation (g–i, arrowhead) contains 

some bundles of NFTs immuno-

reactive with both G-19 and 

Tau-1 (yellow). MagniWcation 

a–c and d–f £410, aa–cc 

£1,430, g–i £1,025
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Granulovacuolar degeneration and corpora amylacea

In subjects with DS/AD and sporadic AD, numerous neu-

rons in the pyramidal layer of the cornu Ammonis were

aVected with granulovacuolar degeneration (GVD). The

cell body contained several large vacuoles, each with a

dense core. The number of aVected neurons was increased

in the middle stages of AD pathology. However, in subjects

with severe AD, loss of neurons was associated with a

reduction in the number of neurons with GVD. In the cornu

Ammonis, immunostaining with C-terminal antibodies

X1079 and 324448 revealed moderate to strong reactions in

the cores in cytoplasmic vacuoles of neurons aVected with

GVD; however, reactions with N-terminal antibodies 7F3

and G-19 were undetectable (Fig. 7g–i).

Corpora amylacea were a common Wnding in control

subjects as well as in subjects with sporadic AD and

DS/AD. They were strongly immunopositive in sections

stained with 7F3 and moderately immunopositive in sec-

tions stained with G-19, X1079, and 324448 (Fig. 7j–l). A

strong reaction was present not only in large corpora amyl-

acea in the subpial, subependymal, and perivascular loca-

tion but also in tiny corpora amylacea dispersed in the

cortex and subcortical structures undetectable with CV.

Discussion

Recent studies indicate that DYRK1A is involved in sev-

eral molecular mechanisms leading to tau phosphorylation

and that overexpression of DYRK1A in patients with tri-

somy of chromosome 21 and DS may contribute to the

early onset of neuroWbrillary degeneration. DYRK1A is

present in the neuronal cytoplasm and nucleus [14, 70] and

has been reported to phosphorylate both cytoplasmic and

nuclear substrates [30, 40, 53, 74], suggesting that the sub-

cellular localization of the protein reXects the cytoplasmic

and nuclear pathway leading to neuroWbrillary degenera-

tion.

Cytoplasmic pathway

DYRK1A phosphorylates the human microtubule-associated

protein tau at Thr212 in vitro, a residue that is hyper-

phosphorylated in AD and tauopathies, including Pick

disease [14, 74], and permits phosphorylation of Ser208 by

glycogen synthase kinase 3 [74]. Ferrer et al. [14] observed

modiWcations in the expression of the constitutive cytoplas-

mic and nuclear DYRK1A in neurodegenerative diseases

associated with tau phosphorylation including DS, AD, and

Pick disease. However, they could not Wnd any evidence

that DYRK1A is directly involved in neuroWbrillary degen-

eration.

Application of two antibodies to the N-terminal portion

of DYRK1A, 7F3 [70] and G-19, and of two antibodies to

the C-terminal portion of DYRK1A, X1076 and 324446,

shows that the distribution of DYRK1A in the normal

human brain undergoes modiWcations associated with neu-

roWbrillary degeneration in DS/AD and sporadic AD. In

control brains, all four antibodies reveal immunoreactivity

in neurons, both in the cell body and the processes. A stron-

ger reaction is observed in sections stained with antibodies

to the N-terminal compared to the C-terminal portion of

DYRK1A. DYRK1A contains a nuclear targeting sequence

and is distantly related to the mitogen-activated protein

kinase family [27]. Intranuclear localization of DYRK1A

was shown in human neurons with mAb 7F3 [70], but three

antisera, including G-19, detect less immunoreactivity in

the cell nucleus.

Our study oVers evidence that DYRK1A is directly

involved in neuroWbrillary degeneration. Antiserum G-19

shows a strong reaction in the majority of NFTs in patients

with DS, and antisera X1079 and 324446 react with only

about 10% of G-19-positive NFTs.

On the other hand, mAb 7F3 does not react with NFTs.

The observed diVerences in immunoreactivity of NFTs

with antibodies and antisera against diVerent sequences of

DYRK1A suggest that epitopes detected by these antibod-

ies/antisera are masked in complexes of DYRK1A with tau

and other proteins in intracellular NFTs.

Nuclear substrates phosphorylated by DYRK1A

We documented that DYRK1A phosphorylates alternative

splicing factor (ASF) at three sites (unpublished data).

Fig. 5 Graph illustrates a several-fold higher percentage of G-19-pos-

itive NFTs (when the number of Tau-1-positive NFTs is considered

100%) in the entorhinal cortex (EC) layers II, III, and V, in the CA1 and

CA4, and in the subiculum proper (SUB) in the brains of persons with

DS compared to subjects with sporadic AD
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Phosphorylation of ASF by SRPK1 in cytosol results in

ASF relocation to the nucleus, whereas phosphorylation by

Clk/Sty releases ASF from speckles [32, 45] and recruits it

into nascent transcripts, where ASF regulates alternative

splicing. Phosphorylation of nuclear ASF by DYRK1A

drives ASF back to speckles, decreases involvement in regu-

lation of alternative splicing, and inhibits ASF’s ability to

promote tau exon 10 inclusion. The result is an increase in

3R tau level and an imbalance of 3R/4R tau ratio. The

imbalance could be the factor initiating and accelerating

neuroWbrillary degeneration in the brain of patients with DS.

DYRK1A in NFTs

Co-localization of DYRK1A with NFTs, described in this

article and by in vitro studies showing tau protein

phosphorylation with DYRK1A priming tau phosphoryla-

tion with GSK-3�, suggests that DYRK1A plays a role in

neuroWbrillary degeneration and that this process is much

more pronounced in neurons of patients with DS than in

patients with sporadic AD. In NFTs, tau protein is phos-

phorylated by several protein kinases, including GSK-3�,

cyclin-dependent kinase 5 (cdk5), JNK, ERK1/2, and p38

at more than 30 phosphorylation sites [18, 22, 34, 42, 52,

60]. Several kinases in their activated forms co-localize

with NFTs in AD, including mitogen-activated protein

kinase (MAPK) [66], microtubule-aYnity regulating kinase

(MARK) [9], GSK-3� [36, 47, 48, 76], cdk 5 [76], cdc2-

related kinase [38], and casein kinase 1� (Cki�) [57]. This

study shows that DYRK1A colocalizes with NFTs in all

subjects with DS/AD but in only 60% of subjects diagnosed

with sporadic AD.

Fig. 6 Graphs illustrate changes in the numerical density of neurons

stained with CV and NFTs immunoreactive with Tau-1 antibody and

G19-antibody detecting DYRK1A in NFTs in DS subjects (left col-

umn) and in AD (right column) in the second layer of the entorhinal

cortex. The early onset of neuroWbrillary degeneration results in neu-

ronal loss. In the DS cohort, the decrease in the numerical density

of CV-positive neurons and Tau-1-positive NFTs correlates with

age (r = ¡0.75 and ¡0.65, respectively; P < 0.05). DYRK1A-positive

NFTs (G19-immunoreactive NFTs) are present in the entorhinal cortex

of all DS subjects from 38 to 72 years. The percentage of DYRK1A-

positive NFTs (tangles immunoreactive with G19) increases with age

(r = 0.51; Tau-1-positive NFTs were considered as 100%). Also in the

AD cohort, a decrease in the numerical density of CV-positive and

Tau-1-positive NFTs strongly correlates with stage of disease (FAST;

r = ¡0.87, and r = ¡0.76, respectively). However, in contrast to the

DS cohort, 40% of subjects with sporadic AD do not have DYRK1A-

positive NFTs; in 30% of subjects, less than 10% of Tau-1-positive

NFTs are G-19-immunoreactive, and only 30% of subjects have from

25 to 67% of G19-immunoreactive NFTs. The majority of subjects

with severe sporadic AD (FAST 6 and 7) are free of DYRK1A-positive

NFTs
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Gene dosage eVect in DS

A gene dosage eVect has been proposed to explain the role

of an extra chromosome 21 in the pathology of DS. Studies

in fetuses with DS show reduced (HACS1) or unmodiWed

levels of some proteins (alpha A-crystalline, FTCD,

GARS-AIRS-GART, and CBS), including DYRK1A,

which are encoded by genes on chromosome 21. These data

Fig. 7 In a 67-year-old subject 

with DS, in some cored plaques, 

diVuse immunoreactivity with 

G-19, X1079, and 324446 

appears in the activated astro-

cyte body and processes (arrow-

heads, CA1 a–c). In about of 

20% of cored plaques, antibod-

ies to DYRK1A label dystrophic 

neuronal processes (arrows; 

d–f). In the CA1 sector, granules 

(arrowheads) in neurons with 

granulovacuolar degeneration 

are negative when stained with 

antibodies to the N-terminus of 

DYRK1A (7F3, not shown; 

G-19 shown in g) but positive 

when stained with X1079 and 

324446 (h, i). Strong immuno-

reactivity with all three antibodies 

appears in corpora amylacea 

(arrowheads) in the hippocampus 

(j and l dentate gyrus; k CA4). 

MagniWcation a–f £210, 

g–i £1,075, j–l £210
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call into question the link between overexpressed genes and

the formation of DS phenotype in utero [8].

However, in adults with DS, Western blots revealed an

almost 50% higher level of DYRK1A protein in extracts

from the frontal cortex. The study of other cortical regions

in the human cortex conWrmed a 50% increase in expres-

sion of this kinase linked to an extra copy of Dyrk1A gene

in subjects with trisomy of chromosome 21 and DS [13].

The presence of DYRK1A-positive NFTs in all subjects

with DS/AD but in only 60% in sporadic AD cases, and a

much higher percentage of NFTs in DS subjects than in

subjects with sporadic AD appears to reXect the overex-

pression of the DYRK1A gene and the link between the

excessive amount of this kinase and the onset and progres-

sion of neuroWbrillary degeneration. Overexpression of the

APP gene, increased concentrations of A� in DS fetuses

[64], and the early onset of diVuse [35, 73] and Wbrillar A�

deposits [73] represent additional evidence of the selective

overexpression of genes throughout the entire lifespan of

patients with DS.

DiVerences in NFTs’ immunoreactivity in DS/AD 

and sporadic AD

GSK3�, cyclin-dependent kinase (cdk) 5 [76], and

DYRK1A were found in only some NFTs. These observa-

tions and the signiWcant diVerences in NFTs’ immunoreac-

tivity in patients with DS/AD and sporadic AD imply the

presence of multiple patterns of tau phosphorylation and

neuroWbrillary degeneration. Perhaps, the percentage of

NFTs that are positive to a given kinase is disease-, stage of

disease-, and brain structure-speciWc. The present observa-

tions may also suggest that patterns of tau phosphorylation

with DYRK1A in persons with DS are diVerent than those

in patients with sporadic AD. This diVerence may reXect a

variation in the progression of neuroWbrillary degeneration

and, possibly, neuronal loss. In spite of the presence of sig-

niWcant neuroWbrillary degeneration and amyloidosis-� in

almost all patients with DS 40 years of age and older [72,

73], clinically signiWcant functional deterioration has not

been reported to increase in prevalence until some 10 years

later [24, 33, 76]. The prevalence of dementia in the DS

cohort is estimated as 55% in the age group of 50–59 years,

and 75% in subjects older than 60 years of age [33]. One

may hypothesize that tau phosphorylation and neuroWbril-

lary degeneration are modiWed in persons with DS/AD

when compared to sporadic AD. The presence of DYRK1A

in the NFTs of the youngest DS subjects with neuroWbril-

lary degeneration indicates DYRK1A’s contribution to the

early onset of NFTs in DS. A lower percentage of G-19-

positive NFTs in DS subjects before they reach 50 years of

age and a high percentage in subjects in their 50s or 60s

might be an indication of an enhanced contribution of

DYRK1A to tau phosphorylation and neuroWbrillary

degeneration in older patients with DS. The lack of immu-

noreactivity of NFTs with antiserum detecting DYRK1A

(G19) in 40% of AD subjects and the low percentage of

G19-positive NFTs in the other 30% of AD subjects reXect

the diVerence in contribution of overexpressed DYRK1A to

neuroWbrillary degeneration in DS/AD and the contribution

of normal level of DYRK1A in sporadic AD.

The study of chromosome 21 genetic associations with

late-onset AD revealed that the DYRK1A gene has the high-

est signiWcance as a genetic risk factor [30]. The dramatic

diVerence between DYRK1A’s role in neuroWbrillary degen-

eration in DS/AD and in sporadic AD appears to be the

product of several molecular mechanisms, including (a) the

cytoplasmic pathway with phosphorylation of tau by

DYRK1A and the priming of tau phosphorylation by GSK3b

[40, 78], (b) the nuclear pathway with phosphorylation of

ASF by DYRK1A and the imbalance between 3R and 4R tau

(unpublished data), as well as (c) phosphorylation of APP by

DYRK1A at Thr668 in vitro and in mammalian cells [54]. The

experiments showing that A� loading in neuroblastoma cells

and transgenic mice increases expression of DYRK1A gene,

resulting in hyperphosphorylation of tau at Thr212, support the

hypothesis that DYRK1A could be a key molecule linking

�-amyloid production with tau phosphorylation [30, 53, 54].

DYRK1A in neuropil threads and dystrophic neurites, 

but not in ghost tangles

A striking feature of the immunolabeling of neurons with

neuroWbrillary degeneration with antibodies to GSK-3�,

MPM-2, and cdc2 is the positive reaction with PHFs in the

neuronal body but the only sparse reactivity with neuropil

threads and dystrophic neurites in the plaque perimeter [67,

76]. It was proposed that this diVerence might be attribut-

able to a diVerential sensitivity of neuritic components to

Wxation [38]. The strong immunostaining of NFTs observed

in the cell body in the majority of neurons with neuroWbril-

lary degeneration in older subjects with DS/AD, the

absence of immunoreactivity with antiserum G-19 in neu-

ronal processes (neuropil threads), and the sparse immuno-

reactivity observed in dystrophic neurites in cored plaque

corona may indicate that DYRK1A is involved in tau phos-

phorylation mainly in the cell body. These observations

may also suggest that the pattern of tau phosphorylation in

the cell body is diVerent from that in the dendrites, and that

G-19-positive complexes of abnormally phosphorylated tau

do not extend to dendrites. However, the possibility that the

lack of reaction with antibodies against DYRK1A in neuro-

Wbrillary threads in dendrites and synapses could be the

result of masking of epitopes in vivo or the loss of immuno-

reactivity postmortem including tissue processing cannot

be excluded at this phase of study.
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Staining of intracellular NFTs with antibodies to cdc and

MPM-2 was considered evidence that these kinases play a

role in the early stages of neuroWbrillary degeneration [67].

Transformation of intracellular NFTs into extracellular

ghost tangles is associated with the loss of epitopes recog-

nized by antibodies raised against the amino- and carboxy-

termini of tau [4]. Extracellular NFTs are immunonegative

not only to DYRK1A but also to GSK-3 [76]. The majority

of ghost tangles are also negative when stained with anti-

bodies against cdc2 and MPM-2 [67]. Proteolytic process-

ing with a loss of the N- and C-terminal portions of tau is

associated with the secondary deposition on NFTs of ubiq-

uitin [3, 63], of heparan sulfate proteoglycans [3], and, in

some brain regions, of A� [4, 63, 71, 75]. The absence of

DYRK1A in ghost tangles indicates that this binding reX-

ects a contribution to neuroWbrillary degeneration rather

than unspeciWc adhesion to already formed NFTs.

Lack of DYRK1A in NFTs in aged control subjects

In general, the properties of NFTs in aged individuals with-

out dementia recapitulate those found in NFTs in AD [10].

In contrast to the accumulation of DYRK1A in about 50%

of NFTs in DS subjects and the much lower percentage of

NFTs in patients with sporadic AD, NFTs in control sub-

jects are free of DYRK1A. The lack of DYRK1A in NFTs

of aged controls is not due to the absence of this kinase,

because immunocytochemistry shows widespread distribu-

tion of DYRK1A in neurons. This pattern resembles the

accumulation of protein kinase M� (PKM�) in the NFTs of

subjects with AD but the absence in NFTs of aged control

subjects [10]. The observed NFT immunoreactivity indi-

cates that the association of kinases with NFTs is kinase-

speciWc and aging-, AD-, and AD/DS-speciWc.

DYRK1A in GVD and corpora amylacea

Granulovacuolar degeneration is observed in a small per-

centage of neurons in the majority of normal aged subjects,

and their number increases in persons with AD [65]. The

granular component of vacuoles reacts with antibodies to

tubulin [49] and antibodies to abnormally phosphorylated

tau [11], and GSK-3� [36, 76]. The presence of DYRK1A

immunoreactivity in granules in neurons with GVD

detected with C-terminal antibodies and the lack of reactiv-

ity with antibodies against the N-terminus may indicate that

only N-terminally truncated products of DYRK1A process-

ing contribute to GVD or selectively accumulate in these

granules.

Corpora amylacea are considered as a sign of the earliest

changes associated with aging and/or neurodegeneration in

neurons [6], including axons [1, 7] and synapses [2] as well

as glial cells, especially astrocytes [6, 12, 56, 61]. Strong

immunoreactivity with antibody 7F3 [70] and with antibod-

ies G-19, X1073, and 324446 suggests the involvement of

DYRK1A in this form of neuron and astrocyte degenera-

tion and the early onset of these changes in DS.

DYRK1A appears to be involved in many forms of neu-

ronal degeneration including Lewy bodies, a pathological

hallmark of Parkinson’s disease. DYRK1A phosphorylates

�-synuclein at Ser87 and selectively binds to �-synuclein

in transformed and primary neuronal cells. The fact that

aggregates formed by phosphorylated �-synuclein are more

toxic when compared with aggregates composed of unmod-

iWed wild-type �-synuclein, suggests that �-synuclein inclu-

sion formation regulated by DYRK1A may aVect neuronal

cell viability [28].

Phosphorylation of tau protein by one kinase facilitates

or inhibits phosphorylation by other protein kinases in vitro

[26, 58, 68, 74, 77] and in vivo [39]. The reported Wndings

and other studies [40] suggest that kinases work in a

coordinated way and that overexpressed DYRK1A is a

major factor contributing to the DS-speciWc pattern of neuro-

degeneration. DYRK1A’s contribution to neuroWbrillary

degeneration in DS appears to be much more signiWcant

than in subjects with two copies of the DYRK1A gene and

sporadic AD. The presence of DYRK1A not only in NFTs

but also in granules in GVD and in corpora amylacea

suggests that DYRK1A is involved in all three forms of

degeneration and may contribute to the early onset of these

pathologies in DS.

Protein kinase A (PKA) might be involved in the abnor-

mal phosphorylation of tau in an upstream position to GSK-

3 and possibly other proline-directed protein kinases [39].

DYRK1A phosphorylates tau at several sites and facilitates

the phosphorylation of tau at several sites by GSK-3 [40,

74]. Whereas PKA is considered to be a potential therapeu-

tic target for the treatment of neuroWbrillary degeneration in

patients with sporadic AD [39], overexpressed DYRK1A

might be considered a major target for treatment of neuro-

nal degeneration in patients with DS/AD.

Western blots demonstrated increase of DYRK1A in the

DS group when compared to the control and AD group.

The presence of DYRK1A in NFTs in sporadic AD indi-

cates that DYRK1A contributes to tau phosphorylation

even in the absence of increased gene dosage. However, an

increase in DYRK1A-positive NFTs in a gene dosage-

dependent manner in subjects with DS, including the

youngest NFT-positive DS subjects, indicates that over-

expressed DYRK1A contributes to the early onset of

neuroWbrillary degeneration in DS. The correlation between

the percentage of G19-positive neurons and the age of DS

subjects suggests that the contribution of DYRK1A to neu-

roWbrillary degeneration increases in the later stages of AD

in the DS cohort. Immunoreactivity with antibodies against

DYRK1A in granules in GVD and in corpora amylacea
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suggests that DYRK1A is involved in the early onset of all

three forms of degeneration in DS.
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