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The role of oxidative stress in the pathophysiology
of hypertension

Ramón Rodrigo, Jaime González and Fabio Paoletto

Hypertension is considered to be the most important risk factor in the development of cardiovascular disease. An increasing

body of evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), has a

key role in the pathogenesis of hypertension. The modulation of the vasomotor system involves ROS as mediators of

vasoconstriction induced by angiotensin II, endothelin-1 and urotensin-II, among others. The bioavailability of nitric oxide (NO),

which is a major vasodilator, is highly dependent on the redox status. Under physiological conditions, low concentrations of

intracellular ROS have an important role in the normal redox signaling maintaining vascular function and integrity. However,

under pathophysiological conditions, increased levels of ROS contribute to vascular dysfunction and remodeling through

oxidative damage. In human hypertension, an increase in the production of superoxide anions and hydrogen peroxide, a decrease

in NO synthesis and a reduction in antioxidant bioavailability have been observed. In turn, antioxidants are reducing agents that

can neutralize these oxidative and otherwise damaging biomolecules. The use of antioxidant vitamins, such as vitamins C and E,

has gained considerable interest as protecting agents against vascular endothelial damage. Available data support the role of

these vitamins as effective antioxidants that can counteract ROS effects. This review discusses the mechanisms involved in ROS

generation, the role of oxidative stress in the pathogenesis of vascular damage in hypertension, and the possible therapeutic

strategies that could prevent or treat this disorder.
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INTRODUCTION

Hypertension is considered the most important risk factor for the
occurrence of cardiovascular disease.1 Oxidative stress has gained
attention as one of the fundamental mechanisms responsible for the
development of hypertension. Reactive oxygen species (ROS) have an
important role in the homeostasis of the vascular wall; hence, they
could be part of the mechanism that leads to hypertension.2–4 Thus,
increased ROS production, reduced nitric oxide (NO) levels and
reduced antioxidant bioavailability were demonstrated in experimen-
tal and human hypertension. Vascular superoxide is primarily derived
from nicotinamide adenine dineucleotide phosphate (NADPH) oxi-
dase when stimulated by hormones, such as angiotensin II (AT-II),
endothelin-1 (ET-1) and urotensin II. In addition, increased ROS
production may be generated by mechanical stimuli on the vascular
wall, which increase with hypertension. ROS-induced vasoconstric-
tion results from increased intracellular calcium concentration,
thereby contributing to the pathogenesis of hypertension.2 Vasomotor
tone is dependent on a delicate balance between vasoconstrictor and
vasodilator forces that result from the interaction between the
components of the vascular wall and the blood, all of which can be
altered by oxidative stress. These findings have stimulated interest in

antihypertensive therapies targeted toward decreasing ROS genera-
tion and/or increasing NO bioavailability. This review examines the
available studies that highlight the role of oxidative stress in the
underlying mechanism of high blood pressure and discusses those
that consider the use of antioxidants in the prevention or treatment
of this disorder.

PATHOPHYSIOLOGY OF HYPERTENSION

Endothelial dysfunction
Endothelial dysfunction has been implicated in the pathophysiology of
different forms of cardiovascular disease, including hypertension.
Endothelial dysfunction may be defined as impairment that is char-
acterized by a shift in the actions of the endothelium toward reduced
vasodilation, a proinflammatory state, and prothrombotic settings.
These events lead to a state of vascular inflammation, which may be
partially mediated by ROS formed by activated mononuclear cells.

Vascular oxidative stress and hypertension
Oxidative stress constitutes a unifying mechanism of injury in many
types of disease processes, and it occurs when there is an imbalance
between the generation of ROS and the antioxidant defense systems in
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the body. The ROS family comprises many molecules that have
divergent effects on cellular function. Importantly, many of these
actions are associated with pathological changes observed in cardio-
vascular disease. The effects of ROS are mediated through redox-
sensitive regulation of multiple signaling molecules and second
messengers.5–7 Several studies have demonstrated excessive amounts
of ROS in essential hypertensive patients and various animal models
of hypertension;8–12 these patients and experimental animals have a
diminished antioxidant status,13 which contributes to the accumulat-
ing evidence that increased vascular oxidative stress could be involved
in the pathogenesis of essential hypertension.2,3,14 Recently, a strong
association between blood pressure and some oxidative stress-related
parameters was demonstrated.15 Other studies showed that mouse
models that involve genetic deficiencies in ROS-generating enzymes
have lower blood pressure compared with their wild-type counter-
parts.16,17 In addition, in cultured vascular smooth muscle cells
(VSMCs) and isolated arteries from hypertensive rats and humans,
ROS production is enhanced, redox-dependent signaling is amplified,
and antioxidant bioactivity is reduced.18 The beneficial effects of
classical antihypertensive agents, such as b-adrenergic blockers, angio-
tensin I converting enzyme (ACE) inhibitors, AT-II receptor antago-
nists, and calcium channel blockers, may be mediated, in part, by
decreasing vascular oxidative stress.19,20

Sources of ROS in the vascular wall. A variety of enzymatic and non-
enzymatic sources of ROS exist in blood vessels. The best-characteri-
zed source of ROS is NADPH oxidase. In addition to NADPH
oxidase, several other enzymes may contribute to ROS generation,
including xanthine oxidase, NO synthase (NOS) and mitochondrial
enzymes.
NADPH oxidase: NADPH oxidase is the primary biochemical source

of ROS, particularly superoxide, in the vasculature. The kidney and
vasculature are rich sources of NADPH oxidase-derived ROS, which
have an important role in renal dysfunction and vascular damage
under pathological conditions.12,21 This system catalyses the reduction
of molecular oxygen by NADPH, which functions as an electron
donor, thus generating superoxide. NADPH oxidase is upregulated
in hypertension by humoral and mechanical signals. AT-II is the most
studied stimulus of the upregulation of NADPH oxidase, but ET-1 and
urotensin II may also participate to the activation of NADPH oxidase,
thereby resulting in increased ROS. It is likely that the most well-
known function of NADPH oxidase-derived superoxide is the inacti-
vation of NO in the reaction that forms peroxynitrite, which leads to
impaired endothelium dependent vasodilation and the uncoupling of
endothelial NO synthase (eNOS) to produce additional super-
oxide.16,22 In the vasculature, the activation of NADPH oxidase has
been strongly associated with hypertension.23

Uncoupled eNOS: The primary function of eNOS is NO production,
which regulates vasodilation. Nevertheless, deficiency or oxidation of
L-arginine and tetrahydrobiopterin (BH4), which are two essential
cofactors for eNOS action, are associated with the uncoupling of the
L-arginine-NO pathway that results in the decreased formation of NO
and increased eNOS-mediated generation of superoxide. NADPH
oxidase is the initial source of ROS. Superoxide combines with NO,
which is synthesized by eNOS, to form peroxynitrite.24 In turn,
peroxynitrite oxidizes and destabilizes eNOS to produce additional
superoxide.22,25 Superoxide also leads to BH4 oxidation (in fact, BH4 is
highly sensitive to oxidation), which promotes eNOS uncoupling and
further ROS production.
Xanthine oxidase: Xanthine oxidase is also an important source of

ROS in the vascular endothelium.23,26 It catalyzes the last two steps of

purine metabolism. During this process, oxygen is reduced to super-
oxide. There is evidence that suggests the involvement of this enzyme
in hypertension. Spontaneously hypertensive rats demonstrated ele-
vated levels of endothelial xanthine oxidase and increased ROS
production, which is associated with increased arteriolar tone.21 In
addition to effects on the vasculature, xanthine oxidase may have a
function in end-organ damage in hypertension.27

Mitochondria: Mitochondria are a major source and target of ROS.
Some of the superoxide produced in the intermembrane space may be
carried to the cytoplasm.28 Ubiquinol or coenzyme Q produces
superoxide when partially reduced (semiquinone form) and an anti-
oxidant when fully reduced.29 Complex I produces most of the
superoxide that is generated by mammalian mitochondria in vitro.
Complexes II and IV are not normally significant sites of ROS
production. Mild uncoupling very effectively decreases the high
superoxide production that occurs from complex I. A reduction in
antioxidant enzymatic activity in patients with hypertension has been
reported.30

Role of the vascular wall components
The endothelium senses mechanical and hormonal stimuli. In
response, it releases agents that regulate vasomotor function. There
is no doubt that the endothelium has a regulatory and protective role
by generating vasorelaxing substances. Under some pathophysiological
circumstances, endothelium-derived vasoconstricting factors, such as
ET-1, AT-II, urotensin II, superoxide anions, vasoconstrictor prosta-
glandins and thromboxane A2, can be released and contribute to the
paradoxical vasoconstrictor effects.

VSMCs function not only in the short-term regulation of blood
vessel diameter and, therefore, blood pressure but also participate in
long-term adaptation via structural remodeling. ROS mediate many of
these pathophysiological processes.

The adventitia can contribute to hypertension by either reducing NO
bioavailability or participating in vascular remodeling through ROS.

Role of vascular hormones and factors. NO: NO has an important role
as a key paracrine regulator of vascular tone. Physiologically, NO
inhibits leukocyte–endothelial cell adhesion, VSMC proliferation and
migration, and platelet aggregation to maintain the health of the
vascular endothelium. Therefore, it has many beneficial effects. The
decrease in bioavailability of NO in the vasculature reduces vasodila-
tory capacity and contributes to hypertension. The enzyme that
catalyzes the formation of NO from oxygen and arginine is NOS,
which, in fact, is an entire family of enzymes. eNOS is the predomi-
nant NOS isoform in the vessel wall. Receptor-mediated agonist
stimulation leads to rapid enzyme activation. Furthermore, shear
stress and allosteric modulators are important modulators of eNOS
activity.31 In addition to its vasorelaxing and antiproliferative roles,
NO has an important role in antagonizing the effects of AT-II,
endothelins and ROS. NO diffuses as a gas to the adjacent smooth
muscle in which it interacts with different receptor molecules, such as
the soluble guanylyl cyclase.

The normal production of NO has a crucial role in the maintenance
of the physiological conditions within the cardiovascular system.
L-arginine, which is a substrate for eNOS, seems to be a promising
molecule in the preservation of NO formation. However, L-arginine
failed to prevent blood pressure increases and left ventricle remodeling
due to chronic treatment with methyl ester of N-nitro-L-arginine,
which is an inhibitor of eNOS.32 The ACE inhibitor captopril
completely prevented NO-deficient hypertension without improving
NOS activity. NO also has an ACE down-regulating effect. Thiols
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protect NO from oxidation by scavenging ROS and by forming
nitrosothiols; both of these effects prolong NO half-life and the
duration of NO action.33,34

Reduced NO levels can be attributed to elevated levels of ROS.
Superoxide combines with NO to form peroxynitrite that oxidizes
BH4 and destabilizes eNOS to produce more superoxide22,24,25 thus,
further enhancing the development of oxidative stress. The balance
between NO and AT-II in the vasomotor centers is important for the
regulation of sympathetic tone.
Renin–Angiotensin system: The renin–angiotensin system has a key

role in the development of cardiovascular disease. AT-II is a potent
vasoactive peptide that can be formed in vascular beds that are rich in
ACE. When AT-II production increases above normal levels, it induces
vascular remodeling and endothelial dysfunction in association with
increases in the levels of blood pressure. As a potent activator of
NADPH oxidase, AT-II contributes to the production of ROS.35,36 In
rats and mice in which hypertension is induced by AT-II infusion, the
expression of NADPH oxidase subunits, oxidase activity and the
generation of ROS are all increased.37 AT-II not only increases
NADPH oxidase activity but also upregulates superoxide dismutase
activity, possibly to compensate the increased levels of ROS. In
situations where this compensatory effect is efficient, ROS levels may
appear normal even under prooxidant conditions. However, when
ROS production becomes overwhelming, compensatory mechanisms
are inadequate, and pathophysiological consequences occur.38

Captopril and enalapril prevented increases in blood pressure in
young, spontaneously hypertensive rats by inhibiting ACE. Captopril,
probably because of the antioxidant role of its thiol group, had a more
effective hypotensive effect than enalapril.40 In contrast, NO not only
antagonizes the effects of AT-II on vascular tone, cell growth and renal
sodium excretion but also downregulates the synthesis of ACE and the
expression of AT1 receptors. However, ACE inhibition upregulates
eNOS expression. The ability of AT-II to induce endothelial dysfunc-
tion is also due to its ability to downregulate soluble guanylyl cyclase,
thereby leading to impaired NO/cGMP signaling.
Acetylcholine: In vascular vessels, acetylcholine induces endothe-

lium-dependent dilation via the production of endothelial factors,
mainly NO, which then diffuses to the underlying VSMC, in which it
induces VSMC relaxation. The decrease in NO bioavailability will lead
to significantly reduced acetylcholine-mediated vasodilation.39,40 The
consequence of an overall increase in ROS is a reduction in the
bioavailability of NO.
ET-1: Endothelins are potent vasoconstrictor isopeptides that are

produced in different vascular tissues, including the vascular endothe-
lium. ET-1 is the main endothelin generated by the endothelium and
is the most important endothelin in the cardiovascular system. When
ET-1 is administered in high concentrations, it behaves as a potent
vasoconstrictor that is capable of exerting an array of physiological
effects, including the potential to alter arterial pressure. ET-1 mediates
its effects through two receptors, ETA and ETB. The ETA receptor
mediates contractions via the activation of NADPH oxidase, xanthine
oxidase, lipoxygenase, uncoupled NOS and mitochondrial respiratory
chain enzymes. The ETB receptor induces relaxation in endothelial
cells.41 Many factors that normally stimulate ET-1 synthesis, (for
example, thrombin and AT-II) also cause the release of vasodilators,
such as prostacyclin (PGI2) and/or NO, which oppose the vasocon-
stricting function of ET-1. It has been reported that essential hyper-
tension is characterized by increased ET-1-mediated vasoconstrictor
tone, which is an effect that seems to be dependent on decreased
endothelial ETB-mediated NO production that is attributable to the
impaired NO bioavailability.

Urotensin-II: Urotensin-II is a potent vasoactive peptide42 and indeed
is the most potent identified vasoconstrictor. It functions through the
activation of NADPH oxidase. The role of urotensin-II in disease is not
well understood. The constrictor response to urotensin-II appears to
be variable and highly dependent on the vascular bed examined.
Vasoconstriction is not its only effect because UT receptors have been
found in other organs.43,44 Urotensin-II has also been shown to
function as a potent vasodilator in some isolated vessels.45

Norepinephrine: VSMC are primarily innervated by the sympathetic
nervous system through adrenergic receptors. Three types of adreno-
ceptors are present within VSMC namely: a1, a2 and b2. Norepi-
nephrine stimulates VSMC proliferation. In addition, over-expression
of inducible NOS increases blood pressure via central activation of the
sympathetic nervous system, which is mediated by an increase in
oxidative stress.5

Prostaglandins: PGI2, which is another endothelium-dependent
vasodilator, relaxes the VSMC. PGI2 is released in higher amounts
in response to the binding of ligands, such as thrombin, arachidonic
acid, histamine or serotonin. The enzymes prostaglandin H2 synthase
uses arachidonic acid as a substrate to produce prostaglandin H2.
Prostaglandin H2 is converted to vasoactive molecules, such as PGI2.
The enzyme isoform, prostaglandin H2 synthase-2, may mediate
vascular dysfunction under oxidative stress conditions. Thus, perox-
ynitrite inhibits the enzymatic activity of PGI2 synthase, thereby
impairing PGI2-mediated vasodilation.
Homocysteine: This molecule may have an important role in the

pathogenesis of essential hypertension.3 Elevated homocysteinemia
diminishes the vasodilation by NO, increases oxidative stress, stimu-
lates the proliferation of VSMC and alters the elastic properties of the
vascular wall. Thus, homocysteine contributes to the elevation of
blood pressure.46 Additionally, elevated homocysteine levels could lead
to oxidant injury of the endothelium.3 The correction of elevated
homocysteinemia by the administration of the vitamins B12, B6 and
folic acid could be a useful adjuvant therapy for hypertension.3,47

However, further controlled randomized trials are necessary to estab-
lish the efficacy of these therapeutic agents.

A hypothesis for the role of vascular oxidative stress in hypertension
is depicted in Figure 1.

This review has discussed the importance of ROS in the vasculature
and its relation to hypertension; however, it is important to also
emphasize the evidence that hypertensive stimuli, such as high salt and
AT-II, promote the production of ROS not only in the vasculature but
also in the kidney and the central nervous system. In addition, each of
these sites contributes either to hypertension or to the adverse sequelae
of this disease.47

Role of oxidative stress in the kidney
Evidence suggests a key role for ROS in the pathophysiological
processes of several renal diseases; these diseases are considered causes
and consequences of hypertension. Regarding glomerular alterations,
ROS mediate lipoprotein glomerulopathy and other inflammatory
glomerular lesions.48 A recent study demonstrated that NADPH
oxidase activation and the production of ROS through lipid raft
clustering is an important molecular mechanism that triggers homo-
cysteine-mediated oxidative injury of podocytes. This injury may
represent an early event that initiates glomerulosclerosis during
hyperhomocysteinemia.49 One of the underlying mechanisms of
ROS-mediated tubulointerstitial injury is the exposure of tubular
cells to LDL, which may result in tubulointerstitial damage due to
NADPH oxidase-mediated ROS production.50 AT-II has a pivotal role
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not only in the progression of tubulointerstitial injury but also in
obstructive nephropathy.51,52 It activates NADPH oxidase and, subse-
quently, generates superoxide that leads to hypertrophy of the renal
tubular cells.53

There is evidence which suggests that a high-fat diet induces renal
inflammation and aggravation of blood pressure via ROS in sponta-
neously hypertensive rats.54 Additionally, metabolic syndrome is a risk
factor for chronic kidney disease (CKD) that is at least in part
independent of diabetes and hypertension and probably mediated
by ROS. Moreover, the onset and maintenance of renal damage may
worsen metabolic syndrome features, such as hypertension, leading to
potential vicious cycles.55

There are several oxidative stress-mediated mechanisms involved in
endothelial dysfunction in CKD.56 ROS are elevated in CKD and are
related to endothelium-dependent vascular reactivity and systolic
blood pressure.57 High ROS and increased levels of the endogenous
asymmetric dimethylarginine were reported to be novel risk factors for
endothelial dysfunction.58 Moreover, high levels of asymmetric
dimethylarginine were reported in CKD and were associated with
increased intima-media thickness and cardiovascular events.59 In
renovascular hypertension, oxidative stress in the ischemic kidney
has a major role in the maintenance of hypertension in two kidney-
one clip rats.60

Role of oxidative stress in the central nervous system
In addition to the kidney and the vasculature itself, the sympathetic
nervous system, which is regulated in the central nervous system, is
involved in the pathogenesis of hypertension.61 Recent studies strongly
suggest that central sympathetic outflow is increased in hyperten-
sion.62 There is also evidence that increased ROS generation in the
brainstem contributes to the neural mechanisms of hypertension in
hypertensive rats.63

The rostral ventrolateral medulla is the major vasomotor center and
is essential for the maintenance of basal vasomotor tone.64,65 Some
findings strongly indicate that ROS in the rostral ventrolateral medulla

is increased in stroke-prone spontaneously hypertensive rats and
thereby contributes to the neural mechanisms of hypertension
through activation of the sympathetic nervous system.64 The para-
ventricular nucleus of the hypothalamus is most likely also involved in
the ROS-mediated neural mechanism of hypertension.60,66 There is
evidence that other regions of the brain are likewise involved in ROS-
mediated hypertension. These investigations suggest that increased
intracellular superoxide production in the subfornical organ is critical
to the development of AT-II-induced hypertension.67

ANTIOXIDANTS IN HYPERTENSION

This section discusses the antihypertensive role of endogenous and
exogenous antioxidants that have demonstrated an ability to alter the
function of blood vessels and participate in the main redox reactions
involved in the pathophysiology of hypertension.

Endogenous antioxidants
The main endogenous antioxidant enzyme systems involve superoxide
dismutase, catalase and glutathione peroxidase (GSH-Px). GSH-Px
reduces both hydrogen peroxide and organic hydroperoxides into
water and alcohols, respectively.68,69 Catalase catalyzes the breakdown
of hydrogen peroxide to water and molecular oxygen. Superoxide
dismutase is a major superoxide scavenger in humans and converts the
superoxide anion to hydrogen peroxide, which is a substrate for
catalase and GSH-Px.70 The decrease in enzymatic antioxidant activity
in hypertensive humans and in animal models of hypertension has
been widely reported, which suggests that reduced antioxidant
defenses are involved in this disease.71–76

Another endogenous antioxidant is glutathione, which displays
direct antioxidant activity by providing the hydrogen at the sulfur
atom to transform a free radical into a stable molecule.77 An impair-
ment of the glutathione system in hypertension has been demon-
strated.78,79 Recent studies have demonstrated the importance of the
thioredoxin system in the maintenance of a reduced redox state and in
the pathophysiology of hypertension.80 It has been reported that

ACE

ACh AT-II ET-1 UT-II

AT1 ETA UTR

eNOS NO NADPH oxidaseXanthine oxidase Mitochondrion

Superoxide

Uncoupled eNOS

Peroxynitrite

ROS

PGI2 synthase

HYPERTENSION
PGI2 Stimulation/up-regulation

Inhibition/down-regulation

Figure 1 Schematic summary of the role of vascular oxidative stress in the pathogenesis of hypertension. ACE, angiotensin converting enzyme;

AT-II, angiotensin II; AT1, type 1 angiotensin II receptor; ET-1, endothelin 1; ETA, type A endothelin receptor; UT-II, urotensin II; UTR, urotensin-II receptor;

ACh, acetylcholine; NO, nitric oxide; eNOS, nitric oxide synthase; PGI2, prostacyclin; ROS, reactive oxygen species.
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impaired thioredoxin expression in spontaneously hypertensive rats81

and in endothelial cells negatively regulates ROS production in VSMC
through thioredoxin upregulation.82 Thus, thioredoxin could be an
important therapeutic target for the prevention and treatment of
oxidative stress and hypertension.83–85

Recent studies have shown that the antioxidant effects of mildly
elevated serum bilirubin levels may protect against diseases that are
associated with oxidative stress86 through mechanisms that decrease
oxidative stress and increase NO levels.87,88 A mild increase within the
physiological range of serum bilirubin concentration is negatively
correlated with hypertension.89 Finally, uric acid has long been
recognized for its antioxidant properties and is the most abundant
scavenger of free radicals in humans. High concentrations of uric acid
are associated with increased serum antioxidant capacity and reduced
oxidative stress.90,91 However, there is evidence of a potential associa-
tion between the plasma concentration of uric acid, blood pressure
and cardiovascular risk.92–96 This situation can be explained by the
hyperactivity of xanthine oxidase found in hypertension.21,27

Exogenous antioxidants
Vitamin C. Vitamin C is a potent water-soluble antioxidant. In the
vascular wall, it functions as an enzyme modulator that upregulates
eNOS and downregulates NADPH oxidase.97 Most studies have
demonstrated an inverse relationship between plasma ascorbate levels
and blood pressure in both normotensive and hypertensive popula-
tions.15 Treatment with antioxidants has been shown to improve
vascular function and reduce blood pressure in animal models98,99

and in human hypertension.100,101 Vitamin C may have favorable
effects on vascular dilation, possibly through its antioxidant effects on
NO.102–104

Nevertheless, several small and short-term clinical trials on the
effect of vitamin C supplements on blood pressure have yielded
inconsistent findings.105–111 The lack of antihypertensive efficacy
observed in studies using supplementation with vitamin C alone
could be due to the decreased bioavailability of NO under conditions
of oxidative stress. It was shown that these effects are mediated in part
by the ability of vitamin C to protect BH4 from oxidation and thereby
increase the enzymatic activity of eNOS.112 In addition, this uncertain
clinical beneficial effect of vitamin C as an antihypertensive agent
could be due to the lack of consideration of its pharmacokinetic
properties. It was experimentally determined that the antihypertensive
effect of vitamin C is expected to occur at a concentration of 10 mM,103

which is an unattainable plasma level in humans through oral
administration; that concentration is required for vitamin C to
compete efficiently with the reaction of NO with superoxide. The
renal ascorbic acid threshold occurs at daily vitamin C doses between
60 and 100 mg. The plasma is completely saturated at doses of 400 mg
daily and higher, producing a steady-state plasma concentration of
approximately 80mM.113 Thus, the antihypertensive effect may only be
active in plasma following high doses of vitamin C infusion.

Vitamin E. This major lipid-soluble antioxidant has received con-
siderable attention for its antioxidant potential. Epidemiological data
support an association between high dietary vitamin E intake and a
reduced incidence of cardiovascular disease.56 Increasing evidence
indicates that vitamin E can function as a biological modifier
independently of its antioxidant activity. Available experimental evi-
dence shows that vitamin E is capable of dose-dependently regulating
mitochondrial generation of superoxide and hydrogen peroxide.

However, intervention trials have not been convincing, and several
studies have demonstrated no beneficial effect of vitamin E on

cardiovascular disease outcomes.114–117 Moreover, a study using sup-
plementation with vitamin E, either as a-tocopherol or mixed toco-
pherols, showed a significant increase in blood pressure, pulse pressure
and heart rate in individuals with type 2 diabetes.118 It should be
noted that sufficiently high concentrations in the vascular microenvir-
onment that would enable vitamin E to interfere effectively with all
components of oxidative stress is unlikely to be achieved.119

Association of Vitamins C and E. Ascorbic acid may reduce the
a-tocopheroxyl radical and may be required for the beneficial vascular
effects of a-tocopherol.120 In fact, the effect of a-tocopherol seems to
be dependent on tissue saturation with vitamin C, and both vitamins
may function synergistically to provide optimal conditions for
endothelial NO formation.121 Thus, the association of vitamins C
and E is expected to have an antihypertensive effect, probably because
this combined therapy provides a reinforcement of their individual
properties through a complementary effect.122

Despite the biological effects of both vitamin C and E, long-term
clinical trials have failed to consistently support their antihypertensive
effects in high-risk cardiovascular patients. Some short-term trials
have shown that supplemental antioxidant vitamin intake lowers
blood pressure,106,123–125 but the majority of long-term clinical trials
did not demonstrate any antihypertensive effects of antioxidant
vitamins. However, most of these studies lacked rigorous exclusion
criteria in the selection of subjects to avoid the influence of con-
founders.126 It should be noted that most of the subjects in cohorts of
large trials had irreversible cardiovascular disease. A study performed
with newly diagnosed hypertension, without end-organ damage,
showed an association between oxidative-stress-related parameters
and blood pressure thus, suggesting a role for oxidative stress in the
pathogenesis of essential hypertension.127,128 The available data sug-
gest that there might be a beneficial antihypertensive effect of vitamins
C and E if they are administered during the phase of endothelial
dysfunction, which precedes established vascular damage. In contrast,
an antihypertensive effect in patients with significant cardiovascular
disease should not be expected because the chronic damaging effects
of oxidative stress may be irreversible. Thus, it seems that ROS have a
more important role in the induction rather than in the maintenance
of hypertension.

Allopurinol. Xanthine oxidase is an important source of ROS in the
vascular endothelium.24 It catalyzes the last two steps of purine
metabolism and produces uric acid. Xanthine oxidase activity is
associated with an increasing arteriolar tone and, therefore, hyperten-
sion.129,130 Xanthine oxidase inhibitors, such as allopurinol, have
shown marked improvements in endothelial function in various
cohorts that were at risk for cardiovascular events. Treatment with
allopurinol results in the reduction in blood pressure in adolescents,92

spontaneously hypertensive rats93 and patients with CKD.131 Never-
theless, most of the evidence gathered to date was derived from
smaller mechanistic studies, and the few large randomized controlled
trials have not shown a significant mortality benefit of using these
agents.132

Selenium. Selenium is an essential trace element and an integral part
of many proteins with catalytic and structural functions. It exerts an
antioxidant function mainly in the form of selenocysteine residues,
which are an integral constituent of ROS-detoxifying selenoenzymes,
such as GSH-Px, thioredoxin reductases and selenoprotein P.133

Maintenance of full GSH-Px and thioredoxin reductase activity by
adequate dietary intake of selenium has been proposed to be useful in
the prevention of several cardiovascular disorders.112 In addition,
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selenium is capable of preventing the binding of nuclear factor kappa
B to its nuclear response elements in DNA.134 Nuclear factor kappa B
has a key role in inflammation and the production of ROS. The
inhibition of nuclear factor kappa B is presumed to be the result of the
binding of the selenium to the essential thiols of this transcription
factor.135

The antioxidant properties of selenium have been documented in
several trials.134,136–141 At low doses, selenium can provide significant
protection of the human coronary artery endothelium against
oxidative stress-mediated damage.133 In an animal model, dietary

supplementation with selenium was associated with low levels of
cardiac oxidative damage and increased antioxidant expression, as
well as a reduction in disease severity and mortality in spontaneously
hypertensive rats.142 A reduced selenium concentration in hyperten-
sive pregnancies has been associated with a decrease in GSH-Px
activity.143 Thus, it is reasonable to conclude that a deficiency in
selenium might be an underestimated risk factor for the development
of high blood pressure.144

N-acetylcysteine. The antioxidant N-acetylcysteine, which is a sulfhy-
dryl group donor, improves renal dysfunction and decreases arterial
pressure and renal injury in salt-sensitive hypertension.145 The inhibi-
tion of oxidative stress in hypertensive states probably contributes to
the therapeutic effects of N-acetylcysteine, which are likely mediated
via a NO-dependent mechanism.146 This protective mechanism is
exerted by the prevention of BH4 oxidation by the increased super-
oxide.147 In addition, this molecule can protect against oxidative
damage by inhibiting lipid peroxidation and scavenging ROS.148,149

Polyphenols. Polyphenols are the most abundant antioxidants in the
human diet. They can function as ROS scavengers, iron chelators and
enzyme modulators150,151 and may possibly enhance the production
of NO.152,153 In humans, circulating NO concentration increases after
the consumption of polyphenols.154 However, some studies have
shown increased blood pressure that is mediated by the association
of polyphenols with vitamin C.155

Diet. There is sufficient evidence to suggest that dietary approaches
may help to prevent and control high blood pressure. There are
dietary approaches to the prevention and management of hyperten-
sion, that is, the moderate use of sodium and alcohol, as well as the
increased intake of potassium, plant fibers, calcium and foods such as
salmon, nuts and wine.156 In a Mediterranean population with an
elevated fat consumption, a high fruit and vegetable intake is inversely
associated with blood pressure levels.157 Short-term studies indicated
that specialized diets may prevent or ameliorate mild hypertension;
most notable are the Dietary Approaches to Stop Hypertension

Table 1 Mechanisms whereby exogenous antioxidants can ameliorate

hypertension

Antioxidant Mechanisms References

Vitamin C eNOS upregulation 50

NADPH oxidase downregulation 50

Protection against BH4 oxidation 33

ROS scavenging 50,64,66,67

Vitamin E eNOS upregulation 50

NADPH oxidase downregulation 50

Regulation of mitochondrial ROS synthesis 57–60

ROS scavenging 50,64,66,67

N-acetylcysteine Protection against BH4 oxidation 100

ROS scavenging 101,102

Polyphenols Production of NO 104,105

ROS scavenging 65,103

Iron chelation 65,103

Enzyme modulation 65,103

Allopurinol Inhibition of xanthine oxidase 75–77

Selenium Cofactor of GSH-Px, TR and SeP 55,86

Inhibition of NF-kB activation 88

Diet 108,109,129,131

Abbreviations: BH4, tetrahydrobiopterin; eNOS, endothelial nitric oxide synthase; GSH-Px:
glutathione peroxidase; NADPH, nicotinamide adenine dineucleotide phosphate; NF-kB, nuclear
factor kappa-B; NO, nitric oxide; ROS: reactive oxygen species; SeP: selenoprotein P; TR:
thioredoxin reductases.

Vitamin C Vitamin EPolyphenols NAC Allopurinol

eNOS

NADPH Oxidase MitochondrionUncoupled eNOS Xanthine oxidase

oxBH4

ROSNO Scavenged ROS Uric acid

Antioxidants

VSMC

HYPERTENSION
Stimulation/up-regulation

Inhibition/down-regulation

Figure 2 Schematic summary of the exogenous antioxidant mechanisms likely accounting for anti-hypertensive effects. NO, nitric oxide; eNOS, nitric oxide

synthase; ROS, reactive oxygen species; BH4, tetrahydrobiopterin; oxBH4, oxidized tetrahydrobiopterin; NAC, N-acetylcysteine; VSMC, vascular smooth

muscle cells.
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(DASH) diet, which is high in fruits, vegetables and low-fat dairy
products.158 It has been reported that a low sodium DASH diet is
effective in reducing blood pressure in hypertensive patients, particu-
larly in those receiving antihypertensive medications.159 In addition,
the DASH diet showed significant beneficial effects on cardiovascular
risk.160–162 In overweight or obese persons with above-normal
blood pressure, the addition of exercise and weight loss to the
DASH diet resulted in even larger blood pressure reductions, greater
improvements in vascular and autonomic function and reduced left
ventricular mass.163,164

A summary of the exogenous antioxidant mechanisms that likely
account for their anti-hypertensive effects is shown in Table 1 and
Figure 2.

CONCLUSIONS AND PERSPECTIVES

There is considerable evidence supporting the view that oxidative
stress is involved in the pathophysiology of hypertension. ROS are
mediators of the major physiological vasoconstrictors that increase
intracellular calcium concentration. In addition, superoxide reduces
the bioavailability of NO and enhances superoxide production via
uncoupled eNOS; this further enhances oxidative stress, which is a
major factor in hypertension.

Antioxidant therapy can curtail the development of hypertension in
animal models, but remains controversial in humans. Possible con-
founding factors in patients include co-existing pathologies and
treatments, lack of selection of treatments according to ROS levels,
among others. However, the dietary intake of antioxidants and
polyphenols could have an effect in the primary prevention or
reduction of hypertension. Although the role of antioxidant therapy
remains an open question, these interventions are expected to be more
efficient in the prevention rather than in the reduction of established
hypertension.
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MA. Fruit and vegetable consumption is inversely associated with blood pressure in a
Mediterranean population with a high vegetable-fat intake: the Seguimiento Universi-
dad de Navarra (SUN) Study. Br J Nutr 2004; 92: 311–319.

158 Savica V, Bellinghieri G, Kopple JD. The effect of nutrition on blood pressure. Annu
Rev Nutr 2010; 30: 365–401.

159 Nowson CA, Wattanapenpaiboon N, Pachett A. Low-sodium dietary approaches to stop
hypertension-type diet including lean red meat lowers blood pressure in postmeno-
pausal women. Nutr Res 2009; 29: 8–18.

Oxidative stress in hypertension
R Rodrigo et al

439

Hypertension Research



160 Azadbakht L, Fard NR, Karimi M, Baghaei MH, Surkan PJ, Rahimi M, Esmaillzadeh A,
Willett WC. Effects of the dietary approaches to stop hypertension (DASH) eating plan
on cardiovascular risks among type 2 diabetic patients: a randomized cross-over
clinical trial. Diabetes Care 2010 (in press).

161 Chen ST, Maruthur NM, Appel LJ. The effect of dietary patterns on estimated coronary
heart disease risk: results from the Dietary Approaches to Stop Hypertension (DASH)
trial. Circ Cardiovasc Qual Outcomes 2010; 3: 484–489.

162 Levitan EB, Wolk A, Mittleman MA. Relation of consistency with the dietary
approaches to stop hypertension diet and incidence of heart failure in men aged
45–79 years. Am J Cardiol 2009; 104: 1416–1420.

163 Smith PJ, Blumenthal JA, Babyak MA, Craighead L, Welsh-Bohmer KA,
Browndyke JN, Strauman TA, Sherwood A. Effects of the dietary approaches
to stop hypertension diet, exercise, and caloric restriction on neurocognition
in overweight adults with high blood pressure. Hypertension 2010; 55:
1331–1338.

164 Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, Caccia C,
Johnson J, Waugh R, Sherwood A. Effects of the DASH diet alone and in combination
with exercise and weight loss on blood pressure and cardiovascular biomarkers in men
and women with high blood pressure: the ENCORE study. Arch Intern Med 2010;
170: 126–135.

Oxidative stress in hypertension
R Rodrigo et al

440

Hypertension Research


	The role of oxidative stress in the pathophysiology of hypertension
	Introduction
	Pathophysiology of hypertension
	Endothelial dysfunction
	Vascular oxidative stress and hypertension
	Role of the vascular wall components
	Role of oxidative stress in the kidney
	Role of oxidative stress in the central nervous system

	Antioxidants in hypertension
	Endogenous antioxidants
	Exogenous antioxidants

	Conclusions and perspectives
	References


