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Abstract

Robotics plays an important role in the applications of Artificial Intelligence in
Engineering, since it deals with the interaction of an intelligent system with the
world by means of perception and action. However, Robotics has been
traditionaly considered as just a mere application area of AI. In this paper, the
role of perception and action in current AI systems is analyzed and some recent
fundamental results concerning the use of Robotic Intelligence for applications
of AI in Engineering are discussed, in order to build artificial systems that
behave in an intelligent way in the real world. Finally, two implemented
systems based on this methodology are described to show the relevance of the
proposed strategy to Engineering applications, one using visual perception,
and another based on force/torque sensing.

1 Motivation

In the first page of the second edition of his celebrated textbook P.H.
Winston defines Artificial Intelligence as "the study of ideas that enable
computers to be intelligent" [Winston 84]. In 1984 J.M. Brady gave his
famous definition of Robotics Science as "the intelligent connection of
perception to action" [Brady 84]. Curiously enough, in the third, revised and
expanded edition of his textbook, Winston changes his previous definition of
Artificial Intelligence to state that it is "the study of the computations that make
it possible to perceive, reason, and act" [Winston 1992]. The resemblance of
these last two definitions for Robotics Science and Artificial Intelligence seems
to suggest that these two different sciences should be moving in the same
direction, or even more, they should converge towards the same goal. This
coincidence is by no means casual, and it serves us to motivate this paper:
Robotic Intelligence (RI) must play a fundamental role in Artificial Intelligence
(AI) so that it is properly oriented and founded.

We propose that the objectives and methodologies of current AI systems
should shift towards what we call Robotic Intelligence as opposed to pure
abstract, symbolic AI. In the rest of this paper we will support this assertion.

A remark must be made now regarding what we consider to be the
ultimate and short-term goals of AI. We accept the first of Winston's
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definition, as stated above, or Minsky's when he says that"AI is the science of
making machines do things that would require intelligence if they were made
by men"; but we want that these artificial systems behave in an intelligent way
in the real world.

2 Extending the Turing Test

Since it was formulated in 1950, the so-called Turing Test (T2) was
generally accepted as the right, definitive test to discriminate an intelligent
computer from a non-intelligent one [Turing 50]. Basically, in the test there is a
person communicating via a teleprinter with a computer and another person,
but ignoring what line is connected to the person and what to the computer. If
the person cannot tell how the lines are connected after a dialogue through both
lines, then the computer is said to have passed T2 and it can be rated as
intelligent. It has to be noted that T2 is implicitly assuming that intelligence is
the ability to reason and to communicate by language.

In 1980 John Searle put forward a thought experiment with the intention
of showing that computers cannot really understand what they do [Searle 80].
Since then, it has raised much controversy among the AI community, and
discussions still keep on and on as to its correctness. In essence, Searle's
Chinese Room argument assumes that in T2 the language used for
communicating is Chinese instead of English, and the computer is replaced by
a person, Searle himself, called the operator, locked in the Chinese Room. The
operator understands no Chinese at all, but he is provided with a set of
instructions in English to manipulate Chinese written symbols in such a way
that, following these instructions, the operator is able to produce a set of
symbols as the output to a given input set of Chinese symbols. Now, if this
operator is able to pass T2 in Chinese, we should conclude that he understands
Chinese, while the operator, being Searle himself, does not know a single
word of this language, on the contrary, all he has done is following the
instructions for manipulating meaningless symbols. An immediate consequence
of this argument is that T2 is not the definitive test for intelligence: a computer
passing it understands no more what it is doing than Searle understands
Chinese.

Stevan Hamad has proposed the Total Turing Test (T3) as an extension
of T2 that is not invalidated by Searle's argument [Hamad 89]. In T3 the
computer is replaced by a robot, and the person carrying out the test is not
communicating through a teleprinter but actually seeing the candidate robot and
a real person, while both are operating directly on the world. If after a certain
amount of time (as long as desired, even lifelong) the observer is not able to
say which is the robot and which the person, then the robot has passed the test
and it can be rated as intelligent. The key point is that now, in addition to
reasoning and communicating by language, the candidate must exhibit all
robotic capacities a person has, including the ability to see, grasp, manipulate,
move, hear, recognize, etc., in a way that is indistinguishable from those of a
person. What really matters in T3 is that robotic capacity has been integrated as
an inseparable part of the definitive test for intelligence. If we want an
intelligent system to pass T3, it must be endowed with Robotic Intelligence.

3 The Symbol Grounding Problem

Classical AI is based in the use of pure symbol systems, i.e., following
the traditional distinction between a symbolic level (the software) and its
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implementation in a particular computer (the hardware). The "Symbol
Grounding Problem" was yet another challenge to pure symbolic AI [Hamad
90]. The symbols in a symbol system are systematically interpretable as
meaning something; however, in a typical AI system, that interpretation is not
intrinsic to the system, it is always given by an external interpreter (e.g., the
designer of the system). Neither the symbol system in itself nor the computer,
as an implementation of the symbol system, can ground their symbols in
something other than more symbols. The operator in the Chinese Room will
never be able to understand Chinese because it is somebody else who knows
the interpretation of Chinese symbols, the one who designed the instructions
for manipulating them. And yet, when we think, unlike computers, we use
symbol systems that need no external interpreter to have meanings. The
meanings of our thoughts are intrinsic, the connection between our thoughts
and their meanings is direct and causal, it cannot be mediated by an interpreter,
otherwise it would lead to an infinite regress if we assume that they are
interpretable by someone else.

Again, the solution to this paradox is in Robotic Intelligence systems
instead of pure symbolic AI systems [Hamad 93]. In an RI system, with T3-
level performance, the symbols are grounded in the system's own capacity to
interact robotically with what its symbols are about [del Pobil, Escrig, Jaen
94]. Such an RI system should be able to perceive, manipulate, recognize,
classify, modify, ..., and reason about the real-world objects and situations
that it encounters. In this way, its symbols would be grounded in the same
sense that a person's symbols are grounded, because it is precisely those
objects and situations that their symbols are about. If we think of a symbol that
corresponds to a word, we ground it when we first learn our mother tongue
through interaction with the outer world, because we cannot obviously ground
it in more words. In this respect, for a blind child the meanings of its symbol
system must necessarily differ from those of a normal child, because its
interaction with the world is severely handicapped.

A possible answer to the question of how to ground basic spatial
concepts is the use of connectionism. Neural nets can be a feasible mechanism
for learning the invariants in the analog sensory projection on which
categorization is based [Hamad 93], [Martin, del Pobil 94], [Cervera, del
Pobil, Marta and Serna, 95]. This is further discussed in section 6.

4 The Right Level of Competence

Another point in favour of Robotic Intelligence concerns the appropriate
level of competence an AI system should exhibit. Sometimes there exists a lack
of balance between AI systems and natural systems in some aspects of their
competence. For example, there are chess-playing systems that are able to
reach grand master level of competence, only being defeated by a few persons
in the world; or expert systems that show an expert competence in, say,
diagnosing infectious diseases. And, on the other hand, there is no existing
system that surpasses the competence of a cockroach in moving around with a
goal in an unstructured world. This enormous distance tends to be always
between pure abstract intellectual tasks at one end, and robotic tasks, at the
other, i.e., those that involve sensorimotor interaction with the real world. In
the case of human level competence, not to speak of cockroaches, the gap
between these two levels of competence is still larger. Our simplest, everyday,
common-sense robotic capacities are very far from what robots can currently
do [del Pobil, Serna 1995]: our artificial grand master would inevitably die in
case of fire just because it would not be able to find the exit door and turn the
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handle to open it (turning door handles is one of the tasks that current robots
cannot do in a general case).

5 The Role of Perception in Reasoning

Even accepting that perception and action as robotic capacities must play
a fundamental role in any intelligent system, it is usually assumed that
sensorimotor abilities can be isolated from the rest of the system and just be
implemented as input/output modules that interface to the main processing —or
pure abstract reasoning- unit. This is the Turing vision of AI that is usually
assumed as a start point.

This modularity hypothesis cannot be justified by any evidence
whatsoever, neither from neurophysiology, nor from biology or cognitive
psychology. It is just a traditional problem reduction methodology that is
systematically used to tackle hard problems. However, in natural living
systems, cognitive abilities are intimately and inseparably tied to perception and
(maybe to a smaller extent) action capacities. Psychophysical evidence suggests
this fact and, moreover, that the representation of the world used by an
intelligent system is directly dependent on its perception skills [Brooks 91].

6 Implemented Engineering Applications

An immediate consequence of the previous discussion is that reasoning
models or representations should include certain reference to perception; what
we call perception-based reasoning [Cervera and del Pobil 95]. We are going
to show two implemented applications based on the described strategies, that
are relevant to Engineering problems.

6.1 Perception-based qualitative spatial reasoning
We advocate that a coherent approach to spatial reasoning should include al

least a description of how it is to be integrated with perception. Moreover,
perception must provide a bottom-up grounding for the spatial concepts that are
represented in the system by means of symbols.

In this approach, the representation of spatial knowledge as described in [del
Pobil, Escrig and Jaen, 93] is based on a spherical reference system that is
directly related to the spherical perspective model for visual perception. In
addition, this model offers some interesting advantages when compared with
orthographic and planar perspective models [Penna and Chen, 90]. To capture
the salient geometric features of objects that are used below to define ideal
meanings for perceptually salient relations, an spherical representation for
objects is used [del Pobil and Serna, 94a]. This representation has been
successfully applied to some problems in robotics, as collision detection [del
Pobil, Serna and Llovet, 92], find-path [del Pobil and Serna, 92] and motion
planning [del Pobil and Serna, 92]. It has been recently extended [del Pobil,
Martinez and Calvo, 94]. This provides a direct connection between our spatial
reasoning model and a low-level description from a vision system. Indeed, it is
possible to compute a volume description of objects as generalized cones from
sparse, imperfect 3-D data, such as may be obtained from stereo vision [Rao
and Nevaitia, 90].

According to the usual notation for spherical coordinates, a point in space

will be given by the three coordinates (p, 0, <))). An spherical three-dimensional

interval will be given by [p ± Ap], [6 ± A6], [<|> ± A<|>].
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As a first approximation, an object will be perceived as the spherical interval
that completely encloses the object stereo image. If the spherical representation
is used, it is easy to see that for each sphere we would have such an interval
with

Ap = R, A8 « R/p sin <|>, A<|> = R/p,
where (p, 6, 0) denotes the center of the sphere.

We consider several possible spatial relations between objects
corresponding to commonsense spatial concepts as given by ideal meanings of
some English prepositions. Our model is adequate to deal with prepositions
such as over, under, between, beyond, near, far, and the egocentric meanings
of injront_of, behind, to_the_left_of, and to_the_right_of. By way of
illustration, let us analyze in detail the case of the relation under.

According to Herskovits [86], the ideal meaning of under can be defined as
being the partial inclusion of a geometrical construct in the lower space defined
by some surface, line, or point. For the first representation of an object as
given by the smallest enclosing sphere, this lower space would be the volume
of the cylinder that prolongs from the sphere in the downward direction.
However, from the point of view of the observer's perception and the
corresponding spherical vision model, that ideal meaning amounts to:

i. Both objects must share the same longitude, i.e., the same 9-coordinate.
ii. Both objects project on the horizontal plane at the same distance from the

viewer.
These two conditions assure that one spatial entity is under the other, but to

establish that it is precisely object A that is under object B we must add another
condition:

iii. The latitude of B is less than that of A.
These equalities must obviously be understood as qualitative equalities. To

put it in a formal way, given two objects A and B perceived as

[PA ± ApA], [9A ± A6A], M>A ± AW, and

[PB ± Ape], [63 ± A0B], [# ± A<J>B],

the qualitative relation under will hold between them if and only if:

i. [9A ± A6A] n [83 ± A0B] # 0

ii. [pAsin(J)A ± RA] ̂  [pBsin(|>B ± RB] * 0
iii. [<t>B -

6.2 Robotic Fine Manipulation Based on Perception
The second engineering application based on the above strategies deals with

robotic fine manipulation involving contact. An off-line planning system by
itself can hardly cope with position uncertainties that always arise in real-world
conditions, rather perception-based reasoning is called for. In Fig. 1 one of this
tasks is shown, a robot manipulator is inserting a tool into a pallet lying on a
robot vehicle. Visual perception is not enough to manage this kind of tasks
since accuracy of the order of millimeters is required, then a force/torque
sensor attached to the robot wrist is necessary. The sensor provides six signals
for a certain task. A direct interpretation of this signals is impossible in a
complex real task involving contact. The aproach is described in length in
[Cervera, del Pobil, Marta and Serna, 1995].
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Figure 1. A task requiring perception-based reasoning

The perception-based methodology uses a hybrid approach to connect
sensor signals with the high-level qualitative task planner. A subsymbolic
system based on neural networks is applied to project the data from the sensor
space onto a planar self-organizing map. Fig. 2 shows an example of the result
of the task in Fig. 1 for a correct case and for an incorrect one due to an error
of just 4 mm. The lighter neurons correspond to an activation after learning a
given task. The paths correspond to the winner neurons in each sequence. It
can be clearly seen how the two situations differ. With this, regions on the map
are assigned to particular qualitative contact states that are used by the planner.
It must be noted that this qualitative states are not known a priori, since
Kohonen's maps use an unsupervised learning scheme.

Correct task Incorrect task

Figure 2. Projection of perception space onto a neural map
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Conclusion

A fundamental discussion regarding the interaction of an intelligent system
with the world by means of perception and action has been presented. The role
of perception and action in current AI systems has been analyzed and some
recent fundamental results concerning the use of Robotic Intelligence for
applications of AI in Engineering were discussed, in order to build artificial
systems that behave in an intelligent way in the real world. Finally, two
implemented systems based on this methodology have been described to show
the relevance of the proposed strategy to Engineering applications. First a
framework for a qualitative approach to commonsense reasoning about space
has been further developed by considering the adequate process to build
fundamental spatial relations from bottom-up, starting from the data provided
by a visual perception system with the spherical perspective model. Then, an
approach to a realistic robotic task involving manipulation with uncertainty has
been presented that is based on coupling a subsymbolic and symbolic systems.
Reasoning was based on force and torque sensing the second example.

Traditional AI research has made an excessive use of toy models to show
the interest of certain theories. Engineering applications take place typically in
the real world under real conditions, for which these toy models are of no use
at all, and for which perception and action is often necessary The main
contribution of this paper is to clarify the right methodology with which this
kind of engineering AI applications should be approached.

References

Cervera, E., del Pobil, A.P. (1995) "Perception-Based Qualitative Reasoning
in Manipulation with Uncertainty", technical report, Dept. of Computer
Science, Universitat Jaume I.

Cervera, E., del Pobil, A.P., Marta, E., Serna, M.A. (1995) "Unsupervised
Learning for Error Detection in Task Planning", technical report, Dept. of
Computer Science, Universitat Jaume I.

del Pobil, A.P., Escrig, M.T., Jaen, J.A., (1993) "An Attempt Towards a
General Representation Paradigm for Spatial Reasoning", Proc. IEEE Intern.
Conf. on Systems, Man and Cybernetics, vol. 1, pp. 215-220, Le Touquet,
France.

del Pobil, A.P., Martinez, B., Calvo, M.A., (1994) "An Extended Spherical
Representation for Physical Objects", IEEE Intern. Conf. on Systems, Man
and Cybernetics, San Antonio, Texas.

del Pobil, A.P., Serna, M.A. (1995) Spatial Representation and Motion
Planning, Springer-Verlag.

del Pobil, A.P., Serna, M.A., (1994a) "A New Object Representation for
Robotics and Artificial Intelligence Applications", International Journal of
Robotics & Automation, vol. 9, no. 1, pp. 11-21.

                                                Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517 



436 Artificial Intelligence in Engineering

del Pobil, A.P., Serna, M.A., (1994b) "A Simple Algorithm for Intelligent
Manipulator Collision-Free Motion", Journal of Applied Intelligence, vol.4,
pp. 83-102.

del Pobil, A.P., Serna, M.A., (1992) "Solving the Find-Path Problem by a
Simple Object Model", Proc. 10th European Conference on Artificial
Intelligence, pp. 656-660, Vienna, Austria.

del Pobil, A.P., Serna, M.A.,Llovet, J., (1992.) "A New Representation for
Collision Avoidance and Detection", Proc. IEEE International Conference on
Robotics and Automation, pp. 246-251, Nice, France

Hamad, S. (1989) Minds, Machines and Searle. Journal of Theoretical and
Experimental Artificial Intelligence 1: 5-25.

Hamad, S. (1990) The Symbol Grounding Problem. Physica D 42: 335-346.

Hamad, S. (1993) Grounding Symbolic Capacity in Robotic Capacity, in L.
Steels, R.A. Brooks (eds.) The Artificial Life route to Artificial Intelligence.
Lawrence Erlbaum.

Herskovits, A., (1986) Language and Spatial Cognition, Cambridge
University Press, Cambridge, U.K..

Martin, P., del Pobil, A.P., (1994) "Application of Artificial Neural Networks
to the Robot Path Planning Problem", in Applications of Artificial Intelligence
in Engineering IX edited by G. Rzevski, R.A. Adey and D.W. Russell,
Computational Mechanics Publications, Boston, pp. 73-80.

Musto, D., Konolige, K. (1993) "Reasoning about Perception", AICOM 6:
207-212.

Penna, M.A., Chen, S., (1990) "Spherical Analysis in Image Understanding"
in Advances in Spatial Reasoning, edited by S. Chen, vol. 2, pp. 253-283,
Ablex Publishing Corp., Norwood, NJ.

Rao, K., Nevaitia, R., (1990) "Computing Volume Descriptions from Sparse
3-D Data" in Advances in Spatial Reasoning, edited by S. Chen, vol. 2, pp.
65-96, Ablex Publishing Corp., Norwood, NJ.

Searle, J. R. (1980) Minds, brains and programs.Behavioral and Brain
Sciences 3: 417-424.

Turing, A.M. (1950) "Computing Machinery and Intelligence", Mind LIX,
no.2236, 433-60.

Acknowledgements. This paper describes research done at the Robotic
Intelligence Research Group of Jaume I University. Support for the research is
provided in part by the Comision Interministerial de Ciencia y Tecnologia
under project TAP92-0391-C02-01, and in part by the Fundacio Caixa de
Castello under grants A-36-IN and B-41-IN.

The author is grateful to Stevan Harnad for his comments on an earlier draft of
this paper.

                                                Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517 


