
UMass Chan Medical School UMass Chan Medical School 

eScholarship@UMassChan eScholarship@UMassChan 

Open Access Publications by UMass Chan Authors 

2019-04-16 

The role of platelets in mediating a response to human influenza The role of platelets in mediating a response to human influenza 

infection infection 

Milka Koupenova-Zamor 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Cardiology Commons, Cardiovascular Diseases Commons, Cells Commons, Fluids and 

Secretions Commons, Hemic and Immune Systems Commons, Immunity Commons, Immunology of 

Infectious Disease Commons, Immunopathology Commons, Infectious Disease Commons, Influenza 

Humans Commons, Respiratory Tract Diseases Commons, and the Virus Diseases Commons 

Repository Citation Repository Citation 

Koupenova-Zamor M, Corkrey HA, Vitseva O, Manni G, Pang CJ, Clancy L, Yao C, Rade JJ, Levy D, Wang JP, 

Finberg RW, Kurt-Jones EA, Freedman JE. (2019). The role of platelets in mediating a response to human 

influenza infection. Open Access Publications by UMass Chan Authors. https://doi.org/10.1038/

s41467-019-09607-x. Retrieved from https://escholarship.umassmed.edu/oapubs/3836 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access 
Publications by UMass Chan Authors by an authorized administrator of eScholarship@UMassChan. For more 
information, please contact Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/683?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/929?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/940?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1013?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1013?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/948?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/34?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/35?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/35?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/36?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/689?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1069?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1069?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/990?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1038/s41467-019-09607-x
https://doi.org/10.1038/s41467-019-09607-x
https://escholarship.umassmed.edu/oapubs/3836?utm_source=escholarship.umassmed.edu%2Foapubs%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


ARTICLE

The role of platelets in mediating a response
to human influenza infection
Milka Koupenova 1, Heather A. Corkrey1, Olga Vitseva1, Giorgia Manni2, Catherine J. Pang 3,

Lauren Clancy 1, Chen Yao 4, Jeffrey Rade1, Daniel Levy4, Jennifer P. Wang 3, Robert W. Finberg3,

Evelyn A. Kurt-Jones3 & Jane E. Freedman1

Influenza infection increases the incidence of myocardial infarction but the reason is

unknown. Platelets mediate vascular occlusion through thrombotic functions but are also

recognized to have immunomodulatory activity. To determine if platelet processes are

activated during influenza infection, we collected blood from 18 patients with acute influenza

infection. Microscopy reveals activated platelets, many containing viral particles and

extracellular-DNA associated with platelets. To understand the mechanism, we isolate

human platelets and treat them with influenza A virus. Viral-engulfment leads to C3 release

from platelets as a function of TLR7 and C3 leads to neutrophil-DNA release and aggregation.

TLR7 specificity is confirmed in murine models lacking the receptor, and platelet depletion

models support platelet-mediated C3 and neutrophil-DNA release post-influenza infection.

These findings demonstrate that the initial intrinsic defense against influenza is mediated by

platelet–neutrophil cross-communication that tightly regulates host immune and complement

responses but can also lead to thrombotic vascular occlusion.
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H
eart disease is the leading cause of morbidity and mor-
tality in the US with 735,000 people per year experiencing
myocardial infarction (MI)1. Viral infections such as

influenza increase the incidence of acute MI within the first
7 days after detection of influenza A or B, whereas no increased
incidence is observed after day 72. Meta-analysis of case-control
studies finds that vaccination for influenza is comparable to
current therapies for secondary prevention of acute MI such as
statins or antihypertensive medications3. The exact mechanism
by which influenza contributes to acute coronary syndromes and
cardiovascular disease is not understood.

In humans, platelets are central to the process of thrombosis
and uncontrolled platelet activation is the main factor in unstable
coronary syndromes and acute MI1,4. In addition to their role in
thrombosis, platelets significantly contribute to the immune
response in various types of infections5. During the initial stages
of infection, platelets engage and form heterotypic aggregates
with neutrophils6,7. Heterotypic aggregates between platelets and
neutrophils are observed during Gram-positive bacterial infec-
tions, with Gram-negative bacterial components as well as during
infections with single-stranded viruses such as encephalomyo-
carditis virus6,8,9. Platelets exhibit a critical adaptive immune
function by forming platelet–bacterial complexes that slow bac-
terial clearance and increase antibacterial immunity10.

Influenza is a single-stranded RNA (ssRNA) virus that is
recognized by cell-surface sialic acid which serves as an influenza
receptor. Influenza causes productive infection in lung epithelial
cells which can lead to various degrees of severity of illness. In
humans, one pattern recognition receptor that mediates the
initial response to ssRNA viral nucleic acids is Toll-like receptor 7
(TLR7). Once activated, TLR7 elicits a cascade of signaling events
that lead to primary interferon secretion and activation of the
immune system. Platelets express TLR7, although not all platelets
in an individual express TLR7 at any given time6,11. Activation of
TLR7 in platelets leads to surface expression of alpha granule
proteins, P-selectin, and CD40L and a consequent increase in
interaction with neutrophils without leading to a direct platelet-
mediated prothrombotic effect6. It is unclear if downstream
activation of the immune system mediated by platelet-TLR7 leads
to platelet-dependent thrombosis, which could potentially
increase the risk for MI.

The neutrophil is the major leukocyte that mediates the initial
response to pathogens. Neutrophils are the most prevalent leu-
kocyte in humans and, in the presence of influenza, isolated
neutrophils exhibit decreased viability, increased respiratory
burst, and accelerated apoptosis12,13. Additionally, influenza-
stimulated neutrophils can also release their DNA in a process
termed NETosis13. This DNA release is thought to benefit the
host and provide protection during viral challenge but can also be
highly prothrombotic. Consistently, neutrophils from the lesion
site involved in the initial acute MI are highly activated, form
platelet–neutrophil aggregates and can lead to NET burden that is
a predictor of ST-segment resolution and extent of MI14. Platelets
are known to reduce the time to NETosis through engagement of
TLR2 and TLR415,16. It is unknown whether platelets contribute
to overall neutrophil activation through other TLRs (e.g., TLR7
which becomes activated by viral ligand) during influenza infec-
tion or if the platelet–neutrophil relationship becomes patholo-
gically imbalanced during infection.

In addition to the TLR-mediated response during infection,
innate immunity includes activation of the complement system.
The complement system incorporates three distinct pathways
leading to opsonization of pathogens, chemotaxis of inflamma-
tory cells and lysis of infected cells, ultimately leading to
the removal of immune complexes, apoptotic cells and cell
debris. In mice, complement component C3 is required for

protection against influenza and for proper viral clearance17. The
mechanism by which the complement and the TLR systems
cross-communicate, as well as the impact of complement-
platelet-TLR interactions during influenza infection in humans,
is not known.

In this study, we sought to evaluate the effect of TLR7 and the
complement system on platelets during influenza infection and
their possible impact on augmenting thrombosis. Our data
demonstrate that platelet-TLR7-driven responses lead to C3
release during influenza infection and consequently, C3 augments
the release of DNA from neutrophils and promotes the formation
of platelet–neutrophil aggregates which may contribute to
influenza-mediated increased risk of MI.

Results
Platelet morphology and DNA release in influenza patients. To
study the impact of influenza infection on platelets we asked if
platelets change morphologically in the human circulation in the
setting of influenza. We collected blood from 18 patients with
acute influenza A H1N1, influenza A H3N2, or influenza B over a
period of 3 years. Patient characteristics are described in Sup-
plementary Table 1. Confocal microscopy analysis of human
blood from infected individuals revealed the presence of platelets
with various morphologies, ranging from small platelets without
pseudopodia, to spread-out, flattened satellite-like platelets that in
some cases have a diameter bigger than 10 μm (Fig. 1a, b, Sup-
plementary Fig. 1).

Surprisingly, the blood of influenza-infected patients contained
aggregates of released DNA associated with platelets (Fig. 1c, d,
Supplementary Fig. 2a). In certain patients, this DNA co-localized
with the neutrophil markers CD66b and myeloperoxidase (MPO)
(Supplementary Fig. 2b, c), suggesting the possibility that the
released DNA is due to NETosis. Plasma of influenza-infected
patients showed elevated levels of elastase and MPO (Supple-
mentary Fig. 2b, c) but did not test positive for nucleosomes
(Fig. 1g) or DNA assessed by PicoGreen® (Supplementary Fig. 3).
In the influenza-infected patients, certain DNA-releasing neu-
trophils did not express CD66b (Supplementary Fig. 4), indicat-
ing that some of the released DNA cannot be absolutely identified
as coming from neutrophils. Lack of CD66b may be due to
secretion of this adhesion molecule during infection as previously
observed14,18. A possible reason for the discrepancy between
released DNA observed by microscopy and lack of DNA
detection in the plasma is that the platelet–neutrophil aggregates
are large and spin down with cell fractions in blood. Alternatively,
kinetic differences may exist between protein and DNA clearance
in plasma after infection. Also, phorbol myristate acetate (PMA)-
NETosis and viral NETosis differ19 and may not be easily
evaluated in plasma, particularly after a double-spin method with
citrated blood.

To further evaluate which cell contributes to the DNA release
and to quantify the release at the onset of flu infection, blood
from healthy donors was incubated with sucrose-purified
influenza (WSN/33). The released DNA co-stained with
neutrophil marker CD66b and formed aggregates with platelets
(Fig. 1h and Supplementary Fig. 5). Of note, the released DNA
was measured in blood from healthy donors treated with WSN/
33 at constant rotation. Influenza led to a 40% increase of
netting neutrophils when compared to control (Fig. 1i). The
finding of unattached netting formations was unexpected since
free circulating neutrophil–DNA–platelet formations have not
been previously described. During intravascular NETosis,
neutrophils have been thought to be attached to organ blood
vessels20 and free netting structures have not been detected
directly in blood.
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Fig. 1 Characterization of human blood from influenza-infected patients. a–d Blood from influenza-infected patients was fixed after intravenous collection

and stained as described in Methods. In all cases DNA was assessed by DAPI. a Many platelets appeared similar to those observed in control blood from

healthy donors with a size of 2–5 µm. b Some platelets from influenza-infected patients had undergone spreading with a distinctive distribution of CD41.

c Platelets and platelet microparticles associated with DNA (arrow). d Spread platelets were found surrounding released DNA with distinct DNA content in

their center. Of note, blood from influenza-infected patients and controls in (a–d) was not permeabilized. Since formaldehyde can cause certain levels of

permeabilization as a function of cross-linking positive staining in control samples for H4 and MPO do not necessarily indicate activation. e–g Levels of

proteins related to DNA release in the plasma of influenza-infected patients assessed by ELISA. Source data are provided as a Source Data file. e neutrophil

elastase, f myeloperoxidase (MPO), and g histone nucleosome core. The graphs represent the average ± SD of healthy donors (n= 15) and influenza-

infected patients (n= 18); significance for (e–g) was assessed by Mann–Whitney U test, star symbol (*) indicates p < 0.0001. h, i To synchronize time of

influenza presence as a function of infection and quantify the released DNA, we treated blood from human donors for 30min with sucrose-purified

infectious influenza (WSN/33) at constant rotation and 37 °C. Influenza was used at 1 pfu to 100 platelets. h Representative images of blood from 3 donors

with influenza and one (out of 3) healthy control and i their quantitation. Of note, in certain cases the DNA is not entirely covered with platelets, suggesting

differences in kinetics of interaction and/or a physiological relationship that needs further in vivo characterization. Data in graph is represented as average

± SD of n= 3 different donors; significance was assessed by unpaired t-test (two-tailed value) and star symbol (*) indicates p= 0.0019, df= 4
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Platelets from infected patients contain influenza particles. In
addition to examining morphological changes, we also evaluated
if influenza virions can be detected in association with or within
platelets in patients with active influenza infection. For that
purpose, we used quantitative PCR (qPCR). Influenza viral RNA
detection was variable. Influenza RNA was detected by qPCR in 4
of 18 patients; 10 randomly selected subjects of 18 stained positive
for influenza nucleoprotein (NP) in the blood as shown in Fig. 2a
(see Supplementary Table 2). In some cases, virions were also
found associated with released DNA and platelet CD41 (Sup-
plementary Fig. 6).

To evaluate the time course of influenza internalization into
platelets, we isolated platelets from healthy human donors and

incubated them with infectious influenza A (WSN/33) virions as a
function of time. Following incubation, platelets were fixed and
imaged by fluorescent or transmission electron microscopy. We
observed influenza attached to platelets as early as 1min post-
incubation. Internalization began 5min post-incubation, continued
at 15min, and peaked at 30min (Figs. 2b and 3a, b, Supplementary
Fig. 7). Digestion of the virus was observed as early as 15min
(Fig. 3a). Transmission electron microscopy of blood from the
patients that tested positive by qPCR showed particles similar to the
in vitro-incorporated influenza; these particles were not observed in
control platelets (Fig. 3c, Supplementary Fig. 8). Our findings
indicate that influenza virus during acute influenza infection can
potentially cross into blood and become engulfed by platelets.

Control Influenza A Influenza B
a

b

CD41-platelets

Flu-green

10 µm

5 µm

5 µm

10 µm 10 µm

CD41-platelets

Flu-green

Fig. 2 Influenza particles are found in platelets by confocal microscopy. 50 μL of intravenous blood drawn from a influenza positive patients or healthy

donors. Blood was fixed (RBCs were lysed) and samples were later stained with antibodies for the nuclear protein for influenza A (green) or influenza B

(green, yellow= green and red combined), for platelets stained with CD41-APC (red), and DNA from neutrophils (white). Arrows point toward the

influenza (green) staining. Representative images are shown from n= 10 different patients. Confocal microscopy of b platelets isolated from healthy

donors and incubated with WSN/33, at 1 pfu to 100 platelets, for 30min, at 1000 rpm, 37 °C. Platelets were fixed, permeabilized, and stained with the

same antibodies as in (a). Representative images of n= 4 (2F, 2M) are shown
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Platelets internalize influenza possibly by phagocytosis.
Phagocytosis is the process by which blood cells clear pathogens
such as influenza. Using transmission electron microscopy and
in vitro incubation of platelets with influenza over time, we found
morphology consistent with the classical stages of phagocytosis
(Fig. 4a). Negative staining of the viral particles can be visualized
in Fig. 4b. Attachment was observed as early as 1 min
post-incubation followed by invagination and formation of

phagosome-like structures (PLS) (Fig. 4a). In select images, there
was fusion with platelet granules that do not appear to be alpha
granules but may be of lysosomal origin. Digestion of viral par-
ticles and residual body formations can also be visualized in the
PLS. The capacity of platelets to phagocytose has been con-
troversial and with certain pathogens such as bacteria, it has been
proposed that they are covercytes rather than phagocytes21. The
covercyte ability comes from the claim that uptake of bacteria

a 1 min 5 min 15 min 30 min
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Fig. 3 Transmission electron microscopy of influenza particles in platelets. a Transmission electron microscopy (TEM) of isolated human platelets

incubated with WSN/33 influenza (1 pfu to 10 platelets) at different time points but under the same conditions as in (b). Platelets were fixed for 10min

immediately after incubation and processed for electron microscopy. b Quantitation of the time course of internalization of influenza by isolated platelets in

(c). The graphs represent the analysis of n= 10 platelets per time point. c TEM of platelets isolated from uninfected (control) and influenza-infected

patients. Representative images are shown from three different influenza patients. In all cases, red arrows point toward the viral particle
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involves channels of the open canalicular system (OCS) which
would not be involved in phagocytosis. We found that PLS did
not have an apparent connection to the OCS (Fig. 4a). The
morphology of influenza engulfment by platelets appears to
recapitulate all major stages of phagocytosis by forming vacuoles
without the involvement of the OCS, and this suggests that for
viral particle removal, platelets may have the capacity to act as
phagocytes.

Influenza leads to TLR7-dependent C3 release from platelets.
TLR7 is a major pattern recognition receptor involved in the
initial recognition of engulfed influenza likely by sensing viral
ssRNA content17. Platelets express functional TLR7 and
TLR7 stimulation leads to alpha granule protein release6 while
neutrophils do not express TLR7 at the protein level22. Lack of
expression of TLR7-mRNA in platelets, however, has been
observed in some human donors11. The complement system is
also part of the innate immune response and platelets contain C3

in their granules23,24. We first screened plasma isolated from the
influenza-infected patients to assess if C3 is released during
influenza infection in vivo and we found increased levels of
circulating C3 compared to control (Fig. 5a). Interestingly, aspirin
intake in patients did not have an effect on C3 plasma
levels, suggesting a COX-independent mechanism for C3 release
(Supplementary Fig. 9a). We then examined influenza–platelet
interactions to assess direct contribution of platelets to C3 release
as a function of TLR7 activation. We isolated human platelets
from control donors and incubated them with infectious virions
of influenza A (WSN/33) for 30 min at three different ratios to
establish TLR7-specificity: 1 plaque-forming unit (pfu) or infec-
tious virion to 10, 100, or 1000 platelets. The presence of influ-
enza led to an increase of C3 in platelet supernatants (Fig. 5b) but
only in those with platelet TLR7 expression as assessed by qPCR
or antibody staining. Inhibition of TLR7 with a specific TLR7
antagonist, IRS661, abrogated the release of C3 from platelets
(Fig. 5b). Additionally, C3 release from platelets in 30 min was

1 min 5 min 15 min

15–30 min15–30 min15 min
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Fig. 4 Stages of phagocytosis in platelets’ internalization of influenza. Phagocytic morphological features of influenza internalization by platelets was

assessed by TEM. a Representative images of different stages of phagosome-like structures assessed by morphological features captured in platelets from

healthy human donors incubated with WSN/33 influenza (1 pfu to 10 platelets) at different time points. Five distinct stages can be observed in human

platelets. b TEM of the negative stain of influenza virus (only)
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observed only when we incubated 1 pfu of influenza with 100
platelets; C3 release using a high proportion of virions to platelets
was not specific for TLR7; and the low proportion did not elevate
detectable C3 in the supernatants after 30 min of incubation
(Fig. 5b). Isolated platelets that did not express TLR7 had no
detectable increase in C3 release (Fig. 5c). This limited observa-
tion suggests that polymorphisms of TLR7 could also influence
the outcome of infection in certain population groups25

(see Supplementary Note 1). Similar to influenza-stimulated
platelets, stimulation of isolated human platelets with the TLR7
agonist, loxoribine (Loxo), led to an increase in C3 release from
platelets and antagonism of the receptor abrogated the effect
(Fig. 5d, Supplementary Fig. 9b, c).

TLR7 is located in vesicles of lysosomal origin and it is a dual
receptor for guanosine and uridine-rich single-stranded RNA26.
As a result, it does not recognize proteins of the viral particle but
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The graphs represent the average ± SD; significance was assessed by Mann–Whitney U test, *p < 0.0001. b C3 release from human platelets that express
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representative of n= 3 different blood draws; p= 0.2813, F= 1.833, df= 3. d C3 release from human platelets from the same donors as in (b) treated with
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as average ± SD; significance was assessed using ANOVA followed by Bonferroni multiple comparison test and star symbol (*) indicates p < 0.05. Source

data for (a–d) are provided as a Source Data file. e Confocal images of permeabilized isolated platelets from influenza-infected patient stained for flu-FITC;

TLR7-APC; lysosomal marker CD63-BV421. f Confocal images of isolated healthy human platelets incubated with WSN/33 for 30min (1 pfu to 10
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rather senses influenza nucleic acids. To assess if influenza and
TLR7 can be located in the same platelet, we isolated platelets
from an influenza-infected donor and stained for influenza,
TLR7, and the lysosomal marker CD63. All of the markers
colocalized or were found in close proximity to each other
(Fig. 5e). Similar results were observed in platelets incubated with
influenza in vitro (Fig. 5f). Interestingly, TLR7 was not always
found colocalized with the lysosomal marker CD63 or LAMP1
(Fig. 5f or Supplementary Figs. 10, 11a). Additionally, not all
platelets that contained viral particles expressed TLR7 (Supple-
mentary Fig. 11). Platelets however are known to take up RNA
from endothelial cells or leukocytes5,27,28, therefore, transfer of
RNA between other cell types after viral digestion is a valid
possibility. Scanning and transmission electron micrographs of
platelets incubated with influenza showed interaction and pore
formation in platelets as well as disappearance of the cell wall
between them (Supplementary Figs. 12, 13). In total, our data
suggests that engulfed influenza nucleic acids are sensed by
platelet-TLR7 and this sensing leads to complement C3 release.

C3 and GM-CSF effect on neutrophil-DNA release. Since
granulocyte-macrophage colony-stimulating factor (GM-CSF)
primes neutrophil TLR responses and delays spontaneous neu-
trophil death29–32 we evaluated if platelet-TLR7 signaling is
involved in GM-CSF secretion. Interestingly, platelets secreted
GM-CSF only in the presence of neutrophils as a function of
TLR7 stimulation; platelet-TLR7 without neutrophils had no
effect on GM-CSF levels (Fig. 6a–c).

It is not currently known if C3 mediates release of DNA from
neutrophils, particularly in circulating unattached cells. There-
fore, we treated human neutrophils (in suspension and under
constant rotation) with native C3. C3 alone initiated DNA release
and neutrophils formed very large aggregates (Fig. 6d, e).
Incubation of platelet-free neutrophils with C3 in the presence
of GM-CSF, however, reduced the size of the neutrophil aggregate
formations (Fig. 6d, e). These data suggest that influenza causes
C3 release from platelets, and that platelet-TLR7 is involved in
this process. Our results also suggest that C3 alone is sufficient to
mediate DNA release from neutrophils and platelet-GM-CSF
controls levels of this release. This provides a previously
unrecognized link between TLR7 and complement during viral
infection.

Platelet-TLR7-dependent C3 induces neutrophil-DNA release.
As noted above, we observed free aggregates of released
neutrophil-DNA and platelets in the blood of influenza-infected
patients. To evaluate if TLR7 contributes to release of neutrophil-
DNA directly in blood (without neutrophil adherence to the
endothelium) we treated blood from healthy donors with a TLR7
agonist and kept the blood suspended by incubating at constant
rotation for 30 min at 37 °C (using an aggregometer). Confocal
microscopy of the TLR7 agonist-stimulated blood showed an
increased release of neutrophil-DNA with attached platelets as
compared to control blood (Supplementary Fig. 13). These
neutrophil-derived DNA-platelet aggregates were sometimes
associated with MPO and histones consistent with NET forma-
tion (Supplementary Fig. 13).

To understand the specific contribution of TLR7 signaling, we
separately isolated platelets and neutrophils from human blood
using a slightly modified method to generate a neutrophil
population that rarely contained platelets (Supplementary Fig. 14).
Neutrophils or platelets were pretreated for 15 min with a
TLR7 agonist and then the two populations were mixed and
incubated together for 30 min. Utilizing this method, we
demonstrated that platelet-TLR7 (but not neutrophil-TLR7)

mediated neutrophil-DNA release independent of attachment
(Fig. 7a, b). In the supernatants of these mixing experiments,
however, we were unable to detect suggested markers of
NETosis33 such as cell-free double stranded DNA (by using
PicoGreen®), citrullinated histone H3, or free histone H4 in the
supernatants (all values were below detection limit). These data
suggest that influenza-mediated neutrophil-DNA released in the
circulation may not be characterized by the same markers of
NETosis that are observed when neutrophils are attached and
platelet-free20. Additionally, our data indicate that the process of
influenza-mediated, intravascular (vital) NETosis (without
endothelial attachment) is tightly regulated by platelets.

To establish if the platelet-TLR7-C3 axis mediates the release
of DNA from neutrophils, we pretreated the co-incubated
isolated platelets and neutrophils with compstatin, an inhibitor
of C3, and then treated with a TLR7 agonist. Treatment with
the C3 inhibitor significantly reduced neutrophil-DNA release
driven by TLR7 activation (Fig. 7c). To further evaluate the
contribution of the TLR7-C3 axis to neutrophil-DNA release,
we co-incubated isolated platelets and neutrophils together and
treated them with influenza in the presence and absence of a
TLR7 antagonist. The inhibition of TLR7 reduced influenza-
mediated DNA release from neutrophils (Fig. 7d) but not to the
full extent (Fig. 7e). These data indicate that the effect of C3 on
neutrophil-DNA release is mediated by TLR7 but the effect of
influenza on neutrophil-DNA release may not be solely
dependent on TLR7.

Platelets mediate myeloperoxidase release from neutrophils.
MPO is a major enzyme that deposits along released neutrophil-
DNA during NETosis. Additionally MPO in plasma has been
linked to inflammation and increased risk for acute MI34. To
assess if platelet-TLR7 can contribute to MPO levels, we stimu-
lated neutrophils in the presence or absence of platelets. Inter-
estingly, following 30 min of TLR7 stimulation, MPO release
from neutrophils was elevated only when platelets were present,
and no significant changes in MPO were observed in the neu-
trophil fractions without platelets (Fig. 8a, b). Of note, in select
individuals, neutrophils have attached platelets that could con-
tribute to the non-significant increase of MPO with agonists seen
in Fig. 8a. TLR7 stimulation of neutrophils in the presence or
absence of platelets for 30 min did not lead to detectable release of
IL-8, citrullinated H3, or CCL5 (all values were below values for
incubation media); CCL5 changes were not detected in plasma of
influenza patients as compared to control (Supplementary
Fig. 15). IL-8 mRNA has been found in human platelets27 and
given its role in neutrophil chemotaxis, we evaluated its possible
secretion as a function of TLR7. These data suggest that in the
initial response to pathogens and early stages of the TLR-
mediated response platelet presence stimulated the release of
MPO from neutrophils without affecting primary interferon
response or neutrophil chemotaxis.

Ly6G-DNA release is platelet- and TLR7-mediated in mice.
Blood from patients with acute influenza cannot be well con-
trolled with respect to synchronized development of influenza
infection. For that purpose, we utilized a murine model to assess
specificity and platelet contribution to C3 and DNA release from
bright Ly6G cells that are mostly neutrophils (but may include
some eosinophils) in the circulation of mice. Of note, we have
previously shown that with respect to neutrophil engagement,
TLR7 in platelets of mice function in a similar manner as in
humans6. To address TLR7-specificity for the DNA release from
Ly6G-positive cells in a controlled and time-dependent manner,
we challenged C57BL/6J wild type (WT) and TLR7 knockout
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(KO) mice with a TLR7 agonist (loxoribine) or influenza virus.
Released Ly6G-positive DNA was evaluated in fixed blood
immediately after collection by cardiac puncture and samples
were examined by confocal microscopy. Mice challenged with
loxoribine (Fig. 9a, b) or influenza (Fig. 9c, d) exhibited obser-
vable DNA presence in the circulation 24 h after challenge; 4 h
were not sufficient for detectable differences in DNA release
(Supplementary Fig. 16). In vivo DNA release from Ly6G-
expressing cells (Fig. 8, Supplementary Fig. 17) was found to be
TLR7-specific, as the TLR7-stimulation did not lead to observable

DNA release in TLR7 KO mice. Of note, in our hands staining of
blood did not show positive expression of Ly6G in lymphocytes
or monocytes (Supplementary Fig. 17). Similar to human blood,
the released Ly6G-positive-DNA was found in the circulating
blood unattached and was rarely free from platelets. Additionally,
influenza virions were found in the plasma of TLR7 KO mice
(Supplementary Fig. 17) implying possible necessity for TLR7
activation during the initial stages of infection. Our data suggest
that endothelium-free Ly6G-positive-DNA can be found in the
circulation in a TLR7-specific manner.
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In order to assess the contribution of platelets to Ly6G-
positive-DNA release and C3 secretion in vivo, we ablated
platelets with anti-CD42 antibody as we have previously
reported6. At 24 h post-ablation, when the platelet level decreases
to 0.01% (as assessed by blood count analyzer), we infected mice
with influenza virus. Ablation of platelets at the beginning of
infection led to reduced release of Ly6G-positive-DNA aggregates
in blood (Fig. 10a, b). Consistently, C3 in plasma was also

reduced in the mice with ablated platelets compared to control
infected mice (Fig. 10c). Isolated platelets from the initially
platelet-ablated mice showed a pattern of more viral RNA 12 days
post-infection than mice injected only with IgG (Fig. 10d). This
difference however was not statistically significant assuming
Gaussian distribution (Fig. 10d); Mann–Whitney nonparametric
test, p= 0.0286. Our data suggest that platelets contribute to
C3 secretion and mediate DNA release from Ly6G-positive cells
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(mostly neutrophils but may include some eosinophils) during
influenza infection.

Discussion
While the initial host response to intravascular pathogens is
traditionally believed to be primarily controlled by leukocytes,
particularly neutrophils, more recent data have demonstrated that
this response may also require platelets5,16. In this study, we show
that influenza is found in the circulation where it is engulfed and
recognized by platelet-TLR7 leading to complement C3 release.
Platelet-C3, in turn, stimulates neutrophils to release their DNA,
resulting in a potentially highly prothrombotic process that may
contribute to elevated risk of MI. Individually, elevated levels of
complement C3 and coronary NET burden are predictors of
acute MI and myocardial infarct size, respectively14,18,35. Our
study connects these independent contributors to MI and sug-
gests a potential mechanism. We further demonstrate that the
release of neutrophil-DNA directly in blood requires platelets but
does not require attachment to the endothelium. We demonstrate

an increase in C3 in influenza-infected patients’ plasma. We
outline a novel mechanism by which platelets, through TLR7,
modulate the increase in C3 release, providing a previously
undescribed link between these two innate immune pathways. In
the presence of TLR7-activated platelets, neutrophils provide a
signal that leads to the secretion of GM-CSF from platelets. GM-
CSF reduces the level of C3-mediated neutrophil-DNA release
establishing a feedback mechanism. Lastly, neutrophil anti-
microbial potential, as measured by release of MPO, appears to be
mediated by platelet-TLR7 and is independent of thrombin sti-
mulation (Fig. 10e). Thus, we conclude that platelets contribute to
the complex response of neutrophils to pathogens, particularly in
the setting of influenza.

Viremia during influenza in humans is not a uniform
observation10,36. Fluorescent staining of blood platelets from
influenza-infected patients analyzed in this study show that pla-
telets have viral particles inside of them. Transmission electron
micrographs of platelets incubated in vitro with purified infec-
tious influenza show that the virus is rapidly internalized by
platelets and the internalization process is morphologically con-
sistent with phagocytosis. As mentioned, phagocytic activity of
platelets is controversial; however, we were able to observe all
major stages of phagocytosis in platelets. Future studies are
necessary to assess if this process is typical only of small particles
such as viruses and whether it occurs with bacteria. Additionally,
the internalization of influenza by platelets is a rapid process and
by 30 min, in some platelets, there may be up to 10 viruses with
viral particles distributed throughout different vacuoles. However,
it is important to stress that we do not have evidence that pla-
telets, at any point, become infected with influenza. As platelets
have no nucleus in which viral replication can occur, our findings
suggest only that platelets sequester influenza from the circula-
tion, digest the virus, and thereby lead to activation of the innate
immune system. Perhaps the extensive number of platelets pro-
vides an increased surface area during viral infection to support
phagocytosis and remove leaked viral particles from the circula-
tion. Thus, the numerous, anucleate nature of platelets may be an
evolutionary advantage supporting decreased viral reproduction
and increased communication with other immune cells. Overall,
platelets may be the first intravascular defense mechanism.

Influenza infection in humans has been noted to lead to
changes in platelet reactivity7, suggesting that platelets may
contribute to the prothrombotic/inflammatory response during
infection. However, in humans, reduced platelet count as a con-
sequence of influenza infection is inversely proportional to
mortality risk and acute respiratory failure37. Furthermore, the
satellite platelet morphology (in addition to thrombocytopenia
during influenza) may also represent a dysfunctional platelet
population that may not be able to support proper alveolar
endothelial barrier in the capillary of the lungs25 and some viral
particles may leak into the circulation. Additionally, dysfunc-
tional platelets may not be able to interact properly with released
DNA in the circulation as evidenced by the spread-out interaction
between platelets and the DNA in our fluorescent images. In vitro
studies of human platelets incubated with heat-inactivated
influenza virions have shown that influenza A can activate pla-
telets through the FcγRIIa receptor leading to thrombin secre-
tion38. Studies of patients with complications from influenza
infection have implicated damage to cardiac39,40 and skeletal
muscle41 as well as the brain7,42 and liver7,43, although the organs
involved rarely contained infectious virus. The mechanism by
which influenza virus reaches distant tissues outside the respira-
tory tract and achieves systemic inflammation and organ damage
is still poorly understood. Our findings propose that dysregulated
platelets, or thrombocytopenia, may contribute to the transport of
viral particles to distant tissues.
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The complement system is an important component of the
innate immune response involving pathogen opsonization, che-
motaxis of inflammatory cells, and lysis of infected cells, ultimately
removing immune complexes, apoptotic cells, and cell debris.
Complement activation is increasingly recognized as a major con-
tributor to cardiovascular disease and intravascular inflammation40.
Human platelets contain C3, complement C4 (C4) precursor, and
complement C1 inhibitor in their alpha granules8. Human neu-
trophils, on the other hand, do not contain complement compo-
nents but have one positive regulator of complement activation
(properdin)36. Interestingly, C3 (and C4) deposition on the viral
envelope of influenza virus (WSN/33) is known to activate the
complement system and leads to viral neutralization44. Here, we
report a novel mechanism by which platelets cross-communicate

with neutrophils to mediate the initial intravascular response to
influenza infection through C3. As the infection progresses
increased presence of C3 in plasma, coming from the liver
or from dysregulated platelets, may overwhelm its beneficial
effect. C3-mediated circulating aggregates could explain the
increased risk of cardiovascular events in select patients. During
intravascular bacterial infection, platelets are necessary for building
proper antimicrobial immunity utilizing GP1b and C310. Interest-
ingly, during sepsis, C3 proteolysis is predictive of the severity of
infection and sepsis can result in MI45,46. Perhaps circulating
neutrophil–DNA–platelet aggregates, although necessary for viral
(or bacterial) removal and adaptive immunity during infection, may
become pathological throughout the course of infection with
increased vascular damage and possible MI burden.
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or were intranasally infected with influenza (PR8 strain, 40,000 pfu in 30 µL). Blood was collected by cardiac puncture at 24 h and immediately fixed (red

blood cells were lysed at the same time); Ly6G is predominantly expressed by murine neutrophils. a Representative images of DNA release from Ly6G-

positive cells (at 24 h post-Loxo stimulation) resolved by confocal microscopy. b Quantitation of DNA release from Ly6G-positive cells in blood of mice (n

= 4/group) at 24 h after agonist stimulation (p= 0.016, df= 6). c Representative images of DNA release (at 24 h post influenza infection) resolved by

confocal microscopy. Pictures showing Ly6G-highly positive origin of the released DNA are included in Supplementary Fig. 11. d Quantitation of the DNA

release from Ly6G-positive cells in blood of mice (n= 4/group) at 24 h post-infection (p < 0.001, df= 6). In all cases, the bar represents 10 μm and values

in the bar graphs represent the average ± SD; star symbol (*) indicates p < 0.05. Significance was assessed by unpaired t-test (two-tail value). Source data

are provided as a Source Data file
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Neutrophil extracellular traps (NETs) can cause host tissue
damage and neutrophils with increased netting potential are seen
in inflammatory or autoimmune diseases such as diabetes, sys-
temic lupus erythematosus, and rheumatoid arthritis47–50. Pla-
telets have been associated with organ NETosis in vivo, but this
has been thought to be mostly a reactive process16,20,51. Here, we
report that platelet-TLR7 solely mediates the release of DNA
from neutrophils directly in the circulation without the require-
ment of attachment. These observations, in addition to the lack of

TLR7-protein in human neutrophils, suggest that platelets are
important contributors to neutrophil activation during certain
viral infections. We also observed that activation of platelet-TLR7
also leads to feedback signaling from neutrophils that conse-
quently initiates GM-CSF release from platelets. GM-CSF, in
turn, is known to have anti-apoptotic potential and extends
neutrophil survival30. Differential secretion of GM-CSF with
TLR7 agonists but not with TLR2 agonists suggests a sophisti-
cated platelet–neutrophil cross-communication mechanism that
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Fig. 10 Platelets contribute to C3 and Ly6G-DNA release in vivo. Platelets were eliminated from male mice with antiplatelet antibody CD42 (αPlt) and

compared to control IgG. At 24 h post elimination, mice were infected with the PR8 strain of influenza (as in Fig. 8). a Confocal microscopy of blood

showing DNA release in murine blood 3–4 days post-infection. Images are representative of n= 4 mice/group. b Quantitation of the confocal images in

(a). Graph is a representative of 4 mice/group (p= 0.0003, F= 14.26, df= 3). c C3 levels in murine plasma at the same time as in (a). The graph

represents the average levels ± SD, n= 4 mice/group, with the exception of IgG+sal, where n= 3 mice were used (p= 0.0415, F= 4.733, df= 3).

Significance was measured by ANOVA followed by Bonferroni follow-up test; in all cases star symbol (*) indicates p < 0.05. d Gene expression levels of

influenza RNA in isolated murine platelets 12 days post-infection (n= 4 of IgG+flu; n= 4 of αPlt+flu). The graph represents average expression ± SD;

significance was calculated by two-tailed unpaired t-test, p= 0.0715, df= 6. Of note, Mann–Whitney non-parametric t-test gave p= 0.0286. Source data

are provided as a Source Data file. Abbreviations: IgG—control antibody; αPlt—antiplatelet CD42b antibody; Sal—phosphate buffered saline: e Proposed

mechanism of platelet-mediated neutrophil-DNA release during influenza infection. During influenza infection, virions cross into the circulation and

become engulfed by platelets. Influenza virions lead to the release of complement C3 from platelets in a platelet-TLR7-dependent manner. C3 in turn

activates neutrophils to release their DNA and leads to the formation of platelet–neutrophil aggregates that can circulate freely in blood. Aggregates of this

nature can increase the risk for thrombosis and potentially lead to unstable coronary syndrome when there is vessel stenosis or inflamed endothelium
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controls the intensity of neutrophil-DNA release in blood
depending on the type of pathogen (viral or bacterial). We pos-
tulate that during influenza infection, platelets are not only able to
initiate DNA release from unattached neutrophils but can control
the amount of released DNA by secreting GM-CSF and possibly
by providing a physical barrier between neutrophils. This parti-
cular function may be necessary to capture substances circulating
in blood, activate the immune system but may lead to unwanted
MI risk.

In addition to the pro-inflammatory and autoimmune con-
tribution, a pathological outcome of NETosis is thrombosis. In
vitro studies treating purified neutrophils with PMA have shown
that NETosis and thrombosis may be concordant52. Histones
released during NETosis may increase plasma thrombin genera-
tion in a platelet-TLR2, TLR4-dependent manner53,54. In fact,
extracellular histones during sepsis are a major contributor to
death, and infusion of histones in mice leads to the formation of
platelet-rich microthrombi and consequent thrombocytopenia55.
In our in vitro cell mixing experiments, we were unable to detect
free citrullinated histones after stimulation with TLR7 agonist for
30 min. This is not surprising given reports of cases in which
histone citrullination is not a marker of NETosis19,33. Of note, the
observed neutrophil-DNA release in this study was surrounded
by platelets, a process that may impair the detection of histones,
nucleosomes, or free DNA. Additionally, the result of this DNA-
release is the formation of large platelet-DNA aggregates that in
most cases showed traditional markers of NETosis; however, in
the influenza-infected patients we cannot exclude the contribu-
tion of other cells to this process. It is important to mention that
NETosis during influenza infection differs from suicidal-NETosis
(PMA-mediated) as it is PAD4-independent and negative for
citrullinated histone H356. Regardless of the process, the uncon-
trolled formation of platelet-DNA aggregates ultimately becomes
problematic for influenza patients in the first 7 days post infection
and increases the risk for MI. Elucidating the mechanisms of
platelet–neutrophil interactions in the initial stages of infection is
critical in understanding the processes that may contribute to
uncontrolled immune response or thrombosis. Additionally,
understanding initiation and mediation of neutrophil-DNA
release directly in blood is particularly important since this
neutrophil function relates to cardiovascular disease and NETs
are presumed to be highly prothrombotic57,58, are found in deep
vein thrombosis and are associated with atherosclerosis57,59,60.

In this study, we focused on understanding how influenza
infection in humans may lead to an increased risk for acute MI.
Murine models utilized herein provided controlled in vivo tools
for assessing specificity and contribution of platelets to
neutrophil-DNA release and complement secretion in a time-
specific manner. Although, we conclude unequivocally that pla-
telets are important in both species, unstable coronary syndromes
do not occur in non-genetically manipulated mice and mice are
not naturally infected by influenza. Also, with respect to the two
species and influenza infection, the bronchial–epithelial response
is markedly different the proportions of platelets to neutrophils in
blood that increases from 50:1 in humans to at least 500:1 in
mice, and the most prevalent leukocyte in human blood is the
neutrophil, whereas in mice, it is the lymphocyte. Murine studies
have shown that elimination of platelets from mice before
infection with influenza leads to increased survival due to a
profound thrombotic response in lungs61. Thrombocytopenia
severity in humans however predicts mortality during influenza
infection. Differences between mouse and human platelets have
been described previously62. The observations in human patients
suggest that, during influenza infection, platelets may play an
important role in human blood that may not be fully predicted by
the behavior of murine platelets.

Future studies may focus on understanding the contribution of
other infections to platelet activation and neutrophil-DNA release
and generality of this mechanism. It will also be necessary to
understand C3 regulation as a function of non-pathogenic
inflammation and to evaluate if regulation of C3 by inhibitors
such as compstatin could attenuate cardiothrombotic events and
reduce the risk of influenza-mediated MI.

Our study demonstrates that, during influenza infection, pla-
telets internalize influenza and coordinate a distinct, multi-
factorial response as a function of their TLR7-mediated C3
release. Platelets appear to be major contributors to the initial
response to pathogens by bridging the TLR and complement
systems through C3 secretion and by mediating MPO secretion
and release of DNA from neutrophils. TLR7-activated platelets
also secrete GM-CSF but only when neutrophils are present. GM-
CSF, which is known to promote neutrophil survival, in turn,
reduces the amount of released DNA. Our findings suggest that
the initial immune response to influenza infection requires
intravascular communication between platelets and neutrophils.
Dysregulation of this response and dysfunctional platelets may
act as a double-edged sword and may lead to increased MI risk in
select individuals.

Methods
Pharmacological compounds. This study used the following compounds: loxor-
ibine (InvivoGen, CA, USA, cat# tlrl-lox), Pam3CSK4 (InvivoGen, CA, USA, cat#
tlrl-pms), human thrombin (Enzyme Research Laboratories, IN, USA, cat# HIIa),
prostaglandin E1 (PGE1, Millipore, MA, USA, cat# 538903-1MG), complement C3
(Millipore, cat #204885); GM-CSF (Stemcell Technologies, MA, USA, cat
#78015.1), and compstatin (Tocris, MN, USA, cat# 2585). Thrombin and
Pam3CSK4 were dissolved in water and blood or isolated cells were treated with 10
μg/mL of Pam3CSK4 or 0.05 U/mL of thrombin. Pam3CSK4 concentration is based
on previously known mediation of platelet–neutrophil aggregates8; low con-
centration of thrombin was used in order to activate platelets without making them
form a thrombus. Platelets do not tolerate DMSO at concentrations higher than
0.05%, thus, loxoribine was dissolved in 700 μL DMSO4 and 770 μL water. Cells
were treated with 1 mM loxoribine; complement C3 and compstatin were dissolved
in HEPES-modified Tyrode’s buffer.

In vitro experimental conditions. All in vitro experiments in this study were
performed at 37 °C and constant rotation of 1000 rpm in a PAP8 Platelet Aggre-
gation Profiler (Bio/Data Corp, PA, USA) aggregometer for the indicated time.

Mouse models. All procedures were approved by the University of Massachusetts
Institutional Animal Care and Use Committee (protocol # 2324) and conducted
accordingly. TLR7 KO mice were originally obtained from S. Akira and then
backcrossed to C57BL/6J (WT) for at least 10 generations32. C57BL/6J mice were
purchased from the Jackson Laboratory (ME, USA, cat# 000664). These studies
used sex- and (12–16 weeks) age-matched mice. In the antiplatelet experiment,
age-matched cages of WT mice (12 weeks) were randomly assigned to each group.
No blinding was used in the analysis of the experimental effect in the models.

TLR7 specificity. The TLR7 agonist loxoribine was dissolved in DMSO4, diluted in
phosphate-buffered saline, and then injected intraperitoneally at 2.5 μg/g of body
weight6. Saline control contained an equivalent amount of DMSO4. A second set of
mice was inoculated intranasally with 40,000 pfu of influenza A virus (PR8 strain,
Charles River, Wilmington, MA, USA) in 30 µL of PBS. Mice were euthanized by
carbon dioxide (CO2) asphyxiation at 24 h post-treatment and blood was collected
by cardiac puncture. An aliquot of blood was fixed with BD FACS Lysing Solution
(BD Biosciences, NJ, USA, cat# 349202) for microscopy. Platelets and plasma were
isolated from the rest of the blood sample as described below.

Platelet depletion mouse model. Platelets were depleted from C57BL/6J mice as
previously described6. Briefly, mice were injected intraperitoneally with anti-
platelet glycoprotein Ib beta chain (GPIb, CD42b, cat #R300) or anti-
immunoglobulin-G (IgG, cat# C301) antibodies (Emfret Analytics, Germany) at
4 µg of antibody/gram of mouse. At 24 h post ablation, mice were infected with
influenza A as described in the previous section. Mice were euthanized by CO2

asphyxiation at 24 h post-infection, 5–6 days post-infection and 12 days post-
infection, and blood was collected by cardiac puncture.

Blood collection. Human blood was drawn by phlebotomy in ACD Solution A
(yellow top) tubes (Fisher Scientific, USA, cat# 02-684-26) or in BD Vacutainer
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CPT tubes (Fisher Scientific, cat# 02-685-125). Human blood was drawn from
healthy donors who were not on any medication for at least 7 days prior to the
draw6. Blood from influenza-infected patients was drawn from adults who pre-
sented with influenza-like illness to UMass Memorial Medical Center from 2016 to
2018, tested positive for influenza A or B by rapid antigen and/or by qPCR, and
had <7 days illness. All procedures were approved by the University of Massa-
chusetts Institutional Review Board (protocol # H00009277 and 14268-10) and
participants signed informed consent whenever required by IRB.

Murine blood was drawn via cardiac puncture and collected in Citrate-
Phosphate-Dextrose (CPD) buffer (16 mM anhydrous citric acid, 102 mM
trisodium citrate, 18.5 mM NaH2PO4, 142 mM D-glucose, pH 7.4). For all murine
blood collections, 500 µL of blood was drawn into 200 µL of CPD.

Isolation of human blood components. Human platelets were isolated from
venous blood into yellow top ACD Solution A tubes. Platelets were isolated as
previously described6. Briefly, citrated blood was centrifuged at 150 × g for 17 min.
Seventy-five percent of the top layer was removed and diluted with platelet wash
buffer (10 mM sodium citrate, 150 mM sodium chloride, 1 mM EDTA, 1% (w/v)
Dextrose, supplemented with 100 ng/mL PGE1), and centrifuged at 460 × g for
17 min at room temperature. The resulting pellet was resuspended in pre-warmed
HEPES-modified Tyrode’s buffer (140 mM NaCl, 6.1 mM KCl, 2.4 mM
MgSO4·7H2O, 1.7 mM Na2HPO4, 5.8 mM Sodium HEPES, supplemented with
0.35% BSA and 0.1% Dextrose). Isolated platelets from influenza-infected patients
were lysed in 700 µL QIAzol® (included in miRNeasy Mini Kits—see manufacturer
information below). Platelet number was determined by means of a blood cell
analyzer (Beckman Coulter Ac.T8, CA, USA). Contamination of the platelet pre-
paration was found to be <1 in 50,000.

The human neutrophil/granulocyte population was isolated from freshly drawn
venous blood in BD Vacutainer CPT tubes. Blood was centrifuged for 30 min at
1800 × g. The top layer was removed and the separation media layer (composed of
thixotropic polyester gel and a FICOLL™ Hypaque™ solution) was removed by using
a 1 mL pipet tip. The bottom 3mL fraction was transferred to a new tube and
washed once with 10 mL 1× PBS (no Ca2+ or Mg2+) for 10 min at 350 × g, low
brake. The supernatant was removed post centrifugation and the red blood cells
(RBCs) from the granulocyte fraction were lysed with 5 mL of RBC Lysis Buffer by
Roche Diagnostics (Fisher Scientific, cat# 50-100-3296) that had been pre-warmed
to 37 °C and gently mixed in a 1:2 proportion, then warmed in a 37 °C water bath
for 8 min followed by centrifugation at 250 × g for 5 min, low brake. The lysed
solution was removed and the pellet was washed in 10 mL of 1× PBS at 250 × g for
5 min, low brake. The lysis step was repeated with an additional 5 mL of RBC Lysis
Buffer to ensure effective RBC lysis. The bottom pellet was again washed in 10 mL
of PBS at 250 × g for 5 min, the supernatant was removed, and the white pellet re-
suspended in HEPES-modified Tyrode’s Buffer. Neutrophils were 98–100%
platelet-free unless platelets were attached to neutrophils; the neutrophil
population had no mononuclear cell presence (Supplementary Fig. 8).

Of note, isolating a platelet-free population of neutrophils by standard FICOLL™
gradient protocols9 presented a major challenge for our experiments since it was
necessary to obtain platelet-free neutrophils (Supplementary Fig. 8). With
modifications (procedure is described under human neutrophil/granulocyte) we
were able to establish an isolation method free of platelets (0 × 103/μL, as measured
by the blood cell analyzer). Confocal microscopy showed that in some cases
platelets were attached to neutrophils (heterotypic aggregates) and could not be
removed. We were not able to find a negative depletion neutrophil prep that
eliminates platelets (containing either CD41 or CD42 antibodies) or neutrophils
with attached platelets. Additionally, neutrophils were treated gently without
vortexing to minimize bubbles. This was necessary to ensure that neutrophils were
not activated and/or primed by released platelet content during isolation steps.
Standardization of methods of platelet-free neutrophil isolation and treatment may
be necessary to delineate the role of platelets and/or neutrophils during the initial
steps of physiological infection.

Human (influenza patients) and mouse plasma isolation. Human blood (1 mL)
or mouse blood (600 µL) in CPD was centrifuged at 500 × g for 10 min. The
supernatant was removed, centrifuged at 2000 × g for 10 min and the plasma was
immediately frozen on dry ice.

Mouse platelet isolation for influenza RNA qPCR. Mouse blood was collected in
CPD buffer as described above. Blood was centrifuged at 500 × g for 10 min. The
supernatant was removed for further centrifugation for plasma collection as
described above. The remaining blood pellet was gently transferred to a Falcon® 5
mL polystyrene round-bottom tube (Corning, NY, USA, cat# 352058) that con-
tained 4 mL of CPD buffer and centrifuged at 300 × g for 5 min, no brake. The
supernatant (leaving a small volume above blood pellet) was gently transferred to a
second Falcon® 5 mL tube, the tube was filled to the top with CPD, and centrifuged
at 3500 × g for 7 min, no brake. The supernatant was removed, any remaining
RBCs were manually removed from the platelet pellet with a pipette and the
platelets were resuspended in QIAzol® lysis reagent.

Influenza A strain (WSN/33) sucrose gradient purification. Infectious influ-
enza A viral strain WSN/33, was purified and concentrated as previously descri-
bed63. The final viral pellet was resuspended in chilled DPBS, aliquoted and stored
at −80 °C.

Confocal microscopy and antibodies. Whole blood: Whole blood from in vitro
incubated experiments, influenza-infected patients, or mice was lysed and fixed
with 1× BD FACS™ lysing solution (BD Biosciences, cat #349202) for 10 min. Lysed
and fixed blood from influenza-infected patients was stored at 4 °C at this step until
processing. To ensure possible effects of fixation and labeling on blood cells, we
processed the blood from infected and uninfected controls identically; in all cases
antibody labeling was always done after fixation to avoid unwanted interactions
between the antibody and the platelets. Samples were centrifuged at 1100 × g for
7 min, washed once with 1 mL of HEPES-modified Tyrode’s buffer under the same
conditions, resuspended in 100 µL of HEPES-modified Tyrode’s buffer supple-
mented with 2% FBS and blocked for 1 h at room temperature, then antibodies
were added for an additional hour. At the end of incubation, samples were washed
with 1 mL of 1× PBS and mounted on slides. Treatment of unfixed blood or
isolated cells in the presence of antibodies led to the engulfment of platelets by
neutrophils similarly to the in vivo antibody depletion data in Fig. 9a (yellow stain
of neutrophils). To eliminate the effect of opsonization-mediated interactions, we
performed all microscopy staining after fixation post-treatment.

Intracellular staining of isolated or influenza-incubated platelets: Platelets in
solution (at 2 × 105 platelets/µL in 100 µL) were brought to 1mL with HEPES-
modified Tyrode’s buffer at constant rotation of 1000 rpm in an aggregometer
(PAP-8). 333 µL of 16% paraformaldehyde was added and platelets were fixed for
10min (at 1000 rpm). Tubes were removed from the aggregometer, placed at room
temperature on a stir plate at 1000 rpm and 1% Saponin was added to the mixture for
7 min. Samples were washed with 1mL washing buffer (0.4% BSA; 0.1% Saponin in
PBS) and centrifuged at 1800 × g for 5min. Samples were then resuspended in
staining buffer (1% BSA; 0.1% Saponin in HEPES-modified Tyrode’s buffer) that
contained the antibodies of interest. Samples were incubated for 1 h at 4 °C, washed
with 1mL of 1 × PBS at 1800 × g for 5min and mounted on slides.

The following antibodies (in 100 μL of staining solution) were used throughout
this study: anti-human: 10 μL CD41-FITC or 8 μL CD41-APC (clone HIP8,
eBioscience, CA, USA, cat# 11-0419 and cat# 17-0419), 5 μL CD66b-APC (clone
G10F5, eBioscience, cat# 17-0666), 5 μL MPO-FITC (clone MPO455-8E6,
eBioscience, cat# 11-1299), 2 μL Histone H4-AF647 (clone 31830, Abcam, MA,
USA, cat# ab197515, also recognizes mouse), 2 μL Histone H3 (Abcam, cat#
ab1791), followed by FITC-conjugated Goat Anti-Rabbit IgG H&L secondary
antibody (Abcam, cat# ab6717); 2 μL TLR7-APC (clone 4G6, Novus Biologicals,
cat# NBP2-25274APC), 5 μL LAMP-1/CD107a -DyLight 405 (clone 5E7, Novus
Biologicals, cat# NBP2-52721V), 5 μL CD63-BV421 (clone H5C6, Biolegend, cat
#353029); anti-mouse: 10 μL CD41-FITC (clone MWReg30, eBioscience, cat#
11-0411), 5 μL Ly6G-APC (clone RB6-8C5, eBioscience, cat# 17-5931); and 2 μL
Influenza A-NP-FITC (Abcam, cat# ab20921), 2 μL Influenza B-NP-FITC
(Invitrogen, cat# MA1-7306). Mounted slides were resolved by fluorescent
microscopy using a Spinning Disk Confocal Nikon TE2000E2 inverted microscope
or Scanning Disk Nikon A1 confocal microscope.

Transmission electron microscopy. Platelets incubated with influenza in vitro:
Isolated platelets were incubated with influenza for various amounts of time in 100
µL of HEPES-modified Tyrode’s buffer, at constant rotation in an aggregometer
(PAP-8). After incubation the solution was brought to 500 μL with the same buffer
and then fixed for 10 min at 37 °C and constant rotation with 500 μL of Kar-
novsky’s fixative (a mixture of 2.0% paraformaldehyde and 2.5% glutaraldehyde in
0.1 M Sorensen’s phosphate buffer, pH 7.4), before initial centrifugation and were
immediately processed.

Platelets from influenza-infected patients and control donors: Isolated platelets
(as described in Human (influenza patients) and mouse plasma isolation) were
resuspended in 200 μL CPD and then fixed and stored with Karnovsky’s fixative,
for not more than a month, before processing.

In either case, samples were further processed and resolved by a Philips CM10
electron microscope (Eindhoven, Netherlands) as previously reported6.

Mixing experiments using platelets and or neutrophils. All mixing experiments
were done using 2 × 105 platelets/μL and 0.04 × 105 neutrophils/μL, or a ratio of 1
neutrophil:50 platelets. All mixing experiments were conducted in a platelet
appropriate environment using HEPES-modified Tyrode’s buffer6 supplemented
with 3 mM fibrinogen (Enzyme Research Labs, IN, USA, cat # FIB3) and 1 mM
Ca2+/Mg2+ in a final volume of 225 µL, and were carried out at 37 °C and constant
rotation of 1000 rpm in an aggregometer (PAP-8).

To test the contribution of platelets to the release of neutrophil-DNA, isolated
platelets or isolated neutrophils were pretreated with TLR agonist for 15 min and
added to the respective untreated cell-population. Cells were co-incubated for 30
min then fixed with eBioscience IC fixation buffer (ThermoFisher Scientific, MA,
USA, cat# 00-8222). To test the role of platelets and neutrophils in cytokine release,
platelets, neutrophils, and a mixture of both cell types were treated with TLR
agonist for 30 min. Upon completion, cells were centrifuged (7 min, 1000 × g, room
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temperature), and supernatants frozen for analysis by ELISA. To test whether C3
can mediate NETosis, neutrophils were treated with C3 (30 ng/mL, resuspended in
HEPES-modified Tyrode’s buffer), GM-CSF (25 ng/mL, resuspended in HEPES-
modified Tyrode’s buffer) or both for 30 min. Platelets were centrifuged and
supernatant frozen. For confocal microscopy, neutrophils and the mixture of both
cell types were fixed with IC fixation buffer.

To establish if the platelet-TLR7-C3 axis mediates the release of DNA from
neutrophils, platelets, neutrophils, and a mixture of both were pretreated with
0.088 mg/mL of compstatin (C3 inhibitor) for 10 min and then treated with TLR7
agonist for 30 min. Platelets were centrifuged at 1000 × g for 7 min and the
supernatant frozen. Neutrophils and the mixture of both cell types were fixed with
IC fixation buffer.

To examine whether influenza leads to TLR7 mediated release of C3 from
human platelets, isolated platelets were pre-treated in the presence or absence of
TLR7-antagonist IRS661 (synthesized by Eurofins, resuspended in TE buffer, final
concentration 2.8 μM) and then incubated with infectious virions of influenza A
(WSN/33) for 30 min (at a ratio of 1 pfu:10 platelets; 1 pfu:100 platelets; or 1
pfu:1000 platelets). Aliquots of the treated platelets were centrifuged at 1100 × g for
5 min and the supernatant was aliquoted and frozen.

Of note, throughout this study we have used an in vitro incubation time of 30
min to assess platelet responsiveness and neutrophil-DNA release. Our previous
studies6 show that platelets and neutrophils can form heterotypic aggregates after
15 min of stimulation with TLR7 agonist. Here we wanted to assess how this
interaction is related to neutrophils at an early time point of infection.

ELISAs. 50 μL of supernatant collected following cell mixing treatment was assayed
for GM-CSF (Ebioscience, cat# 88-8837 or Abcam, cat# ab174448). 1 μL of
supernatant collected after cell mixing treatment was assayed for C3 (Abcam, cat#
108823); human plasma diluted 800× was assayed for C3 (Abcam, cat# 108822);
murine plasma was diluted 50,000× (Abcam, cat# 157711); human plasma diluted
100× was assayed for Neutrophil Elastase (Abcam, cat# ab119553), MPO (Abcam,
cat# ab119605), and histone nucleosome core (NovusBio cat# KA1091). 10 μL of
plasma isolated after ex vivo treatment and 5 μL (20 μL for platelets only) of
supernatant collected after cell mixing treatment were assayed for MPO (Abcam,
cat# ab119605); 50 μL of plasma after ex vivo treatment was assayed for IFN-alpha
(Abcam, cat# ab213479); 40 μL of plasma after ex vivo treatment was assayed for
IL-8 (Ebioscience cat# 88-8086-22); and 40 μL of plasma after ex vivo treatment
was assayed for citrullinated H3 (Cayman Chemical, MI, USA, cat# 501440);
human plasma of influenza-infected patients and platelets supernatants were
diluted 25×, and assayed for CCL5 (Abcam, cat# 174446). All procedures were
performed according to the manufacturers’ instructions.

RNA isolation from human and mouse platelets. Frozen RNA in QIAzol® was
thawed at room temperature for 60 min at 2000 rpm on an Eppendorf MixMate
plate shaker (Eppendorf, Germany, cat# 022674200). Total RNA was isolated from
human and mouse platelets using the miRNeasy® Mini Kit (Qiagen, Germany, cat#
217004) following the manufacturer’s instructions with on-column DNA digestion
using the RNase-Free DNase Set (Qiagen, cat# 79254) and eluted in 30 µL of
RNase-free water. RNA concentration was determined via a NanoDrop Spectro-
photometer (ThermoFisher Scientific, MA, USA, model# ND-1000), or via Frag-
ment Analysis by the Molecular Biology Core Lab at the University of
Massachusetts Medical School.

Detection of influenza RNA and TLR7 mRNA by RT-qPCR. Platelet com-
plementary DNA (cDNA) was synthesized using the High Capacity cDNA RT Kit
(Applied Biosystems, CA, USA, cat# 4368813) in a 10 µL reaction volume (10×
Reverse Transcription Buffer [1 µL], 25× dNTPs [0.4 µL], 10× Random Primers [1
µL], and Multiscribe Reverse Transcriptase, 50 U/L [0.5 µL]) with a maximum of
7.1 µL of RNA for humans or a 20 µL reaction volume (10× Reverse Transcription
Buffer [2 µL], 25× dNTPs [0.8 µL], 10× Random Primers [2 µL], and Multiscribe
Reverse Transcriptase, 50 U/L [1 µL]) with a maximum of 14.2 µL of RNA for mice.
RNA was either normalized to the sample with the lowest RNA concentration or a
specific volume of RNA was used. cDNA synthesis was performed on a thermal
cycler (Applied Biosystems, Veriti 9903 or ProFlex) under the following conditions:
25 °C for 10 min, 37 °C for 2 h, 4 °C hold.

cDNA was preamplified using TaqMan™ PreAmp Master Mix (Applied
Biosystems, cat# 4391128) in a 5 µL reaction volume (Master Mix [2.5 µL], 0.2×
assay pool [1.25 µL]) with 1.25 µL of cDNA for humans or in a 40 µL reaction
volume (Master Mix [20 µL], 0.2× assay pool [10 µL]) with 10 µL of cDNA for
mice. A standard curve was also preamplified using influenza DNA plasmid (PR8)
for the human samples. The plasmid, of known base pair size and DNA
concentration, was serially diluted in RNase-free water and preamplified.
Preamplification was performed on a thermal cycler as listed above, under the
following conditions: 95 °C for 10 min, 14 cycles of 95 °C for 15 s and 60 °C for 4
min, 4 °C hold. For human samples, the final preamplification product was diluted
1:9 in DNA Suspension Buffer (Teknova, CA, USA, cat# T0223), prior to qPCR.
For mouse samples, the preamplification product was not diluted.

Influenza gene expression in humans and mice was quantified by RT-qPCR
(Applied Biosystems, 7900HT Fast or QuantStudio3 Fast Real-Time PCR systems)

using TaqMan™ Gene Expression Master Mix (Applied Biosystems, cat# 4369016)
and TaqMan™ Gene Expression Assays (see table below for TaqMan assays used) in
a 40 µL reaction volume on the 7900HT system (Master Mix [20.0 µL], TaqMan
Assay [2 µL], diluted pre-amplification product [18 µL]) or a 30 µL reaction volume
on the QuantStudio3 system (Master Mix [15.0 µL], TaqMan Assay [1.5 µL],
diluted pre-amplification product [13.5 µL]), under the following conditions: 50 °C
for 2 min, 95 °C for 10 min, and 40 cycles of 95 °C for 15 min and 60 °C for 1 min.

TLR gene expression in humans was quantified as above but in a 10 µL reaction
volume (Master Mix [5.0 µL], TaqMan Assay [0.5 µL], diluted pre-amplification
product [4.5 µL]). TaqMan gene expression assays used are listed in Supplementary
Table 3.

Calculation of influenza virus copy number. Copy number was calculated based
on previously published methods64,65, and using linearized influenza plasmid DNA
(PR8) used to generate a standard curve to calculate viral copy number by qPCR.

Detection of free DNA. Detection of DNA in 2 μL of citrated plasma samples was
performed using the Quant-iT™ PicoGreen® dsDNA reagent kit and Lambda DNA
standard (Invitrogen, CA, USA, cat# P7589) according to the manufacturer’s
instructions. Briefly, 98 μL of TE buffer were aliquoted in 96-well plate, 2 μL of
plasma were added followed by 100 μL of PicoGreen® dsDNA reagent. Fluores-
cence was measured on a POLARstar Omega microplate reader (BMG Labtech,
Germany) at an excitation wavelength of 480 nm and an emission wavelength of
520 nm. Plasma DNA concentration was determined by plotting fluorescence on
the Lambda DNA standard curve.

Statistical analysis. All FHS data analysis (Supplementary Data) was done using
linear mixed effects models (the “LMEKIN” function of Kinship Package in R) with
an additive genetic model to test associations of inverse-rank normalized protein
levels with SNPs. To account for multiple testing, we applied Bonferroni correction
to attain acceptable type I error rates. All other data were analyzed using GraphPad
Prism 5 or 7 and details can be found in the legend of each figure.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1e–g, i, 5a–d, 6a–c, e, 7b, c, e, 8a, b, 9b–d, 10b–d and

Supplementary Figs. 3, 9a-b, 15, 16b and 18a are provided as a Source Data file. The

ELISA data for the human patients and the transmission electron microscopy and

fluorescent images included in the supplementary data have been deposited to Dryad

database, https://doi.org/10.5061/dryad.786b9q0. The authors declare that the data

supporting the findings of this study are available within the article and its

Supplementary Information files, or are available from the authors upon request.
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