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Introduction
Localized solid tumors are often treated with surgery in their early stages. However, 
other treatment modalities are applied at advanced stages and/or following the sur-
gery, such as targeted therapies, radiotherapy, immunotherapy, and chemotherapy [1]. 
Advances made in the field of antitumor agents have led to a significant increase in 
patients’ life quality and disease-free survival [2]. Despite the importance of chemo-
therapeutic drugs, there are significant drawbacks in using them to treat cancer, such 
as solubility and instability of drugs, nonspecific drug delivery, and adverse effects 
due to systemic toxicity [3]. Furthermore, recurrence and relapse of cancer occur 
in some patients even after a favorable response at the beginning of the treatment. 
Indeed, acquired drug resistance has become an important challenge that results in 
the failure of cancer treatment [2]. Both acquired and intrinsic processes can lead to 
chemoresistance in cancer cells [4]. Acquired drug resistance indicates a newly devel-
oped resistance against a therapeutic approach that was effective at the beginning. 
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Intrinsic chemoresistance involves a pre-existing factor that causes a drug to be inef-
ficient [5]. Tumor cells’ heterogeneity is one of the factors leading to chemoresistance. 
Stem-like cancer cells are renewable subpopulations of tumor cells that are responsi-
ble for heterogeneity. There are various cell generations within one tumor, and each 
clone is sensitive to chemotherapeutic agents to some degree. Therefore, targeting 
tumor cells with a single agent may not lead to a favorable response [6–8]. Increased 
drug efflux, changes in the target of drugs, apoptosis, and repair signaling pathways 
are other mechanisms involved in the resistance of cancer cells to chemotherapeutic 
drugs [4, 9].

Polyphenols and their therapeutic application in cancer
Polyphenols are a large family of 10,000 plant compounds that are known for their 
common structural features including the three-membered flavan ring system and 
multiple phenol units [10, 11]. These natural compounds are mostly found in fruits, 
green and black tea, coffee, red wine, cocoa, and seeds [12]. These beneficial organic 
agents are categorized into several subclasses including catechins, flavonoids (which 
contain flavonols, flavanols, and flavones), anthocyanins, catechins, isoflavones, chal-
cones, curcuminoids, and phenolic acids (structures are shown in Fig. 1) [12, 13].

The idea of using polyphenols for treating cancer patients is not new. Early studies 
considering the anti-cancer effects of different polyphenols were conducted in the late 
twentieth century and our knowledge on these advantageous agents has been widely 
improved since then [14, 15]. What makes these agents greatly beneficial and inter-
esting is that they attack cancer cells in a variety of ways and confront many cancer 
hallmarks (summarized in Fig. 2). Therefore, we shall briefly discuss different aspects 
of polyphenols’ effects in this section.

Fig. 1  Schematic representation of different structures of polyphenols. These agents have a 
three-membered flavan ring system in common
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Antioxidant effects

The anti-oxidant impacts of polyphenols are possible through either scavenging free 
radicals or building a barrier against their generation (Fig. 2) [10]. The main free radi-
cals that exist in our cells and cause oxidative stress are reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) [16]. The former mechanism of polyphenols’ 
action relies on the presence of benzene ring-bound hydroxyl groups which provide 
the ability to donate a hydrogen atom or an electron to free radicals [17]. This occur-
rence stabilizes free radicals and prevents them from damaging the cellular compo-
nents [17]. It seems that the B ring of polyphenols plays the most important role in 
scavenging hydroxyl, peroxyl, and peroxynitrite radicals [17]; however, the scavenging 
property can also be dependent on other structural parts in different polyphenols. For 
instance, in flavonoids, which are the best known polyphenols, a free 3-OH is mostly 
responsible for neutralizing the free radical [18].

As mentioned above, polyphenols also have the capacity to inhibit the generation 
of ROS and RNS by interfering with the enzymes involved in their production. Nitric 
oxide synthases (NOS), xanthine oxidase (XO), and peroxidase are some of these 
enzymes, whose activity can be altered when certain interactions occur between them 
and polyphenols [19, 20]. Xanthine oxidase is one of the most important enzymes that 
generate superoxide from oxygen molecules [21]. Quercetin, kaempferol, myricetin, 
and chrysin are among the polyphenols that are confirmed to inhibit this enzyme [22]. 
NOS is also essential for producing nitric oxide in endothelial cells and macrophages. 
Nitric oxide mediates oxidative stress by increasing the production and concentra-
tion of peroxynitrite and thereby damaging the cellular membrane [20]. Anthocyani-
dins are a subclass of polyphenols that prevent NOS from generating nitric oxide and 
thereby repressing their .NO scavenging capacity [23].

Another production mechanism that is prone to be affected by the chelating prop-
erties of polyphenols is the metal-mediated reduction of peroxides [24]. In this 

Fig. 2  Some of the anti-cancer effects of polyphenols including epigenetic, anti-metastatic, pro-apoptotic, 
and anti-oxidant impacts
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mechanism, which is known as the Fenton reaction, Fe2+ ions reduce H2O2 and 
thereby create a hydroxyl radical which is harmful to cells [24, 25]. In this concen-
tration-dependent process, polyphenols can interfere as chelating agents and form 
stable complexes with iron [24]. Inhibiting lipid peroxidation, removing iron from 
iron-loaded hepatocytes, blocking the Fenton reaction, and cellular protection are the 
results of the interactions between diverse polyphenols and iron [25–28].

Effects on apoptosis

As regards apoptosis, a great number of polyphenols are able to induce cell death by 
altering the expression of apoptosis-related genes. Curcumin is one of the most investi-
gated polyphenols, which increases apoptosis in cancer cells through a variety of mecha-
nisms, for instance, diminishing the intracellular ROS, phosphorylation, and activation 
of mitogen-activated protein kinase (MAPK) signaling pathway [29], increasing intracel-
lular Ca influx and activating calcium/calmodulin-dependent protein kinase II (CaMKII) 
signaling [30], increasing PI3K/Akt protein expression (31), inducing p53 expression 
(32), regulating miRNAs [33], reducing the levels of B-cell lymphoma 2 (BCL2), inducing 
BCL-2-associated X protein (BAX), and cleaving caspase 3 [34]. Resveratrol is another 
beneficial polyphenol that is observed to have an effect on apoptosis in many types of 
cancer including bladder [35], prostate [36], breast, lung, glioblastoma, colon, and ovar-
ian [37–42]. For instance, resveratrol suppresses proliferation and migration of ovarian 
cancer SKOV3 and A2780 cells. Also it impairs glycolysis and induces apoptosis. Evi-
dence shows that treating cells with resveratrol reduces both activation and expression 
of mTOR and downstream kinase of AMPK while increasing the activation and expres-
sion of caspase-3 and AMPK. In vivo findings also indicated that resveratrol inhibits the 
growth of ovarian cancer as well as liver metastasis in a mouse xenograft model [38]. 
In vitro findings demonstrate that EGCG inhibits the viability of oral squamous cell car-
cinoma HSC-3 cells. Moreover, it induces cell cycle arrest at the G1 phase. EGCG has 
also been shown to significantly increase the activity of caspase-3 and -7 as well as apop-
totic cells. In vivo investigations on mice xenograft models indicated that EGCG leads 
to a 42.5% reduction in the size of the tumor compared with the control group. Further-
more, the percentage of apoptotic cells is higher in mice treated with EGCG [43].

Changes in cell cycle and inhibition of proliferation

Cell cycle arrest is another anti-cancer effect of these plant compounds which is exerted 
by resveratrol, curcumin, and diverse flavonoids in cancer cells [40, 44, 45].

Anti‑metastatic effects

Metastasis is defined as a series of concurrent mechanisms which help the tumor cells 
gain the ability to migrate from their primary site to other sites of the body and increase 
the cancer lethality [46]. Metastasis occurs as a result of the effects of microenviron-
mental ingredients such as stromal fibroblasts and immune cells on the tumor cells. Cel-
lular motility, hypoxia, EMT, and angiogenesis are the primary mechanisms that prepare 
tumoral cells for infiltration [47–49]. According to research, matrix metalloproteinases 
(MMPs), TGF-β, and TP53 have essential roles in managing metastasis [47–49].
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Polyphenols have shown their capabilities in influencing several steps of this process. 
For instance, curcumin affects the EMT-related proteins including vimentin, fibronec-
tin, β-catenin, and E-cadherin along with the genes expressed in cancer stem cells such 
as Oct4, Nanog, and Sox2, and thereby decreases the metastatic features of cancer cells 
[50]. Quercetin and its derivatives are also effective for inhibiting EMT, MMP secretion, 
NF-kappaB, and migration of the cancer cells and thus metastasis [51–55]. Reversing 
EMT through AKT/GSK-3β/Snail signaling and diminishing the levels of MMP-2 and 9, 
and Smad2 and 3 are the anti-metastasis effects of resveratrol [56, 57].

Epigenetic effects

Epigenetic dysregulations and abnormalities are the basis of tumor initiation, progres-
sion, and resistance to therapy [58]. DNA methylation, histone modifications, chro-
matin/nucleosome remodeling, and miRNA regulation are some of the epigenetic 
alterations which are involved in a variety of cancer features [58].

Curcumin is one of the most efficient polyphenols in preventing these alterations 
from aiding the cancer cells. Histone deacetylases (HDACs) are a class of gene silencing-
related enzymes that diminish the number of acetyl groups from histones [59]. One of 
curcumin’s effects is to inhibit these enzymes and thereby regulate the proliferation and 
apoptosis of various cancer cells [60]. HDAC1, HDAC2, HDAC3, HDAC4, and HDAC8 
can be inhibited by curcumin [60–63]. Histone acetyltransferases (HATs) are another 
class of enzymes that also predict cancer cell growth and survival. One of these enzymes 
is p300, which has been shown by some investigations to be inhibited by curcumin, 
through either a direct or indirect manner [64, 65].

Furthermore, curcumin suppresses DNA methylation in the promoter region of many 
cancer-related genes, including the tumor suppressor gene Wnt inhibitory factor-1 or 
WIF-1 [66], FANCF [67], Nrf2 [68], Neurog1 [69], and RARβ2 [70] through decreasing 
the DNA methyltransferase 1 level (DNMT1) [71, 72].

Regulating the amounts of microRNAs is a newly discovered aspect of curcumin’s 
effect in the field of cancer therapy which we have discussed in detail in our previous 
paper [73]. miR-125-5p, miR-19a, miR-9, and miR-145 are some of the miRNAs affected 
by curcumin in nasopharyngeal, breast and ovarian cancers and leukemia [74]. Regard-
ing other polyphenols, resveratrol is also able to modulate miR-200, miR-122-5p, miR-
20, and miR-633 [75–78]. miR-16, miR-22, miR-200b-3p, and miR-146a are some of the 
miRNAs regulated by quercetin in cancerous cells [79–82]. Epigallocatechin-3-gallate, 
genistein, and DIM also contribute to reversing epigenetic alterations in cancer cells via 
diverse microRNAs [83, 84].

Polyphenols modulate cancer drug resistance
Several studies have reported that polyphenols can affect different aspects of cancer 
drug resistance. Herein, we provide a brief discussion on how each mechanism changes 
the sensitivity of cancer cells to chemotherapeutic drugs. Furthermore, we review the 
literature on the role of polyphenols (mainly curcumin, resveratrol, and EGCG) in over-
coming cancer drug resistance by each of these mechanisms.
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Drug uptake by tumor cells

Facilitation of diffusion, passive transfer, and active transport are different types 
of drug absorption to the tumor cells [85]. Decreased drug uptake is a mechanism 
by which tumor cells develop chemoresistance against therapeutic agents [86]. The 
reduced tendency for binding to drugs is a common process that leads to decreased 
drug absorption. Another mechanism is decreased number of transporters [87]. Drug 
formulations based on nanotechnology have attracted a lot of attention in recent years 
due to various reasons, such as targeted drug delivery, ability to encapsulate multiple 
agents, higher biocompatibility, decreased side effects, and slow release rate. Another 
important advantage of nano-formulations is the ability to enhance bioavailability 
of drugs and overcome chemoresistance [88]. Among other beneficial effects, nano-
formulations lead to an increase in cellular drug uptake. Several studies have been 
conducted on the role of polyphenols in designing nanomaterials for drug delivery. 
Tsai and colleagues prepared gold nanoparticles based on gelatin-doxorubicin (DOX) 
and EGCG to suppress the growth of prostate cancer. They reported that Au nanopar-
ticles that are coated with EGCG and gelatin-DOX efficiently deliver DOX through 
the laminin 67R receptor and increase the cellular uptake of the drug [89]. Studies 
have also demonstrated that using EGCG leads to the reduction of Au3+, providing 
enhanced Au nanoparticles that show higher drug uptake by cancer cells [90–92].

Reduced intracellular accumulation of platinum-based antitumor agents (e.g. cispl-
atin) has been associated with chemoresistance of tumors. Proteins playing a role in 
the hemostasis of copper are reported to be transporters of platinum. Copper trans-
porter 1 (CTR1) is the main influx transporter of copper which is involved in the 
resistance to platinum [93]. Wang et al. [94] reported that EGCG increases the expres-
sion of CTR1 at mRNA and protein levels in ovarian cancer cells as well as xenograft 
mice. Indeed, EGCG treatment suppresses the rapid cisplatin-induced degradation 
of CTR1 and enhances the cellular accumulation of cisplatin and DNA-Pt adducts. 
This causes an increase in the sensitivity of OVCAR3 and SKOV3 ovarian cancer cells 
to cisplatin [94]. Another study also showed that EGCG upregulated CTR1 while 
increasing the accumulation of platinum in non-small cell lung cancer (NSCLC) cells 
(including H460, H1299, and A549), a xenograft model of nude mice, and cisplatin 
(cDDP)-resistant A549 cells. It was found that hsa-mir-98-5p inhibits expression of 
the CTR1 gene. Meanwhile, lncRNA nuclear enriched abundant transcript 1 (NEAT1) 
increases the expression of NEAT1. Indeed, NEAT1 is suggested to increase EGCG-
induced CTR1 through sponging hsa-mir-98-5p. Therefore, EGCG enhances the sen-
sitivity of NSCLC cells to cisplatin both in vitro and in vivo [95]. MRP1 regulates both 
absorption and disposition of various xenobiotic and endogenous substrates, such as 
drugs, across different physiological barriers [96]. In DOX-resistant acute myeloid 
leukemia (AML)-2/DX300 cells, the expression level of the MRP1 gene is reported to 
be higher compared to the wild-type AML-2/WT cells. Treating this chemoresistant 
cell line with resveratrol leads to a reduction in MRP1 expression. Furthermore, the 
absorption of the MRP1 substrate 5(6)-carboxyfluorescein diacetate is reported to be 
enhanced by resveratrol. Therefore, it is suggested that resveratrol may enhance DOX 
cellular absorption by reducing the gene expression of MRP1 [97].
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Drug efflux

The main cause of multi-drug resistance in cancer cells is the increased efflux of anti-
tumor agents through drug transporters which are embedded in the membrane [98]. 
P-glycoprotein (p-gp/ABCB1/MDR1) is a member of the ATP-binding cassette (ABC) 
superfamily which acts as a drug transporter in humans. Multidrug resistance protein 
1 (MRP1/ABCC1) and breast cancer resistant protein (BCRP/BCP/MXR/ABCG2) are 
other well-studied drug transporters of the ABC superfamily [99–102].

P-gp is a pump involved in drug efflux and is associated with multi-drug resistance 
[103]. In response to chemotherapeutic agents, p-gp is upregulated, which, in turn, 
leads to a reduction in the drugs’ intracellular accumulation and decreases the efficacy 
of drugs [104]. Didox is a polyhydroxyphenol that serves as a chemo-sensitizer. In HCT 
116 colorectal cancer cells, the combination of didox and resveratrol with DOX leads to 
the reduction of DOX IC50 from 0.96 ± 0.02 μM to 0.4 ± 0.06 μM and 0.52 ± 0.05 μM, 
respectively. Both didox and resveratrol significantly increase DOX intracellular entrap-
ment by preventing the efflux effect of p-gp [105]. EGCG is shown to modulate p-gp 
function and enhance the intracellular entrapment of DOX in drug-resistant KB-A1 
cells. Indeed, combination of 50 μM of EGCG with 10 μM DOX for 4 h increases the 
DOX intracellular concentration by 2.3 times in KB-A1 cells compared to treatment 
with DOX alone. Furthermore, in  vitro studies and xenograft models confirmed that 
EGCG enhances the antitumor activities of DOX in drug-resistant tumors [106]. Liang 
et al. also reported that EGCG or epicatechin gallate (ECG) at higher doses slightly sup-
pressed the proliferation of resistant human hepatocellular carcinoma (HCC) BEL-7404/
DOX cells in vitro and in vivo. Meanwhile, lower doses of the mentioned compounds 
with DOX lead to significant suppression of HCC cell proliferation in  vitro as well as 
growth of hepatoma in a mouse xenograft model compared to administration of either 
agent alone. Using EGCG or ECG in combination with DOX increases the intracellular 
accumulation of DOX, suggesting that catechins suppress the activity of the P-gp efflux 
pump. Furthermore, this combinational treatment enhanced the intracellular retention 
of a P-gp substrate, rhodamine 123, while reducing the expression of mRNA of HIF-1α 
and MDR1 [107].

Research has shown that some cancer cells are dependent on the PI3K/Akt/mTOR 
pathway in order to survive following DNA damage. Therefore, the repair of DNA dam-
age can be inhibited by suppressing this signaling pathway, which, in turn, increases the 
sensitivity to radio- and chemotherapy [108]. In K562/ADR cells, overexpression of p-gp 
reduces the cytotoxic effects of antitumor agents and consequently multi-drug resist-
ance occurs. Treating K562/ADR cells with a combination of resveratrol and bestatin 
results in a decrease in bestatin’s IC50 values and enhances the bestatin-induced apop-
tosis. Resveratrol exerts this potentiating effect by suppressing the activity of p-gp and 
lowering mRNA and protein levels of p-gp. In addition, resveratrol reduces the phos-
phorylation of mTOR and Akt without affecting ERK1/2 and JNK. Thus, it is implied 
that the resveratrol inhibitory effect on p-gp is mediated by inhibition of the PI3k/Akt/
mTOR pathway [109].

Through active drug efflux, MRP5 causes drug resistance against gemcitabine and 
5-fluorouracil (5-FU). Curcumin is shown to increase the sensitivity of MRP5 over-
expressing HEK293, PANC-1, and MiaPaCa-2 cells to 5-FU. Therefore, it is suggested 
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that curcumin can act as an inhibitor of MRP5 while reversing multidrug resistance in 
pancreatic cancer [110]. Curcumin increases DOX anticancer effects in DOX-resistant 
breast cancer MDA-MB-231/DOX and MCF-7/DOX cell lines [111]. It is observed that 
curcumin treatment leads to an increase in DOX intracellular accumulation. The men-
tioned effect is negatively associated with the activity of ATP binding cassette subfamily 
B member 4 (ABCB4). Treating cells overexpressing ABCB4 with DOX and curcumin 
reduces DOX efflux. In addition, ABCB4 ATPase activity is suppressed by curcumin 
without any changes in its protein expression (111).

Alteration in drug metabolism

Evidence has indicated that following treatment with antitumor agents, some cell-pro-
tective gene products are induced. In phase I and phase II of drug metabolism, some 
enzymes are involved which are useful for the detoxification from harmful endogenous 
and exogenous compounds. In phase I of drug metabolism, different cytochrome iso-
forms are involved, including CYP1A2, CYP1A6, CYP1B1, CYP2B6, and CYP2C19 
[112]. It is reported that curcumin suppresses the activity of CYP3A while increasing the 
rhodamine-123 intracellular accumulation in MCF-7/ADR cells that overexpress p-gp. 
Curcumin treatment also significantly increases the bioactivity of tamoxifen. It is sug-
gested that curcumin may suppress the cytochrome-mediated metabolism of tamoxifen 
to 4-hydroxyfamoxifen, an active metabolite of tamoxifen, as evidenced by the reduced 
metabolite-parent AUC ratio. Therefore, curcumin-mediated enhanced bioavailability of 
tamoxifen is probably mediated by the suppression of tamoxifen metabolism in the liver 
and the small intestine [113].

Gamma-glutamyl transferases (GGTs), thiopurine methyltransferases (TPMTs), glu-
tathione-S-transferases (GSTs), dihydropyrimidine dehydrogenases (DPDs), and uri-
dine diphospho-glucuronosyltransferases (UGTs) are enzymes playing roles in phase 
II of drug metabolism. The altered expression of these enzymes may cause multid-
rug resistance in cancer cells [114, 115]. Curcumin is shown to reduce the activity of 
gamma-glutamyl transpeptidase (GGTP) in ZR-75-1 mammary cells which are resist-
ant to oxidative damage [116]. Studies have reported that a moderate reduction in the 
levels of glutathione can enhance the sensitivity of tumor cells to chemotherapeutic 
agents [117]. GSTs are observed to be overexpressed in different cancers (e.g. cancers 
of breast, liver, and lung) and lead to drug resistance [118–120]. Therefore, suppress-
ing GST is suggested to help overcome cancer resistance to chemotherapeutic drugs. 
Derivatives of flavonoids (e.g. baicalin, phloretin, baicalein, and phloridzin) are reported 
to be related to the suppression of GST functions [121]. Curcumin and ellagic acid are 
capable of inhibiting GSTs M1-1, M2-2, A1-1, A2-2, and P1-1 while using 1-chloro-2,4 
dinitrobenzene (CDNB) as a substrate [122]. Curcumin analogs (i.e. 2,6-dibenzylidene-
cyclohexanone, 2,5-dibenzylidenecyclopentanone, and 1,4-pentadiene-3-one) are also 
shown to exert inhibitory effects on GSTs. However, their inhibitory effects on GTS 
A1-1, GTS M1-1, and GST P1-1 are smaller compared to curcumin [123]. Galangin is a 
flavonoid that suppresses the cellular activity of GST P1-1 at a concentration of 25 μM in 
GST P1-1 transfected MCF-7 breast cancer cells. Quercetin, kaempferol, and eriodictyol 
are other flavonoids that moderately inhibit the activity of GST P1-1. Most flavonoids 
(mainly quercetin and luteolin) are shown to inhibit GS-X pump transport. However, 
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flavonoids without a C2–C3 double bond (e.g. catechin and eriodictyol) do not suppress 
the activity of the GS-X pump [124].

Epigenetics

Epigenetic modification indicates some reversible changes in the expression of genes 
without causing changes in the sequence of DNA [125]. Mechanisms involved in epige-
netics are capable of driving acquired cancer resistance against chemotherapeutic drugs. 
Epigenetic alterations occur at a high rate in tumors, leading to the diverse patterns of 
gene expression that cause drug resistance [126]. Since drug resistance can be reversed 
and it shows rapid kinetics and absence of genetic mutations, epigenetic mechanisms 
may be involved in insensitivity to drugs [127]. Epigenetic processes form different 
states of transcription which lead to a dynamic heterogeneous nature in the population 
of tumor cells [127]. As already mentioned, there are a number of mechanisms leading 
to epigenetic alterations, among which the role of miRNAs in the development of drug 
resistance in cancer is greatly investigated [128–130]. Therefore, targeting epigenetic 
changes and miRNAs with polyphenols may be a potential approach to overcome cancer 
drug resistance.

Resveratrol

DNA methylation by resveratrol has been explored by a very limited number of studies. 
Zadi Heydarabad and colleagues showed that DNA methylation of BAX and BCL2 genes 
in a T-cell acute lymphoblastic leukemia cell line, CCRF-CEM, can be detected after 
resveratrol treatment by a methylation-specific polymerase chain reaction technique. 
They suggested that this observation might explain the effect of resveratrol in sensitizing 
ALL cells to apoptosis [131]. In another study, the effect of resveratrol on retinoic acid 
resistance in the anaplastic thyroid cancer cell line THJ-11T and the human medullo-
blastoma UW228-2 cell line showed that resveratrol not only demethylates the cellular 
retinoic acid binding protein 2 (CRABP2) promotor but also decreases the amounts of 
some DNA methyltransferases such as DNMT1, 3A, and 3B [132]. Despite these stud-
ies, Zadi Heydarabad et al. [133] in another investigation found no relation between res-
veratrol and human multidrug resistance gene 1 (MDR1) methylation in the CCRF-CEM 
cell line; therefore, other drug resistance-related genes should be examined to clarify 
whether resveratrol is involved in DNA methylation-related drug resistance.

From another point of view, resveratrol induces apoptosis and enhances chemosensi-
tivity to Adriamycin in MCF-7 breast cancer cells. It has been shown that the mentioned 
effects of resveratrol are inhibited by modulation of miR-122-5p, which is a critical sup-
pressor. Moreover, modulation of miRNA by inhibitors or mimics of miR-122-5p dem-
onstrate that miR-122-5p is involved in the regulation of CDKs (i.e. CDK2, CDK4, and 
CDK6) and anti-apoptotic factors (e.g. BCL-2) following resveratrol treatment [77].

Quercetin

Quercetin with a concentration of 5 μM improves the sensitivity of osteosarcoma 143B 
cells to cisplatin. Furthermore, it upregulates miR-217 expression while downregulating 
the expression of KRAS, which is the miR-217 target. Moreover, knockdown of miR-
217 is shown to hinder quercetin-induced increased sensitivity to cisplatin. Therefore, 
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quercetin’s ability to enhance cisplatin sensitivity is modulated by the miR-217-KRAS 
axis [134]. In the U-87 MG glioblastoma cell line, curcumin increases expression of miR-
146a and enhances temozolomide-induced apoptosis. However, miR-146a inhibits the 
enhanced anti-tumor action of temozolomide which is induced by curcumin. Mean-
while, upregulation of miR-146a inhibits the activation of NF-κB and increases apop-
tosis in cells treated with temozolomide [135]. It seems that quercetin’s ability is not 
limited to microRNA regulation and DNA methylation and histone modifications can 
also be affected by this beneficial agent [136, 137]; however, these effects have not been 
examined in cancerous cells, and thus further investigations might expand the range of 
quercetin’s potential application.

Curcumin

According to evidence, curcumin is one of the most important polyphenols in regulat-
ing epigenetic alterations of cancerous cells [73, 74]; nonetheless, its efficacy in sensitiz-
ing tumoral cells to chemotherapeutic drugs is still controversial. In an in  vitro study 
on the SiHa cell line, Roy and Mukherjee found that curcumin increases the effect of 
cisplatin on cervical cancer cells through several mechanisms including inhibition of 
histone deacetylase 1 (HDAC1) [138]. Royt et al. also confirmed that histone deacety-
lase can be decreased after curcumin treatment in the MCF-7 (ER positive) cell line 
[139]. Despite the small number of studies on DNA methylation and histone modifica-
tion after curcumin treatment, the role of this agent in microRNA regulation has been 
intensively studied. Resistance to cisplatin in the A2780cp ovarian cancer cell line can be 
reduced indirectly by curcumin: demethylation in the promoter region of MEG3 occurs 
after curcumin usage, which leads to the down-regulation of miR-214. This microRNA is 
able to establish chemoresistance through increasing the capability of extracellular vesi-
cles [140]. Decreased resistance to is also observed after treating Adr-resistant MCF-7 
cells with curcumin-encapsulated liposomes [141]. Curcumin decreases the resistance 
to Adriamycin via altering the expression of some microRNAs including miR-29b-1-5p 
[141]. Overcoming Adriamycin-resistance has also been examined in human acute mye-
loid leukemia cells (HL-60) [142]. It seems that miR-20a-5p mediates the anti-resistant 
effects of curcumin in these cells and, overall, the HOTAIR/miR-20a-5p/WT1 pathway 
is the reason that curcumin can sensitize AML cells to Adriamycin (in vitro and in vivo) 
[142].

microRNA-27a is another microRNA whose down-regulation can result in lower 
resistance to 5-fluorouracil in SW-480 colon cancer cells [143]. Curcuminoids (2.5–
10 μg/mL) disrupt the axis of miR-27a-ZBTB10-Sp and thereby suppress the expression 
of multidrug resistance protein (MDR1) [143]. Paclitaxel resistance, which is considered 
as a major issue in the treatment of aggressive non-small-cell lung cancers, is detected to 
be suppressed through the axis of mirRNA-30c/MTA1. The metastasis-associated gene 
1 (MTA1) gene is reduced in these cells due to the up-regulation of microRNA-30c by 
curcumin (in vitro) [144].

Cell death

Similar to cell growth and division, a key component of homeostasis is programmed cell 
death. Apoptosis, necrosis, and autophagy are three types of programmed cell death that 
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are involved in development [145]. Several studies have been conducted on the underly-
ing mechanisms of apoptosis in the past two decades. These investigations demonstrate 
that apoptosis involves different signaling pathways which are associated with survival 
pathways and change the phenotype of cells, such as drug resistance [146]. Apoptosis is 
a programmed cell death that removes aged and damaged cells from the body. In can-
cer, apoptotic signaling is dysregulated. Indeed, anti-apoptotic pathways are activated in 
cancer cells, which results in uncontrolled proliferation of cells, leading to drug resist-
ance and tumor recurrence [147]. Autophagy is a mechanism of homeostatic cellular 
recycling which is involved in the response to therapeutic and metabolic stresses. By 
autophagy, the body tries to maintain or restore the homeostasis of metabolism via cata-
bolic lysis [148]. Evidence has shown that cancer therapeutic approaches are capable of 
inducing autophagy. Meanwhile, autophagy is demonstrated to enhance the survival of 
tumor cells and lead to therapy resistance in some cases [149].

Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor 
(TKI) which is used for treating patients with NSCLC. However, cases with wild-type 
mutations of KRAS and EGFR are resistant to this therapeutic agent. Curcumin is shown 
to increase the anti-tumor effects of gefitinib against the H1299 and H157 gefitinib-
resistant NSCLC cell lines. Treating these cells with the combination of curcumin and 
gefitinib leads to the induction of autophagy and autophagy-mediated apoptosis. Phar-
macological inhibitors of autophagy, 3-MA, or Bad A1 are also shown to reverse the 
synergistic effect of curcumin and gefitinib [150]. Resveratrol exerts anti-tumor effects 
against human oral cancer CAR cells while showing low toxicity in normal oral cells. 
As evidenced by acridine orange (AO) and monodansylcadaverine (MDC) staining, 
resveratrol treatment leads to the formation of autophagic vacuoles and acidic vesicu-
lar organelles. Furthermore, resveratrol induces expression of autophagy-related genes 
at the mRNA level, including Beclin-1, Atg5, Atg12, and LC3-II. It also leads to apop-
tosis as evidenced by DNA condensation or DNA fragmentation. Resveratrol-induced 
cleavage of caspase-3 and -9 as well as apoptosis is reduced by Z-VAD-FMK, a pan-cas-
pase inhibitor. Moreover, inhibitors of PI3K class III and AMPK (3-MA and compound 
c, respectively) lead to inhibition of autophagic vesicle formation and protein levels of 
LC3-II [151].

In a methotrexate (MTX)-resistant osteosarcoma cell line (U2-OS/MTX300), querce-
tin plays antitumor roles without showing cross-resistance with MTX. As evidenced by 
fluorescence staining and cytometry, quercetin induces apoptosis in these cells. Apop-
tosis is paralleled by mitochondrial cytochrome c release to the cytosol, reduced mito-
chondrial membrane potential, Akt dephosphorylation, upregulation of caspase-3 and 
Bax as well as downregulation of p-Bad and Bcl-2. Notably, constitutive activation of 
Akt hinders quercetin-mediated Akt and Bad dephosphorylation as well as degradation 
of poly(ADP-ribose)polymerase (PARP) [152]. In human leukemic multidrug-resistant 
K562/Adriamycin (ADR) cells, the combination of Adriamycin and quercetin leads 
to enhanced cytotoxicity. Quercetin treatment enhances the apoptosis of tumor cells. 
Indeed, it increases the expression of Bcl-2-associated death promotor, Bcl-2-interact-
ing mediator of cell death, and Bcl-2-associated X protein. Also, it reduces the poten-
tial of mitochondrial membrane potential as well as expression of Bcl-2 while activating 
caspase-3, -8, and -9 [153]. In cisplatin-resistant oral cancer CAR cells, EGCG induces 
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apoptosis and autophagy. EGCG increases the protein levels of cleaved caspase-3 and 
-9 as well as their activities. Additionally, it enhances the protein levels of Bax, Beclin-1, 
LC3B-II, Atg5, Atg7, and Atg12. Meanwhile, it decreases the Bcl-2 expression, STAT3 
phosphorylation of Tyr705, and Ser473 (phosphorylated AKT). The expression of mul-
tidrug resistance 1 (MDR1) is also suppressed by EGCG at gene and protein levels [154] 
(Table 1).

Alterations in DNA repair

DNA damage response (DDR) is a collection of mechanisms involved in detecting DNA 
damage and signaling it, which lead to either DNA repair processes or cell death path-
ways [161, 162]. DDR plays a protective role for the human genome against damage 
through removing errors and inhibiting mutation insurgence under physiological condi-
tions. However, DNA repair systems work in favor of tumor cells following treatment 
with DNA damaging agents, causing failure in treatment [163].

Excision repair cross-complementation group 1/xeroderma pigmentosum group 
F (ERCC1/XPF) is an endonuclease that is involved in DNA damage repair following 
cisplatin treatment. The green tea polyphenol (–)-epigallocatechin-3-gallate (EGCG) is 
shown to inhibit the activity of ERCC1/XPF and DNA repair, leading to enhanced sen-
sitivity of non-small cell lung cancer cell lines to cisplatin. Moreover, in vivo examina-
tion of this agent in 20 female athymic mice showed that EGCG octaacetate, an EGCG 
prodrug, improves the efficacy of platinum-based chemotherapy [164]. Thymidine phos-
phorylase is an enzyme in the pyrimidine salvage pathway which hinders DNA damage-
induced cell death in cancer cells [165]. Curcumin treatment reduced the expression 
of thymidine phosphorylase at mRNA and protein levels in non-small-cell lung cancer. 
Furthermore, it downregulated ERCC1 by inactivating MKK1/2-extracellular signal-reg-
ulated kinase (ERK1/2). A similar study also indicated that demethoxycurcumin is able 

Table 1  Polyphenols that exert an effect on autophagy to increase the sensitivity of tumor cells to 
chemotherapeutic drugs

Compound Chemotherapeutic drug Result Refs.

Curcumin Gefitinib Enhances the efficacy of the drug and overcomes the EGFR-TKI 
resistance in NSCLC patients with wild-type EGFR and/or KRAS 
mutation

[150]

5-Fluorouracil Exerts synergistic effect with the chemotherapeutic drug by 
impairing AMPK/ULK1-dependent autophagy

[155]

Docetaxel Leads to induction of apoptosis and autophagy through PI3K/
AKT/mTOR pathway

[156]

Resveratrol Cisplatin Induces autophagic and apoptotic death in drug-resistant oral 
cancer cells

[151]

Gefitinib Overcomes drug resistance while inducing apoptosis, 
autophagy, and senescence in PC9/G NSCLC cells

[157]

EGCG​ Cisplatin Increases sensitivity of CAR cells, apoptosis, and autophagy by 
AKT/STAT3 pathway

[154]

Apigenin Cisplatin Inhibits growth of drug-resistant colon cancer cells while 
inducing autophagy

[158]

Liquiritin Cisplatin Induces apoptosis and autophagy in drug-resistant gastric 
cancer cells

[159]

GL-V9 Adriamycin Reverses drug resistance by blocking JNK2-related protective 
autophagy in HCC

[160]
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to decrease the resistance to cisplatin by means of downregulating ERCC1 in non-small 
cell lung cancer (both in vitro and in vivo) [166].

Evidence indicated that curcumin increases the cisplatin sensitivity of lung cancer 
cells by inactivating ERK1/2 and reducing protein levels of ERCC1 and thymidine phos-
phorylase [165]. Cisplatin exerts its antitumor effects through the formation of intra- 
and inter-strand cross-links of DNA, leading to blockade of DNA replication. Fanconi 
anemia (FA)/BRCA is a repair pathway for DNA cross-link damage and modulates the 
resistance of cells to DNA cross-link agents, such as cisplatin. In cisplatin-resistant lung 
adenocarcinoma (A549/DDP) cells, curcumin increases the antitumor effects of cispl-
atin. Furthermore, curcumin decreases the cisplatin-induced mono-ubiquitination of 
FANCD1 and formation of nuclear foci. This implies that curcumin-induced enhanced 
cisplatin sensitivity is mediated by suppression of the FA/BRCA pathway [167]. BRCA1 
and RAD51 are two proteins leading to homologous recombination (HR) and thereby 
repair of double-strand DNA breaks [168].

Resveratrol enhances the antitumor effects of cisplatin in MCF-7 and chemo-resistant 
MCF-7 (MCF-7R) breast cancer cells. Data demonstrated that resveratrol at a concen-
tration of 100 μM reduces the protein levels of Rad51 and transcript levels of compo-
nents of the HR initiation complex. It has been observed that following 48 h of DNA 
damage induced by cisplatin, Rad51 protein levels are increased. However, resveratrol 
suppresses the upregulation of Rad51. Also, resveratrol sustains the phosphorylation of 
histone H2AX at serine 139, implying the inhibitory effect of resveratrol on the repair 
of double-strand breaks (DSBs) [169]. Furthermore, examinations on patient-derived 
glioblastoma-initiating cell lines have clarified another aspect of resveratrol’s DDR-asso-
ciated functions: enhancing the cytotoxicity of temozolomide through DNA double-
stranded breaks/pATM/pATR/p53 pathway activation [170].

Cancer stem cells

Cancer stem cells (CSCs) are a class of tumorigenic cells that are mostly known for their 
self-renewal and multipotency features and make up less than 1% of the cells existing 
within a tumor [171, 172]. Investigations on almost all types of cancer have revealed that 
CSCs are responsible for decreasing the tumor response to both chemo- and radiother-
apy [173–184]. It seems that slowing down the cell cycle, having anti-apoptotic machin-
ery, a high capacity for repairing DNA damage, the potency of establishing a proper 
environment for cancer growth, and stemness features are the main reasons why CSCs 
provide resistance to our common therapies [171, 172, 185, 186]. Notch, Wnt, STAT3, 
PI3K/Akt, and NF-kB signaling pathways along with protective autophagy, metabolic 
plasticity, and oxidative modulators are some other helpers of CSCs in this process [186, 
187]. Overall, targeting CSCs is a suitable approach for decreasing tumor resistance and 
increasing the efficacy of our common therapies.

Considering polyphenols for targeting this population of cells has recently given a new 
insight for treating resistant cancers. A line of research conducted on curcumin showed 
the anti-CSC characteristics of this agent in colon [188], pancreatic [189], liver [190], 
breast [50], and brain [191] cancers. Curcumin treatment administered for cancerous 
cells of the colon resulted in lower levels of CSC markers such as CD44, CD133, and 
CD24 and lower ability of CSCs to form a sphere [188]. Additionally, curcumin triggers 
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apoptosis in CSCs either administered alone or with irinotecan (CPT-11) and thereby 
decreases resistance to this chemotherapeutic drug [188]. Decreasing the stemness fea-
tures of CSCs through inhibiting the enhancer of zeste homolog-2 (EZH2) subunit of 
polycomb repressive complex 2 (PRC2) is also attributed to curcumin [189, 192]. Inhib-
iting a long non-coding RNA named PVT1 is how curcumin sensitizes pancreatic can-
cer cells to gemcitabine [189]. Other than that, stemness-related genes including Nanog, 
Sox2, and Oct4 are also prone to be affected by curcumin [50]. Another mechanism by 
which curcumin decreases chemoresistance is its ability to decrease antiapoptotic pro-
tein levels and increase proapoptotic protein levels in CSCs [193]. The former proteins 
include Bcl-2 and Bcl-w and the latter ones include Bax, Bak, Bad, Bik, and Bim. In this 
way, the resistance of breast cancer to mitomycin C can be diminished [193]. Nano-
medicine can also be effective in treating brain cancer with curcumin [191]. Curcumin-
loaded nanoparticles grafted with anti-aldehyde dehydrogenase not only increased the 
permeability of curcumin through the brain-blood barrier but also provided a steady 
release of this polyphenol [191]. An in vivo study conducted by Zhou et al. [194] also 
demonstrated that curcumin increases the sensitivity of breast cancer cells to mitomycin 
C. In this study, ATP-binding cassette (ABC) transporters ABCG2 and ABCC1 acted as 
mediators of curcumin’s effects on breast cancer stem cells, which were reduced after 
the combinatorial treatment [194].

Epigallocatechin-3-gallate is another member of the polyphenol family which is also 
able to reverse some of CSC characteristics including renewal and migration in naso-
pharyngeal cancer cells [195]. Baicalin is a flavone whose role in EMT has been investi-
gated on an osteosarcoma cell line: it can inhibit the EMT-inducing transcription factors 
Snail1 and Slug and thereby reduce the anoikis-related resistance [196]. Additionally, 
baicalin inhibits the PI3K/Akt/NF-κB pathway, which leads to EMT reversion and a 
decrease in cisplatin resistance of lung adenocarcinoma cells (in vivo and in vitro) [197].

An in vivo study conducted by Toden and colleagues also corroborated the anti-resist-
ance effects of EGCG on cancer stem cells. They observed that 5FU sensitivity could 
be achieved when EGCG suppressed colorectal cancer stem cells through affecting the 
Notch signaling pathway and increasing the levels of tumor suppressive microRNAs 
[198].

Reactive oxygen species

Through altering the hemostasis of redox, cancer cells enhance chemoresistance. Dif-
ferent processes are involved in chemoresistance mediated by redox which includes 
increased progression of the cell cycle, autophagy mediated by endoplasmic reticulum 
stress, increased numbers of cancer stem-like cells, and enhanced conversion to metas-
tasis [199]. ROS exert several functions in cancer cells, such as regulating proliferation, 
apoptosis, and survival. Compared to normal and non-multidrug-resistant cancer cells, 
ROS levels and the activity of antioxidant enzymes are increased in cancer cells that 
are resistant to chemotherapeutic agents. Therefore, changes in ROS levels may have a 
greater impact on multidrug-resistant cancer cells. Studies have shown that agents mod-
ulating the generation of ROS are potentially useful for treating patients with multidrug-
resistant cancer [200].
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The thioredoxin (Trx) system has three key members which are NADPH, Trx, and 
thioredoxin reductase (TrxR). This system, which is involved in the regulation of redox, 
has been shown to play a role in the development and progression of cancer. Indeed, 
high expression levels of Trx and TrxR in cancer cells lead to drug resistance [201]. Ai 
and colleagues have designed 21 ligustrazine-curcumin hybrids (10a-u) and reported 
that compound 10d suppresses the proliferation in both drug-resistant and drug-sen-
sitive lung cancer cells. It was observed that 10d inhibited the Trx/TrxR system while 
enhancing the intracellular accumulation of ROS as well as apoptosis [202]. In another 
study by Zhou et  al. an analog of curcumin, (1E,4Z,6E)-5-hydroxy-1-(4-hydroxy-3-
methoxyphenyl)-7-(5-methylfuran-2-yl)hepta-1,4,6-trien-3-one (2a), suppressed the 
growth of cisplatin-resistant lung cancer A59 cells. Moreover, A549/CDDP cells pre-
treated with 2a show sensitivity to cisplatin while TrxR activity is suppressed in them. 2a 
consequently increases the intracellular accumulation of ROS and decreases glutathione 
(GSH) and the GSH/GSSG ratio, indicating the shift of intracellular redox balance to an 
oxidative state [203].

Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that is tra-
ditionally found to regulate the protective mechanisms against oxidative stress [204]. 
Recent investigations have shown that this transcription factor is also involved in the 
development and progression of cancers as well as chemoresistance [205–210]. There-
fore, NRF2 is reported to be a potential candidate in overcoming cancer chemoresistance 
[211]. Zhang et al. [212] reported that curcumin induces the deficiency of Nrf2, which, 
in turn, changes the ratio of Bcl-2 associated X protein/Bcl-2 expression. Consequently, 
curcumin treatment results in apoptosis induction in HCT-8/5-Fu cells and reverses the 
multidrug resistance in colorectal cancer cells. Curcumin also chemosensitizes head and 
neck squamous carcinoma cells to cisplatin in vitro through targeting Nrf-2 and pSTAT3 
signaling pathways [213]. In pancreatic cancer cells, resveratrol inhibits the nutrient-
deprivation autophagy factor-1 (NAF-1) via activating the Nrf2 pathway and accumu-
lating intracellular ROS [214]. Expression levels of Nrf2 as well as NADPH and heme 
oxygenase-1, target proteins of Nrf2, are higher in tamoxifen-resistant MCF-7 (MCF-7/
TAM) cells compared to MCF-7 cells. EGCG is reported to significantly increases the 
sensitivity of MCF-7/TAM cells to tamoxifen while decreasing the mRNA and protein 
levels of Nrf2. Using siRNA of Nrf2 reverses the tamoxifen resistance in MCF-7/TAM 
cells. Furthermore, combined treatment with EGCG and Nrf2 siRNA results in a syner-
gic Nrf2 downregulation and reversal of tamoxifen resistance [215].

The expression of androgen receptor (AR) is significantly associated with poor 
prognosis of glioblastoma patients [216]. Moreover, AR leads to the development of 
resistance against temozolomide. The curcumin analog ALZ003 is able to induce ubiq-
uitination of AR by FBXL2, resulting in its degradation. ALZ003 suppresses the survival 
of both temozolomide-sensitive and -resistant glioblastoma cells in  vitro and in  vivo. 
Treating glioblastoma cells with ALZ003 also leads to lipid peroxidation, ROS accumula-
tion, and inhibition of glutathione peroxidase (GPX) 4, which are indicators of ferrop-
tosis. Regarding the in vivo effect of this treatment, Chen and colleagues transplanted 
temozolomide-sensitive or -resistant glioblastoma U87MG cells into mouse brain. They 
observed that ALZ003 suppressed the proliferation of tumor cells as well as increasing 
their survival [216] (Table 2).
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Epithelial to mesenchymal transition

Epithelial to mesenchymal transition or EMT is a dedifferentiation process whose tar-
get is to prepare epithelial cells for migration and metastasis [186]. Diverse molecu-
lar alterations cause the transformation of polar epithelial cells into multipolar and 
motile mesenchymal cells [218]; therefore, epithelial genes containing E-cadherin, 
ZO-1, and occludin should be decreased in cells undergoing EMT while mesenchy-
mal genes containing N-cadherin, vimentin, and fibronectin ought to be increased 
[218]. Similar to every other cellular process, signaling pathways have a pivotal role 
in EMT; these pathways encompass transforming growth factor beta (TGFβ), Wnt, 
Notch and Hedgehog [219]. The mechanism by which EMT contributes to the resist-
ance of several cancer types is mainly related to CSCs [220]. This association was sug-
gested due to the similarity of signaling pathways involved in EMT and CSCs. To our 
knowledge, CSCs probably recall EMT by affecting the non-CSC cells of the tumor 
[186]. The ATP-binding cassette (ABC) transporters seem to be greatly involved in 
CSC-induced EMT of tumor cells. Investigations on resistant tumor cells undergo-
ing EMT reveal the higher expression of these transporters [221]. As well as CSCs, 
EMT is also susceptible to the ingredients of the tumor microenvironment including 
cancer-associated fibroblasts (CAF) and hypoxia [220, 222].

For targeting EMT in cancer cells, curcumin is confirmed to be a suitable option. 
It decreases 5-fluorouracil-resistance by means of affecting the TET1-NKD2-WNT 
axis and thereby hindering EMT [223]. MicroRNAs are other mediators of curcumin’s 
effects; miR-200b, miR-200c, miR-141, miR-429, and miR-101 are anti-EMT miRNAs 
that are upregulated after curcumin treatment [192]. In colorectal cancer cells, this 
effect aids the reduction of 5-fluorouracil resistance [192]. Furthermore, in colorectal 
cancer calls, curcumin increases the markers of epithelial cells including E-cadherin 
when utilized with irinotecan [224]. Regulating the TGF-β/Smad2/3 signaling path-
way for decreasing the resistance to oxaliplatin through EMT inhibition is another 
mechanism of curcumin’s actions in colorectal cancer cells [225]. H19 is a long non-
coding RNA with the role of establishing tamoxifen resistance in breast cancer cells, 

Table 2  Modulating ROS to overcome cancer drug resistance

a (1E,4Z,6E)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(5-methylfuran-2-yl)hepta-1,4,6-trien-3-one (2a)
b Active compound of 21 ligustrazine-curcumin hybrids (10a-u)

Mode of action Compound Application Refs.

TrxR 2a, curcumin analoga Sensitizes A549 cells to cisplatin [203]

10db Effective on drug-sensitive (A549, SPC-A-1, LTEP-G-2) and 
drug-resistant (A549/DDP) lung cancer cells

[202]

Nrf2 Curcumin Mediates cisplatin chemoresistance in head and neck 
squamous cell carcinoma

[213]

Reverses multidrug resistance in the HCT-8/5-Fu human 
colorectal cancer

[212]

Resveratrol Enhances the sensitivity of pancreatic cancer cells to 
gemcitabine

[214]

Chrysin Reduces doxorubicin resistance by down-regulating Nrf2 
signaling pathway in BEL-7402/ADM cells

[217]

GPX ALZ003, curcumin analog Suppresses growth of temozolomide-resistant glioblastoma [216]
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which can be impacted by curcumin [226]. H19 overexpression is responsible for 
EMT in breast cancer cells, which can be reversed after curcumin treatment [226].

In addition to curcumin, resveratrol might also be a suitable option for overcom-
ing resistance through EMT inhibition [227]. A variety of ways have been revealed 
for resveratrol to affect EMT: “reactivating p53 and inducing miR-145 and miR-200c” 
[228], modulating the connection between SIRT1 and β-catenin [229], and modulat-
ing the PTEN/Akt signaling pathway [230]. EMT inhibition is also possible by querce-
tin. Quercetin decreases the resistance to docetaxel in prostate cancer cells by affecting 
some mechanisms including EMT [231]. NF-κB p65 inactivation is another mechanism 
that is used by epigallocatechin-3-gallate to inhibit EMT in nasopharyngeal cancer stem 
cells [195]. EGCG, which is a green tea polyphenol, seems to be effective against CSCs of 
nasopharyngeal carcinoma and inhibits some of their features including EMT [232]. Lin 
et al. [232] demonstrated this effect by measuring EMT markers such as Snail, vimentin, 
and E-cadherin after EGCG treatment. Geraniin is another member of the polyphenol 
family which can be found in Phyllanthus amarus [233]. Elevating the levels of E-cad-
herin and decreasing the levels of Snail are two effects of this agent on lung cancer cells. 
After using geraniin, anoikis resistance is decreased in these cells through inhibition of 
EMT [233].

Conclusions
Our knowledge of the anti-cancer effects of polyphenols has remarkably expanded 
since the discovery of these beneficial agents, which is why the understanding of the 
underlying mechanisms by which they work is essential. Accumulative investigations 
have clarified how these natural compounds are able to inhibit cancer hallmarks such 
as proliferation, apoptosis, inflammation, etc. But what if polyphenols have a more 
significant ability that would assist us through overcoming cancer? Resistance to the 
common therapies involving chemo- and radiotherapy is our most important diffi-
culty in restricting the progression of cancer cells and decreasing the number of 
cancer-related deaths. In this regard, we have taken a look at the polyphenols’ mech-
anisms of action which are specific to overcoming the resistance of different can-
cers (summarized in Fig.  3). According to the discussed studies, affecting the gene 
expression and signaling pathways associated with cancer stem cells is an important 
aspect of polyphenols’ effects which makes them capable of inhibiting EMT, oxida-
tive stress, and other stemness features to reduce the resistance. Increasing drug 
uptake by tumor cells, decreasing drug metabolism by enzymes (e.g. cytochromes and 
glutathione-S-transferases), and reducing drug efflux are some of the mechanisms 
by which polyphenols increase the sensitivity of cancer cells to chemotherapeutic 
agents. Polyphenols also affect other targets for overcoming chemoresistance in can-
cer cells, including cell death (i.e. autophagy and apoptosis), EMT, ROS, DNA repair 
processes, cancer stem cells, and epigenetics (e.g. miRNAs). So far, only a few clini-
cal trials have been performed on the role of polyphenols in overcoming cancer drug 
resistance. One of them is a phase II study of resveratrol (SRT501) with bortezomib in 
patients with relapse of refractory multiple myeloma. This study has shown that this 
therapeutic approach has a low safety profile while showing minimal efficacy [234]. 
Another clinical trial is a phase I/II study of curcumin and gemcitabine in patients 
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with gemcitabine-resistant pancreatic cancer. This study, performed on 21 patients, 
shows that combined therapy with gemcitabine and 8 g of oral curcumin daily is a safe 
and feasible treatment for patients and further investigations should be carried out 
to define its efficacy [235]. Taken together, the developments in our understanding of 
these agents have revealed the wide range of their effects against treatment resistance, 
but still, the lack of sufficient human research is holding us back from using polyphe-
nols widely in clinical practice.
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