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Recently, there has been an increasing interest in studying large-scale distributed systems

in the control community. Efforts have been invested in developing several techniques wishing

to address the main challenges found in this kind of problems, for instance, the amount of

information to guarantee the proper operation of the system and the economic costs associated

to the required communication structure. Moreover, another issue appears when there is a large

amount of required data to control the system. The measuring and transmission processes, and

the computation of the control inputs make closed-loop systems suffer from high computational

burden.

One way to overcome such problems is to consider the use of multi-agent systems

framework, which may be cast in game-theoretical terms. Game theory studies interactions

between self-interested agents. Particularly, this theory tackles with the problem of interaction

between agents using different strategies that wish to maximize their welfares. For instance in [1],

the authors provide connections between games, optimization, and learning for signal processing

in networks. Other approaches in terms of learning and games can be found in [2]. In [3],

distributed computation algorithms are developed based on generalized convex games that do not

require full information, and where there is a dynamic change in terms of network topologies.

Applications of game theory in control of optical networks and game-theoretic methods for

smart grids are described in [4], [5], [6]. Another approach in game theoretical methods is

to design protocols or mechanisms that possess some desirable properties [7]. This approach

leads to a broad analysis of multi-agent interactions, particularly those involving negotiation and

coordination problems [8]. Other game-theoretical applications to engineering are reported in

[9].

From a game-theoretical perspective, it can be distinguished among three types of games:

matrix games, continuous games, and differential/dynamic games (see “The relationship among

matricial games, full-potential population games, and resource allocation problems”). In matrix

games (that generally use the normal form), individuals play simultaneously and only once, and

the decision is mainly based on a static terms. In this case, players or agents are individually

treated. Differently, in continuous games, players have infinitely many pure strategies [10], [11].

On the other hand, in dynamic games it is assumed that players can use some type of learning

mechanism that allows them to adjust the actions taken based on their past decisions. Basically,

it can be said that dynamic games are characterized by three main problems: i) how to model

the environment where players interact; ii) how to model the objectives of players; and iii)

how to specify the order in which the actions are taken and how much information each player

possesses. In this case, it is assumed that there are interactions between large number of agents

(which are usually unknown) [12].

Among these dynamic games, there exist the evolutionary game dynamics, which are
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dynamic processes that describe how the aggregate behavior of the agents changes over time [13].

Evolutionary game theory (EGT) was first studied by Fisher, while he was trying to explain the

approximate equality of the sex ratio in mammals [14]. However, it is said that the area bloomed

with the appearance of the seminal article The Logic of Animal Conflict by Maynard Smith and

Price in 1973, where the concept of evolutionarily stable strategy (ESS) was originally defined

[15]. Since then, several works have been published mainly in biology [16], [17] due to the

usefulness of the ESS concept to explain several behaviors that emerge in nature. However, there

exists another approach to understand EGT. This approach is based on the dynamic foundations

of the ESS concept, which were firstly introduced by Taylor and Jonker in 1978 providing

the replicator dynamics [18]. Later on, it was proved that the replicator nonlinear differential

equation can also be addressed from an economic perspective, using models in imitation among

populations of economic agents [13]. The combination of population games (which describe

strategic interactions among large number of small and anonymous agents) and a revision protocol

(which specifies how agents can choose and change strategies) leads to a dynamic process

describing the behavior of agents in time called evolutionary game dynamics [13]. Modeling

strategic interactions of agents in large-scale systems is more suitable from this perspective,

since the evolution of the agents behavior is better described by the differential equation that

captures this process [19].

Some applications of EGT in engineering problems can be found along different fields.

For instance, wind farms control [20], [21], multiple access control for communication systems

[22], cyber security [23], combinatorial optimization [24], bandwidth allocation [25], hierarchical

frequency control in microgrids [26], dispatch of electric generators [27], building temperature

control [28], constrained extremum seeking [29], and control of drinking water networks [30],

among others.

There are three main advantages of using EGT in engineering problems. The first

motivation is that the analogy between games and engineering problems is straightforward in

a large variety of cases. For instance, a control problem can be viewed as a game where the

available control inputs are associated to strategies, and the control objective is expressed in

terms of payoff functions. There are several examples of the aforementioned analogy in the

literature. For example, in [21], authors report the design of a power-wind farm control by

taking as strategies the axial induction factors of the wind turbines; in [31] and [32], authors

develop a controller to optimally distribute flows between different reservoirs in water systems,

which are taken as strategies into the underlying game.

The second motivation to use an EGT approach is the relationship between the solution of

a game given by a Nash equilibrium and the solution of optimization problems. In this regard, it

has been proven that, under certain conditions, the Nash equilibrium satisfies the Karush-Kuhn-

Tucker (KKT) first-order conditions of constrained optimization problems [13]. This property

has been exploited in many works such as [30], where distributed optimization problems are

addressed by using potential games and population dynamics. In [33], a general analysis of state-

based potential games is presented and the growing interest in the application of game-theoretic

methods to the design and control of multi-agent systems is discussed.

Finally, the third motivation for using an EGT approach is that the solution of games

can be obtained by employing local information [34], [35]. In [20], local rules are designed

in order to achieve a global objective. Additionally, in [36] the issue of dealing with coupled

constraints is solved by decoupling such constraints using local rules. Therefore, if a game

framework is applied to address an engineering problem, distributed methodologies emerge. This
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feature is quite relevant since nowadays the complexity of systems is increasing permanently,

which makes the implementation of centralized approaches expensive or even infeasible. In this

regard, the appealing features of distributed population dynamics can be exploited in several

applications. For instance, it has been shown that distributed population dynamics can be used

in the design of constrained optimization algorithms and in the synthesis of control systems

for problems requiring non-centralized schemes. Compared to other distributed techniques such

as dual decomposition methods [37], the implementation of distributed population dynamics

does not need the inclusion of a centralized coordinator. This key property reduces the cost of

the required communication infrastructure. Furthermore, some families of distributed population

dynamics (for instance, distributed replicator dynamics and distributed Smith dynamics) naturally

address nonnegativity constraints that emerge in a variety of problems due to physical limitations

(for instance, in scheduling problems, the time allocated to each task cannot be negative).

Although nonnegativity constraints are tackled in other distributed approaches by means of

barrier functions, it is known that the use of those functions carries out some problems related

to the convergence rate and the accuracy of the solution, especially for large-scale problems

[38].

An outstanding advantage of distributed population dynamics compared to distributed

learning algorithms for normal-form games is that classic learning techniques fail in applications

that include constraints involving all the decision variables (this drawback has been pointed out

in [33]). Under this scenario, distributed population dynamics become a proper alternative since

their trajectories evolve towards the optimal solution satisfying a coupled constraint associated to

the mass of the population that is involved in the strategic game. This property can be exploited

for solving dynamic resource allocation problems.

One crucial engineering problem where dynamic resource allocation is paramount consists

in the design of a smart city (SC) [39]. An SC can be seen as an organic system that is in charge

of connecting and controlling different subsystems and components in order to have a perfect

behavior. In other words, the SC is like an intelligent control similar to the human being, which

must handle different services through a communication backbone [40]. Among the emerging

problems associated to such systems are those related with water and energy. In this article,

three emergent problems in SC are addressed: smart lighting, optimal economic dispatch in

microgrids, and control of urban drainage systems (UDS).

Lighting systems represent a high energy consumption in buildings, such that reaching

comfortable illuminance levels require distributed control strategies to deal with energy saving,

daylight harvesting, and cross-illumination effects. Then, with the adaptation of a population-

based methodology, limited power resources are split among lamps of several zones taking into

account local controllers exchanging information within a communication network and different

lighting environments.

On the other hand, the frequency control in microgrids is one of the fundamental problem

in the context of smart grids. In particular, the dynamical optimal dispatch of active power

of distributed generators is solved as a dynamic resource allocation problem using population

games. Conventional dispatch problem in power systems consists in either minimizing the total

generation cost or maximizing the total utility of all generators, while restrictions over both power

balance and generation capacity are satisfied [41]. Traditionally, the economic dispatch problem

has been solved by using static optimization algorithms [42], or direct search methods [43], which

operate off-line in a time interval between 5 minutes to 1 hour [37]. This traditional dispatch

algorithm requires a centralized controller with a high-bandwidth communication infrastructure

September 16, 2016 DRAFT



3

as the number of nodes increase to handle information from each node within the distribution

system. Therefore, distributed control algorithms such as the distributed population games are

becoming promising approaches in the context of smart grids since they can be more robust

and resilient to network variations. To analyze the effects of the communication infrastructure

in the optimal dispatch algorithm, it has been proposed a distributed version of the replicator

dynamics algorithm to respond dynamically to the needs of the microgrid assuming that no full

information is available.

Finally, the real-time control design of UDS is challenging since these large-scale systems

involve a large number of states and control inputs. Besides, they are affected by exogenous

disturbances given by rain events. As a convenient and suitable solution, it is shown that the

control of UDS can be addressed as a resource allocation problem, and that the entire UDS

may be divided into several sub-systems locally controlled by using population-dynamics-based

strategies.

Population Games

Preliminary Concepts

Population games describe the strategic interaction of large populations of players.

Different from normal-form games, where players are individually treated, in population games

players are grouped in a continuum of mass denoted by m ∈ R>0. Thus, in this framework,

each individual of the population corresponds to a quantum of that mass. Besides, individuals

can choose their actions to play from a set of pure available strategies denoted by S . This set of

strategies is finite and, for convention, strategies are indexed using natural numbers. Hence, for

a game with n available strategies, the set of strategies is given by S = {1, ..., n}. For instance,

in the classic network-routing game, each element of the set S is associated with an available

route of the network. An assumption of population games is that all players have the same set

of strategies. However, it is worth noting that multiple set of strategies can be introduced in the

formulation of population games by using a framework known as multi-population (this topic is

out of the scope of this article).

Since in population games the number of players is large, strategy profiles are not

described by the actions of all players as is usual in normal-form games. In fact, strategy profiles

of population games are characterized by the distribution of the mass of players m among the

available strategies. For instance, in a game with two available strategies where exactly one half

of the population chooses the first strategy and the other half chooses the second strategy, the

strategy profile is given by (m
2
, m

2
). Strategy profiles of population games are called population

states. To formalize the notation of population states, the nonnegative scalars p1, . . . , pn are

defined, where pi denotes the portion of the mass of players that chooses the strategy i ∈ S .

Thus, the vector p = [p1, . . . , pn]
⊤ denotes the population state. The set of possible population

states, which corresponds to all possible distributions of individuals among the strategies, is

given by the following simplex

∆ =

{

p ∈ R
n
≥0 :

∑

i∈S

pi = m

}

. (1)

Individuals that choose the ith strategy to play obtain a reward that depends on the
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population state. This reward is captured by a payoff function fi : ∆ → R (within the biology

framework, the payoff function is usually called fitness function). Hence, for a given population

state p, fi(p) specifies the reward associated with the strategy i ∈ S . A population game is

completely characterized by the payoff vector f : ∆ 7→ R
n, where f(p) = [f1(p), . . . , fn(p)]

⊤.

As in normal-form games, Nash equilibrium is the most commonly used solution concept

in population games since in a Nash equilibrium each individual of the population is playing the

best possible strategy against a given population state. Formally, the concept of Nash equilibria

of population games is introduced in Definition 1.

Definition 1: Nash Equilibria (adapted from [13]). A population state p∗ ∈ ∆ is a Nash

equilibrium if each used strategy entails the maximum benefit for those players who choose it.

Equivalently, the set of Nash equilibria is given by NE = {p∗ ∈ ∆ : p∗i > 0 ⇒ fi(p
∗) ≥

fj(p
∗), for all i, j = 1, . . . , n}.

♦

According to Definition 1, if the population adopts a Nash equilibrium, individuals

cannot improve their benefit by changing their strategy. Therefore, under the assumption that the

individuals are rational (that is, they try to maximize their payoff), Nash equilibria are natural

candidates to be the output of a population game. In fact, a key result in game theory states that

every population game has at least one Nash equilibrium [13]. However, this fact does not imply

that populations involved in strategic interactions necessarily adopt Nash equilibria. Forthcoming

sections explore the conditions for guaranteeing convergence of the population state to a Nash

equilibrium.

Strategy-constrained interactions

Players of the population encounter each other and interact according to the framework

described above. Traditionally, these encounters do not depend on the strategies played by

the individuals. In other words, encounters between individuals playing the ith strategy and

individuals playing jth strategy are allowed no matter what i and j are (e.g., see Figure S1(a)).

Nonetheless, in the more general framework proposed in [44], interactions among players are

strategy-constrained.

Following the approach reported in [44], the strategy-constrained interactions can be

modeled by using an undirected graph G = {V , E}. The set of nodes V is associated with

the available strategies, that is, V = S , and the set of edges E ⊂ V × V describes the

allowed interactions between individuals playing different strategies. Hence, if (i, j) ∈ E , then

an individual playing strategy i can be matched with an individual playing strategy j. On the

other hand, if (i, j) /∈ E , then individuals playing strategies i and j cannot encounter each other

(for further details, the reader is referred to [44]).

Figure 1 shows the graph representation of two different interaction scenarios for the

same population. Notice that populations where interactions are not strategy-constrained are

represented by complete graphs since individuals playing any pair of strategies can encounter

each other. By contrast, populations under strategy-constrained interactions are represented

by non-complete graphs due to the fact that the encounter between individuals depends on

the strategies that these individuals are playing. In [44], strategy-constrained interactions are

employed to model local information structures.
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Population Dynamics

Nash equilibrium predicts the outcome of a population game. Different from this static

notion, there exists a framework capable to model not only the outcome of a population game,

but also the evolution of the population state along the time. This framework is called population

dynamics, and its fundamental input is the concept of revision protocol.

A revision protocol can be seen as a set of rules that allows the individuals to take

decisions. Specifically, a revision protocol establishes conditions under which an individual

changes its strategy. Formally, Definition 2 introduces the concept of revision protocol.

Definition 2: Revision Protocol (adapted from [13]). A revision protocol, denoted by ρ =
[ρij], is a map ρ : Rn×∆ 7→ R

n×n
≥0 characterized by the conditional switch rates {ρij : i, j ∈ S}.

Given a population state p and a payoff vector f(p), ρij(f(p),p) captures the switch rate from

the ith strategy to the jth strategy. ♦

The dynamical process induced by revision protocols can be described as follows: at

each time instant, an individual of the population is randomly selected and receives a revision

opportunity. If an individual playing the ith strategy is selected, it switches to the jth strategy

with probability proportional to ρij(f(p),p). Assuming that interactions among individuals of

the population are not strategy-constrained, the process described above is modeled with the

following dynamics

ṗi =
∑

j∈S

pjρji(f(p),p)− pi
∑

j∈S

ρij(f(p),p), for all i ∈ S, (2)

which correspond to the mean dynamics [13]. The first term of the right-hand-side of (2) models

the inflow of players to the ith strategy (that is, individuals that switch from other strategies to

the ith strategy), while the second term models the outflow of players from the ith strategy (that

is, individuals that change strategy i ∈ S by another strategy).

Summarizing, (2) models the dynamics of a population involved in a strategic game that

is using a given revision protocol. In this regard, different revision protocols produce different

population dynamics models. The most studied dynamics in the literature are listed below.

• The pairwise proportional imitation protocol ρij = pj[fj(p) − fi(p)]+, where [·]+ :=
max(·, 0), leads to the replicator dynamics, which are characterized by the following

differential equation

ṗi = pi
(
fi(p)− f̄

)
, for all i ∈ S, (3)

where f̄ := 1
m

∑n

j=1 pjfj(p) is known as the average payoff function. Replicator dynamics

were introduced by Taylor and Jonker in 1978 [18]. These dynamics are largely studied in

biology, being the first game dynamics used to describe evolutionary game theory. From

a biological point of view, replicator dynamics capture the natural selection process where

the size of the most successful populations (that is, those with a payoff higher than the

average) increases while the size of the less successful ones decreases.

• The pairwise comparison protocol ρij = [fj(p) − fi(p)]+ produces the Smith dynamics,

which are given by

ṗi =
n∑

j=1

pj [fi(p)− fj(p)]+ − pi

n∑

j=1

[fj(p)− fi(p)]+, for all i ∈ S. (4)
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The Smith dynamics were proposed by Smith in 1984 [45]. Smith used these dynamics

to describe traffic assignment, which is a class of congestion game that emerges in

transportation problems. Different from replicator dynamics, Smith dynamics satisfy Nash

stationarity. This latter concept means that the set of equilibrium points of the Smith

dynamics is equal to the set of Nash equilibria of the underlying population game.

• The logit choice protocol ρij =
e
η−1fj(p)

∑

k∈S

eη
−1fk(p)

, where η > 0 is known as noise level, generates

the logit dynamics

ṗi =
eη

−1fi(p)

∑

k∈S

eη
−1fk(p)

− pi, for all i ∈ S. (5)

The logit dynamics, which are used to represent bounded rationality of players, were first

introduced by Blume in 1993 [46]. If η → 0, then players are completely rational, and they

only choose the best possible strategies under the current population state. Nonetheless, if

the noise level η increases, then players can choose strategies that are not best responses

(indeed, if η → +∞, individuals play strategies nearly at random). This last situation models

scenarios in which players have either a limited knowledge of the game or poor computation

capabilities [47].

• Finally, for population states belonging to the interior of the simplex ∆, the modified

pairwise comparison protocol ρij =
[fj(p)−fi(p)]+

pi
leads to the projection dynamics, which

are described by

ṗi =
n∑

j=1

(
fi(p)− fj(p)

)
, for all i ∈ S. (6)

Lahkar and Sandholm introduced the projection dynamics in 2008 [48]. These dynamics

are derived by means of geometrical considerations. In fact, the general expression of the

projection dynamics is given by ṗ = ΠT∆(p)(f(p)), where the right-hand-side term denotes

the orthogonal projection of the payoff vector onto the tangent cone of ∆ at p. In the

interior of the simplex ∆, this orthogonal projection is given by (6).

Distributed Population Dynamics

According to the mean dynamics in (2), it is needed to know the entire population state

and all the payoff functions to compute the changes of the proportion of individuals playing

the ith strategy. Thus, population dynamics derived from (2) require full information to evolve.

Nevertheless, in a large number of scenarios, full-information dependency is undesirable (due

to, for instance, privacy issues, size of systems, limitations on the communication infrastructure,

among others). In this situation, the procedure reported in [44] can be employed to relax the full-

information dependency of the classic population dynamics. Before introducing this procedure,

the following assumptions are required.

Assumption 1: Let G = {S, E} be the graph that describes the strategy-constrained

interactions of a population. Let pNi
∈ R

|Ni|+1
≥0 be a vector formed by the elements of the

set {pj : j ∈ (Ni

⋃
{i})}, where Ni is the set of strategies that can interact with the ith strategy

following the graph G, that is, Ni = {j ∈ S : (i, j) ∈ E}. The payoff function associated with

the ith strategy only depends on pNi
. To make explicit this dependence, the payoff function is
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written as fi(pNi
).

Assumption 2: Let Assumption 1 hold. The conditional switch rate ρij only depends on

the payoffs fi(pNi
), fj(pNj

) and on the proportions pi, pj . To make explicit this dependence,

the conditional switch rate is written as ρij
(
fi(pNi

), fj(pNj
), pi, pj

)
.

The core of the framework developed in [44] to relax full-information dependency lies

on the mean dynamics for populations with strategy-constrained interactions. Since this kind of

interactions can be described by a graph G = {S, E} and provided that Assumptions 1 and 2

are satisfied, the corresponding mean dynamics are given by

ṗi =
∑

j∈Ni

pjρji
(
fj(pNj

), fi(pNi
), pj, pi

)
− pi

∑

j∈Ni

ρij
(
fi(pNi

), fj(pNj
), pi, pj

)
, for all i ∈ S.

(7)

Notice that to compute ẋi using (7), it is only required to know information associated

with the portions of population playing neighboring strategies. Hence, applying a revision

protocol that satisfies Assumption 2 in the mean dynamics for populations with strategy-

constrained interactions leads to obtain population dynamics that only use local information

to evolve, that is, distributed population dynamics. For instance, if the pairwise proportional

imitation protocol ρij = pj[fj(pNj
) − fi(pNi

)]+ is considered, then the following distributed

replicator dynamics are obtained

ṗi = pi

(

fi(pNi
)
∑

j∈Ni

pj −
∑

j∈Ni

pjfj(pNj
)

)

, for all i ∈ S. (8)

In the same way, the pairwise comparison protocol generates the distributed Smith

dynamics that are given by

ṗi =
∑

j∈Ni

pj
[
fi(pNi

)− fj(pNj
)
]

+
− pi

∑

j∈Ni

[
fj(pNj

)− fi(pNi
)
]

+
, for all i ∈ S. (9)

Properties of Population Dynamics

Population dynamics exhibit appealing features that can be exploited in engineering

applications. This section presents two fundamental properties of population dynamics: the

invariance of the simplex ∆ in (1), and the convergence of the trajectories of population dynamics

towards the Nash equilibria.

Simplex Invariance

In previous works such as [49], [13], it has been shown that the population mass m
is conserved over time under population dynamics. Furthermore, it has been proved that the

population state p remains nonnegative for these dynamics. Therefore, the simplex ∆ is invariant.

This property is formalized in Lemma 1.

Lemma 1: Simplex Invariance. Let ∆ be the simplex given in (1). If p(0) ∈ ∆, then

p(t) ∈ ∆, for all t ≥ 0 under both the standard mean dynamics (2) and the mean dynamics for

populations with strategy-constrained interactions (7).

Proof: A proof of this lemma can be found in [49], [13], [44]. The idea behind the proof

is sketched follows: first, mean dynamics satisfy mass conservation because they do not admit

neither birth nor elimination of individuals. Indeed, changes in the population appear due to
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switching of players among strategies. Second, mean dynamics guarantee nonnegativeness of

the population state. This property follows from the fact that, under mean dynamics, the fraction

of individuals playing strategy i only decreases due to switching of individuals to other strategies.

Therefore, if this fraction is null, migration is not possible.

Remark 1: Notice that, since all population dynamics are based on the standard mean

dynamics (2), it is possible to conclude that any class of population dynamics satisfies simplex

invariance. The same condition holds for the distributed population dynamics because they are

based on the mean dynamics for populations with strategy-constrained interactions (7). ♦
According to Lemma 1 and the definition of the simplex ∆ given in (1), population

dynamics satisfy both mass conservation and nonnegativity of the elements of the population

state p. To illustrate this result, consider the classic rock-paper-scissors game, for details of this

game see “Rock-paper-scissors game in a population with different types of interactions”. Figure

2 shows the trajectories of a population that is evolving according to the replicator dynamics

(Figure 2(a)) and Smith dynamics (Figure 2(b)). Notice that both replicator and Smith dynamics

keep the trajectories in the interior of the simplex ∆.

The property stated in Lemma 1 is crucial in many applications of population dynamics,

especially in those related to optimization and control, where the invariance of the simplex ∆
guarantees the satisfaction of a given constraint or even a set of constraints (see [44], [27], [26]).

Convergence to Nash Equilibria

Other key property of population dynamics is that, under some conditions, they evolve

towards the Nash equilibria of the corresponding population game. Although convergence

conditions cover several types of population games, this article focuses on full-potential games

since they may model a broad class of engineering applications; for instance, access control

in communication networks [22], bandwidth allocation [25], hierarchical frequency control in

microgrids [26], dispatch of electric generators [27], and so forth.

Before introducing the result on convergence to Nash equilibria, the definition of a full-

potential game is introduced.

Definition 3: Full-Potential Game (adapted from [13]). Let f : Rn
≥0 7→ R

n be a payoff

vector that characterizes a population game with payoffs defined on the positive orthant. If there

exists a continuously differentiable potential function V : Rn
≥0 7→ R that satisfies ∇V (p) = f(p),

for all p ∈ R
n
≥0, then f is a full-potential game. ♦

Roughly speaking, a full-potential game is a game whose payoff vector is equal to the gradient

of a potential function. Given a full-potential game, Theorems 1 and 2 establish conditions for

guaranteeing the convergence of the population state to Nash equilibria under different population

dynamics.

Theorem 1: If f is a full-potential game with strictly concave potential function, f has a

unique Nash equilibrium p∗. Moreover, if p(0) ∈ int∆, where int∆ = {p ∈ R
n
>0 :

∑n

i=1 pi = m},

then p(t) asymptotically converges to p∗ under replicator dynamics, Smith dynamics, and

projection dynamics.

Proof: A proof of this theorem can be found in [13]. It is worth noting that replicator

dynamics have other equilibrium points different from the Nash equilibrium of the game.

However, these equilibrium points are not stable.

As shown in Theorem 2, a similar result is obtained for distributed population dynamics.
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Theorem 2: Let f be a full-potential game with strictly concave potential function.

Furthermore, assume that the unique Nash equilibrium of the game p∗ belongs to the interior

of the simplex ∆, that is, p∗ ∈ int∆. If p(0) ∈ int∆ and the graph that describes the

strategy-constrained interactions among the individuals of the population is connected, then p(t)
asymptotically converges to p∗ under both the distributed replicator dynamics and the distributed

Smith dynamics.

Proof: A proof of this theorem can be found in [44].

Summarizing, under appropriate initialization, convergence to Nash equilibria is guaran-

teed for full-potential games whose potential function is strictly convex. In the case of distributed

population dynamics, additional conditions are required. These conditions are related to the

location of the Nash equilibrium inside the simplex ∆, and the connectivity of the graph that

models the strategy-constrained interactions of the individuals within the population.

Convergence properties of population games have been exploited in engineering applica-

tions during the last few years (see [29], [30] and references therein). This fact is mainly given

since there exists an equivalence between the Nash equilibria of a full-potential game and the

arguments that maximize its potential function. Figure 3 illustrates this property by showing

the convergence of the population state (whose evolution is depicted in black solid line) to the

Nash equilibrium of a full-potential game under replicator dynamics and distributed replicator

dynamics. Notice that the Nash equilibrium matches the argument that maximize the potential

function.

In conclusion, if the payoff vector is selected in a proper way, that is, as the gradient

of an objective function V (p), population dynamics become a constrained optimization method

where the constraint is given by the simplex ∆. Indeed, this feature has been employed in

recent research, such as in [50], [27]. In this works, the authors seek to maximize certain

criteria subject to the simplex constraint, which represents a resource restriction in most of the

considered engineering problems. Besides, it is worth noting that the application of population

dynamics is not limited to static optimization. Indeed, these dynamics have been used to design

time-varying adaptive controllers based on extremum seeking architectures [29], [25]. Once the

preliminary concepts of population dynamics have been introduced as well as the properties

exhibited by these game-theoretical approaches, three applications within the context of smart

cities are presented and discussed. The control design for the three aforementioned applications

is addressed by using the population dynamics while exploiting their stability and invariance set

properties.

Engineering Applications

Lighting Systems

One of the main tasks in building automation is the efficient use of energy resources due

to the high building consumption, which is around 70% of the electricity produced in developed

countries [51]. In particular, lighting systems account for a significant energy usage with a 25%

and a 12% in commercial and residential sectors, respectively [52], representing about 7% of

the global CO2 emissions by the flaring of fossil fuels to produce electricity [53].

Modern lighting has a large potential for energy savings using different strategies

such as occupancy sensors, daylighting, and other control and regulation systems, decreasing

consumption between 24% to 38% [54]. However, since illumination is related to people welfare
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and productivity, appropriate lighting controllers must also provide comfortable and uniform

lighting levels in the environment. Recent developments in efficient lamps, dimmable actuators,

light sensors, wireless communication devices, and reduced embedded controllers allow designing

distributed strategies to deal with the challenges of new lighting systems.
Lighting control techniques cover a wide range of applications, from conventional

methods to advanced implementations of intelligent techniques and agent-based controllers [55],

where the suitable use depends on the environment features. In this sense, advances in building

designs and networked sensor-actuator systems have motivated the development of techniques

based on hierarchical structures [56], systems with novel decentralized integral controllers [57],

and wireless sensors with optimization algorithms [58], to deal with the energy efficiency and

provide comfort to the occupants.
The implementation of successful control strategies in large systems, such as office

buildings, requires the division of the environment in zones with local controllers acquiring and

processing information in a communication network. When the number of sensors and actuators

increase, most of the centralized techniques become inefficient, while distributed strategies with

limited information are robust to packet loss while reducing the computational cost of the control

techniques [59]. To control the illuminance in large-scale systems, it is presented and discussed

a resource allocation strategy based on the distributed replicator dynamics to obtain desired

illumination levels, taking into account a limited amount of energy and the network topology

defined by the local exchange of information among the controllers. This methodology is applied

in the experimental testbed reported in [57] to show the appropriate management of cross-

illuminance, daylighting, and energy saving.
Modeling light-propagation effects to calculate the illuminance at each point of an

environment is a complex task that is usually performed by using specialized software tools

[60]. Nevertheless, the room conditions are relaxed here assuming the lamps as punctual light

sources and small area sensors. Besides, assuming that the light emission of each lamp has the

same intensity in a broad solid angle (as in incandescent or fluorescent lamps) and that the sets

lamp-ballast are fully dimmable, the illuminance perceived by the ith sensor due to the jth lamp

can be expressed by

Eij =
kjvj
d2ij

,

where vj is the voltage applied to the lamp j, dij is the distance between the ith sensor and the jth

lamp, and kj is a positive constant depending on the lamp characteristics (luminous efficiency

and effective illuminance solid angle, among others [61]). Then, different cross-illuminance

conditions can be obtained by modifying kj . The total illuminance measured in the ith zone of

a room split into n zones is given by

Ei(p) =
n∑

j=1

Eij =
n∑

j=1

kjvj
d2ij

. (10)

The illuminance at each zone depends on all the voltages applied to the lamps. This condition

makes the resource allocation problem difficult since changes in a certain voltage affect directly

all the output variables.
On the other hand, the system communication network is modeled by an undirected graph

G = (V , E), where the node set V is given by local controllers at each lighting zone, and the

edges set E is given by the communication links for bidirectional information exchange.
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Lighting Control

To obtain a desired illumination in a lighting system with n zones, the resources to be

managed are the voltages applied to the lamps. Therefore, according to the population-game

theory (Table 1), the population state is analogous to the voltage vector v = [v1 v2 . . . vn]
⊤, the

strategy set is given by the illumination zones, and the population mass is the limited voltage (or

power) available in the system, which is denoted as Vtot > 0. Besides, given the communication

constraints, an appropriate distributed control can be performed by the distributed replicator

dynamics described in (8).

However, the invariance of the simplex ∆ is not an advantage in this case. With this

property, if v(0) ∈ ∆ then
n∑

i=1

vi = Vtot

is ensured for all time. Notice that even when Vtot is large and the setpoints are small (references

are achieved with only a portion of the total resources), Vtot is still split among the n lamps. In

consequence, the setpoints cannot be reached and the appropriate resource constraint is

n∑

i=1

vi ≤ Vtot. (11)

To solve this problem, a fictitious zone is added to the lighting environment to act as a surplus

variable in the resource allocation. It is worth noting that the remaining power is not applied

to any lamp and the desired illumination is obtained only with the required voltage. Then, an

extended population state padd ∈ R
n+1
≥0 is defined as

padd = [p1 p2 . . . pn pn+1]
⊤,

and the simplex

∆add = {padd ∈ R
n+1
≥0 : 1⊤

n+1padd = m}

is still invariant under the dynamics in (8) with the addition of a new strategy to the game

[50]. However, the network topology must be also modified defining the augmented graph

Gadd = (Vadd, Eadd), where Vadd = V
⋃
{n + 1} and Eadd is the union of the original set

of edges E with at least one pair (i, n+ 1) for some i = 1, . . . , n. In other words, the fictitious

zone is attached to the original network with links to real nodes to preserve the connectedness

of the new graph.

With these conditions, the required constraint (11) is now satisfied. Moreover, the

equilibrium point for the extended dynamics is the same defined by the payoff equality (including

the fictitious zone)

f ∗
i = f ∗

j , for all i, j ∈ Vadd. (12)

Taking advantage of this property, the control goal for the lighting system is achieved if the

payoff functions are defined depending on the tracking error between the illuminance measured

in each zone (Ei) and the setpoint (Eseti). Then, the payoffs are given by

fi = B + Eseti − Ei, for all i = 1, . . . , n (13)

fn+1 = B, (14)
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where B > 0 is a large enough constant to guarantee that fi > 0, satisfying the payoff conditions

in biological population dynamics. Therefore, at the equilibrium, f ∗
i = B, and the tracking error

becomes zero at each zone (Eseti − E∗
i = 0, for all i). Notice that the definition of the payoff

function in the fictitious zone determines the equilibrium value of the rest of payoffs and allows

the distributed replicator dynamics to obtain the desired illuminances. It is also remarkable that

the achieved steady state is the unique Nash equilibrium according to the properties of the

replicator dynamics [49], taking into account surplus resources, decreasing payoff functions, and

connected graphs for the resource allocation process.

In most application cases of evolutionary game theory [49], as well as in behavioral

ecology [62], the payoffs of the players are decreasing to ensure stability of the equilibrium

points, that is, the more individuals sharing the same strategy, the smaller the payoff. In

the lighting model, if the illuminance Ei in (10) is replaced into (13), the real payoffs

fulfill this requirement. Besides, with certain conditions over the environment and appropriate

initial conditions (padd(0) ∈ ∆add), the asymptotic stability of the equilibrium point (12) is

demonstrated in [50] with a locally-Lipschitz Lyapunov function.

Testbed Application Cases

The application of the designed strategy is shown in two different environments of the

testbed in “An experimental testbed for lighting systems”.

Divided Environment: The control objective in this case is to obtain a uniform illuminance

for all zones (Eseti = Eset, for all i = 1, 2, . . . , 8). To show the influence of the communication

network, two topologies are chosen to indicate the information exchange among local controllers

(including the fictitious zone denoted by FZ). The extended graphs (Gadd) for the application of

the distributed replicator dynamics are presented in Figure 11. It is worth remarking that the

fictitious zone does not represent a real controller in the system, but some extra software tasks

in one of the controllers where the FZ is attached to. Nevertheless, a communication channel is

needed between the nodes with links to FZ (if there exists already a link, no modifications are

required in the original network).

Figure 12 presents the results of the control process. Dashed and solid lines for cases 1

and 2, respectively, show the behavior of the measured illuminance in each sensor (right axis

and black lines), and the voltage applied to each lamp (left axis and blue lines). The setpoint

(red-dotted line) is achieved in all the zones after an initial transient period, according to the

expected results. Given that zones are uneven, the required power at each lamp is different in

order to obtain the uniformity in the environment.

To simulate the influence of the daylight, in t = 40 s an external light is applied to the

environment through a window close to zones 7 and 8 (see Figures 12(d), and 12(h)). It is shown

that the resources are reallocated to react against the disturbance and to reach again the setpoint.

Voltages applied to the lamps are reduced taking advantage of the daylighting, representing better

use the available resources and energy savings. Notice that the reduction on the necessary power

to maintain the desired illuminance is significant and zones 7 and 8 are the most affected by the

disturbance. At t = 60 s, the window is closed and the correction on lamp voltages allows the

system to achieve again the setpoint.

The closeness of the fictitious zone to certain nodes influences the transient behavior.

In the first case, zones 7 and 8 presented in Figures 12(d) and 12(h), respectively, reach the

equilibrium point faster than the farther zones, while in the second case, zones 1 and 8 are the
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fastest ones. With the definition of the payoff in FZ, this node has relevant information about the

equilibrium state. Therefore, closer zones need less time to access this data across the network

and their dynamics are faster.

Open Environment: The uneven cross-illumination effects are enhanced in this envi-

ronment and the high variable couplings represent a more challenging control problem with

interesting results. The desired reference in this case changes from Eset = 6 V (during the first

100 s) to Eset = 5 V (from t = 100 s to t = 200 s), and finally it is set to Vset = 5.5 V for the

last 100 s. As in the divided environment, all zones have the same illuminance setpoint and the

network topologies are given by the graphs shown in Figure 11.

Results for the first topology are presented using dashed lines in Figure 13. Although the

total power resources are enough, the desired tracking is only achieved in zones 7 and 8 (see

Figures 13(d) and 13(h)), which are connected to the fictitious zone. In the rest of zones, the

illuminance does not reach the setpoints. It is remarkable that even though the voltages applied

to the lamps 5 and 6 drop to zero (see Figures 13(c), and 13(g)), their illuminance is higher than

the desired setpoint. This absence of resources in certain zones is known as truncation [62] and,

in population-games terms, represents strategies with no population shares. Taking into account

the network topology, these truncated zones are nodes whose participation in the information

exchange is depleted and, in consequence, the graph may become disconnected. This situation

is illustrated in Figure 14(a), where the truncation of nodes 5 and 6 splits the graph into two

separated components.

The truncation in central zones allows the position of the fictitious zone to determine

the connectivity of the graph, which is a necessary condition to perform the resource allocation

process [63]. For instance, in the network topology for case 2 (Figure 14(b)), the resulting graph

is still connected due to the attachment of FZ. In consequence, as it is shown using solid lines in

Figure 13, all untruncated nodes achieve the setpoints since the resource allocation is performed

over the resulting graph including all zones (except the truncated ones). However, due to the

cross-illumination effects, the illuminance in zones 5 and 6 is high even when their lamps are

turned off.

With the distributed replicator strategy, the light influence among zones provides an

opportunity to save energy taking into account a robust network topology to avoid the formation

of insulated components in the graph. Therefore, the location of the fictitious zone is a key factor

for the graph robustness given that the connections of this new node affect the graph topology.

Hence, defining the neighborhood of FZ becomes a design parameter that may connect different

components in a room, distant environments such as different floors in buildings, or increase the

connectedness in weak graph topologies.

Smart Grids

The potential of the population dynamics approach for solving a fundamental problem

that arises in smart grids is now presented and discussed. In particular, the optimal dispatch of

active power of distributed generators (DG) is solved as a dynamic resource allocation problem.

Conventional dispatch problem in power systems consists in minimizing the total generation cost

or in maximizing the total utility of all generators, while the restrictions on power balance and

generation capacity are satisfied [41]. Here, the maximization of utility functions is adopted.

Traditionally, the economic dispatch problem has been solved by static optimization algorithms

[42], or direct search methods [43], which operate off-line in a time interval between five minutes

September 16, 2016 DRAFT



14

to one hour [37]. However, changing environments need new control tools for the management

of distribution systems.

The solution of the optimal dispatch of active power of distributed generators as a dynamic

resource allocation problem based on population dynamics is first presented in [27] in the context

of microgrids. In this context, a microgrid is defined as a set of interconnected distributed

devices, for example generators and loads, which must cooperate with other elements in the

electric network to be collectively treated by the grid as a controllable load or generator. First,

it is considered the case where the dispatch algorithm is being executed at the central controller

of the microgrid. Then, a distributed version of the algorithm is presented, where the dispatch

algorithm is executed in a fully-distributed fashion at each distributed generator.

Dynamic Economic Dispatch Algorithm for Microgrids

A hierarchical dynamic management strategy is presented to deal with the main control

issues related with microgrids. Two control levels are considered. At the lower level of the

microgrid architecture, distributed generators connected to loads through an inverter are found.

The distributed generators are modeled as controllable voltage source inverters. The magnitude

and frequency of the output voltage are controlled by means of a droop-gain controller [64].

For more details about this approach the reader is referred to [26] and references therein. An

illustrative general scheme is presented in Figure 15 for a microgrid with seven distributed

generators (DG 1, DG 2, ..., DG 7) and several loads connected in a electrical topology adapted

from the IEEE 30-bus distribution system.

At the higher level of the microgrid control architecture, it is designed a control strategy

that dynamically dispatches active power setpoints. This controller has to generate the power

setpoints based on economic criteria. In this model, the production costs of active power and load

demands are considered as external inputs coming from the lower level control to the microgrid

central controller, where the dynamic dispatch based on replicator dynamics is being executed.

This fact implies that costs and load demands could be time-varying, allowing the inclusion

of renewable energy resources. The main focus here is on the higher level of the microgrid,

where the dynamic dispatch is executed. The maximization of utility functions for the economic

dispatch problem is adopted including active power generation by means of voltage source

inverter connected to distributed generators at a lower level. The economic dispatch problem

(EDP) can be formulated as follows

max J(p) =
n∑

i=1

Ji(pi),

such that

n∑

i=1

pi =
n∑

i=1

li = PD,

0 ≤ pi ≤ Pmaxi
, for all i = 1, 2, ..., n,

(15)

where pi is the power setpoint for the ith DG, n is the number of DGs, li are the loads, PD is the

total load demanded by the microgrid, Pmaxi
is the maximum generation capacity of the ith DG,

and Ji(pi) is the utility function of each DG. This utility function must be defined according

with the economic dispatch criterion [41], which states that all generation units must operate at
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the same marginal utilities, that is,

dJ1
dp1

=
dJ2
dp2

= · · · =
dJn
dpn

= λ, (16)

for some λ > 0 such that
∑n

i=1 pi = PD. Based on the economic dispatch criterion (16), this

optimization problem can be solved using quadratic utility functions for each DG [27].

Population-Games Approach for Dynamic Dispatch in Microgrids

The population dynamics chosen in this work to deal with the EDP are the replicator

dynamics (3). The replicator dynamics is used to solve the EDP as a resource allocation problem.

Basically, n is defined as the total number of generators in the system and the ith strategy

corresponds to choose one of the n DGs in the microgrid. Each pi is the amount of power

assigned to each DG, and it corresponds to the proportions of individuals that choose the ith

strategy in S . To achieve an appropriate performance in steady state, the load demanded power

(PD) should be the sum of all power set-points, that is,
∑n

i=1 pi = PD. To guarantee the power

balance, the results presented in [65] are used, where the choice of f̄ = (1/PD)
∑n

i=1 pifi
guarantees the invariance of the constraint set ∆ in (1).

This result ensures that if p(0) ∈ ∆, then p(t) ∈ ∆, for all t ≥ 0. In other words, the

control strategy defines setpoints such that they guarantee the suitable balance between demanded

power and generated power by the DGs for all t > 0. This condition produces, in steady state,

a frequency deviation equal to zero and, in consequence, an adequate frequency regulation. In

order to include economical and technical criteria into the control strategy, the power dispatched

to each generator depends on a cost factor and the maximum power generation. An important

characteristic of the replicator dynamics is that its stationary state is achieved when the payoff

functions are all equal to the average payoff f̄ . This condition is the link between replicator

dynamics and the EDP, since it is equal to the economic dispatch criterion (16) choosing the

payoff function to be

fi(pi) =
dJi
dpi

, for all i = 1, 2, ..., n. (17)

Based on the economic dispatch criteria (16), which guarantee that the solution is optimal while

satisfying the constraints, these optimization problems can be solved using payoff functions as

marginal utilities based on the fact that all payoff functions are equal to f̄ . The selected payoff is

a function that increases (decreases) when the power is far (near) from (to) the desired setpoint.

In this form, the replicator allocates more (less) resources to those generation that have a payoff

that is above (below) the average. This behavior can be modeled using a logistic-type function

[66]. In general form,

f(y) = ry
(

1−
y

K

)

,

where y is the independent variable, and K is a parameter known as the carrying capacity such

that y ∈ (0, K). The particular payoff functions related to the EDP use as parameters the nominal

power (as carrying capacity) and a generation cost factor (ci) of each DG. Then, according to

(17), the payoff functions of each DG are defined as

fi(pi) =
dJi
dpi

=
2

ci

(

1−
pi

Pmaxi

)

, for all i = 1, 2, ..., n. (18)
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In addition, the fact of using all payoff functions as marginal utilities leads the population game

to be a potential game, which implies that Nash equilibria correspond to the Karush-Kuhn-Tucker

first-order necessary conditions [67]. The payoff functions in (18) lead to the following quadratic

utility functions for each DG in the optimal dispatch problem [27]

Ji(pi) =
1

ci

(

2pi −
p2i

Pmaxi

)

, for all i = 1, 2, ..., n. (19)

On the other hand, if (3) is taken in steady state, that is ṗi = 0, and pi > 0, the equilibrium point

is an optimal point for the resource allocation related to a wide family of payoff functions [68].

This payoff function has been used in several works such as [27], [26], [69], among others.

Distributed Replicator Dynamics for Optimal Dispatch

The dispatch algorithm presented previously requires a centralized controller with a high-

bandwidth communication infrastructure as the number of nodes increases to handle information

from every single node along the distribution system. Therefore, distributed control algorithms

are becoming promising approaches in the context of smart grids since they can be more robust

and resilient to network variations. The replicator dynamics equation needs full information

from all the agents to calculate f̄ . The replicator dynamics can be understood as a multi-agent

controlled system, where each agent dynamics are described by (3), and the controller that

receives the state information of all agents is given by the average payoff. It has been assumed

that the communication between agents and the controller is ideal and that full information is

available, which sometimes in real implementations is not possible due to limitations induced

by the communication network. However, replicator dynamics as a network control system have

been shown independent of delays [70]. In addition, in [67] it is suggested that contractive

games admit global convergence results under evolutionary dynamics. To analyze the effects

of the communication infrastructure in the optimal dispatch algorithm, it has been proposed a

distributed version of the replicator dynamics algorithm to respond dynamically to the needs of

the microgrid assuming that no full information is available. A distributed replicator dynamics to

dispatch distributed generator over a communication topology in a microgrid is proposed based

on (8). The distributed replicator dynamics consider local information from the neighbors of a

given agent in an interaction network. In order to guarantee that the related optimization problem

can be solved, Assumptions 1 and 2 are considered.

Assumption 1. The communication graph between generation units is undirected and

connected.

Assumption 2. The Nash equilibrium p∗ belongs to the interior of the simplex ∆.

Assumption 1 implies that all generators are communicated. A neighborhood of agents

are necessary to calculate a local payoff function for each generator. Assumption 2 is related

to the problem feasibility. If the demand is lower than the capacity of the generators, then it

means that the total capacity of power generation is inside the simplex and the solution of the

optimization problem can be found. On the other hand, since the utility functions are concave

then the solution of the problem is unique. In addition, in steady state the balance condition is

satisfied.

The full-information constraint for the average payoff is modified to include the

communication graph between the generators. A communication infrastructure with limited

message passing can be effectively used among the multi-agent system. To guarantee the power
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balance, the results presented in [71] are used, where it is proven the invariance of the constraint

set ∆. The full-information constraint for the calculation of the original average payoff is relaxed

and the distributed replicator dynamics equation can be used to satisfy the network constraints in

the general EDP given by the topology of the graph. Some additional features of the distributed

replicator dynamics can be discussed. First, the steady state of (8) is achieved when

fi(p
∗
i )
∑

j∈Ni

p∗j =
∑

j∈Ni

fj(p
∗
j)p

∗
j for all i = 1, . . . , n, (20)

which is satisfied if fi(pi) = fj(p
∗
j), for all j ∈ Ni and all i. Considering that Assumption 1

holds, the following condition is satisfied

fi(p
∗
i ) = fj(p

∗
i ) = f̄ ∗, (21)

where f̄ ∗ is the equilibrium average payoff. Then, at steady state all payoff functions are equal

and all individuals earn the same payoff. Hence, the distributed replicator dynamics equation

and the replicator dynamics equation have the same equilibrium point p∗. On the other hand,

the coverage of the total demand is respected because the set ∆ is also invariant under the

distributed replicator dynamics equation. This property has been proved in [71] using some

topological properties of the connected graphs to show that
∑

i ṗi = 0 when p(0) ∈ ∆. With

this property, it is ensured that the demanded power PD is supplied by the DGs in the dispatch

process.

Considering that (20) is only a possible condition to satisfy (21), a stability analysis of

this equilibrium point is required to show the convergence from any p(0) ∈ ∆ to the point

of maximum utility J(p∗). The main stability result has been recently presented in [71] as a

proposition, which states the general payoff functions conditions to guarantee the convergence

of the method.

Proposition 1 ([71]): If fi is a strictly decreasing locally Lipschitz function,
∑n

i=1 Pmaxi
≥ PD, p(0) ∈ ∆p, and fi(pi) > 0 for all 0 ≤ pi ≤ Pmaxi

, then the equilibrium point

p satisfying (21) is asymptotically stable in ∆ under the distributed replicator dynamics (8).

According to the payoff definition in this specific application, the equilibrium point of (8) is

maximizing the utility functions in the system.

Simulation Results for the Dynamic Dispatch Algorithm

The dynamic economic dispatch algorithm based on distributed replicator dynamics (8)

is tested here for a low voltage microgrid case study of seven distributed generators with several

loads connected in a electrical topology adapted from the IEEE 30-bus distribution system [41].

An unpredicted increase in the total demand is activated at t = 0.8 s. This unpredicted load can

take negative values and can be considered as a non-dispatchable DG or intermittent renewable

resource. The microgrid test system is shown in Figure 15 (a) with total power demand PD = 9
kW, an unpredicted load increase of 3 kW, and different costs for each generator with DG 7

as the more expensive and with DG 3 as the cheapest. DG 1, DG 4, DG 5, and DG 6 are

similarly expensive, while DG 2 is cheaper. The microgrid is started from zero initial conditions

and is operating at a frequency of 60 Hz. The capacity of generators DG 1, DG 2, DG 3, DG

4, DG 5, DG 7 is 3.6 kW (Pmax1,2,3,4,5,7 = 3.6 kW), and the capacity of generator DG 6 is 2 kW

(Pmax6 = 2 kW). Figure 15 (b) shows the topology of the communication network between the

DGs. It has been considered that through this topology the DGs interchange information about
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the dynamic power dispatch of each DG.

The control inputs have been calculated using a Matlab/Simulink model using SimPower

on a Core i7 laptop with 4Gb RAM. Figure 16 (a) shows that the frequency of the microgrid

is maintained between an operational interval (less than +/−0.2 Hz) all the time since the

power balance is kept at a minimum and the response of the distributed replicator algorithm is

dynamic and continuous. It can be observed when an increment in load at t = 0.8 s is made

and the frequency has a small variation but stabilize to zero again. In Figure 16 (b) is shown

the power dynamically dispatched for each generator. It can be observed that, at the beginning,

generator DG 7 (more expensive) is dispatched to a minimum power during the low demand

intervals due to the high generation cost, while the generator DG 3 (cheapest) is dispatched near

to its maximum capacity and remains near that value despite load variations. However, when

the demand is increased at t = 0.8 s, generator DG 7 increases its power to compensate the

increased demand. It is also noticed that due to less capacity the expensive DG 6 reaches its

maximum capacity at the load variation. Finally, it is shown that DGs with similar parameters

have similar responses, as it is the case of DG 1, DG 4, DG 5, and DG 6. DG 2 is dispatched

near to its maximum capacity since it is a cheap generator.

Urban Drainage Systems

Urban Drainage Systems (UDS) are large-scale systems composed of arrangements

of channels connected by chambers, which transport wastewater, stormwater, or both. These

elements may be represented by interconnected reservoirs able to store wastewater, that is,

elements that store wastewater within the UDS may be grouped and simplified as a unique

reservoir for control purposes as made with the concepts of virtual tanks in [72]. Besides, the

chambers composing the UDS may be of inspection and/or collection. The efficiency of the

UDS is given by their capacity to perform under specific design conditions along the time.

For instance, some specific design conditions are the average velocity, the Froude number, the

filling ratio, among others [73]. In order to meet these design conditions, UDS are regulated by

using measurements collected by proper equipment and also using knowledge about the control

structures; for instance, retention gates as presented in [72]. Regarding the structure topology

of UDS, these systems might be commonly characterized by a tree topology (or also known as

dendritic) [74]. Under this specific type of topology, clusters of channels in the UDS converge

to a unique drain point. Moreover, each cluster is known as a stage within the whole system.

Broadly speaking, the UDS can be modeled by using either an hydrological or hydraulic

approach. The hydraulic model is mainly based on physics. For instance, the Navier-Stokes

equations, or their particular well known case, the one dimentional Saint-Venant equations [75].

On the other hand, the hydrological model is mainly based on the mass conservation principle,

and it is also considered as an hydraulic model simplification. Even though the hydrological

models are not accurate for transient processes, these models are useful to characterize the

distribution of flows along the UDS and coming from exogenous non-manipulated sources or

events. Besides, the hydrological models do not demand high computational costs in comparison

with the hydraulic models, which is a relevant aspect when designing real-time control, but might

be a relevant source of uncertainty for both the evolution and management of the system.

Furthermore, computational burden is a quite relevant aspect taking into account that the

UDS are large-scale systems involving a large number of states and control inputs that have to

be computed in a limited time, for instance, it is expected that a centralized controller requires
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more time than a non-centralized controller computing less number of control inputs.

One of the main control objectives considered for large-scale UDS is the minimization

of overflows, that is, fluids released to the receptor environment and/or streets. To this end, it is

used to solve a resource allocation problem at each stage that UDS have. This is made by using

a decentralized population-games-based controller. Consequently, due to the fact the controller is

in charge of managing fluids, a flow-based hydrological model is appropriate to characterize the

behavior of the system from the control-oriented point of view. Finally, it is also contemplated

that rain events might occur unexpectedly along the time. Therefore, rain events are treated

as UDS disturbances. The selected UDS dynamics are given by the Muskingum linear model,

which is an hydrological-based model (see “Muskingum model”).

System Partitioning and Control via Population Dynamics

The stated decentralized population-games-based control consists in dividing the UDS

into N different sub-systems with the same local topology. The control scheme is decentralized

since the different controllers for each sub-system neither interact to each other nor exchange

information in order to compute the optimal control inputs. Then, a population dynamics-based

controller is designed at each sub-system. This population dynamics approach has been already

studied in [76] and [31] as a data-driven control approach. Prior showing the methodology

to design the population-games-controller, an analogy between each element of the population

dynamics approach and the elements in UDS is presented in Table 1.

Regarding the system partitioning issue –the division of the UDS into N sub-systems–,
and taking into account the fact that each sub-system is controlled independently by solving

a resource allocation problem with population dynamics, the criterion to define the partitions

consists in finding sub-systems whose structures are given by a convergence-flow topology

according to Definition 4.

Definition 4: Flow-Convergence Topology. This topology is composed of n reservoirs

whose outflows correspond to the inflows of a common reservoir as presented in Figure 4(a)

[31]. In this topology, n reservoirs with outflows converging to a common one are called source

reservoirs, and the reservoir whose inflow is given by all the outflows from source reservoirs

is called receptor reservoir. Notice that the topology presented in Figure 4(c) corresponds to a

case of flow convergence with a single source reservoir. ♦
The partitioning of the UDS is performed by dividing the whole system into cases of

flow convergence, each one of them controlled by a local population-games-based controller,

that is, the entire control system for the UDS is composed of N local controllers that do not

communicate with each other and which operate independently and in parallel, composing a

non-centralized control topology.

In the case of flow convergence topology with more than one source reservoirs, the set

of source reservoirs is given by S = {1, ..., n}. The volume of the reservoir i ∈ S is denoted

by vi, its maximum volume capacity is denoted by v̄i, and its inflows and outflows are given

by qin,i and qout,i = Kipivi, respectively. The parameter pi ∈ [0, 1] determines the percentage

of opening of the output gate associated to the ith reservoir, and Ki > 0 scales the outflow,

whose interpretation can be associated to a discharge coefficient of the reservoir. The volume of

the receptor reservoir is denoted as vr, and its maximum volume is denoted by v̄r. Besides, the

control input p should satisfy the simplex set describing all the possible strategic distributions

given by (1). Notice that, for the particular case of flow convergence with only one source
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reservoir (S = {1} is a singleton set), the reservoir outflow is given by pi = m, i ∈ S .

The inflow of the receptor reservoirs are not considered to be physically constrained since

it is assumed that their maximum possible inflows, according to the discharge coefficients and

the maximum volumes of the respective source reservoirs, are supported by the infrastructure

of the system. However, the inflows of the receptor reservoirs are constrained in function of the

available capacity of these reservoirs. This fact allows the source reservoirs to retain wastewater

if it is necessary to avoid overflows as it is explained next.

The population mass is selected to have an upper bound m ≤ ℓ, where ℓ is a design

parameter. Therefore, the value for the population mass m, which determines the upper limit

for the output gates percentage, varies every selected period time τ depending on the measured

volume of the receptor reservoir, that is, m = ℓ (1− vr/v̄r). Notice that if ℓ is selected greater

than one, then it is possible that, in the evolution of the portion of the mass of players, pi takes

values greater than one, for any i ∈ S . However, since the opening percentage should belong

to the interval [0, 1], the control signal would be saturated because of the actuator physical

constraint. Therefore, in this article it is proposed to establish the design parameter ℓ = 1,

guaranteeing that pi ∈ [0, 1] for any population mass m = ℓ (1− vr/v̄r).
For instance, let m = m1 be the population mass corresponding to the case of flow

convergence shown in Figure 4(a), and let m = m2 be the population mass for the example shown

in Figure 4(b). Due to the fact that the current volume of the receptor reservoir vr presented in

the example of Figure 4(a) is greater than the current volume of the receptor reservoir presented

in example Figure 4(b), then m1 < m2 since at the second scenario there is more available

volume at the receptor reservoir. Similarly, comparing the examples shown in Figure 4(c), and

4(d) with population mass m = m3, and m = m4, respectively, it is obtained that m3 < m4 due

to the available volume at the receptor reservoir.

Assumption 3: The n source reservoirs in the flow-convergence topology have the same

discharge coefficients, i.e., Ki = K, for all i ∈ S . ♦
Assumption 3 implies a direct relationship between the constraint over the opening

percentages in the valves and a constraint over the total inflow of the receptor reservoir. To

clarify this fact, let ṽ = max(v1, . . . , vn) be the maximum current volume of the source reservoirs.

Therefore, the maximum possible inflow to the receptor reservoir is constrained by the upper

bound Kmṽ. It follows that if the constraint
∑

i∈S Kipi = Km is considered, then according

to Assumption 3, it is obtained that
∑

i∈S pi = m, which is a constraint over the opening

percentages of the valves. As as result, the total inflow of the receptor reservoir is constrained

by
∑

i∈S Kpivi ≤ Kmṽ, where m ∈ [0, 1] since ℓ = 1.

According to the condition for the payoff functions in a UDS system presented in [77], the

payoff function should be increasing with respect to the current volume at the source reservoir.

Hence, the considered payoff function to control the flow convergence topology is selected

considering the normalized outflows using the current volumes and the discharged coefficients,

that is,

fi(pi) = −

(

1

Avi
v̄i
+ ε

)

︸ ︷︷ ︸

θi

pi, (22)

where A fixes the slope rate of the payoff function, and ε ∈ R>0 is a small factor that prevents

an indetermination of fi when the ith reservoir is empty. Moreover, the payoff function in (22)

for the strategy i ∈ S only depends on the volume vi and the proportion of agents pi, making the
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function appropriate in the decentralized control design due to the fact that only local information

is required. Besides, the payoff function represents a full-potential game with potential function

given by V (p) = −1
2

∑

i∈S θip
2
i , where θi > 0, for all i ∈ S . The potential function V (p) is a

strictly concave function. Therefore, according to Theorem 1, the existence of a strictly concave

potential function implies the uniqueness of a Nash equilibrium.

Consider again the example shown in Figure 4(a), where v1
v̄1

> · · · > vi
v̄i

> · · · > vn
v̄n

,

which implies that θ1 > · · · > θi > · · · > θn. Then, in the population game, it is expected that

p1 > · · · > pi > · · · > pn, assigning more priority to those reservoirs that are more filled up

incrementing their outflow, and consequently avoiding overflows. More specifically, consider the

example shown in Figure 4(a) with population mass m = 1, and with n = 3 whose discharge

coefficients are equal, that is, K1 = K2 = K3 = 1, and with parameters A = 1, and ε = 0.1. The

maximum volumes of the reservoirs are v̄1 = 15m3, v̄2 = 13m3, and v̄3 = 10m3. Suppose that

the current volumes at the reservoirs 1, 2, and 3 ∈ S are v1 = 10m3, v2 = 5m3, and v3 = 1m3,

respectively. Considering the payoff function of the form in (22), it is obtained f1 = −1.3043p1,
f2 = −2.0635p2, and f3 = −5p3. Therefore, the Nash equilibrium for this game is given by

p∗1 = 0.5283, p∗2 = 0.3339, and p∗3 = 0.1378 since with this distribution it is obtained that

f1(p
∗
1) = f2(p

∗
2) = f3(p

∗
3). It follows that a bigger outflow is assigned to the fullest reservoir.

For the population dynamics design, the replicator dynamics with full information in

(3) are implemented. Then, the closed-loop controller is completed for each stage within the

whole UDS. The feedback is made by measuring information about the current volume at each

reservoir, and by using the constant information about the maximum capacity at each reservoir.

With this measured information, each controller finds the proper population mass and computes

the proportion of agents in order to establish a proper control signal at the valves of each sub-

system. The detailed closed-loop control scheme for each sub-system is presented in Figure

5.

It is worth noting that the way in which population dynamics are applied to solve

engineering problems is flexible. This property is due to the fact that the key issue for

designing population-dynamics-based controllers lies in the selection of the analogy between

the engineering problem elements and the population game elements. This analogy is not unique

in several cases. For instance, in the approach described in this section, the population mass was

associated with the sum of the opening percentages of the source reservoirs valves. However,

there exist other possible analogies, such as choosing the sum of the source reservoirs inflows

as the population mass. In all cases, analogies have to be designed taking into account that

population-dynamics-based controllers seek to dynamically distribute a certain resource among

a set of entities to achieve a desired goal.

Case Study

The considered case study consists of the Bogotá (Colombia) stormwater UDS shown in

Figure 6, which is divided into several flow-convergence cases. In this particular UDS, there

are 163 sub-systems and, consequently, there are 163 decentralized population-games-based

controllers. For instance, consider the segments of the UDS highlighted with blue color. These

two parts of the network are presented in Figure 7. There are five different sub-systems in the

segments presented in Figure 7 that are summarized in Table 2.

Figure 8 presents the communication layer, that is, it is shown 163 decentralized

population-games-based controllers, the information that each controller measures and the control
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actions that each controller establishes. Moreover, Figure 8 shows each closed-loop as the one

presented in Figure 5.

The system is tested for an abrupt rain scenario that causes overflows. The direct run-off

hydrographs that represent the system disturbances are presented in Figure 9.

Notice that the decentralized population-games-based controller is composed of N local

controllers, then it is assumed that there is fully-available local information at each sub-system.

The volumetric capacity of each reservoir is defined as the normalized volume of the ith reservoir

denoted by ṽ that is, ṽ = vi/v̄i where v̄i is the maximum volume of the ith reservoir. Then, a

flooding event occurs when the volume in a reservoir vi is greater than v̄i, that is, when ṽ > 1.

Moreover, when considering normalized volumes, different reservoirs with different maximum

capacities are compared properly according to an available capacity percentage. As previously

said, the control objective is to avoid the overflows throughout the UDS. To this end, it is taken

advantage of all the available volume capacities into the whole network. At each sub-system,

there is a controller managing the outflows of the source reservoirs and distributing their current

available capacity.

The evolution of the normalized reservoir volumes for the case without control are

presented with blue color in Figure 10, whereas the evolution of the same reservoir volumes

for the case with the decentralized population-games-based control are presented with black

color in Figure 10. It can be seen that, with the decentralized population-games-based control,

the overflows are avoided by doing an optimal distribution of flows throughout the system.

Furthermore, the total volume of overflows for the case without control is 7770.2m3, which

is completely reduced with the designed decentralized population-game-based control, that is,

the volume of wastewater released to the receptor environment is 0m3 with the decentralized

controller. It is pointed out that both cases with and without the population-games-based control

are simulated with the same disturbances (rain events).

Concluding Remarks

Nowadays, engineering infrastructures are becoming complex systems given their large-

scale nature complemented by the inherent nonlinearities of their compositional elements. Given

that fact, several methods and approaches towards overcoming management and control problems

for such large-scale systems have been presented and discussed, taking into account the concept of

agents as baseline. Considering this modular methodology of splitting the system into subsystems

related to agents, game theory, and particularly evolutionary game theory (EGT), appears as a

way of handling the interaction between the agents defining the large-scale system in order to

reach the control objectives seen as welfare relations within the EGT framework. This paper has

highlighted the advantages of using EGT for the management and control of real engineering

problems by means of showing the design and application of distributed control strategies for

three relevant problems directly related to the framework of the smart cities. Specifically, this

article shows the performance of EGT for designing local controllers towards fulfilling a global

objective. This fact allows to implement non-centralized control strategies without a central

coordinator and allowing to save computational time given the modularity of the entire control

solution. Hence, this particular feature of a closed-loop topology based on EGT gives rise to

considering other added advantages such as the potential inclusion of fault tolerance capabilities

into the controller designs, key property when handling large-scale critical infrastructure systems.
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In general, open problems related to the way the proposed control strategies must be

decentralized, become scalable, and incorporate robust features may be discussed. In this sense,

newer techniques should combine economic incentives, as well as the necessary amount of

information to guarantee that we can add more elements to the system without having to

entirely reconfigure the system. For the smart lighting application, the distributed characteristics

of the proposed technique allow the algorithm to be implemented over large-scale systems

with connected-graph communication structures. To solve resource allocation problems, the

methodology facilitates the inclusion of new nodes to the network with simple plug-and-play

controllers or special-purpose devices. In this sense, energy efficiency programs, demand response

strategies, and optimization of wireless sensor networks can be considered as future work in the

building automation field.

The distributed replicator dynamics approach used to solve the economic dispatch

problem in the smart grid context could be extended to tackle several important issues such

as including power losses, the physical power flow constraints, or the variability of renewable

generation. Finally, regarding the UDS, although the proposed control approach can cope with

overflows, more control objectives may be considered for their management, for instance, the

minimization of operational costs given by the energy consumption of actuators to regulate the

flows, or the minimization of the time spent for carrying the wastewater towards the treatment

plant. The incorporation of additional control objectives are proposed as further work in the

design of decentralized population-games-based controllers for UDS.
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Sidebar: Rock-paper-scissors game in a population with different types of

interactions

The strategies employed by the individuals within a population can constraint their

interactions. To illustrate this fact, consider the example depicted in Figure S1. This figure shows

two populations where individuals are playing the classic rock-paper-scissors game. Assuming

that players can only be matched with their neighbors, each population exhibits a different type

of interactions. On the one hand, Figure S1(a) shows a population with unconstrained interactions

since a player that chooses a certain strategy can interact with players that choose any other

strategy. For instance, consider the payer marked with the circle drawn in solid blue line. The

neighborhood of this player (which is marked with the circle drawn in dashed red line) contains

individuals playing all the available strategies. On the other hand, Figure S1(b) shows the same

population game, but with strategy-constrained interactions. In this case, notice that the allowed

interactions depend on the strategies of players. For instance, an individual that choose scissors

to play can not encounter an individual playing rock.

(a) (b)

Figure S1. A population game with two different types of interactions: (a) Unconstrained

interactions. (b) Strategy-constrained interactions. Each element represents a player, and the shape

of the element (rock, paper, or scissors) denotes the strategy that the player has adopted. Notice

that, in populations with unconstrained interactions, each player can interact with individuals

that are playing any strategy. By contrast, in populations with constrained interactions, allowed

interactions are restricted by players’ strategies.
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Sidebar: The relationship among matricial games, full-potential population

games, and resource allocation problems

Matrix game

Consider a two-player symmetric matricial game as in Table S1.

TABLE S1

MATRICIAL REPRESENTATION OF THE COORDINATION GAME

Player 2

P
la

y
er

1 1 2 3

1 -1,-1 0,0 0,0

2 0,0 -2,-2 0,0

3 0,0 0,0 -3,-3

This game is known as coordination game. Assigning a different interpretation of the

game, suppose that each player represents an animal selecting among three possible habitats

from the set of strategies S = {1, 2, 3}, which represent the strategies. The payoff describes the

amount of available food and/or the reproduction chances. Players one and two select a strategy

in order to maximize their utilities denoted by u1, and u2, respectively.

Moreover, suppose that player one selects strategies 1, 2, and 3 ∈ S with probabilities

p1 = [p11 p12 p13]
⊤, whereas player two selects the same strategies with probabilities

p2 = [p21 p22 p23]
⊤, where

∑3
i=1 p

1
i = 1, and

∑3
i=1 p

2
i = 1. The Nash equilibrium is given

by p1∗ = p2∗ = [6/11 3/11 2/11], since under this scenario, there is no incentive for any

player to change their strategic distribution to increase their utilities. Let E1(p
1,p2) be the

expected utility of player one given by

E1=−p11p
2
1− 2p12p

2
2− 3(1− p11 − p12)p

2
3,

=−0.54,

and, let E2(p
1,p2) be the expected utility of player one given by E2 = −0.54.

Population game

Now, consider a population composed of a large and finite number of animals which may

select among three different habitats given by S = {1, 2, 3}. Figure S2 shows the population and

each color corresponds to a strategy. Animals can interact each other to compare their utilities

and determine whether it is better to change habitat.

The scalar pi ∈ R≥0 represents the proportion of animals selection the strategy i ∈ S .

Moreover, p ∈ R
n is the population state, and the set of possible population states is given by
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Figure S2. A population with three available colored strategies.

∆ = {p ∈ R
n
≥0 :

∑

i∈S pi = 1}. Payoff functions are given by

f(p) =





−1 0 0
0 −2 0
0 0 −3



p.

The evolution of the population states p for three different initial conditions under the replicator

dynamics are shown in Figure S3. Notice that all the trajectories converges to the equilibrium

p*

Figure S3. Evolution of proportion of animals to the equilibrium point from three different

initial conditions.

point p∗ = [6/11 3/11 2/11].

Potential games and resource allocation problems

The coordination game is a full-potential game with potential function

V (p) = −
1

2
p21 − p22 −

3

2
p23,

since f(p) = ∇V (p). The potential function and its projection over the simplex are presented in

Figure S4. Notice that the Nash equilibrium coincides with the maximum point in the potential

function. Consequently, it is possible to maximize a function subject to the constraint given by

the simplex
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Figure S4. Potential function and its contour projection over the simplex.

max
p∈∆

V (p),

subject to
∑

i∈S

pi = 1,

pi ≥ 0, for all i ∈ S.

The optimization problem is of the same form as a resource allocation problem with a concave

cost function and constraints related to a total resource and positivity.
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Sidebar: An experimental testbed for lighting systems

A lighting environment is represented by the testbed shown in Figure S5, where luminaries

are small incandescent lamps in the roof of the box and sensors are the photocells in the floor.

The lamps are driven by power amplifiers and the sensor signals are obtained by a voltage-divider

array interfaced by a dSPACE DS1104 DAQ board to Simulink programs.

Figure S5. Experimental testbed to model an eight-zones environment. Each zone composed

by close lamps and photocells can be divided by “walls” to emulate different cross-illumination

conditions. The control strategy is implemented in Simulink through a dSPACE DS1104 DAQ

board.

The environment is divided in eight zones, each one with a lamp and a sensor distributed

unevenly across the room. In this representation, the influence among zones or cross-illumination

can be varied by cardboard “walls” or partitions with different heights, such that the higher the

divisions, the lower the influence of other zones. Therefore, open or divided environments can be

emulated. Moreover, the box has a window in the rightmost side to simulate daylight and show

the effects of this disturbance over the system. The control goal is to reach a desired illuminance

setpoint at each zone with a limited available power, handling disturbances and inter-zone effects.
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Zone 1 Zone 2

Zone 3 Zone 4

Zone 6

Zone 8

Figure S6. Testbed schematics of different environments. The former (left) emulates a system

with cubicles separated by half-size walls. The latter (right) represents an open environment with

high cross-illuminance effects. The resource allocation process is performed to split a selected

available voltage among the lamps to obtain desired illuminations in each zone. Therefore, the

second case is more challenging because of the significant variable coupling.

Two cases are considered to show the adaptability of the population-based methodology.

The first case represents a lighting system with half-size divisions, such that the cross-illumination

is not negligible, but reduced. The second case is an open environment to observe the effect

of coupling among zones and how to use it to provide energy savings. A schematic of the two

environments is presented in Figure S6. In both cases, it is assumed that the resources are enough

to achieve the desired illumination levels in the environments.
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Sidebar: Muskingum model

The Muskingum model is a linear hydrological-based model that allows to describe the

behavior of UDS by using the mass conservation principle. For the ith reservoir is given by the

following differential equation and relation between its inflows and outflows [S1]

vi =γi (Iili +Oi(1− li)) ,

v̇i =Ii −Oi,

where vi is the volume of the reservoir, γi is a parameter for the model calibration, li is the

reservoir length, and Ii and Oi are the inflows and outflows, respectively. Then, by expressing

the outflows as function of vi, Ii, li, and γi, it is obtained that

v̇i =
1

1− li

(

Ii −
vi
γi

)

v̇i =qin,i −Kipivi,

where qin,i = Ii/(1 − li), qout,i = Kipivi, and Kipi = 1/(γi − γili). Furthermore, pi ∈ [0, 1]
determines the control input over the output gate, which sets its grade of opening (that is, zero

is completely closed, and one is completely opened).

References

[S1] V. Te Chow, Open channel hydraulics. McGraw-Hill Book Company, Inc; New York, 1959.
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List of Figures

1

2

3

1 2 3

(a) (b)

Figure 1. Graph representation of the two types of interactions described in Figure S1:

(a) Unconstrained interactions. (b) Strategy-constrained interactions. For notational purpose the

available strategies are indexed (1 corresponds to rock, 2 corresponds to paper, and 3 corresponds

to scissors). Notice that, while unconstrained interactions are represented by complete graphs,

strategy-constrained interactions are represented by non-complete graphs

paper

rock scissors

paper

scissorsrock

(a) (b)

Figure 2. Trajectories of the rock-paper-scissors game under two population dynamics: (a)

Replicator dynamics. (b) Smith dynamics. Each color corresponds to a trajectory generated with

a different initial condition. Notice that all the trajectories are inside the simplex ∆, whose limits

are drawn in black color. This fact is given since replicator and Smith dynamics satisfy mass

conservation and nonnegativity of the states.

September 16, 2016 DRAFT



38

(a) (b)

Figure 3. Convergence to Nash equilibrium in a full-potential game under: (a) Replicator

dynamics. (b) Distributed replicator dynamics. A population playing a full-potential game and

evolving following these dynamics tends towards the Nash equilibrium of the game. In addition,

the Nash equilibrium matches the maximizer of the potential function.

(a) (b) (c) (d)

Figure 4. (a) and (b) exhibit a convergence topology with n source reservoirs and one receptor

reservoir [31]. (c) and (d) exhibit a particular case of convergence topology with only one source

reservoir.

UDS

Population-games-based

controller

vp

Figure 5. Closed loop for each sub-system (partition) of the UDS.
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Figure 6. Large-scale drainage system in Bogotá-Colombia. The network at the Chicó

neighborhood, which is located at the north of the city. This UDS system has 219 sub-catchments

that drain to 219 collection chambers. Clusters of different catchments are simplified into

reservoirs as in [72], and the system dynamics for control purposes are modeled with the

Muskingum linear reservoir model.
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Figure 7. Example of five sub-systems, each one of them with various source reservoirs and only

one receptor reservoir. Some reservoirs (for example those highlighted into the figure) might be

source and receptor for two different partitions, simultaneously. The sub-systems are composed

of reservoirs 41, 102, and 183; 41, 90, and 182; 20, 22, and 93; 20, 21, and 101; 12, 21, 212,

and 214.
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Figure 8. Communication layer for each controller. The red arrows correspond to the measured

information, and the blue arrows correspond to the computed control inputs. Each controller

presented by gray circles has a closed-loop scheme as the one presented in Figure 5. Furthermore,

notice that the controllers are local and use partial information from the UDS. Besides, due to the

fact each controller only computes a small portion of the total control inputs, the computational

burden is reduced with respect to a centralized controller computing the 219 control inputs.
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d
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Figure 9. 219 Direct run-off hydrograph. The run-off hydrograph di = 0 for i = {1, ..., 219} in

the interval of time 0[hours] ≤ t ≤ 40[hours], and 70[hours] ≤ t ≤ 480[hours]. These rain events

are unknown and considered as disturbances for the UDS.

Figure 10. Evolution of normalized volumes along 20 days. Blue lines correspond to the scenario

without control, and black lines correspond to the scenario with decentralized population-games-

based control. Figure shows the evolution of the normalized reservoirs volume where overflows

occur without control, that is, reservoirs 5, 10, 12, 13, 14, and 24; and their involved reservoirs

in the same local controller, that is, 4, 21, 26, 30, 73, 76, 181, 212, and 214 (these reservoirs

correspond to the controllers c123, c53, c63, c49, and c59).
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(a) First case.
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(b) Second case.

Figure 11. Graph structures for the lighting system. Given the network structure for the real

zones, the inclusion of the fictitious zone (FZ) requires an extra link between nodes 1 and 8

only in the second case, since in the first one, there already exists the link (7, 8).

Figure 12. Testbed results for the divided environment. Dashed and solid lines represent the

responses for the networks in cases 1 and 2, respectively. Illuminance of each zone (left axis and

black lines) and voltage applied to each lamp (right axis and blue lines) are shown for the two

cases, while the illuminance set point (Eset) is presented in red. The desired uniform illuminance

is reached in all zones even when a disturbance is applied between t = 40 s and t = 60 s. The

disturbance emulates daylighting through a window in the environment.
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Figure 13. Testbed results for the open environment. Dashed and solid lines represent the

responses for the topologies in cases 1 and 2, respectively. Illuminance of each zone (left axis

and black lines) and voltage applied to each lamp (right axis and blue lines) are shown for

the two cases, while the changes in illuminance setpoints (Eset) are presented by the red line.

Due to the truncation of zones 5 and 6, the resource allocation within the first network is not

successful due to the formation of unconnected components. In the second case, the fictitious

zone connects the graph and the desired setpoints are reached except in the truncated zones.
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Figure 14. Graph structures with truncated zones. In the first case the truncation splits the

graph into two components. The location of the fictitious zone (FZ) in the second case connects

the graph despite of the truncated zones.
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Figure 15. Microgrid test system with seven distributed generators and several loads: (a) An

illustrative general scheme of a microgrid model adopted from a IEEE 30-bus distribution system

and (b) graph representing the topology of the communication network between DGs.
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Figure 16. Results obtained with distributed replicator dynamics for the microgrid test system:

(a) frequency response at the main grid bus, and (b) DGs active power response. As seen in

(a), the distributed replicator dynamics returns the operating frequency of the mcirogrid to its

nominal value. Figure (b) shows that when the demand is increased at t = 0.8 s, the expensive

generator DG 7 increases its power to compensate the demand constraint.
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List of Tables

TABLE 1

EQUIVALENCE RELATIONSHIPS BETWEEN POPULATION DYNAMICS AND APPLICATION CASES

Population dynamics UDS Lighting Systems Microgrids

Population System Lighting environment Power dispatch

Strategy Source reservoirs Lighting zones Distributed generators

Population mass Total inflow to receptor reservoir Total available voltage Total demanded power

Agent Flow unit Voltage unit Power unit

Proportion of agents Proportion of flow Proportion of voltage Proportion of power

Strategic distribution Flow distribution in source reservoirs Voltage split among lamps Economic power dispatch

Payoff of a strategy Current volume Tracking error Marginal utility

TABLE 2

DESCRIPTION OF THE SUB-SYSTEMS PRESENTED IN FIGURE 7.

Source reservoirs Receptor reservoir

102, 183 41
41, 182 90
22, 93 20
20, 101 21

21, 214, 212 12
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