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Abstract. We investigate the dependence of the mechanical and hydraulic properties

of poroelastic materials on the interstitial volume fraction (porosity) of the fluid

flowing through their pores and compressibility of their elastic (matrix ) phase. The

mechanical behavior of the matrix is assumed of linear elastic type and we conduct a

three-dimensional microstructural analysis by means of the asymptotic homogenization

technique exploiting the length scale separation between the pores (pore-scale or

microscale) and the average tissue size (the macroscale). The coefficients of the

model are therefore obtained by suitable averages which involve the solutions of

periodic cell problems at the pore-scale. The latter are solved numerically by finite

elements in a cubic cell by assuming a cross-shaped interconnected cylindrical structure

which results in a cubic symmetric stiffness tensor on the macroscale. Therefore, the

macroscale response of the material is fully characterized by six parameters, namely

the elastic Young’s and shear moduli, Poisson’s ratio, the hydraulic conductivity, and

the poroelastic parameters, i.e. Biot’s modulus and Biot’s coefficient. We present

our findings in terms of a parametric analysis conducted by varying the porosity

as well as the Poisson’s ratio of the matrix. Our novel three-dimensional results,

which are presented in the context of tumor modeling, serve as a robust first step

to (a) quantify the macroscale response of poroelastic materials on the basis of their

underlying microstructure, (b) relate the compressibility of the tissue, which can be

used to distinguish between benign tumor and cancer, to its microstructural properties

(such as porosity), and (c) reveal a nontrivial dependency of Biot’s modulus on porosity

and compressibility of the matrix, which can pave the way to the optimal design of

artificial constructs in terms of fluid volume available for transport of mass and solutes.

Keywords: Poroelasticity, Tumor modeling, Homogenization, Biot’s modulus,

Biomimetic materials.
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1. Introduction

The mechanical behavior of a solid elastic structure interplaying with fluid percolating

its pores can be studied via the Theory of Poroelasticity ([1, 2, 3, 4]). There exists a large

variety of scenarios of interest that can be treated by means of a poroelastic modeling

approach, including soil mechanics [5], (bio) artificial constructs [6, 7, 8], and biological

tissues, such as bone [9], organs, healthy and malignant (tumorous) cell aggregates [10].

Materials characterized by a poroelastic mechanical response exhibit an intrinsically

multiscale structure. In particular, the average pore radius, and in turn, the distance

between them for an approximately uniform pore distribution (the pore scale), is

typically much smaller than the average size of the medium (the macroscale) which

is effectively behaving as a poroelastic material.

The upscaling process that translates a pore-scale fluid-structure interaction

problem into a macroscale problem governed by the equations of poroelasticity can be

carried out by means of either average field techniques or asymptotic homogenization,

see, e.g., [11] and [12] for a comparison between these two alternative approaches in the

context of fluid and solid mechanics, respectively.

The former approach is focused on the derivation of the macroscopic model as such,

and relies on suitable relationships between the microscale and macroscopic energy of

the system at hand. Models deduced this way can be readily extended to a nonlinear

constitutive behavior of the individual phases, however, the coefficients are typically

not entirely related to the underlying microstructure (see, e.g. the analytic formulas

relating drained and undrained coefficients for interconnected pores reported in [13, 5]),

and are usually to be determined also exploiting experimental measurements. There also

exist simplified micromechanical approaches that provide the poroelastic coefficients for

specific geometries, for example when spherical, ellipsoidal, or ”penny-shaped” diluted

pores are considered, see, e.g. [14]. The asymptotic homogenization technique (see, e.g.,

[15, 16, 17, 18, 19, 20]) exploits the sharp length scale separation between a fine and a

coarse scale to represent the fields in terms of power series of the ratio between them. The

latter approach entails, in general, a higher degree of algebraic complexity and cannot

be trivially generalized to nonlinear balance equations, however, it provides a precise

prescription of the coefficients of the model. These encode information concerning the

microstructure as they are provided in terms of pore-scale averages which involve both

the properties of the individual phases, and auxiliary variables which are to be computed

solving differential problems on the pore-scale geometry. The latter is often assumed to

be periodic to allow for actual computations of the coefficients on a small and definite

portion of the microstructure.

In this work we focus on a material governed by the equations of poroelasticity

and embrace the asymptotic homogenization technique to investigate the impact of

the interstitial volume fraction (porosity) and compressibility of the matrix, which is

assumed to behave as a compressible linear and isotropic elastic solid, on the relevant

parameters that determine the overall mechanical response of the material.
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In [21] the authors derive the standard Biot’s system of partial differential equations

(PDEs) via asymptotic homogenization and provide closed formulas for the coefficients

of the model, as well as their associated pore-scale systems of PDEs. In order to compute

the coefficients in practice, we also assume pore-scale periodicity, thus embracing the

no-growth limit of [22] (which corresponds to the system of PDEs reported in [21] in

non-frequency form) as a starting point. We perform a parametric analysis via finite

element numerical simulations to compute the solution of the relevant pore-scale cell

problems (which are of Stokes’ and linear elastic type) in three-dimensions for various

different values of porosity and Poisson’s ratio of the elastic matrix. The microscale

geometry comprises an interstitial phase made of three interconnected cylinders, which

is invariant with respect to permutation of the three orthogonal axes. As a consequence,

it is sufficient to investigate the profile of six independent scalar parameters, namely

Young’s modulus, shear modulus, Poisson’s ratio, Biot’s modulus, Biot’s coefficient,

and hydraulic conductivity, which fully characterize the macroscale mechanical and

hydraulic behavior of the medium.

Although our analysis is applicable to a number of physical systems, our chief

motivation resides in the analysis of deformable malignant cell aggregates (i.e. tumors).

A tumor mass can be viewed as a multiscale deformable system, which is composed

of several different constituents (such as collagen fibers and proteins forming the

extracellular matrix) and cells which collectively form the so-called interstitial matrix

([23, 24]). This matrix plays the role of a fluid (and hence drug) transport barrier which

reduces the interstitial fluid volume portion accessible for anti-cancer molecules and

also exhibits deformations which are supposed to play a role in the spatio-temporal

distribution of the interstitial fluid volume and pressure which in turn drive drug

transport in malignant tissues, as highlighted in the analysis [24].

Although it is well-known that the porous structure of tumors, and in general

biological tissues, affects the observed blood and drug flow maps, experimental data

are typically fitted by using mathematical models (for example of poroelastic and

viscoelastic type, see e.g. [25] and [24], respectively) which can be reasonably applicable

on the macroscale only, and do not explicitly encode the dependence on the underlying

microstructure. Furthermore, there only exists a few measurements related to the

interstitial volume fraction ([26]), which exhibits a large variability depending on the

specific tissue type and tumor region.

The hydraulic and mechanical properties of solid tumors have been also shown to be

affected by its nature (i.e. malignant vs benign), especially in terms of compressibility

[27], although a tumor system is often considered as made of intrinsically incompressible

phases in order to reduce the number of parameters to be fitted, as done for example in

[25] among many others works.

These arguments motivate the development of a computational analysis that can

highlight the role of porosity and solid matrix compressibility on the mechanical and

hydraulic properties of poroelastic materials framed in the context of solid tumors.

Nonetheless, the framework as such in general with respect to the choice of the
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parameters and our predictions can also be used to reach target mechanical and/or

transport properties of artificial poroelastic constructs. The remainder of the work is

organized as follows. In Section 2 we briefly introduce the asymptotic homogenization

technique and state the poroelastic governing equations at the macroscale together

with the definitions of the parameters in terms of the relevant auxiliary variables to

be computed by solving pore scale cell problems. In Section 3 we present and discuss

the cell problems which are solved to find the auxiliary variables that are needed to

compute the macroscale coefficients of the model. In Section 4 we present our results,

which are obtained by solving the cell problems described in Section 3 by finite elements.

In Section 5 we present our concluding remarks.

2. Mathematical description of the model

The formal derivation of the equation of poroelasticity obtained accounting explicitly

for the porous microstructure has been reported for the first time in [21]. The authors

start from a fluid structure interaction problem between a linear elastic matrix and

a Newtonian fluid phase at the pore-scale and close the resulting system of partial

differential equations by enforcing continuity of velocities and stresses across the fluid-

solid interface. The asymptotic homogenization technique is then exploited to derive the

effective governing equations for the medium at the macroscopic scale. In particular,

assuming that the pore scale d, where distinct microscopic features of the physical

system can be identified, and the macroscale L, where only global variations of the

fields are relevant, are well separated, microscale and macroscale spatial variations can

be decoupled as follows

ǫ =
d

L
≪ 1. (1)

y =
x

ǫ
. (2)

In (1), ǫ is a small scale separation parameter, whereas in (2) x and y read as the

two formally independent macroscale and microscale spatial variables, respectively. The

problem is then upscaled by following the typical steps of the asymptotic homogenization

technique. Every relevant field is represented in power series of ǫ, and each component

of the fluid velocity v, pressure p and elastic displacement u, as well as the elastic

properties of the matrix, are assumed to be functions of both x and y. The system

is non-dimensionalized with respect to appropriate characteristic quantities in terms

of length scales and velocity fields. In particular, the characteristic (relative) fluid

velocity which is used is typically proportional to d2 to reflect the fact that the (relative)

fluid velocity inside the pores should (approximately) exhibit a parabolic profile, see,

e.g. [22, 28, 29] for details concerning non-dimensionalization for porous media flow

via asymptotic homogenization. This is indeed formally equivalent to the so-called

”ǫ2 viscosity scaling”, which is the correct scaling to obtain Darcy’s and poroelasticity

equations from the microstructure [20, 21, 22].
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Then, equating the coefficients of the same power of ǫ for ǫ = 0, 1, ... in the resulting

system of multiscale PDEs leads to a number of differential conditions. These are

subsequently exploited to reach a closed differential problem for the leading (zeroth)

order components, which represents the homogenized limit for ǫ approaching zero. The

coefficients of the model retain information on the microstructure as they are to be

computed by solving pore-scale differential problems which are arising from the upscaling

process. The final set of macroscale equations accounts for the effective poroelastic

response of the material in terms of average (relative) fluid velocity, pressure, and elastic

displacement. Assuming that inertia can be neglected§ and accounting for intrinsic

incompressibility of the fluid phase (as it is commonly accepted for biological tissues),

the governing system of PDEs in the macroscale domain Ω ⊂ R
3 reads



















∇x · τE = 0, (3)

τE: = C̃∇xu
(0) − α̃p(0) (4)

ṗ(0) = −M [ α̃ :∇xu̇
(0) +∇x ·w] (5)

w = −K∇xp
(0), (6)

where p(0), u(0), u̇(0), and w are the macroscale pressure, solid displacement, solid
velocity, and average fluid velocity (relative to the solid displacement). These equations
(which are reported by using a notation similar to [22]) are derived in [21] and shown
to coincide with the celebrated Biot’s equations of poroelasticity once suitable notation
identification are made. Relationship (3) represents the stress balance equation for
a medium characterized by the constitutive relationship (4). The latter consists of
two terms which account for the effective response of the linear elastic phase and the
interstitial pore pressure. Equation (5) represents conservation of mass for a poroelastic
medium and relates variations of the interstitial fluid pressure to fluid and solid volume
changes. The last equation of the macroscale system of PDEs 6 represents Darcy’s law
for the relative fluid velocity w. The mechanical behavior of the material is therefore
fully specified by the effective elasticity tensor C̃, the hydraulic conductivity K, the
Biot’s tensor α̃, and the Biot’s modulus M . According to [21], the above mentioned
coefficients can be expressed in terms of suitable averages over the whole microscale
domain (spanned by the spatial variable y), however, suitable regularity assumptions
are to be embraced in order to compute the coefficients in practice. Following the
traditional approach typical of the asymptotic homogenization literature, and indeed
also the suggestions contained in [21], we then assume microscale (y) periodicity, as
shown in Figure 1.

§ This assumption is typically embraced for the analysis of the mechanical behavior of biological tissues

although, as far as we are concerned, we consider it for the sake of simplifying the notation only, as we

are only computing the coefficients, which are exactly the same even when (linearized) inertia is taken

into account.
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Figure 1: The microstructure, shown on the left, is assumed to be periodic. An example

macroscale domain, where pore-scale details are smoothed out, is shown on the right.

This way, the model coefficients introduced above can be expressed in terms of

integral averages over a single periodic cell. The latter are defined via the following cell

average operator

〈 r〉k =
1

|Ωc|

∫

Ωr

r dy r = f, s, (7)

where Ωc is the periodic cell domain, with corresponding solid and fluid subdomain Ωs

and Ωf , respectively. The quantities |Ωc|, |Ωs|, and |Ωf | are the periodic cell volume

and the solid and fluid volume portions, respectively, such that |Ωc| = |Ωs| + |Ωf |. In

particular, the porosity (that is, the interstitial volume fraction) is given by

φ =
|Ωf |

|Ωc|
. (8)

The relative fluid velocity can then also be expressed as

w =
〈

v(0)
〉

f
− φu̇(0), (9)

whereas the macroscale coefficients read

K = 〈W 〉f , α̃ = φI− Tr 〈M〉s, C̃ = 〈C+ CM〉s , M = −
1

〈TrQ〉s
. (10)

The fourth rank tensor M and the second rank tensors Q and W are to be computed by

solving the pore scale periodic cell problems illustrated in the next section.

3. The cell problems

We perform our analysis in non-dimensional form, so that the cell problems for the

auxiliary variables M, Q, and W are presented and thereafter solved in a unit cubic cell

Ωc (with φ = |Ωf |). The latter comprises the fluid subdomain Ωf , which is given by a

cross-shaped cylindrical structure representing a fully interconnected porous media, and
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the elastic matrix host domain Ωs = Ωc\Ωf . This is the simplest possible geometry that

accounts for a fully three dimensional flow in a saturated porous media and also ensures

that the number of macroscale parameters is kept to a minimum. Figure 2 shows the

geometry of the cell as well as the different phases depicted above, namely the solid,

fluid, and their interface Γ = ∂Ωs∩∂Ωf . Figure 3 shows a typical computational output

related to the solution of a periodic, linear-elastic type problem.

We remark that, although the equations of poroelasticity are derived (starting from

the microstructure) assuming continuity of velocity and stresses at the start of the

asymptotic derivation, the result is indeed a macroscopic system of partial differential

equations where the interface between phases is smoothed out (this is the case when

applying asymptotic homogenization to general system of PDEs describing multiphase

problems). Once the formulation has been derived, the role of the interface between

the solid and the fluid phase is encoded in the relevant cell problems, where the latter

actually read, formally, as purely (auxiliary) fluid and solid decoupled problems [21, 18].

Figure 2: The cubic cell Ωc and its corresponding fluid and solid subdomains Ωf and

Ωs, respectively. The interface Γ is also highlighted in red.
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Figure 3: Typical color map showing the periodic solution of the auxiliary displacement

computed in Abaqus.

Next, we introduce the cell problems for the auxiliary tensor W.

3.1. The hydraulic conductivity tensor

The second rank tensor W can be determined by solving the following auxiliary Stokes’-

type cell problem on the microscale

∇2
y
WT −∇yP + I = 0 in Ωf (11)

∇y ·WT = 0 in Ωf (12)

W = 0 on Γ, (13)

where P is an auxiliary vector, I is the identity tensor and the (non-dimensional)

viscosity of the fluid is set to 1. The problem is equipped with homogeneous Dirichlet

conditions on the interface Γ together with periodicity conditions on ∂Ωf/Γ and a

suitable uniqueness condition for the vector P , e.g.

〈P 〉f = 0 (14)

without loss of generality.

The system of equations 11-13 can be rewritten componentwise as follows

µ
∂Wji

∂yk∂yk
−

∂Pi

∂yj
+ δij = 0 in Ωf (15)

∂Wji

∂yj
= 0 in Ωf (16)

Wij = 0 on Γ, (17)
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i.e. the problem (11-13) corresponds to three Stokes’ problems for i = 1, 2, 3. However,

since we have chosen a geometry which is invariant with respect to permutation of the

three orthogonal axes, we can focus on the problem that corresponds, for example, to

i = 1 only, i.e.

∇2
y
ṽ −∇yp̃+ e1 = 0 in Ωf (18)

∇y · ṽ = 0 in Ωf (19)

ṽ = 0 on Γ, (20)

where p̃ = P1. The above problem formally reads as a periodic Stokes’ problem for an

incompressible fluid driven by a unit body force directed along e1 and the solution ṽ is

related to the components of the tensor W by means of the following identifications

ṽ1 = W11 = W22 = W33 (21)

ṽ2 = W21 = W32 = W13 (22)

ṽ3 = W31 = W12 = W23, (23)

see also [30] where the same argument is used to compute the hydraulic conductivity

tensor associated with the capillary compartment of vascularized tumors. This way the

full tensor W and therefore the hydraulic conductivity K = 〈 W〉f can be determined by

means of (10). From a numerical standpoint, as we have had no access to Abaqus fluid

dynamics modules, we have solved the problem for a linear, isotropic, and incompressible

elastic solid (that is equivalent to the incompressible Stokes’ problem for the elastic

displacement) driven by the same unit body force, whose solution coincides with the

problem (18-20) once the velocity is identified with the resulting displacement and

the viscosity (which is set to 1) with the shear modulus. The dimensional hydraulic

conductivity (see, e.g. [22] for the details concerning the non-dimensional analysis of a

multiscale poroelastic problem) Kdim can be obtained by multiplying the result by d2/µ,

where µ is an appropriate (dimensional) fluid viscosity.

3.2. The effective elasticity tensor and Biot’s coefficient

The fourth rank tensor C̃ represents the effective elasticity tensor for a drained

poroelastic medium (i.e. it fully characterizes the effective mechanical response when

setting the interstitial pore pressure p(0) = 0, cf. (4)) and, according to relationships

(10), is related to both the elasticity tensor of the matrix C and the auxiliary tensor M

defined as

M = ξyA, (24)

where

ξy( r) =
1

2

(

∇y( r) +∇y( r)
T

)

. (25)

The third rank tensor A can be determined by solving the following linear elastic-type

cell problem
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∇y · (CξyA) = 0 in Ωs (26)

(CξyA)n+ Cn = 0 on Γ (27)

〈A〉s = 0, (28)

where n is the unit outward vector normal to Γ. The problem is equipped with periodic

conditions on ∂Ωs/Γ and a further condition, for example of the type (28), ensures

uniqueness of the solution.

We rewrite the system of equations (26-28) componentwise as follows

∂

∂yj
(CijklMlkνγ) = 0 in Ωs (29)

CijklMlkνγnj = −Cijνγnj on Γ (30)

〈Aijk〉s = 0 ∀ i, j, k = 1...3. (31)

The solution of the problem Mlkνγ can be obtained by solving six elastic-type

cell problems by fixing the couple of indices (ν, γ). This way, Mlkνγ in (29) formally

represents a strain and for each fixed couple (ν, γ) we have a linear elastic problem

equipped with inhomogeneous Neumann interface conditions which can be rewritten

componentwise as

νγ = 11: CijklMlk11nj = −Cij11nj where − Cij11nj = fi (32)

νγ = 22: CijklMlk22nj = −Cij22nj where − Cij22nj = fi (33)

νγ = 33: CijklMlk33nj = −Cij33nj where − Cij33nj = fi (34)

νγ = 23: CijklMlk23nj = −Cij23nj where − Cij23nj = −Cij32nj = fi (35)

νγ = 13: CijklMlk13nj = −Cij13nj where − Cij13nj = −Cij31nj = fi (36)

νγ = 12: CijklMlk12nj = −Cij12nj where − Cij12nj = −Cij21nj = fi (37)

Assuming that the elastic matrix is isotropic at the pore scale we have

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (38)

and substituting the relationship 38 into the interface loads (32-37) we obtain

νγ = 11: f = λn+ 2µn1e1 (39)

νγ = 22: f = λn+ 2µn2e2 (40)

νγ = 33: f = λn+ 2µn3e3 (41)

νγ = 23: f = µ(n3e2 + n2e3) (42)

νγ = 13: f = µ(n3e1 + n1e3) (43)

νγ = 12: f = µ(n2e1 + n1e2) (44)
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Where n1, n2, n3 are the components of the unit vector normal to the interface Γ and

e1, e2 and e3 are the standard unit vectors in the Cartesian coordinate system. As our

input parameters are actually the matrix’s Young’s modulus E and Poisson’s ratio ν,

we remind the standard relationships between the latter and the Lamé constants below

λ =
Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
. (45)

Considering left and right minor symmetries, Voigt notation can be used to reduce

the formally 81 components of the fourth rank auxiliary tensor M and the effective

elasticity tensor C̃ to 36 and map them in the form of Cαβ and Mβκ, where α, κ, and

β = 1, 2, 3, ..., 6. As the solid matrix is assumed to be isotropic and by means of the

invariance properties of the geometry, both M and C̃ (cf. (10)) are expected to exhibit

cubic symmetry. An example of the resulting cubic symmetric tensors (for porosity

φ = 0.286, Poisson’s ratio ν=0.35 and non-dimensional E = 13.5) is reported below.

M =



















−0.35 −0.094 −0.094 0 0 0

−0.094 −0.35 −0.094 0 0 0

−0.094 −0.094 −0.35 0 0 0

0 0 0 −0.167 0 0

0 0 0 0 −0.167 0

0 0 0 0 0 −0.167



















(46)

C̃ =



















8.59 3.23 3.23 0 0 0

3.23 8.59 3.23 0 0 0

3.23 3.23 8.59 0 0 0

0 0 0 2.97 0 0

0 0 0 0 2.97 0

0 0 0 0 0 2.97



















(47)

In fact, we can conduct the analysis of the elastic moduli in terms of the effective

Young’s modulus, Poisson’s ratio and shear modulus Ep, νp, and µp, respectively, which

are related to the independent components C̃11, C̃12, C̃44 via the following relationships,

see, e.g. [31]

Ep =
C̃11(C̃11 + C̃12)− 2C̃2

12

C̃11 + C̃12

(48)

νp =
C̃12

C̃11 + C̃12

(49)

µp = C̃44. (50)

Finally, the Biot’s tensor given by relationship (10) is actually diagonal as a consequence

of cubic symmetry of M. We have

TrM = Mijklδlk = (M1111 + 2M1122)δij, (51)
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so that the Biot’s tensor reads

α̃ = αI, (52)

with scalar Biot’s coefficients given by (cf. (10)):

α = φ− 〈M11 + 2M12〉s , (53)

where the Voigt notation has been used.

3.3. The Biot’s modulus

The Biot’s modulus is defined, according to (10), as

M = −
1

〈TrQ〉s
, (54)

where the second rank tensor is given by Q = ∇ya and a is the solution of the following

periodic cell problem

∇y · (C∇ya) = 0 in Ωs (55)

(C∇ya)n+ n = 0 on Γ. (56)

As previously, the cell problem 55−56 formally reads as a linear elastic problem equipped

with inhomogeneous Neumman interface conditions on Γ and periodic conditions on

∂Ωs\Γ, and an additional condition on a is required to ensure uniqueness of the solution,

e.g.

〈a〉s = 0. (57)

In the next Section, we present the results that are based on the numerical solutions of

the cell problems that we have illustrated here. Numerical simulations are performed

using the commercial software Abaqus, see also [32, 33] for other examples of poroelastic

finite element modeling using this software.

4. Results

We present our results in terms of effective hydraulic conductivity, poroelastic

parameters (Biot’s modulus and Biot’s coefficient), elastic moduli (Young’s and shear

modulus) and Poisson’s ratio. The cell problems presented in the previous Section are

solved via finite elements, and the accuracy of the results has been verified performing

the sensitivity analysis briefly summarized in the Appendix. As the analysis is conducted

in non-dimensional form, all the cell problems are solved in the relevant fluid and solid

subsets of the cubic unit cell Ωc, i.e. Ωf and Ωs, respectively. Every parameter is assigned

in non-dimensional form and, by considering a suitable non-dimensional analysis (see

[22]), the dimensional counterpart of any parameter having the physical dimension of

a stress ([Pa]), such as Young’s modulus, shear modulus, and Biot’s modulus, can be
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obtained by multiplying the result by a reference value (for example a representative

pressure as done in [22]). Biot’s coefficient and Poisson’s ratio are non-dimensional,

whereas the hydraulic conductivity ([m2/(Pa · s)]) can be obtained by multiplying the

non-dimensional result by d2/µ, where d is the characteristic microscale length and µ

the dimensional viscosity of the interstitial fluid. The elastic moduli are computed for

the drained case (i.e. by using directly the effective stress tensor C̃) and also for the

undrained case (i.e. when considering the elastic response for a static fluid phase filling

the pores). In fact, following [22] and [21] we can write

p(0) = −M [ α̃ :∇xu
(0) +∇x · 〈W 〉f ], (58)

where u(0) and 〈W 〉f are the solid and fluid displacements.

By using (58) we can write (4) in the form of

τE: = (C̃+Mα̃α̃)∇xu
(0) + (Mα̃)∇x · 〈W 〉f . (59)

The fourth rank tensor

C̃+Mα̃α̃ (60)

represents the undrained elasticity tensor of the porous medium, and since in our case α̃

is diagonal, the additional contribution which involves the Biot’s modulus and coefficient

only affects the effective Young’s modulus and Poisson’s ratio, as in the case of a

macroscopically isotropic poroelastic medium described in [21]. The input parameters

are the (non-dimensional) Young’s modulus and Poisson’s ratio of the matrix E and

ν, respectively, and the porosity φ. As highlighted in the Introduction, here we focus

on the role of porosity and compressibility of the matrix on the effective hydraulic and

mechanical properties of poroelastic materials and therefore the Young’s modulus of the

matrix is fixed to a reference value, which is set to 13.5. The latter non-dimensional

value corresponds to a dimensional value of 202.5mmHg, i.e. ≈ 2 · 10−3 Pa (as deduced

from the Lamé constants reported in [10] for poroelastic tumors), when a dimensional

reference (interstitial) pressure of 15mmHg (see, e.g. [34]) is taken into account.

The parametric analysis is carried out in terms of the porosity and Poisson’s ratio of

the matrix. In particular, the radius of the three interconnected cylinders is varied from

0.1 to 0.4 with steps of 0.01, which corresponds to a porosity range φ ∈ [0.083 0.784].

The profile of every elastic and poroelastic parameter is also evaluated with respect to

four different Poisson’s ratios, namely, 0.35, 0.4, 0.45, and 0.49, to parametrically explore

both the role of tumor compressibility recently reported in [35], and also account for

the incompressible case (which is approximated by setting ν = 0.49). We commence

presenting the resulting hydraulic conductivity profile against porosity.

4.1. Hydraulic conductivity

The hydraulic conductivity tensor K is computed as described in Section 3 for each value

of the cylinders’ radius belonging to (0.1, 0.4) with steps of 0.01, so that we obtain the

results for the porosity φ ∈ [0.083, 0.784].
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As the driving force of the problem is directed along one fixed direction and the

geometry is invariant with respect to permutation of the three orthogonal axes, we

expect a diagonal conductivity tensor, i.e.

K = 〈W11〉I, (61)

which is indeed consistent with our numerical results and also those shown in [30].
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Figure 4: Non-dimensionalized hydraulic conductivity (normalized with respect to its

maximum value) vs the solid volume fraction.

Figure 4 shows the hydraulic conductivity 〈W11〉f against the volume fraction of

the elastic matrix φs = 1 − φ. We observe a nonlinear drop of 〈W11〉f at decreasing

porosity, which is consistent with the parabolic-like profile obtained as a solution to the

problem (18-20). The values shown are normalized with respect to the maximum value

1.41 · 10−2, which is attained for a cylinder radius equal to 0.4 (i.e. φ ≈ 0.7838). The

minimum value (for a cylinder radius equal to 0.1, i.e. φ ≈ 0.08) is 3.8 · 10−5. The

dimensional hydraulic conductivity Kdim is obtained by multiplying the corresponding

dimensionless values by d2/µ, where d is the characteristic microscale length and µ the

interstitial fluid viscosity. A physiologically reasonable range is obtained by considering

the plasma viscosity µ = 4 · 10−3 Pa · s and a typical d ≈ µm = 10−6 m (see, e.g., [36]),

that yields

10−14 m2/(Pa · s) / Kdim = (d2/µ)〈W11〉f / 10−12 m2/(Pa · s).

The latter corresponds to 10−8 − 10−6 (cm)2/(mmHg · s) and tumor hydraulic

conductivity values reported in the experimental literature typically fall within this

range, see for example [25] and [24] among many others. We now proceed by illustrating

the profile of the poroelastic parameters against porosity and Poisson’s ratio of the

matrix.
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4.2. Poroelastic parameters

The second and fourth rank tensors Q and M are computed for each considered value

of porosity and Poisson’s ratio and the scalar Biot’s coefficient α and (non-dimensional)

Biot’s modulus M are obtained via relationships (53) and (54).

Figure 5 shows Biot’s coefficient versus porosity for the four different Poisson’s

ratios. As the porosity approaches 1, the Biot’s coefficient exhibits a monotonically

increasing profile which tends to the horizontal asymptote α = 1 for all Poisson’s ratios.

The Biot’s coefficient physically represents the ratio of macroscale solid to fluid volume

changes (at constant pressure), and α = 1 indeed represents the classical poroelastic

upper bound for the Biot’s coefficient (see, e.g. [37]). The latter is identically reached

when both phases are intrinsically incompressible (i.e., α = 1 for any porosity value

when ν = 0.5). As such, Biot’s coefficient approaches 1 at increasing porosity (that

is, increasing the incompressible fluid volume fraction and consequently decreasing the

compressible elastic volume fraction) and at increasing Poisson’s ratio.
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Figure 5: Biot’s coefficient versus porosity for four different value of the matrix’ Poisson’s

ratio.

Biot’s modulus represents the macroscale inverse of the fluid volume variation in

response to a variation of the macroscale pore pressure, that is, for a fixed pressure

variation, the lower the M , the higher the variation of the fluid volume is. Biot’s

modulus is computed by solving the microscale problem (55-56) and then exploiting

relationship (54), which is reported below for the readers’ convenience

M = −
1

〈TrQ〉s
.

The problem (55-56) formally reads as an elastic problem for the auxiliary

displacement a, with solution driven by the interface load which is directly proportional

to the interface normal n. The scalar quantity TrQ = ∇ · a actually represents
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the solid volume variation of an elastic solid (characterized by the elastic response of

the matrix given by the stiffness tensor C) subject to such a load on the interface

Γ and periodic boundary condition on ∂Ωs/Γ. As expected, TrQ = ∇ · a exhibits

a monotonically decreasing profile towards zero as the Poisson’s ratio of the matrix

approaches ν = 0.5, which is the incompressible limit. In this case, as the Biot’s

modulus given by (54) is indeed obtained by considering intrinsic incompressibility of

the fluid phase, M approaches infinity for every value the porosity, which is consistent

with classical poroelasticity. The Biot’s modulus profile versus porosity exhibits an

interesting and not completely intuitive behavior. In fact, according to our numerical

results, TrQ = ∇ · a is actually increasing at increasing porosity (i.e. at decreasing

solid volume portion where the problem is actually solved), as the problem is solved

on the elastic domain Ωs only and therefore, at fixed Poisson’s ratio, volume variations

increase. On the other hand, the latter behavior only refers to the drained problem

(55-56), while the actual effective coefficient accounts for the macroscale response of the

material (in terms of fluid variations) and is actually averaged over the relevant solid

cell portion Ωs. As a consequence, the average 〈TrQ〉s actually approaches zero (and

hence M → +∞) whenever the porosity becomes closer and closer to 1 (that is, when

the solid volume fraction approaches zero), while, in general, the Biot’s modulus profile

versus the porosity is characterized by a definite minimum, and the porosity value at

which such a minimum is attained decreases at increasing Poisson’s ratio of the matrix

ν. The Biot’s modulus versus porosity for the four considered values of the Poisson’s

ratio is shown in figures 6a, 6b, 6c, and 6d.
Furthermore, since the observed behavior suggests that there is a non-trivial

interplay between compressibility of the matrix and porosity, we have also performed a
parametric analysis by studying the Biot’s modulus profile versus the Poisson’s ratio of
the matrix. We have considered the same range ν ∈ (0.35, 0.49) with more refined steps
of 0.01. This analysis has been performed for seven different values of the porosity φ,
namely 0.0828, 0.1737, 0.2864, 0.4122, 0.5427, 0.6694, and 0.7838, which correspond to
a cylinder radius ranging from 0.1 to 0.4 with steps of 0.05. The results are shown in
Figure 7.
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Figure 6: Non-dimensional Biot’s modulus against porosity.

0.36 0.38 0.4 0.42 0.44 0.46 0.48

8

40

50

60

70

80

90

100

110

120

B
io

t`
s
m

o
d
u
lu

s
(M

)

? : 8%
? : 17%
? : 29%
? : 41%
? : 54%
? : 67%
? : 78%

Figure 7: Biot’s modulus versus Poisson’s ratio of elastic matrix

As expected, Biot’s modulus is monotonically increasing at increasing Poisson’s
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ratio for every porosity value. As a consequence of the non-trivial dependency on

the porosity, the curves representing Biot’s modulus versus the Poisson’s ratio of the

matrix can actually cross each other, i.e same values of M at fixed Poisson’s ratio can

be obtained for different porosities. The latter behavior is no longer present for very

high values of the porosity, as in this case the Biot’s modulus is almost monotonically

increasing at increasing porosity, see for instance Figure 6d. The results concerning the

effective elastic moduli are shown below.

4.3. Elastic moduli

The drained effective elasticity tensor C̃ is obtained via relationship (10), which involves

both the auxiliary fourth rank tensor M and the elasticity tensor of the matrix C. The

undrained elasticity tensor is computed by adding to C̃ the contribution related to the

poroelastic parameters M and α (cf. (60)). Drained and undrained Young’s moduli and

shear modulus Ep, Eps, and µp, respectively, are then obtained from the components of

the relevant elasticity tensor by exploiting relationships (48) and (50). The drained and

undrained Young’s modulus profile versus porosity is shown in Figures 8a and 8b, while

the shear modulus against porosity is shown in Figure 9.
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Figure 8: Relative non-dimensionalized effective Young’s modulus vs porosity.
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Figure 9: Relative non-dimensionalized effective shear modulus vs porosity.

Both Young’s and shear moduli exhibit a decreasing profile at increasing porosity.

The poroelastic material, as expected, becomes more and more compliant towards

higher values of the porosity and the drained Young’s modulus is slightly lower than

the undrained one. This behavior is expected, as the former parameter measures the

macroscale elastic response to axial deformations as though the pores were empty,

whereas the latter accounts for the fluid filling the pores (as though the fluid velocity

were zero). Thus, the porosity plays a major role in determining the stiffness of

poroelastic materials, while the results indicate that the dependency of the elastic moduli

on the Poisson’s ratio of the solid matrix is non-significant in the investigated range.

Therefore, we have only shown the results for ν = 0.35, which is our base value. The

effective Poisson’s ratio, however, strongly depends on the both the Poisson’s ratio of

the matrix and the porosity, as shown below.

4.4. Poisson’s ratio

The effective drained and undrained Poisson’s ratios νp and νps are shown in Figures

10 and 11, respectively. The macroscale drained Poisson’s ratio νp, as expected,

decreases at increasing porosity for every investigated value of the matrix’ Poisson’s

ratio, thus reflecting the increased compressibility of the material as a whole at

empty pores. Conversely, the macroscale undrained Poisson’s ratio νps approaches 0.5,

which corresponds to the incompressible mechanical response, at increasing porosity.

This is once again the intuitively expected behavior, as νps measures the macroscale

compressibility of the material as though the pores were filled by an incompressible

static fluid. In the following Section we present our concluding remarks.
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Figure 10: Drained effective Poisson’s ratio versus porosity for different Poisson’s ratios

of the matrix
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Figure 11: Undrained effective Poisson’s ratio versus porosity for different Poisson’s

ratios of the matrix

5. Concluding remarks and further perspectives

In this work, we have performed a three-dimensional analysis of the role of porosity and

solid matrix compressibility on the mechanical and hydraulic properties of poroelastic

materials. We have carried out numerical simulations by finite elements, making use

of parameters that are typical of biological, cancerous tissues. We have started from

the equations of linearized poroelasticity and computed the effective coefficients of the

model as prescribed by the asymptotic homogenization approach [21, 22]. We have

achieved the following crucial goals.

Firstly, we have provided a robust and accurate computational framework which

can be used to obtain the three-dimensional numerical solutions of the cell problems
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originally deduced in [21]. We have subsequently exploited them to quantify the

role of porosity, as well as solid matrix compressibility, on the macroscale elastic

(Young’s and shear) moduli, Poisson’s ratio, hydraulic conductivity, and poroelastic

parameters (Biot’s modulus and Biot’s coefficient). This computational framework can

be readily generalized to account for highly complicated pore-scale structures, although

a simple cross-shaped (cylindrical) interstitial phase is considered to limit the number

of arising parameters and simultaneously account for a genuinely fully saturated, three-

dimensional percolation. The current analysis generalizes the pioneering computational

attempt [38], where a proof of concept example of the problems reported in [21] for a

fixed set of input parameters is implemented on a coarse grid.

Secondly, our results highlight the interplay between compressibility and porosity

and their combined effect on the hydraulic and mechanical properties of poroelastic

tissues. In particular, we have been able to quantify the effect of porosity on the

macroscale compressibility of the poroelastic medium. Therefore, our predictions relate

compressibility and porosity and could be exploited, in perspective, to enhance tumors

type characterization (i.e. malignant vs benign [27]) on the basis of porosity (or

interstitial flow) measurements. Conversely, compressibility tests could be used to

formulate predictions concerning the porosity of the tissue, which is, in turn, a crucial

determinant of drug transport inside the tumor mass [39].

Thirdly, we have especially focused on the analysis of the macroscale Biot’s

modulus. Its profile versus porosity exhibits a definite minimum for every fixed value

of the matrix’s Poisson’s ratio, and the same Biot’s modulus values can be obtained

at fixed Poisson’s ratio for different porosities. As Biot’s modulus is related to the

average variation of interstitial fluid volume in response to variations of the interstitial

pressure, our results can be exploited to relate compressibility and fluid (and hence

drug) transport in compressible tumors. Furthermore, the results can pave the way for

biomimetic applications concerning the optimal design of (biological) artificial constructs

with respect to the average interstitial volume. Poroelastic artificial constructs such as

scaffolds and implants are actually encountered in a number of biomedical applications,

such as bone in-growth and eye implants, see, e.g., [8] and [6, 7], respectively. Our

framework is open to a number of improvements.

We have embraced several simplifying assumptions concerning the geometry (and

periodicity of the microstructure), the constitutive relationship of the solid matrix,

and also neglected the vascularization and growth of the tumor mass, as well as any

possible intragrain porosity. We have assumed isotropy of the solid matrix and a cross-

shaped cylindrical pore-scale structure for the sake of simplicity and to provide a robust

paradigmatic platform which can be readily generalized to more complicated (tortuous)

structures, as well as anisotropy of the elastic matrix, depending on the actual tissue

type at hand.

The microstructure is assumed to be periodic to allow for the practical computations

of the effective coefficients. This assumption can in principle be relaxed by assuming

that the medium is not macroscopically uniform. This way, only local periodicity is
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assumed, whereas the periodic representative cell is parametrically varying with respect

to the macroscale coordinate, leading to macroscopically heterogeneous coefficients.

This approach [22, 28] requires the solution of a periodic cell problem (of the type

solved in the present manuscript) for each point of the macroscale domain, thus leading

to an increase in the computational cost, although alternative strategies to reduce it are

rapidly emerging in the literature, see, e.g. [40].

Generalization of the present framework to a more realistic nonlinear constitutive

behavior of the solid matrix is also to be considered a cutting edge challenge in

three-dimensions. In fact, appropriate three-dimensional computational results in the

framework of asymptotic homogenization have been only recently made available for

linear problems, see [30, 31, 41] and this work for porous media flow, composites

materials, and poroelasticity, respectively. In perspective, this work can serve as a

basis towards the numerical implementation of recently emerging models in nonlinear

asymptotic homogenization for poroelastic tumors [42] and composites [43].

Our work also represents the first step to build up a computational framework

for multiscale appositional growth of poroelastic tumors [22]. In the latter model,

the functional form of the microstructural cell problems formally coincides with that

of classical poroelasticity for every fixed time point, whereas the fluid-solid interface

evolves in time according to an appropriate law which is to be prescribed according to

the specific mechanisms driving the growth. This way, it will be possible to highlight

the interplay between appositional tumor growth and elastic deformations through time

evolution of the poroelastic properties of the tissue, thus better elucidating the complex

interplay between tumor growth, stiffness, and porosity, see, e.g., [44].

The next natural step is the implementation of the macroscale poroelastic governing

equations to capture the influence of poroelastic deformations of the solid tumor

(possibly accounting for its heterogeneous microstructure informed by appropriate

medical images) on the spatio-temporal profile of the fluid interstitial pressure.

Predictions from such a model could provide meaningful insights into the optimization

of drug injection conditions [25]. In fact, our predictions can also provide a basis in the

context of poroelastic vascularized tumors [45] (by accounting for more sophisticated

geometries in order to account for the blood vessels network), where the intragrain

porosity (i.e. the porosity of the solid matrix itself) is explicitly taken into account,

see also [46]. Solutions arising from the coupling between this model and multiscale

drug transport in solid tumors, as addressed for example in [47, 28, 48], will provide

predictions that could be used to design improved anti-cancer therapies for deformable

tumors.
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Appendix - Mesh sensitivity analysis

The mesh setting has been chosen in order to improve the efficiency of the numerical
simulations in terms of accuracy and computational cost. Since we perform a parametric
analysis by varying the pore radius, the parameters that characterize the mesh setting
should be geometry-dependent. This issue can be addressed by means of a mesh
sensitivity analysis, thus finding appropriate relationships between the mentioned
parameters and the pore radius. It is important to capture the role of the interface
conditions that are actually driving the non-trivial solutions of the cell problems, as
done in [31, 41, 49] in the context of elastic composites and their application to bone
and tendons modeling. In particular, the mesh around the interface should be finer
than other parts far away from it. The target mesh density can be assigned by using
markers that are placed along the edges of the specific region under consideration. These
markers are called seed [50]. Therefore, it is convenient to divide the whole geometry to
several simpler partitions. This way, by assigning the density of seeds on the edges of
partitions, we can reach the desired mesh dimension in every direction. Figure 12 shows
a partitioned geometry and two groups of edges that are used to control the dimension
of the mesh in both radial and circumferential directions. Note that the circumferential
direction of one face can be the axial direction of another face. The density of seeds on
each edge (and consequently the target mesh setting) can be assigned by the parameter
”seed number” that shows the number of markers on the chosen edge. This approach is
used to generate linear hexahedron, type C3D8R elements ( 8-node linear brick, reduced
integration, hourglass control) in the solid phase.

Figure 12: Two groups of edges to control the mesh size. The Circumferential and

Radial edges are highlighted in red and black, respectively. By choosing the seed number

for these two groups we can control the dimensions of the generated meshes.

In order to generate a geometry-dependent mesh, we relate the seed number in both

directions to the radius of the pores R, namely

Radial edges seed number = (0.5−R) ∗X1 (62)

circumferential edges seed number = R ∗ 10 ∗X2. (63)
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We perform a parametric analysis in terms of X1 and X2 in order to minimize the
numerical errors, as well as the computational cost. Relationships 62 and 63 ensure
that the seed number is assigned consistently for both edge groups, thus obtaining a
mesh density which is uniformly increasing towards the interface (see figure 13).

Figure 13: The generated mesh for R = 0.1 and R = 0.4.

Since the auxiliary forth rank tensor M exhibits cubic symmetry then for instance

M11 = M22. (64)

The above equation is chosen to check the numerical error as the quantity M11 −M22

should be approaching zero. Figure 14 shows the results of the sensitivity analysis for
the solid phase at R = 0.1.
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Figure 14: The results of the mesh sensitivity analysis: M11−M22

M11

vs X1 for the three

cases X2 = 6, 7, and 8 in a cell with R = 0.1

In order to obtain an acceptable computational cost (total cpu time = 20 ± 0.5
seconds), as well accuracy of the results, the values X1 = 110 and X2 = 7 are chosen for
the solid phase. The results of the parametric analysis conducted for the pore radius
R = 0.2 and X2 = 7 are also shown in figure 15.
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Figure 15: The results of the mesh sensitivity analysis: M11−M22

M11

vs X1 for the case

R = 0.2

An alternative approach to generate mesh, based on the ”global seed size”, can also

be embraced. In this case, we choose an approximate size for seeds (more precisely,

an approximate seed density) for the whole geometry. This approach, together with a

10-node quadratic tetrahedron element (C3D10), is used to generate the mesh for fluid

phase problem. In this case, we decrease the global seed size (and therefore increase

the mesh density) until the difference between two values of the hydraulic conductivity

computed at increasing mesh density is less than 1%.
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