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Abstract | Biothermology or Bio- fluid flow and heat transfer is an important and developing 

subdivision of bioengineering. Seeking simplifications for biological processes that are 

inherently complex, through porous medium models, is an exciting and useful multidisciplinary 

pursuit. This review presents an overview of the post-2002 research on the modelling aspects 

of several biothermofluid processes based primarily on the porous medium approach. 

Beginning with a definition for porous medium suited for analysing transport phenomena, 

concepts of volume averaging, momentum and energy conservation statements are briefly 

discussed to motivate the ensuing review discussions. Porous medium modelling of several 

biomedical processes pertaining to human physiology is then discussed under two broad 

categories of bio-mass and bio-heat transport. The bio-mass transport section discusses 

LDL transport in arteries, drug delivery, drug eluting stents, functions of organs modelled 

as porous medium, porous medium modelling of microbial transport. Under the bio-

heat transport section, porous medium approach based bio-heat equations are described 

accompanied by a literature review. A final subsection discusses non-Fourier type bio-heat 

conduction phenomena. Requirement of analysis and computational efforts in the future 

using the generalized porous medium momentum equation and the local thermal  

non-equilibrium based two energy equations are highlighted.

Keywords: Bio-fluid 
dynamics, Bio-heat transfer, 
porous medium, arterial flow, 
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Glossary

Alveolar sac an air sac at the terminal cavities of lung tissue to hold air.

Arterial plaque a buildup of white blood cell (sometimes termed fatty, despite absence of adipocytes) deposits 
within the wall of an artery.

Artery an elastic blood vessel that transports blood away from the heart.

Atherosclerotic  
plaque

accumulation of fatty material along the walls of arteries.

Bacteriophage A virus that infects bacteria.

Blood perfusion Delivery of arterial blood to a capillary bed in the biological tissue.

Choroid the middle, blood vessel rich, layer of the eye, between the sclera and the retina.
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1. Introduction
Bio means life. Bioengineering, “an essential 
underpinning field for the 21st century”, according 
to the US-National Science Foundation and 
National Institute of Health, applies engineering 
principles and laws of physics, chemistry 

and mathematics in a general sense, to the 
understanding and modelling of living systems. 
Biotechnology identifies methods, processes 
and techniques resulting from bioengineering. 
Examples of bioengineering driven technology 
range from micro-scale applications such as 

Contois cell-growth 
model

u = u
m
 × s/(K × x + s) where x is the cell concentration, s is the limiting substrate concentration, 

and u is the specific growth rate.

Fascicle A bundle or cluster.

Form Coefficient C, m−1, is the summation of the form drag, originating from the local shape of the solid matrix, 
imposed on the fluid flow through the pores of a porous medium.

HDL High density lipoprotein: Big-sized molecules that enable transport of lipids like cholesterol and 
triglycerides within the water-based bloodstream. Commonly referred to as “good cholesterol”.

Hemodialyser an external machine that remove impurities and waste products from the bloodstream before 
returning the blood to the patient’s body.

Hemoglobin An iron-containing blood protein that transports oxygen from the lungs to the tissues of the 
body and carries carbon dioxide from the tissues to the lungs.

Iliac Of the upper pelvic (hip) bone.

Intima innermost membrane of an organ or part.

LDL Low density lipoprotein: Small-sized molecules that enable transport of lipids like cholesterol and 
triglycerides within the water-based bloodstream. Commonly referred to as “bad cholesterol”.

LTE Local Thermal Equilibrium; an ideal situation, when assumed to exist locally, negates interfacial 
heat transfer between the solid and fluid constituent of a porous medium.

LTNE Local Thermal Non-Equilibrium; is the actual situation that exists locally permitting interfacial 
heat transfer between the solid and fluid constituent of a porous medium. Since this implies the 
solid and fluid to have different temperatures even in steady state, an interfacial heat transfer 
coefficient is required for closure of the energy conservation equation.

Myelin sheath The insulating envelope that surrounds the core of a nerve fiber to transmit nerve impulses.

Parenchyma the functional tissue of an organ.

Peristalsis wavelike muscular contractions of tubular structures.

Permeability K, m2, hydraulic property of a porous medium that is a summation of the viscous drag offered 
by the solid matrix to the flow through the pores.

Porosity or Volumetric Porosity is the ratio of the pore volume to the total volume of a porous medium. 
In general, a direction dependent surface porosity, using the ratio of the respective areas, can 
also be defined for a porous medium.

RPE retinal pigmented epithelium: The pigmented layer of the retina.

Sclera The tough, opaque, usually white, fibrous outer envelope of the eye covering all of the eyeball 
except the cornea; Commonly referred to as the white of the eye.

Stratum corneum outer skin layer consisting of dead cells.

Transdermal Across the skin.

Transmural flow Flow through the wall of an organ.

Transcleral flow Flow through Sclera, sheathing the eye.
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genetic engineering to macro-scale designs such as 
artificial lungs and tissues.

Biothermology or Bioheat transfer and bio-
mass transfer can be seen as a subdivision of 
bioengineering. The three-fold objectives of heat 
transfer, viz. insulation, enhancement and control 
of temperature, when applied in the context 
of biological systems, offer insights into many 
biological processes. Examples of bioheat transfer 
processes specific to humans include:1

 1. Thermoregulation; metabolic heat generation, 
evaporation, convection and radiation to 
achieve steady state;

 2. Effect of increased Metabolic Heat Generation; 
temperature rise during exercise

 3. Bioheat transfer in muscles and tissues 
accompanied with effects due to blood flow 
(perfusion)

 4. Burning; skin burning as transient heat 
transfer process

 5. Fever and Hypothermia
 6. Thermal Comfort; Convection, conduction 

heat transfer through clothing, optimum 
temperature, humidity, energy transfer in 
artificial fittings like contact lens

Similarly, mass transfer studies, within the 
purview of biology, helps in understanding several 
bio-mass transfer processes that can be identified 
within the human body:

 1. Blood as oxygen carrier; equilibrium of 
oxygen in blood with inhaled air

 2. Metabolism; diffusive oxygen transfer in a 
tissue

 3. Membranes as barriers to bulk flow; diffusive 
and ionic flows through membrane channels; 
porous medium models of capillaries and 
tissues

 4. Liquid Diffusion in tissues; drug delivery to 
local regions inside body; diffusion of gastric 
juice in the stomach

Computer modeling and simulation is critical 
in the field of bioengieering where experimental 
verification is inherently complex owing to lack 
of easy accessibility of functional biological 
organs, their complex geometries and in general, 
the prevailing safety regulations. Computational 
bio-fluid flow and bio-heat transfer studies have 
become an important tool for investigation 
of complex biophysical phenomena difficult 
or impossible for experimental observations. 
Advances in simulation and modeling aids, 
hardware and software improvements and inter-

disciplinary knowledge have made it feasible to 
apply the computational paradigm to biological 
systems. Bioengineering computational models are 
typically either bionic (designing bioengineering 
systems) or mechanobiological (understanding 
basic processes). As a thermal engineer would 
expect, modeling of biofluid dynamics forms an 
inherent part of the subsequent bioheat transfer, 
when convection or conjugate heat transfer are to 
be investigated.

The porous medium modelling approach, now 
an established methodology in other engineering 
disciplines, has made forays into biomechanical 
modelling over the past two decades. Many 
biological systems involving multi constituents 
can readily be approached as porous media 
for simplified analysis. An obvious example of 
mass transport in biological systems that can be 
modelled as porous medium is the diffusion of 
nutrients and other macromolecules (drugs etc.) 
across and within biological tissues. An earlier 
review by Khaled and Vafai2 describes studies 
carried out prior to 2002 on porous medium 
models used in specific biological and biomedical 
applications such as tissue generation in scaffolds, 
transport in brain tissues, MRI applications, liquid 
chromatography, transport of macromolecules 
in aortic media, blood flow through muscles, 
and interstitial fluid flow in axi-symmetric soft 
connective tissue. Porous medium models are 
applicable to mass diffusion across tissues because 
tissues are classic three-dimensional porous media 
composed of dispersed cells and fibres separated by 
connective voids, through which interstitial fluids 
circulate. In fact, the porous medium theory is 
applicable at various scales in biological systems—
organ, tissue, macro, micro, nano, and cells can all 
be represented as porous media.2–4

Before elaborating on available literature on the 
modeling of biological systems as porous media, 
for self-consistent reading and completeness, 
we shall recount briefly the basics of porous 
medium modelling along with the rudimentary 
conservation equations involved.

2. Porous Medium Concepts
A definition for porous medium, suited for 
analysing transport phenomena, is a region in 
space comprising of at least two homogeneous 
material constituents, presenting identifiable 
interfaces between them in a resolution level, with 
at least one of the constituent remaining fixed or 
slightly deformable. It is usually characterized by a 
volumetric porosity (φ) and permeability (K, m2).

Central to analysing heat and fluid transport 
through porous media is the idea of volume 
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averaging that renders the porous region into 
an equivalent homogeneous space suitable for 
continuum analysis. Analogous to the continuum 
concept defined for single constituents, a 
homogeneous porous medium is defined over 
a porous continuum. Every point in the porous 
continuum represents, not the individual solid 
or fluid constituents, but the combined porous 
medium. Such a porous continuum point 
represents a finite volume of the porous medium 
called the Representative Elemental Volume (REV). 
This procedure is explained in the schematic of 
the Fig. 1.

In this context, microscopic scale refers to 
the micro level of the individual solid or fluid 
constituent of the porous medium (within 
the individual constituents in Fig. 1a), while 
macroscopic scale refer to the coarser combined 
region of solid and fluid of the porous medium 
at the representative elemental volume level 
(Fig. 1c). The global scale refer to the larger 
length scales of the finite volume of the porous 
medium (L), where experimental measurements 
result in the determination of porous medium 
properties like permeability and form coefficient. 
A biological region formed by tissue irrigated 
by blood flow is a porous medium at the global 
scale and the representative elemental construct 
containing finite small blood and tissue volume is 
the macroscopic scale, while the region within this 
REV can be at the microscopic scale.

The picture of the porous medium in the figure, 
viewed from afar, would blur the interfaces between 
the metal matrix and the voids, resulting in a 
continuous indistinguishable haze. Such a coarser 
visual resolution (or equivalently, the sample size) 
is essential for treating a region suitable for volume 
averaged porous medium analysis. Alternately, 
such a homogeneous porous medium approach 
provides useful results when the representative 
pore size of the porous medium is much smaller 
(usually three orders)than the largest length scale 
of the domain of interest. Sweating from skin, 
for instance, can be investigated using a porous 
medium modelling approach, when the individual 
sweat pores are sufficiently small and many in a 
much larger human skin surface.

2.1. Flow Through Porous Medium
The filter-like picture shown in Fig. 2 represents 
the filtration experiments carried out by Henry 
Philibert Gaspard Darcy in Dijon, France in the 
middle of the 19th century, when he was working 
there as the “Dean of the School of Bridges and 
Roadways” and was involved in planning the 
fountains of the city of Dijon. While working on 

filtering hospital waste water, Darcy described 
his empirical studies on steady-state filtration in 
detail. He demonstrated with his experimental 
results that the watervolume passing through a 
sand layer is proportional to the pressure-drop 
across the length of the layer, leading to the 
equation.

 α = / ∆ /U P L( )  (1)

where α is the hydraulic conductivity of the 
porous medium, U is the channel cross-section 
averaged fluid speed, also known as the seepage 
speed, and ∆P is the hydrostatic pressure 
difference (i.e., inlet minus outlet) across the 
porous medium layer of length L.

Darcy’s equation, Eq. (1), as proposed, is 
an algebraic equation involving cross-section 
average quantities. That is, it is not the differential 
momentum conservation equation but a solution 
to one with prescribed boundary conditions. 
Darcy Law, Eq. (1), involves global quantities, 
which can be measured—as Darcy did—in an 
experiment. The α in the original Darcy law later 
was distilled by researchers as a ratio of the fluid 
dynamic viscosity and a specific permeability, a 
property of the porous medium through which 
the flow happens. This would make Eq. (1) read in 
today’s context as

 
∆

=
P

L K
U

µ
 (2)

The important contribution of Darcy’s 1856 paper 
is perhaps the recognition of permeability, K, m2, as 
a porous medium property, in its primitive form. 
It took a few twists and turns and adhoc extensions 
to evolve a differential momentum equation 
for which the above Darcy law is a solution. The 
relevant history is summarized in the schematic of 
Fig. 2. Figure 2 essentially traces only the concepts 
originated through experiments, in other words, 
the modelling of flow through porous media done 
at the global scale. Further historic details are 
available in the excellent review by Lage.5

A step towards the generalization of Darcy’s 
equation valid at a global scale for the porous 
medium, is the ad-hoc extension of the global 
Hazen-Dupuit-Darcy model see Fig. 2 into the 
differential form

 −∇ = +p
K

u C u u
µ ρ
 

| |  (3)

where 

u is the Darcy velocity, also known as the 

local (macroscopic, or representative elementary 
volume) seepage fluid velocity. It is related to the 
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Figure 1: Porous Medium: a) definition b) volume averaging and REV c) homogeneous porous medium model 
d) determination of homogeneity for property Φ of porous medium.
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intrinsic pore average velocity as 

u up= φ , where 

u
p
 = ∫u(x, y)dA, the integral taken over the local 

pore cross section in an REV of a porous medium. 
The ∇p in Eq. (3) is the local (macroscopic) 
pressure gradient, related to the pore cross-section 
averaged static pressure by p = φp

p
. The two 

terms in the RHS of Eq. (3) represent the lumped 
viscous and lumped form effects (forces) within 
the macroscopic permeable medium and are 
usually designated as viscous drag and form drag 
respectively, as they impede the flow.

Ideally, if one were to perform a volume 
integration of the differential momentum equation, 
Eq. 3, (also shown in the bottom orange box in 
Fig. 2), it should lead to a result similar to that of 
the, experimentally verifiable, global momentum 
conservation equation just above it (yellow box) 
in Fig. 2. The schematic in Fig. 2 doesn’t provide 
a complete picture of the modelling challenges 
involved in the differential scale or the macroscopic 
or pore level modelling of the porous medium. 

Also, the schematic captures only the evolution of 
the global momentum conservation statement for 
a particular restricted class of porous media partly 
due to the nature of the earlier experiments done 
(in the 19th and early 20th centuries) to understand 
the flow through porous media, which involved 
mostly low permeable media (K < 10−7 m2) like 
sand filters.

A more general representation of the 
macroscopic momentum model, Eq. (3), which 
includes other force terms is given below.

 ρ
φ φ φ

µ µ ρ

f

eff

u

t
u u P

u
K

u C u u

1 1 1

2

∂
∂

+ ⋅ ∇








 = −∇

+ ∇ − − | |

 

(4)

The φ in the above equation represents the 
volumetric porosity of the porous medium 
(total pore volume divided by the total volume 
of the porous medium); P, Pa and u, ms−1 are the 

Figure 2: Summary of historical evolution of momentum conservation in flow through porous media.
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cross section averaged static pressure and velocity 
(vector) at the REV level. The µ, Nsm−2 and ρ, 
kgm−3 are the dynamic viscosity and density of 
the fluid that flow through the porous medium 
while K, m2 and C, m−1 are the hydraulic properties 
permeability and form coefficient of the porous 
medium. The form coefficient is further related 
to the permeability as C c K= / , where c is a 
dimensionless constant that could vary depending 
on the porous medium.

Equation (4) has six physical properties of 
which ρ and µ can be obtained as measurements 
using their separate constitutive relations. 
Porosity φ can be determined independently. 
The other porous medium hydraulic properties 
permeability K, form coefficient C and effective 
viscosity µ

eff
 depend on the geometry of the 

permeable medium. Unique constitutive 
relations doesn’t exist for their determination and 
hydraulic experimental data needs to be matched 
with solutions to the above momentum equation, 
Eq. (4), for individual porous medium. The 
difficulty of this procedure only gets amplified for 
bio-materials, requiring internal access to organs 
with complex geometries desired to be modelled 
as porous media.

Equation (4), identified on occasion as the 
generalized Navier-Stokes equation, is recognized 
as the most general momentum conservation 
statement for porous medium flows. It is valid on 
a porous continuum, a continuous space whose 
differential ‘point’ is in principle equivalent to the 
REV of the actual porous medium being modelled 
(see Fig. 2). The first additional force term µ

eff
∇2u 

arises due to the Brinkman effect, the fluid-fluid 
viscous shear ever present in a viscous flow and 
which is a distinct force from that of the internal 
fluid-solid viscous drag present in the porous 
medium flows (identified as Darcy or viscous drag). 
Accordingly, µ

eff
, Nsm−2 is identified as the effective 

viscosity, a quantity believed to be a function of 
the geometry of the porous medium at the REV 
level and hence, is often related to the volumetric 
porosity as µ

eff
 = φ−1µ. The other included force, the 

second term on the LHS, is due to the convective 
inertia. A comparative summary of the nature of 
the force balances in the momentum conservation 
of various flows within and without porous media 
is given in the schematic of Fig. 3.

The Brinkman effect manifests dominantly 
only for coarser porous media with volumetric 
porosity φ > 0.6.6 Such porous medium modeling 
has been used to understand biological processes 
like pathological blood flow when accumulations 
of fatty plaques of cholesterol and artery-clogging 
blood clots increase in the lumen (the cavity or 

channel within a tube) of the coronary artery.2 
The convective inertia for porous medium flows 
is usually negligible when compared to the other 
dominant drags present due to the porous solid 
matrix. This observation holds also for several of 
the biological processes that could be modelled as 
porous medium flows.

2.2.  Energy Balance in Porous Medium 
with LTE Assumed

In Fig. 4, a sample parallel plate bounded porous 
medium convection region is modelled as a 
homogeneous one dimensional heat and flow 
configuration. The Darcy law in its global and 
differential form (text inside the green box in Fig. 4) 
is taken to governthe momentum conservation 
in this particular case. The surface porosity is 
invariant in the x direction and hence equal to the 
volumetric porosity φ.

Since atleast one solid and one fluid phase is 
involved in constructing a porous medium, the 
energy balance requires the conservation of energy 
transfer that could prevail in and between these tow 
phases. Hence, in principle, two energy equations, 
one each for each of the material constituent, 
needs to be solved with a proper interfacial energy 
flux closure. Nevertheless, the energy balance is 
the first law of thermodynamics, applied on an 
open system where mass and energy are allowed 
to ‘cross’ the boundaries that separate the system 
from its surroundings.

The two energy equations can be written as
Solid side

 ( )( ) ( ) ( ) ( )1 1 1−
∂
∂

= − ∇⋅ ∇ + −φ ρ φ φc
T

t
k T qs

s
s ′″  

  (5)

Fluid Side

 φ ρ ρ

φ µ
( ) ( )

( )

c
T

t
c v T

k T
K

v

P f
f

P f f

f f

∂
∂

+ ⋅ ∇

= ∇⋅ ∇ +



2

 

(6)

Observe that the fluid side by the volumetric 
porosity φ while the solid side is ‘weighted’ by 
(1 − φ) and the velocity in the fluid side is cross 
section averaged, i.e. v = φv

p
, as discussed beside 

the momentum equation. The volumetric internal 
heat generation is present only in the solid side (the 
last term in Eq. (5)) and the viscous dissipation 
term is present only in the fluid side (the last 
term in Eq. (6)). Also, the viscous dissipation is 
modelled as the power required for the fluid to 
“extrude” itself over the porous solid structure. 
This is equivalent to the pressure drop in the Darcy 
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form of the momentum conservation times the 
seepage speed Eq. (1), resulting in an expression of 
the form given as the last term in Eq. (6).

If one were to solve these equations separately, 
an interfacial closure term involving a local 
convection heat transfer coefficient is required 
(absent in Eqs. (5) & (6)) that account for the local 
heat transfer between the solid and the fluid flow. 
Omission of this term in above two equations is 
possible with the assumption that the temperature 
of the solid and the fluid inside an REV is identical. 
In other words, local thermal equilibrium between 
the solid and the fluid is assumed at the REV level 
while writing Eqs. (5) and (6).

From Fig. 4 it is obvious that the one-dimensional 
porous medium convection configuration is a 

parallel arrangement at the REV level. Invoking 
the volume averaging concept and combining 
the above two equations to obtain a single energy 
equation and generalizing for three-dimensions 
using vector notations would result in:

 ( )ρ σ µ
c

T

t
V T k T q

K
VP f e

∂
∂

+ ⋅∇





= ∇ + +2 2′″  
  

(7)

The temperature T present in Eq. (7) is neither the 
temperature of the solid nor that of the fluid but is 
that of the porous medium. The effective thermal 
conductivity k

e
 and effective thermal capacitance 

σ owing to the parallel arrangement of the solid 
and the fluid flow in the REV level, can be defined 

Figure 3: Schematic of delineation of flows using force balance without and within porous media.
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as k
e
 = φk

f
 + (1 − φ)k

s
 and σ = (φ(ρc

p
)

f
 + (1 − φ)

(ρc
p
)

s
)/((ρc

p
)

f
) respectively. Other functional 

relationships are possible depending on the nature 
of the geometry of the investigated porous medium 
(readers may consult Chapter 3 in Reference6).

Some of the major assumptions in writing the 
volume averaged energy conservation statement 
in Eq. (7) are as follows: 1) homogeneous porous 
medium 2) local thermal equilibrium between the 
solid and the fluid of the porous medium exists 
in the REV level itself. 3) effective properties 
used in the volume averaged energy equation are 
accurate in predicting the effects in the REV level. 
4) the rest of the primitive variables, u, P and T are 
volume averaged quantities defined on a porous 
continuum.

In the next sections we shall review literature 
pertaining to bio fluid and heat transport processes 
modelled primarily using the porous medium 
concepts discussed in this section. Literature 

published after 2003 only is discussed with some 
detail as other excellent reviews2,4 of related topics 
cover much of the related published literature 
before 2003. The reader is directed to Reference 1 for 
historical discussions on bio-heat transfer models.

3.  Porous Medium Modelling in Bio-mass 
Transport

We shall now discuss some specific examples of the 
use of porous medium modelling in understanding 
mass flow in biological systems.

3.1. LDL Transport Across Arterial Tissues
Plaque, the build up of fatty substances, 
cholesterol, cellular waste products, calcium and 
other substances on arterial walls, resulting in 
Atherosclerosis, is a direct result of transport of 
the low-density lipoprotein (LDL) among other 
macromolecules,from the blood through the 
arterial wall. Given the seriousness of the disease, 

Figure 4: Volume averaged energy balance statement for porous media when local thermal equilibrium prevails between solid 
and fluid phase.
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there has been considerable interest in recent years 
on modeling the transport of macromolecules 
such as LDL across arterial walls.7 Comprised 
of four layers—endothelium, intima, media 
and adventitia—the arterial wall is a typical 
porous medium and relevant parameters such 
as permeability and porosity of wall, velocity of 
blood, arterial pressure, pulsatile behavior of flow 
are available in literature to enable modeling of 
the LDL transport across the wall as a flow across 
porous medium problem.

Studies on macromolecular transport across 
arterial walls has been classified by Prosi and 
coworkers9 into three categories—wall-free 
models, fluid wall (or homogenous wall) models 
and multilayer models developed by Karner.10 
While the first two are simplistic models that 
use minimal parameters, they are far removed 
from realistic situations. The multilayer models 
represent transport across many distinct layers of 
the wall at the microscopic or macroscopic levels.

Sun and coworkers11 used the homogenous-wall 
model to understand the effects of wall shear stress 
on the mass transport from blood to and within the 
wall of a stenosed artery under steady conditions. 
They used the Navier Stokes and advection diffusion 
equations to model flow and species transport in the 
lumen and Darcys law to solve the transmural flow 
in the arterial wall. They coupled the mass transport 
within the artery with the transmural flow to obtain 
the species distribution across the arterial wall. 
A homogenized model was also used by Olgac and 
coworkers12 in a patient-specific three-dimensional 
simulation of LDL accumulation in a human left 
coronary artery in its healthy and atherosclerotic 
states. They showed that in the diseased state, the 
site with high-LDL concentration shifted distal to 
the plaque, which is in agreement with the clinical 
observation that plaques generally grow in the 
downstream direction.

The multilayer model has been most frequently 
used in recent years as it provides a more realistic 
picture of the arterial structure. This model 
shows that the occurrence of smooth muscle 
cells in intima and the metabolic processes in 
media create a concentration gradient across 
the layers and hence govern the macromolecular 
concentration. Tada and Tarbell13 used a layered 
arterial wall model, consisting of internal elastic 
lamina and medial layers alone, to analyse the 
effect of the internal elastic lamina (IEL) on 
macromolecular transport of LDL and adenosine 
triphosphate (ATP) molecules in the arterial wall. 
The concentration gradient was produced by 
uptake of macromolecules by smooth muscle cells. 
These studies showed that the IEL pore structure 

greatly affected the ATP and LDL concentration in 
media. ATP transport was governed by diffusion 
whereas, LDL transport governed by convection. It 
was concluded that the diffusion driven transport 
of molecules, responsible for intimal hyperplasia, 
depends on IEL pore structure.

Sun et al. have also studied the influence of 
wall shear stress and transmural pressure on LDL 
accumulation in arterial wall using the multilayer 
model.14 Low wall shear stress and high transmural 
pressure lead to increased accumulation of LDL in 
the arterial wall. They also studied the influence 
of pulsatile flow on LDL transport and showed 
that a steady flow assumption was inadequate 
to simulate transport of LDL in arteries that see 
complex flows, especially those near bifurcations.

Olgac and coworkers also studied the effect of 
wall shear stress on LDL accumulation using a three-
pore model and obtained results similar to Sun’s [?]. 
Olgac suggested that transport of macromolecules 
takes place through three types of pathways viz. 
sites of dying cells, normal porous region and 
transyctosis (selective transport of macromolecules 
from one side of cell to the other). The three-pore 
model represented the dependence of blood plasma 
and LDL transport through the endothelium on 
the local blood flow characteristics better than the 
single pathway approaches of Sun et al.15

Prosi et al. also used a multi-layer model 
composed of endothelium, intima, IEL, and 
media to solve the Navier Stokes equation and 
the advection diffusion equation to obtain the 
flow and concentration fields within the lumen.9 
Darcys law was coupled with a species equation 
for the transport process. It was shown that 
the wall thickness and curvature influence the 
concentration profiles of LDL. The results of 
multilayer model were consistent with fluid-wall 
models for same set of input data.

Ai and Vafai studied the effects of hypertension 
and geometrical variation on the LDL accumulation 
within the wall using advection diffusion equations 
in porous media in the multilayer model.16 In 
another study, Yang and Vafai used a finite element 
scheme based on the Galerkin method of weighted 
residuals in the four-layer model to describe the 
LDL transport in the arterial wall coupled with 
the transport in the lumen.7 They also studied 
the effects of pulsatile flows on LDL transport 
in the arterial wall. In all these studies, blood was 
considered to be a Newtonian fluid and the artery 
was assumed to have rigid boundaries. Their 
studies described the concentration profiles of 
LDL in the arterial wall.

Khakpour and Vafai17 analysed and reviewed 
papers on arterial transport porous medium models 

porohyperelastic model 
(PHEM): A model where the 
material is viewed as a highly 
deformable porous structure.
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used to study fluid flow and mass transfer within 
the arteries. They have also performed numerical 
simulations of the macromolecule transport at the 
aortailiac bifurcation using a four-layer porous wall 
model.18 The layers are treated as macroscopically 
homogeneous porous media with uniform 
morphological properties. High concentration of 
LDL at the lumen endothelium interface has been 
shown to play a key role in the development of 
atherosclerosis. This study also reported the effects 
of gender and geometrical characteristics (e.g. 
asymmetry) on the LDL transport phenomena at 
the aortailiac bifurcation—both wall shear stress 
and wall macromolecule concentration profiles 
were found to be more uniform in an average male 
geometry than at the female iliac bifurcation.

Koshiba et al.19 modelled a deformable arterial 
wall using a porohyperelastic model (PHEM) to 
express both the filtration flow and the viscoelastic 
behavior of the living tissue, and simulated a blood 
flow field in the arterial lumen, a filtration flow field 
and a displacement field in the arterial wall using a 
fluid-structure interaction (FSI) program code by 
the finite element method. They further simulated 
LDL transport using a mass transfer analysis code 
by FEM and compared the porohyperelastic model 
to a rigid model. In the porohyperelastic model, 
the maximum LDL concentration in the wall in 
the radial direction was observed at a position 
of 3 percent wall thickness from the lumen/wall 
interface, while for the rigid model, the LDL 
concentration peaked at the lumen/wall interface. 
In addition, the peak LDL accumulation area of 
the PHEM moved according to the pulsatile flow. 
Their results demonstrated that that the blood 
flow, arterial wall deformation, and filtration flow 
affect the LDL accumulation. Badia and coworkers 
have coupled the Biot and Navier Stokes equations 
to model fluid poroelastic media interaction 
during mass transport from the arterial lumen to 
the arterial walls and inside the walls.20

3.2. Mass Transport in Tissue Regeneration
Tissue engineering is an emerging technology for 
treatment of a variety of orthopedic and muscular 
maladies. It involves the application of biological, 
chemical, and engineering principles toward the 
repair, restoration, or regeneration of living tissues 
using biomaterials, biomimetic materials and 
cells.21 Three dimensional porous scaffolds are 
being increasingly used as the substrate for cell 
culture and attachment and tissue organization 
in bone regeneration—an in vivo “bioreactor”. 
Such scaffolds are characterised by good porosity 
for nutrient transport, biocompatibility and 
good mechanical strength. Scaffolds are typically 

made of natural materials such as collagen, 
glycosaminoglycan and chitosan or synthetic 
polymerslike polyglycolic acid (PGA), polylactic 
acid (PLA), and polycaprolactone (PCL).

The properties of tissue engineered scaffold 
matrices are critical for safety and long-term 
clinical success of the scaffold. An ideal scaffold 
should provide a suitable environment for 
nutrient delivery, waste removal, and mechanical 
stimulation, thusnecessitating high porosity 
and permeability. It is therefore important to 
understand their mass transport properties. 
The scaffolds may be considered porous media 
though which there is a flow (“perfusion”) of 
homogeneous fluid and may be related to flows 
with simple geometries, such as flow over a porous 
layer or flow through a porous plug.

Lasseux and coworkers derived a macroscopic 
model to describe reaction and transport by 
diffusion and convection of two species within a 
porous medium, a situation seen during in vitro 
tissue growth.23 The tissue at the microscopic scale 
was treated as a three phase structure in which solid 
polymer fibres were explicitly taken into account as 
a separate phase in addition to the cell phase and 
fluid phase. Convective transport was considered in 
the fluid phase in addition to the classical diffusive 
transport and the volume averaging method was 
used to develop a macroscopic one equation model.

Porter et al. applied the Lattice Boltzmann 
method to simulate the culture media flowing 
through scaffolds in a bio-reactor.24 This modeling 
compared results for different perfusion bioreactor 
systems or different scaffold microarchitectures 
and could allow specific shear stresses to be 
determined for optimization of the amount, type, 
or distribution of in vitro tissue growth. Costa et al. 
proposed a control-volume finite element method 
to simulate the problems of coupled viscous and 
porous flows, assuming continuity of both velocity 
and stress at the porous fluid interface.25 Betchen 
et al. introduced pressure velocity coupling to 
develop a similar finite volume model.26

Boschetti and coworkers characterized through 
CFD studies, the hydrodynamic field imposed to 
cells in a micro-porous scaffold.27 The variation 
of the local shear stress distribution was evaluated 
as a function of parameters that can be controlled 
during the scaffold fabrication process, such as the 
scaffold porosity and the pore size, and during 
the cell culture, such as the medium flow rate and 
the diameter of the perfused scaffold section. For 
a given pore geometry, the pore size wasfound 
to strongly influence the predicted shear stress 
level, whereas the porosity strongly affected the 
statistical distribution of the shear stresses but not 
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their mode value. The results of the simulations 
indicated that low porosities allow a better control 
of the shear stress level imposed to the cells.

Adachi and co-workers proposed a framework 
for the optimal design of the porous scaffold 
microstructure by three-dimensional computational 
simulation of bone tissue regeneration involving 
scaffold degradation and new bone formation.28 
The voxel finite element method was applied to 
simulate the bone regeneration process in a bone 
scaffold system. The regeneration process was 
quantitatively evaluated by measuring the change in 
the strain energy of the bone scaffold system. Case 
studies for scaffolds with lattice-like and spherical 
pore structures were carried out, and demonstrated 
the applicability of the design of the porous scaffold 
microstructure.

Coletti et al. developed a mathematical 
model of convection and diffusion in a perfusion 
bioreactor, combined with cell growth kinetics.29 
The model described the spatio-temporal evolution 
of oxygen concentration and cell densitywithin 
a 3D polymeric scaffold. The fluid dynamics 
of the medium flow inside the bioreactor was 
described using the Navier-Stokes equations for 
incompressible fluids. The convection through the 
scaffold was modelled using the Brinkman porous 
medium model, i.e. steady state version of Eq. (4) 
without the convective inertia and the form drag 
terms. The study showed that convection, diffusion, 
and cell growth depend strongly on the properties 

of the scaffold, such as porosity and permeability, 
which change in time and space.

Chung and coworkers developed a mathematical 
model to simulate nutrient flow through cellular 
constructs by treating them as a biphasic porous 
medium consisting of the void fluid phase 
(culture medium) and the full cell phases.30 The 
cellsand extracellular matrix were treated as a 
single unit. The model incorporated modified 
Contois cell-growth kinetics that contains nutrient 
saturation and limited cell growth rates. Numerical 
simulations showed that cells penetrated to a 
greater extent into the scaffold and resulted in a 
more uniform spatial distribution when cells were 
cultured under direct perfusion. It was shown that 
perfusion also imposed flow mediated shear stress 
to the engineered cells.

Sans Herrera et al. proposed a coupled micro 
macro numerical approach where the effective 
scaffold properties required at the macroscopic scale 
are derived from the asymptotic homogenization 
theory and the microscopic variables are obtained 
by solving the associated localization problem.31 
They derived the macroscopic Darcy law for 
an incompressible viscous fluid flowing in a 
porous medium. A model for bone in growth at 
the microscopic scaffold surface was proposed 
considering the strain energy as mechanical 
stimulus. The model provided information on 
bone formation distribution at scaffold evolution 
of the macroscopic diffusion coefficient and 

Figure 5: Engineered Vascular Tissue.22
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mechanical properties considering anisotropy due 
to the effect of bone regeneration and the evolution 
of the scaffold microstructure at each point of the 
scaffold domain.

Yu and coworkers applied numerical simulations 
to predict the fluid dynamics and oxygen transport 
inside a micro-bioreactor for animal cell culture.32 
The scaffold structure and cells attached on the 
scaffold were considered the porous medium. The 
velocity around the top surface of the scaffold was 
higher at a higher Reynolds number and the flow 
approached the scaffold more perpendicularly. High 
porous flow was also observed within the scaffold 
with an increase in Reynolds number.

Whittaker et al. developed a simple 
mathematical model based on Darcy’s law for 
forced flow of fluid (culture medium) through a 
porous scaffold.33 In this model, porous-walled 
hollow fibres penetrate the scaffold and act as 
additional sources of culture medium. The model 
helps design effective experiments by estimating 
the range of flow rates required to achieve a desired 
shear stress distribution and ensure sufficient 
nutrient and waste transport. The model can also 
predict how often the culture medium needs to be 
replenished during the culturing.

3.3. Drug Delivery
The clinical relevance and importance of drug 
administration cannot be understated. The effective 
release of active pharmaceutical ingredients from 
delivery vehicles (pills, injections, transdermal 
patches etc.) to the target tissues decides the 
efficacy of the pharmacological treatment. 
Mathematic modelling has enabled drug delivery/
administration to evolve from the passively pre-
programmed activity of the past to a dynamic self-
programmed activity. Drug delivery is controlled 
by the rate-controlling release mechanism such as 
diffusion, erosion/chemical reactions, swelling and 
osmosis. The drug is often distributed in a matrix 
that can either be nonporous/homogeneous or 
porous/granular. When the matrix is porous, 
diffusion of the drug is restricted to pores in an 
otherwise impermeable material. Diffusion is 
usually the rate determining step in such systems, 
but drug release can also occur through processes 
such as matrix swelling and erosion. In transdermal 
patches, convection is the leading drug transport 
mechanism.

Computational fluid dynamics simulation can 
predict the spatial and temporal variation of drug 
transport in the living tissues. Macroscopically, 
the tissue can be assumed as an isotropic porous 
medium. The drug transport in the tissue can be 
assumed to be a combination of convection and 

diffusion in the porous medium. Thus the concept 
of percolation theory for the solute transport in 
the porous medium can be applied with additional 
feature of solute elimination kinetics.34

Transcleral drug delivery is used to treat a 
variety of eye diseases such as age related macular 
degeneration, and involves placing the drug at the 
posterior section of the eye. Several recent studies 
of transscleral drug delivery have attempted to 
derive pharmacokinetic models to explain the 
transfer rates of the drug through the posterior eye 
tissues.35–37 Ranta et al.38 reported a pharmacokinetic 
simulation model based on the scleralpermeability 
coefficient P

s
, which accounts for circulation loss 

and predicts the overall permeation flux through 
the sclera. Ram and coworkers recently reported a 
3D porous medium approach using finite element 
method for studying transscleral drug delivery,39 
which accounted for the diffusion and convection 
losses, assuming linear effect of choroidal blood 
flow on the drug delivery.

Narasimhan and Ramanathan have recently 
developed a porous medium model of sclera and 
choroid to study the effect of choroidal blood flow 
on transscleral delivery of the drug anecortave 
desacetate, to the retina.40 The permeation of the 
drug through the direct penetration pathway has 
been modelled as a diffusion process and studied 
using Fick’s second law of diffusion in conjunction 
with an effective diffusivity for the porous media. 
Using the developed model, the transient mean 
plasma concentration C  of the drug anecortave 
desacetate in the choroid has been predicted. The 
effect of choroidal blood flow on the transient peak 
mean plasma concentration maxC  has been studied 
and compared with available experiments.41 In the 
computational domain, the sclera and the choroid 
have been treated as homogeneous isotropic 
porous media.

The conservation equations for porous media 
have been solved to obtain the concentration 
distribution within the domain. The volume 
averaged momentum and species transport 
equations for porous media in the sclera and the 
choroid are written as,
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Transcleral drug delivery: 
drug is delivered to the retinal 
region across the sclera, 
the outer sheathing of the 
retinal and choroidal region. 
Transvitreous drug delivery 
places the drug in the vitreous 
humor the region between 
the retina and the iris, from 
where it diffuses to the retinal 
region.
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The conservation equations have been numerically 
solved employing the Finite Volume Method 
(FVM). The position and time dependent 
concentrations of the drug in the sclera and the 
choroid have been predicted and the relative 
magnitudes of the periocular, vitreous and 
circulation losses have been compared for various 
blood ow velocities. The simulations also predicted 
the transient mean plasma concentration of the 
drug anecortave desacetate in the choroid and the 
effect of choroidal blood flow on the peak mean 
plasma concentration.

Transdermal drug delivery is being increasingly 
used to deliver small, low dosage drugs through 
the skin as patches. Second generation transdermal 
drug delivery systems use physical and chemical 
enhancers to improve drug permeation through 
the skin. Low-frequency ultrasound has been used 
as transdermal drug delivery enhancer. Tezel and 
coworkers used a modified porous pathway model 
to achieve a detailed understanding of the pathways 
responsible for hydrophilic permeant delivery under 
ultrasound. The results of this study showed that 
low-frequency sonophoresis creates pathways for 
permeant delivery with a wide range of pore sizes.42

Microneedle assisted drug delivery has been 
developed in recent years as a third generation 
transdermal drug delivery technique. Lv and 
coworkers have recently developed quantitative 
theoretical models based on porous media to 
simultaneously characterize the flow and drug 
transport.43 Numerical solutions were performed to 
predict the kinetics of dispersed drugs injected into 
the skin from a microneedle array. Increasing the 
initial injection velocity and accelerating the blood 
circulation in skin tissue with high porosity were 
found to enhance the transdermal drug delivery.

Another emerging transdermal drug delivery 
technique is skin electroporation where the skin 
is exposed to a series of electric pulses, resulting in 
the structural alteration of the stratum corneum. 
Becker recently reviewed the current understanding 
of porous media descriptions of nondestructive 
transdermal transport and models of electroporation 
related structural changes within the skin.44 Becker 
also showed the applicability and potential of 
merging transdermal transport modeling with 
skin electroporation modeling, by developing an 
example model that combines a brick and mortar 
style skin representation with a thermodynamic 
based model of skin electroporation.

3.4. Drug Eluting Stents
Endovascular drug-eluting stents are being 
increasingly used for the prevention and cure of 
restenosis. Stents are devices inserted into arteries 

to widen their lumen, prevent occlusion and restore 
blood flow perfusion to the tissues downstream. 
Drug eluting stents combine mechanical support 
of restricted lumen with local drug delivery. In 
these stents, the therapeutic agent is loaded into 
biocompatible polymeric layers that are coated 
on the metallic struts of the stent. The release of 
the drug depends on many factors, such as the 
coating geometry and physico chemical properties, 
and drug characteristic, such as diffusivity and 
solubility. These stents work under complex stress 
conditions that vary in time and it is difficult to 
accurately predict their performance and efficiency 
over extended periods of time.45

There have been a few computational 
approaches to understand the mass transport in 
drug eluting stents. The arterial wall can be seen 
as an inter-channelled porous medium where 
free drug molecules, moving in the channels, 
progressively bind to proteins and are metabolised. 
Thus, many of these approaches model the arterial 
wall as a homogenous porous medium, including 
drug advection due to the plasma filtration through 
the tissue. An early one-dimensional porous 
medium model by Lovich and Edelman showed 
that when the arteries were uniformly loaded with 
heparin, most of the drug was cleared in less than 
one hour, illustrating the need for sustained modes 
of delivery.46

Seo and Barakat studied the influence of 
various Reynolds numbers, drug diffusivities and 
stent diameters on drug deposition to design stents 
with minimum flow disturbance.47 Migliavacca 
and coworkers developed numerical models based 
on finite element method including the presence 
of the atherosclerotic plaque, the artery and the 
coronary stent.48 The heterogeneous arterial wall 
was mathematically treated on a macroscopic 
scale as a homogeneous porous medium and the 
transport of the drug molecules was modelled by 
the macroscopic convection diffusion equation. 
These models considered mechanical effects 
of the stent expansion as well as the effect of drug 
transport from the expanded stent into the arterial 
wall. Results enabled quantification of stress field 
in the vascular wall, the tissue prolapse within the 
stent struts, as well as the drug concentration at any 
location and time inside the arterial wall, together 
with several related quantities such as drug dose 
andresidence times.

Pontrelli and coworkers developed a 
mathematical model for the diffusion transport of 
a drug between two porous homogeneous media 
of different properties and dimensions.45 The 
work simulated and predicted the dynamics of 
a drug througha two-layered medium to estimate 

Stratum corneum: The 
outermost protective layer 
of the skin comprising dead 
cells without nuclei and other 
cellular components.
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the dose absorption rate. The mathematical 
formulation was able to incorporate the drug 
consumption effect due to tissue cell binding. In a 
later study, Pontrelli developed a four layer model 
to analytically solve the transient drug diffusion 
problem in adjoining porous wall layers faced with 
a drug-eluting stent.49 Even though the blood flow 
was not coupled to the system, the simulations 
could estimate the local concentration and offer 
an easy tool for computing the residence time of 
a drug.

Kolachalama et al.50 employed computational 
fluid dynamic modeling to investigate the 
influence of luminal flow patterns on arterial 
drug deposition and distribution, assuming the 
arterial wall to be a porous medium. It was shown 
that the disparity in sizes of the two recirculation 
zones and the asymmetry in drug distribution are 
determined by a complex interplay of local flow 
and strut geometry.

Vairo and co-workers reported a multiscale 
and multidomain advectiondiffusion model to 
describe drug dynamics in the polymeric substrate 
covering the stent, into the arterial wall, and in 
the vessel lumen.51 The model accounted for 
tissue microstructure (anisotropic drug diffusion, 
porosity, drug retention induced by resident 
proteins), macrostructure (plaque between stent 
and tissue), and local hemodynamics. The strut 
cross-section, embedment level and disturbance 
effects to the local blood flow were found to affect 
the amount of drug in the wall. Drug release was 
also strongly affected by the coating properties. 
Drug levels were strongly affected by the presence 
of a plaque between stent and tissue.

3.5.  Functions of Organs as Flow Through 
Porous Medium

Porous medium modelling has been applied not 
only at the tissue level, but also at the organ level. 
For example, the lung, under SEM investigation 
appears like a sponge with anatomic complexity 
including multiple bifurcations and microscopic 
cavities making it a classic porous medium. The 
airflow and gas exchanges within a lung may 
be considered examples of fluid flow through 
porous medium. The fact that the lung has a finite 
boundary condition dictated by the visceral pleura 
makes it an ideal case for numerical simulations 
using porous medium models.

In the late 1990s, Koulish (Kulich) and 
co-workers developed a mathematical model based 
on the volume-averaging technique to simulate the 
diffusion process within the alveolar region of the 
lung. The steady-state solution of the macroscopic 
model was usedto obtain the lung effective 

diffusivity, with known lung diffusing capacity.52 
They later developed a macroscopic gas transport 
model to simulate the three-dimensional, unsteady 
respiration process within the alveolar region of 
the lungs. The simulations mimicked the single-
breath technique for measuring the lung diffusing 
capacity for carbon-monoxide (CO) and predicted 
effect of red blood cell (RBC) distribution on the 
lung diffusing capacity.53

Lewis and Owen used the homogenization 
theory to predict the macroscopic behaviour of 
lung tissue based upon the three dimensional 
microstructure of respiratory regions, making the 
simplifying assumption that the microstructure 
is periodic.54 Equations for macroscopic air 
flow, pressure, and tissue deformation were 
formulated with parameters determined from 
a specification of the tissue microstructure and 
its material properties. The dependence of lung 
tissue shear viscosity on the frequency of forcing, 
known as the structural damping hypothesis was 
proposed.

Lande and co-workers modelled the lung as 
a viscoelastic porous medium to characterise the 
dynamics of gas flow.55 The lung input impedance 
was considered on a macro level and parenchymal 
tissue impedance on the level of an alveolar wall. 
This lung impedance incorporated parameters 
of porosity, permeability, and viscoelasticity on 
micro and macro levels of parenchymal tissue. The 
macroscopic tissue deformations were represented 
by the linearised Navier—Stokes equations. Their 
study showed the impact of loading impedance at 
the lung boundary on the dynamic behaviour of 
whole lung viscoelasticity.

Kuwahara et al. proposed a porous medium 
approach to investigate the characteristics of 
the bifurcating airflow and mass transfer within 
a lung.56 A two-medium treatment for the air 
convection and the diffusion in its surrounding 
wall tissue was used and the oxygen mass transfer 
between the inhaling air and the tissue was 
considered along with the effects of the blood 
perfusion on the mass transfer within the tissue. 
The analysis justified the need for 23 bifurcation 
levels that are found in the human respiratory to 
achieve minimum overall mass transfer resistance 
for the mass transport from the external air to 
the red blood cells—an observation consistent 
with Bejan’s constructal law (“for a flow system to 
persist in time, it must evolve in such a way that it 
provides easier access to its currents”).

The heart muscle, containing the intracoronary 
vasculature and the kidney, where the porous 
character is essential for the blood filtration are 
other organs that can be modelled as porous media. 
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Cunrman and Rohan presented a numerical model 
to describe diffusion-deformation processes in the 
heart muscle and the kidney.57 The model consisted 
of the equilibrium equation and a number of mass 
conservation equations, incorporating the Darcy 
law of fluid diffusion. In the heart case, the model 
helped understand the distribution of the perfusing 
blood during the cardiac cycle. In the case of kidneys, 
the model aimed at simulating extreme dynamical 
loads on the kidney during the car accidents.

There have been reports of modeling 
hemodialysers (“artificial kidneys”) as porous 
medium. Liao and coworkers developed a porous 
medium model to simulate mass transfer in 
artificial kidney. Darcy’s equations were employed 
to simulate shell-side flow, Navier Stokes equations 
were employed to simulate lumen-side flow, and 
Kedem-Katchalsky equations were used to compute 
transmembrane flow.58 Ding and coworkers have 
also presented a double porous media model using 
Navier Stokes equations with Darcy source terms 
and Modified Kedem Katchalsky equations for 
mass transfer of hollow fiber hemodialyzers.59

Smye and coworkers developed a mathematical 
model of the complex permittivity of liver tissue 
as a function of frequency f, in the range 104 
< f < 107 Hz, derived from a formulation used 
to describe the complex permittivity of porous 
media.60 The complex permittivity for a plausible 
porosity and percolation probability distribution 
was calculated and compared with the published 
measured electrical properties of liver tissue.

The brain can be considered a porous medium 
of a solid phase (brain tissue) and a fluid phase 
(interstitial fluid or blood plasma. At the end of 
the last century, Dai and Mura developed a lattice 
cellular automata model for ion diffusion within 
the brain-cell microenvironment and performed 
numerical simulations using the corresponding 
Lattice Boltzmann equation.61 Sen and Basser 
modelled diffusion in brain white matter fascicles 
as a problem of diffusion in an array of identical 
thick-walled cylindrical tubes immersed in an 
outer medium and arranged periodically in a 
regular lattice. For an impermeable myelin sheath, 
diffusing molecules within the inner core were 
found to be completely restricted, while molecules 
in the outer medium werehindered due to the 
tortuosity of the array of impenetrable tubes.62

Wagner and Ehlers used a porous medium 
model to obtain coupled partial differential 
equations that were then discretised using mixed 
finite elements with a backward Euler time 
integration. Numerical examples illustrated the 
fundamental effects on the brain tissue under heart-
rate dependent pulsative pressure variations.63

Drysdale et al. formulated a quantitative theory 
to relate stimulus and the resulting blood oxygen 
level dependent (BOLD) functional MRI signal 
(an indirect measure of neuron activity) through 
modeling of the brain as a poro elastic medium 
with vasculature reprsented by interconnected 
pores. The model incorporated conservation of 
blood mass, interconversion of oxygenated and 
deoxygenated hemoglobin, force balance within 
the blood and of blood pressure with vessel walls, 
and blood flow modulation due to neuronal 
activity.64

Peristalsis is a major physiological mechanism 
for fluid transport in many biological systems. 
Peristaltic mechanism is involved in swallowing 
food via the esophagus, urine transport from 
kidney to bladder through ureter, fluids movement 
of lymphatic fluids in lymphatic vessels, flow 
of bile from gall bladder into the duodenum, 
spermatozoa in the ductus efferentes of the male 
reproductive tract and cervical canal, movement of 
ovum in the fallopian tube and circulation of blood 
in small blood vessels. Peristaltic transport is also 
employed in various biomedical applications such 
as the heartlung machine, blood pump machine 
and dialysis machine.

There have been a few studies on the 
numerical analysis of peristaltic fluid transport 
in such applications through the porous medium 
approach. The first study was presented by 
Elshehawey et al.65 Maiti and Misra numerically 
studied peristaltic transport of bile in bile duct 
in the presence of stones as a transport through 
porous channel problem.66 The effects of various 
parameters, such as Reynolds number, pressure 
gradient, porosity parameter, Darcy number, slip 
parameter, amplitude ratio and wave number 
on velocity and critical pressure for reflux were 
studied and results were found to agree with 
existing experimental and analytical data. It was 
further shown that bile velocity decreases as the 
number of stones increase and when bile contains 
a very large number of stones, reflux occurs when 
the critical pressure is quite small.

In another study, Tripathi and co-workers 
studied the peristaltic transport of a generalized 
Burgers fluid under the assumptions of long 
wavelength and low Reynolds number.67 This 
model is applicable to study the movement of 
chyme in the small intestine. They concluded 
that the movement of viscoelastic chyme with 
generalized Burgers model through the small 
intestine is more favoured compared to the 
movement of viscoelastic chyme with fractional 
generalized Burgers model. Kothandapani and 
Srinivas studied non-linear peristaltic transport 

Lattice Boltzmann Equations 
(LBM): Equations that use 
mesoscopic particle based 
approaches to simulate fluid 
flows. LBM solves the discrete 
Boltzmann equation for a 
particle density distribution 
function (PDDF); the 
zeroth and first moments 
of the PDDF recover the 
macroscopic density and 
velocity, respectively.

Burgers model: A 
mechanical analog for the 
one-dimensional rate type 
viscoelastic fluid model.

Peristalsis: wavelike muscular 
contractions of tubular 
structures.
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of a Newtonian fluid in an inclined asymmetric 
channel through a porous medium to understand 
fluid dynamic aspects of the intra-uterine fluid 
flow through a porous medium.68 The influence 
of several pertinent parameters on the stream 
function and pressure drop has been studied and 
numerical results obtained are presented. Rathod 
and Channakote studied the peristaltic transport 
of a viscous incompressible fluid through a porous 
medium using the geometrical form of the ureter.69 
The analytical expressions for the stream function, 
axial velocity, and pressure gradient were obtained 
and the effect of various parameters on the flow 
was discussed.

3.6.  Porous Medium Models of Microbial 
Transport

A variety of microbes including virus and bacteria 
are constantly released into the subsurface as 
a result of human activities and other natural 
causes. The fate of the microbe in the porous 
subsurface is important in deciding the levels 
of contaminationof land and subsurface water. 
Sim and Chrysikopoulos developed a numerical 
model for one-dimensional virus transport in 
homogeneous, unsaturated porous media. The 
model accounted for virus sorption onto liquid-
solid and air-liquid interfaces as well as inactivation 
of viruses suspended in the liquid phase and 
viruses attached at both interfaces. The effects of 
the moisture content variation on virus transport 
in unsaturated porous media were investigated. 
Model simulations indicated that virus sorptionis 
greater at air-liquid than liquid-solid interfaces.70

Schijven and Simunek analysed bacteriophage 
removal by soil passage in two field studies to 
investigate differences between one- and two-
dimensional modeling approaches, differences 
between one- and two-site kinetic sorption 
models, and the role of heterogeneities in the soil 
properties.71 The software packages HYDRUS-1D 
and HYDRUS-2D, which simulate water flow and 
solute transport in one- and two-dimensional 
variably saturated porous media, respectively, were 
used in the study. The two-site model performed 
better than the one-site model in describing 
bacteriophage concentrations for the deep well 
injection study.

Barth and Hill evaluated the importance of 
seven types of parameters to virus transport: 
hydraulic conductivity, porosity, dispersivity, 
sorption rate and distribution coefficient 
(representing physicalchemical filtration), 
and in-solution and adsorbed inactivation 
(representing virus inactivation).72 One- and 
two-dimensional homogeneous simulations, 

designed from published field experiments, and  
sensitivity-analysis methods, were conducted to 
establish that hydraulic conductivity, porosity, and 
sorption are the most important parameters that 
affect virus-transport predictions.

Oats and coworkers developed an experimental 
method and numerical model to understand 
reactive microbial transport in saturated porous 
media. The advection dispersion equation 
was used to model bacterial transport and 
oxygen concentration was modelled assuming 
bacterial consumption via Monod kinetics with 
consideration of additional effects of rate-limited 
mass transfer from residual gas bubbles.73 Sun 
and Wheeler formulated a primal discontinuous 
Galerkin (DG) method to solve the transport 
equations for modeling migration and survival of 
viruses with kinetic and equilibrium adsorption in 
porous media.15 Results showed that DG methods 
can treat bioreactive transport of viruses over a 
wide range of modeling parameters, including 
both advection- and dispersion-dominated 
problems. DG was also shown to be able to sharply 
capture local phenomena of virus transport with 
dynamic mesh adaptation.

Nathalie Tufenkji has reviewed traditional 
approaches used to model microbial transport 
and fate in saturated porous media.74 The review 
presented the general governing equations typically 
considered in models of microbial transport and 
fate. The limitations of the mathematical models 
and recently proposed initiatives have also been 
discussed.

Bhattacharjee and coworkers developed a two-
dimensional model for virus transport in physically 
and geochemically heterogeneous subsurface 
porous media.75 The model solved the advection 
dispersion equation (similar to Eqs. (8) and (9)), 
with an additional factor of virus inactivation in 
the solution, as well as virus removal at the solid 
matrix surface due to attachment (deposition), 
release, and inactivation. The study reports two 
surface inactivation models for the fate of attached 
inactive viruses and their subsequent role on virus 
attachment and release. Geochemical heterogeneity 
was modelled as patches of positively charged 
metal oxyhydroxide coatings on collector grain 
surfaces. Physical heterogeneity was represented 
as spatial variability of hydraulic conductivity. The 
upstream weighted multiple cell balance method 
was employed to numerically solve the governing 
equations of groundwater flow and virus 
transport. Subsurface layered geochemical and 
physical heterogeneity was found to significantly 
affectvirus mobility. Random distributions of 
physical and geochemical heterogeneity was also 
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found to influence virus transport behaviour. 
Large virus release rates resulted in extended 
periods of virus breakthrough over significant 
distances downstream fromthe injection sites.

Bekhitt et al. studied the combined effect of 
colloids and bacteria on contaminant transport 
through development of a conceptual model using 
the mass balance equation for each constituent 
in its different forms and by expressing the 
reactions among constituents and with the porous 
medium using a linear kinetic model.76 The 
conceptual and mathematical models incorporated 
bacterial growth and decay, bacterial chemotaxis, 
bacterial lysing and contaminant utilization. 
Finite difference method with a third-order total 
variation diminishing (TVD) scheme was used to 
solve the model. The results were found to agree 
with earlier experimental observations.

Sharma and Srivastava simulated viral 
transport through two-dimensional heterogeneous 
porous media at field scale using an advective 
dispersive virus transport equation with first-
order adsorption and inactivation constant.77 
Implicit finite-difference numerical technique was 
used to solve the two-dimensional virus transport 
equation for virus concentration in suspension. 
Higher values of mass transfer rate constant 
and inactivation constant lead to reduced virus 
concentration and increase in the variance of 
conductivity field or its correlation length resulted 
in a higher virus concentration.

4.  Porous Medium Modeling in Bio-Heat 
Transport

Living tissues are complex structures and the 
heat transfer in them involves primarily heat 
conduction in tissue, convection heat transfer 
between blood and vessel, and blood perfusion, 
which cannot be understood using simplistic 
models. The living tissue ensemble can however 
be conceived as a fluid saturated porous medium 
including the effects of blood perfusion to help 
understand their heat transfer. A generic region 
of biological tissue irrigated by blood flow can 
readily be perceived to fit our definition of a 
porous medium comprising a stationary solid 
(tissue) matrix saturated by fluid (blood) flow, 
with identifiable interfaces at a resolution level. 
The heat transport in such biological tissue region 
can be modelled as convection in porous media 
with internal heat generation.78

From this perspective, it is apparent that the 
investigation of heat transfer processes in such 
a tissue-blood region would require an energy 
conservation statement similar to the porous 
medium energy conservation equation, Eq. (7), 

discussed earlier. A heat transfer equation similar 
in purport was proposed by Chen and Holmes 
in 1980, although, without the claim of being a 
porous medium model.

Chen and Holmes divided the control volume 
occupied by the tissue and blood vessels into two 
separate volumes: one consisting of solid tissue 
only, and the other of blood in the vascular space 
within the blood vessels.79 While the term “porous 
medium” was not explicitly used in this work, such 
a division of the system into the stationary tissue 
phase and the fluid blood phase fits our definition 
of a classic porous medium with identifiable 
interfaces. The proposed ‘continuum model’ 
assumes that heat transfer between blood and 
surrounding tissue occurs along the circulatory 
network after the blood flows through the terminal 
arteries and before the arterioles and that there is 
no significant heat transfer between tissue and 
blood within the capillary region until the blood 
reaches the terminal veins. The Chen and Holmes 
model can be written as
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Here, k
p
 is the perfusion conductivity. The first 

two terms on the RHS of the equation are the 
effective heat conduction and apparent conductive 
heat transfer enhancement due to blood flow 
respectively. The V c T Tj

m
p b a e( ) ( )ρ −  is the local 

blood perfusion term at the j-th branching level 
of blood vessel. ( )ρc v Tp b e

 ⋅ ∇  is the convection 
transport term to account for the effect of 
blood flow direction within tissue and Qm

′′′  is the 
volumetric metabolic heat generation.

The averaging of the temperature (T
e
 = f(T

t
, T

b
) 

where T
t
 and T

b
 are tissue and blood temperatures) 

and related thermo-physical properties of tissue 
and blood (k and c) carried out when writing 
Eq. (11) is much similar to the volume averaging 
procedure discussed in Section 2. However, the 
models used for k

e
 and c

e
 is ad hoc and not based 

on any assumed local porous structure for the 
biological tissue region. Hence, Eq. (11) is defined 
not on a REV based porouscontinuum like Eq. (7), 
the porous medium energy balance, even when 
local thermal equilibrium exist between tissue and 
blood.

Neglecting the local (point-wise) effects of 
blood flow (dispersion or perfusion conductivity 
effect), the thermo-physical properties take values 
for the tissue and setting T

e
 = T

t
, the Chen and 

Holmes model, Eq. (11), can be reduced to the 
Pennes bio-heat transfer equation, the earliest and 
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rudimentary bio-heat model that first accounted 
for the blood perfusion effect,80 as
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where ω is the Pennes blood perfusion rate, a global 
quantity used ad hoc inside the differential bio-
heat equation. The T

a
 is the arterial temperature 

dependent on human anatomy (Pennes used it 
for human forearm, where he had experimental 
data). The Pennes bio-heat transfer equation is 
commonly used to model energy transport in 
biological systems. Although the Pennes bioheat 
equation, Eq. (12), recognizes the different 
temperatures between the tissues and blood, the 
blood temperature is assumed to be a constant 
throughout the heat transfer domain. Also, it is 
not based on the porous medium approach.

A logical extension of the Chen and Holmes 
model is a two-energy heat transfer model with a 
connecting interphase heat transfer relationship. 
Such a model has been derived from first principles 
by Nakayama and Kuwaharaa.81 The individual 
macroscopic energy equations were written for the 
blood and tissue phases as follows

For blood phase:
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In the above equation, the LHS is the macroscopic 
convection term, while the four terms on the 
RHS correspond to the macroscopic conduction, 
thermal dispersion, interfacial convective heat 
transfer and blood perfusion, respectively.

For the tissue phase:
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In Eqs. (13) & (14), the angle brackets signify 
average quantities and the average is taken over 
either solid (tissue) or fluid (blood) volume at 
the REV level (see Fig. 1). In the tissue, the LHS 
represents the thermal inertia term, and the 
terms on the right hand-side correspond to the 
macroscopic conduction, interfacial convective 

heat transfer, blood perfusion heat source and 
metabolic heat source, respectively.

Combining the energy equation for the 
tissue phase with the blood and assuming local 
thermal equilibrium to hold between tissue and 
blood at the REV level, one could arrive at the 
porous medium form of the bio-heat equation, 
which would resemble the Chen and Holmes 
model in Eq. (11) without the global blood 
perfusion term and the perfusion or dispersion 
conductivity term.

Nield and Kuznetsov proposed an illustrative 
model for bio-heat transfer and provided an 
analytical solution for forced convection in a 
parallel plate channel occupied by a layered 
saturated porous medium with counterflow, the 
dominant feature that distinguishes bio-heat 
transfer from other forms of heat transfer.82 The 
case of asymmetrical constant heat-flux boundary 
conditions is considered and the Brinkman model 
was employed for the porous medium.

Belmiloudi studied the effects blood perfusion 
rate and the porosity parameters on the transient 
temperature of biological tissues for use in thermal 
diagnostics applications such as laser surgery and 
thermotherapy often used in the treatment of 
cancer.83 A generalized transient bioheat transfer 
type model has been introduced and the existence, 
the uniqueness and the regularity of the solution 
of the state equation are established.

Fourier’s heat conduction model has been 
found to be sufficient for most engineering 
applications. However it is insufficient for 
accurately predicting temperature distribution 
in non-homogenous materials like meat.84 Since 
the human biological tissue also has a structure 
which is similar to porcine tissue, the study of 
non-Fourier energy transport in human tissues 
is important. An example of such an application 
would be laser irradiation of the retina where 
a high heat flux is typically applied for a short 
period of time. The constitutive relation between 
heat flux and temperature gradient, to account for 
a finite heat propagation velocity, was proposed 
by Cattaneo.85 It states that there is a time lag τ

q
 

between the heat flux and temperature gradient 
i.e. a temperature gradient ∇T at time t causes a 
heat flux −k∇T to flow at time t + τ

q
. It was later 

extended to include a time lag τ
T
 also for the 

temperature gradient. Such a model is known as 
the dual phase lag constitutive relation between 
heat flux and temperature gradient.

 
q

q

t
k T k

T

tq T+
∂
∂

= − ∇ −
∂ ∇

∂
τ τ ( )  

(15)



362 Journal of the Indian Institute of Science  VOL 91:3  July–Sept. 2011  journal.library.iisc.ernet.in

Arunn Narasimhan

Retinal laser irradiation has been analysed using 
the bio-heat dual phase lag model for heat 
conduction.86 Both one- and three-dimensional 
models of the human eye was used to simulate 
retinal eye surgery. The laser heating was modelled 
as a volumetric heat source and the respective 
magnitudes calculated based on the absorptivities 
of the various layers. The retinal pigmented 
epithelium (RPE) is a highly pigmented layer of 
about 10 µm thickness where bulk of the heat 
absorption takes place. The sclera, choroid and 
the RPE were modelled as a porous medium, with 
the choroidal blood flow modelled as Darcy flow, 
Eq. (2). Numerical simulations were performed 
to compare temperature distributions obtained 
from the dual phase lag model with corresponding 
results from an earlier Fourier model in.87

Based on a non-equilibrium heat transfer 
model in the living tissue obtained by performing 
volume average to the local instantaneous energy 
equations for blood and tissues, Zhang obtained 
the dual-phase lag bioheat equations with blood or 
tissue temperature as sole unknown temperature 
by eliminating the tissue or blood temperature 
from the non-equilibrium model.78 In this model, 
the phase lag times were expressed in terms of the 
properties of blood and tissue and the interphase 
convective heat transfer coefficient and blood 
perfusion rate. It was found that the phase lag 
times for heat flux and temperature gradient for 
the living tissue are very close to each other.

Kou et al. studied the effects of directional 
blood flow and heating schemes on temperature 
distribution during thermal therapy of a tumour 
tissue using a transient bioheat transfer equation 
based on the porous medium property to 
encompass the directionaleffect of blood flow.88 A 
Green’s function was used to obtain the temperature 
distribution for this modified bioheat transfer 
equation, and the thermal dose equivalence was 
used to evaluate the heating results for a set of given 
parameters. It was found that during rapid heating, 
the domain of thermal lesion can effectively cover 
the target region. However, the region of thermal 
lesion may extend to the downstream normal tissue 
if the porosity is high (φ > 0.7) and the averaged 
blood velocity has a larger value.

He et al. developed a finite element (FE) 
model to analyse the blood perfusion and heat 
transport in the human finger based on the 
transport theory in porous media.89 The systemic 
blood circulation in the upper limb was modelled 
basedon the one-dimensional flow in an elastic 
tube The realistic geometric model for the human 
finger was constructed based on the MRI image 
data. After computing the capillary pressure and 

blood velocity in the tissue, the temperatures in 
the large vessels and the tissue of the finger were 
computed by numerically solving the energy 
equation in porous media. The computed blood 
flow in tissues was found to be in agreement with 
experimental measurements.

Yuan developed an equivalent heat transfer 
coefficient between tissue and blood in a porous 
model and applied it to the thermal analysis of 
a biological tissue in a hyperthermia therapy.90 
A finite difference method was employed to 
solve thetissue temperature distribution using 
Pennes bio-heat transfer equation and a two-
equation porous model, respectively, and then a 
conjugate gradient method was used to estimate 
the equivalent heat transfer coefficient in the two-
equation porous model with a known perfusion 
rate in Pennes bio-heat transfer equation. The 
equivalent heat transfer coefficient was found not 
to be a strong function of the perfusion rate, blood 
velocity and heating conditions, but inversely 
relate to the blood vessel diameter.

Mahjoob and Vafai used local thermal non-
equilibrium model in porous media theory to 
establish exact solutions for blood and tissue 
phase temperature profiles abd overall heat 
exchange correlations a for two primary tissue/
organ models representing isolated and uniform 
temperature conditions. The model incorporated 
pertinent effective parameters, such as volume 
fraction of the vascular space, ratio of the blood 
and the tissue matrix thermal conductivities, 
interfacial bloodtissue heat exchange, tissue/
organ depth, arterial flow rate and temperature, 
body core temperature, imposed hyperthermia 
heat flux, metabolic heat generation, and blood 
physical properties.91

5. Concluding Remarks
An introduction to porous medium concepts used 
in modelling biological fluid flow, heat and mass 
transfer has been presented. Research literature 
published after ∼2002 pertaining to porous medium 
modelling of bio-fluid-thermal processes has also 
been discussed in detail. One can observe that the 
field of biology has become interdisciplinary with 
a surge of physical and mathematical concepts 
being invoked to model biological processes that 
occur at several scales.

Advancements in biology, health and medicine 
should inevitably require further simplified 
cost-effective engineering understanding of the 
associated biological processes. Porous medium 
modelling of bio-fluid and heat flows would 
certainly participate. Forit to contribute further, 
detailed characterization of internal geometries of 
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biological organs using tomographical studies at 
various length scales is a prerequisite for mapping 
biological regions as porous medium with known 
porosities and permeabilities. Available conceptual 
ramifications like chemically reactive, deforming 
and bi- and tri-disperse porous media are yet to 
be thoroughly utilized in attempting to model 
suitable biological phenomena. Biological flows 
where the porous medium convective momentum 
transport terms are dominating are yet to be 
investigated in detail. In this sense, one could 
observe that the entire gamut of fluid flow types 
governed by the generalized porous medium 
momentum conservation statement is yet to be 
explored. Similarly, the potential of the more 
advanced bio-heat transfer models formulated 
using porous medium concepts of local thermal 
non-equilibrium between the tissue and blood 
flow, are yet to be fully realized.

While seeking simplifications for biological 
processes through porous medium models is an 
exciting and useful multidisciplinary pursuit, a 
note of caution is also in order. As Francis Crick, 
one of the giants of biology having moved to it 
from physics, learned (to quote from),92 “you have 
to adjust from the elegance and deep simplicity 
of physics to the elaborate chemical mechanisms 
that natural selection has evolved over billions of 
years.” A related point recently93 made by Walter 
Gratzer is worth mentioning: “physicists, along 
with chemists and engineers, are surging into 
biology. This has rejuvenated both the biological 
and the physical sciences, even if the leading 
physics journals now publish a profusion of poorly 
refereed papers whose authors have not followed 
the excellent precept not to think what one 
wants to think until one knows what one ought 
to know.” Biology is primarily governed not by 
fundamental physical laws—few and rigid—but by 
an evolutionary process of adaptation (as implied 
by Bio, which means life). Seeking modelling 
simplifications from physical principles for such 
complex and myriad processes could often result 
in incremental progress – with particular solutions 
of limited range of utility or general solutions to 
approximations that has oversimplified biological 
reality.

Received 29 August 2011.
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