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Abstract 

OCCAM is a program which organizes memories of events and learns by 

creating generalizations describing the reasons for the outcomes of the 

events. OCCAM integrates two sources of information when forming a 

generalization: 

l Correlational 

events. 

information which reveals perceived regularities in 

l Prior causal theories which explain regularities in events 

The former has been extensively studied in machine learning. Recently, 

there has been interest in explanation-based learning in which the latter 

source of information is utilized. In OCCAM, prior causal theories are 

preferred to correlational information when forming generalizations. This 

strategy is supported by a number of empirical investigations. 

Generalization rules are used to suggest causal and intentional relational 

relationships. In familiar domains, these relationships are confirmed or 

denied by prior causal theories which differentiate the relevant and 

irrelevant features. In unfamiliar domains, the postulated causal and 

intentional relationships serve as a basis for the construction of causal 

theories. 

Introduction 

When learning the cause of a particular event, a person can utilize two 

sources of information. First, a person may detect a similarity between the 

event and previous events noticing that whenever C occurs, R also occurs. 

After noticing such a correlation, a person might induce that C causes R. 
Secondly, a person may use his prior causal theories. 

In machine learning, the correlational techniques have been extensively 

studied (e.g. [4, 12,23, 18,321). More recently, there has been interest in 

explanation-based learning [9,22,24,25, 281 in which prior knowledge 

used to understand an example guides the generalization process [31]. For 

example, the fust time a merchant asks the customer if he wants the carbon 

paper from a credit card purchase, the customer may wonder why the 

merchant is doing this. A clever person might be able to deduce that by 

taking the carbon paper, he can prevent a thief from retrieving the carbon 

paper from the merchant’s garbage. Since the carbon paper contains his 

credit card number, the thief can make mail and phone purchases with the 

credit card number. Since this is a somewhat complicated inference, it 

would be advantageous to remember it, rather than rederive it the next time 

it is needed. 

The topic of this paper is how these two sources of information, 

correlation of feature over a number of examples, and prior causal theories 

can be combined. There are a number of possibilities: 

l Correlational information is used exclusively. 

l Correlational information is preferred to prior causal theories. 

l Prior causal theories are preferred to correlational information. 

l Prior causal theories are used exclusively. 

In the remainder of this paper, we first discuss some examples of learning 

programs. Next, we review a number of experiments which assess how 

correlational information is combined with prior causal knowledge. Finally, 

we present an overview of our theory as implemented in OCCAM, a 

program under development 

explanation-based learning. 

at UCLA which integrates correlational and 

Related Work 

Correlational Learning 

In this section, we discuss lPP [ 181 a program which uses cormlational 

information exclusively. IPP was selected to exemplify correlational 

learning because a recent extension [20] also adds explanation-based 

capabilities. IPP is a program that reads, remembers, and makes 

generalizations from newspaper stories about international terrorism. 

IPP starts with a set of MOPS [30] which describe general situations such 

as extortion. After adding examples of events to its memory, it creates 

more specialized MOPS (spec-MOPS). Spec-MOPS are created by noticing 

the common features of a number of examples. Not all features of a 

generalization are treated equally. Some features are predictive; their 

presence allows IPP to infer the other features if they are not present. The 

Dredictive features are those that are unique to that generalization. The 

features that appear in a large number of generalizations are non-predictive. 

IPP keeps track of the number of times a feature is included in 

generalizations. The idea is that the 

causes of the non-predictive features. 

predictive features are likely to be 

Since IPP makes no attempt to explain its generalizations, it may include 

irrelevant information which is coincidentally true in a generalization. A 

mechanism to identify and correct erroneous generalizations when further 

examples are added to memory was included in IPP. This mechanism was 

later extended in UNIMEM, the generalization and memory component of 

IPP [19]. 

Explanation-based Learning 

GENESIS [251 is an example of a system which exclusively uses its prior 

causal theories in generalization. GENESIS accepts English language input 

of stories and produces a conceptual representation of the story. The 

conceptual representation contains a justification for the outcome of the 

story and the actions of the actors in terms of causal and intentional 

relationships. If an actor achieves a goal in a novel manner, the explanation 

for how the goal was achieved is generalized into a schema which can be 

used for understanding future events. This generalization process notes 

which parts of the conceptual representation are necessary for establishing 

the causal and imentional relationships. For example, consider how 

GENESIS learns about kidnapping. Part of this process is determining why 

the ransom is paid. Given only one example of a kidnapping in which a 

father pays the ransom for his daughter who is wearing blue jeans, 

GENESIS incorporates this fact into its schema: there must be a psitive 

interpersonal theme [lo] between the victim and the person who pays the 

ransom. This generalization is possible from just one example because the 

inference that explains why the ransom is paid contains the precondition 

that there be a positive interpersonal theme. In contrast, a correlational 

learner might have to see another kidnapping where the victim was not 

wearing blue jeans to determine that clothing is not relevant in kidnapping. 

Similarly, a correlational learner might have to see many examples before 

the father-daughter relationship could be generalized to any positive 

interpersonal theme. 
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At fust, explanation-based learning may seem confusing. After all, isn’t 

it just learning what is already known? For example, the schemata which 

GENESIS constructs encodes the same information which is in the 

inference rules used to understand the story. However, explanation-based 

learning serves an important role. Understanding using inference rules can 

be combinatorially explosive. Consider understanding the following story 

if there were no kidnapping schema: 

The teenage girl who was abducted on her way to school Monday 

morning was released today after her father left $50,000 in a trash can 

in a men’s room at the bus station. 

If there were no kidnapping schema, a very complex chain of inference is 

necessary to determine why the father put money in a mash can and why the 

teenage girl was released. In contrast, understanding this story with a 

kidnapping schema is simplier since the kidnapping schema records the 

inferences necessary to understand the relationship between the kidnapper’s 

goal of possessing money and the father’s goal of preserving the health of 

his child. Explanation-based learning produces generalizations which 

simplify understanding by storing the novel interaction between a number 

of inference rules. In this respect, the goals (but not the mechanism) of 

explanation-based learning are similar to those of knowledge compilation 

[l] andchunking [17]. 

Of course, in some domains an understander might not have enough 

knowledge to produce a detailed causal and intentional justification for an 

example. In such cases, explanation-based learning is not applicable and an 

understander might have to rely solely on correlational techniques. 

UNIMEM 

UNIMEM [20] is an extension to lPP which integrates correlational and 

explanation-based learning. UNIMEM operates by applying explanation- 

based learning techniques to correlational generalizations rather than 

instances. Hence, UNIMEM prefers correlation information to prior causal 

theories. UNIMEM first builds a generalization and identifies the 

predictive and non-predictive features. Then, it treats the predictive 

features as potential causes and the non-predictive features as potential 

results. Backward-chaining production rules representing domain 

knowledge are utilized to produce an explanation of how the predictive 

features cause the non-predictive. If no explanation is found for a non- 

predictive feature it is considered a coincidence and dropped from the 

generalization. There are two possible reasons that a predictive feature 

might not be used to explain non-predictive features: either it is irrelevant 

to the,generalization (and should be dropped from the generalization) or the 

feature may in fact appear to be cause (i.e., predictive) due to a small 

number of examples but in fact be a result. To test the later case, UNIMEM 

tries to explain this potential result in terms of the verified predictive 

features. 

The rational behind using correlational techniques to discover potential 

causal relationships which are then confiied or denied by domain 

knowledge is to control the explanation process. It could be expensive or 

impiactical to use brute force techniques to produce an explanation. Since 

the predictive features are likely to be causes, UNIMEM’s explanation 

process is more focused. However, since UNIMEM keeps track of the 

predictability of individual features rather than combinations of features it 

can miss some causal relationships. This occurs when no one feature is 

predictive of another but a conjunction of features is. For example, in 

kidnapping when the ransom is demanded from a rich person who has a 

positive interpersonal relationship with the hostage one could predict that 

the ransom would be paid. Of course, if the ransom were demanded from a 

poor relative or rich stranger, the prediction should not be made. 

Experimental Data 

How do people combine correlational information with prior causal 

theories? There have been a number of experiments in social psychology 

which assess the ability to learn causal relationships. Some of these am 

motivated by Kelley’s attribution theory [15, 141. Kelley proposed that the 

average person makes causal inferences in a manner analogous to a trained 

scientist. Kelley’s covariation principle is similar to Lebowitz’s notion of 

predictability*: 

“Ike primary difference between predictability and covariation is that covariation implies 

that there is a unique cause: whenever the result is present, the cause is present and whenever 

the cause is present, the result is present In contrast, predictability only requires that whenever 

the cause is present, the result is present 

The covariation principle is based on the assumption that eflects covary 

over time with their causes. The ‘with”  in this statement conceals the 

important and little-studied problem of the exact temporal relations 

between cause and effect. The effect must not, of course, precede a 

possible cause... [14 page 71 

However, this view is not without criticism: 

There is no assumption as critical to contemporary attribution theory 

(or to any theory that assumes the layperson’s general adequacy as an 

intuitive scientist) as the assumption that people can detect covariation 

among events, estimate its magnitude from some satisfactory metric, and 

draw appropriate inferences based on such estimates. There is 

mounting evidence that people are extremely poor at performing such 

covariation assessment tasks. In particular, it appears that a priori 

theories or expectations may be more important to the perception of 

covariation than are the actually observed data corgfigurations. That is, 

if the layperson has a plausible theory that predicts covariation between 

two events, then a substantial degree of covariation will be perceived, 

even if it is present only to a very slight degree or even if it is totally 

absent. Conversely, even powerful empirical relationships are apt not 

to be detected or to be radically underestimated if the layperson is not 

led to expect such a covariation. [26page IO] 

Some work in developmental psychology is also relevant to determining 

how prior causal theories are used. In particular, since younger children 

have less knowledge about the world, they are less likely to have prior 

causal theories. 

Perceiving Causality 

One of the earliest inquiries into causality was conducted by Michotte 

[21]. He conducted a series of experiments to determine when people 

perceive causality. In one experiment, subjects observed images of discs 

moving on a screen. When the image of one disc bumped a stationary disc 

and the stationary disc immediately began to move, subjects would state 

that the bumping caused the stationary disc to move. Michotte called this 

the Launching Effect. 

However, if the stationary disc starts moving one fifth of a second after it 

is bumped, subjects no longer indicate that the bumping caused the motion. 

Here we have an example of a perfect correlation in which people do not 

perceive causality. From this experiment, it is clear that correlation alone is 

not enough to induce causality. A similar finding was reported by Bullock 

151. Children as young as live will not report causality if there is a spatial 

separation between the potential cause of motion and the potential result. 

Illusory Correlation 

Chapman and Chapman performed a series of tests to determine why 

practicing clinical psychologists believe that certain tests with no empirical 

validity are reliable predictors of personality traits. For example, in one 

study [61, clinical psychologists were asked about their experience with the 

Draw-a-Person Test (DAP). In this test, a patient draws a picture of a 

person which is analyzed by the psychologist. Although the test has 

repeatedly been proved to have no diagnostic value, 80% of the 

psychologists reported that men worried about their manliness draw a 

person with broad shoulders and 82% stated that persons worried about 

their intelligence draw an enlarged head. In the second experiment in this 

study, the Chapmans asked subjects (college undergraduates) to look at 45 

DAP tests paired with the personality trait of the person who (supposedly) 

drew them. The subjects were asked to judge what sort of picture a person 

with certain personality traits did draw. Although the Chapmans paired the 

pictures with traits so that there would be no correlation, 76% of the 

subjects rediscovered the invalid diagnostic sign that men worried about 

their manliness were likely to draw a person with broad shoulders and 55% 

stated that persons worried about their intelligence drew an enlarged head. 

In the next experiment, the Chapmans asked another set of subjects about 

the strength of the tendency for a personality trait to call to mind a body 

part. For example, subjects reported a strong association between shoulders 

and manliness, but a weak association between ears and manliness. For 

four of the six personality traits studied, the body part which was the 

strongest associate was the one most commonly reported as having 

diagnostic value by clinical psychologists and subjects. In a final 

experiment, subjects were presented DAP Tests which were negatively 

correlated with their strong associates. In this study, subjects still found a 

correlation between personality traits and their strong associates but to a 

lesser degree (e.g., 50% rather than 76% reported that broad shoulders was 
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a sign of worrying about manliness). 

phenomenon “illusory correlation”. 
The Chapmans labeled this 

A similar finding was found for particular Rorschach cards which have 

no validity [7]. These experiments clearly demonstrate that covariation may 

be noticed when it is not actually present if there is a reason to suspect 

covariation. Conversely, actual covariation may go undetected if it 

unexpected. Due to the phenomenon of illusory correlation, Kelley has 

qualified the covariation principle to apply to perceived rather than actual 

covariation. 

Developmental Differences 

Ausubel and Schiff [33 asked kindergarten, third and sixth grade students 

to learn to predict which side of a tetter-totter would fall when the correct 

side was indicated by a relevant feature (length) or an irrelevant feature 

(color). They found that the kindergarten children learned to predict on the 

basis of relevant or irrelevant features at the same rate. However, the older 

children required one third the number of trials to predict on the basis of a 

relevant feature than an irrelevant one. 

family member of the victim’s family pays the ransom to achieve the goal 

of preserving the victim’s health). Further examples create a specialization 

of this generalization which represents an inherent flaw in kidnapping: the 

victim can testify against the kidnapper, since the kidnapper can be seen by 

the victim. After some more examples, a similarity is noticed about the 

kidnapping of blond infants. This coincidence starts an explanation process 

which explains the choice of victim to avoid a possible goal failure, since 

infants cannot testify. Because the hair color of the victim was not needed 

to explain the choice of victim, it is not included in the generalization. 

Since there is a lot of background knowledge, OCCAM can use 

explanation-based techniques in this domain. Some of the knowledge of 

family relationships (e.g., parents have a goal of preserving the health of 

their children) was learned using correlational techniques. 

In another domain, OCCAM starts with no background knowledge and is 

presented with data from a protocol of a 4-year old child trying to figure out 

why she can inflate some balloons but not others. Since there are no prior 

causal theories in this domain, OCCAM uses correlation techniques to build 

a causal theory. 

Presumedly, the older children had a prior causal theory which facilitated 

their learning: a tetter-totter falls on the heavier side and the longer side is 

likely to be the heavier side. The younger children had to rely solely on 

correlation. Their performance on learning in the relevant and irrelevant 

conditions were comparable to the older children in the irrelevant condition. 

Generalization in OCCAM 

In this section we present the generalization strategy used by OCCAM. 

When a new event is added to memory the following generalization process 

occurs: 

While it may not be a causal theory in the strongest sense, it does appear 

that rats have an innate mechanism to relate illness to the flavor of food: 

Since flavor is closely related to chemical composition, natural selection 

wouldfavor associative mechanisms relating flavor to the aftereffects of 

ingestion. [11 page 7951 

1. Find the most specific generalization applicable 

to the new event. 

2. Recall previous events which are similar to the 

new event. 

Individual events in OCCAM’s memory are organized by generalizations. 

An individual event is indexed by its features which differ from the norm of 

the generalization [161. Events similar to the new event may be found by 

following indices indicated by the features of the new event. After similar 

events are found, a decision must be made to determine if the new event and 

other similar events are worth generalizing. DeJong [9] gives a number of 

criteria to determine if a single event is worth generalizing (e.g., Does the 

event achieve a goal in a novel manner)..,To his list, we add an event should 

be generalized if a similar event has been seen before. The idea here is that 

if two similar events have been seen, it is possible that more similar events 

will occur in the future. It is advantageous to create a generalization to 

facilitate understanding of future events. If the new event is not 

gener&ed, it is indexed under the most specific generalization found in 

Step 1. Otherwise, generalization is attempted:** 

Analysis 
3. Postulate an explanation for the similarities 

among the events. 
There is considerable evidence that in people, prior causal theories are 

preferred to correlational information. Why should this be so? Should we 

design computer learning programs to do the same? There are a number of 

advantages to preferring causal theories: 

l As demonstrated by Ausubel and Schiff, prior knowledge can facilitate 

the learning process. Fewer examples are necessary to arrive at the 

correct generalization. 

recalled and compared in correlational learning. Explaining an 

example with prior causal theories is less demanding. 

l Detecting correlation among many events with a large set of features 

places great demands on memory. Many previous examples must be 

Generalization rules postulate causal or intentional relationships. 

Typically a generalization rule suggests a causal explanation for a temporal 

relationship. For example, the simplest generalization rule is “If an action 

always precedes a state, postulate the action causes the state”. 

l Why do people do the things they do? 

Gen&liz‘ation rules serve the same purpose that predictability serves in 

0 What caused the outcome to occur? 

UNIMEM: to focus the explanation process. However, the experimental 

evidence reviewed earlier seems to cast doubt on the assertion that people 

use predictability as the sole indicator of causality. Instead, OCCAM uses 

rules which focus on answering two important questions: 

Of course, correlational information is quite important in an unfamiliar 

domain. The ideal combination would be to use prior causal theories when 

possible, but to use correlation information to learn the causal theories in an 

unfamiliar domain. This is the strategy used by OCCAM. 

If a potential explanation (in terms of human motivation or physical 

causality) for the similarity among a number of events is found, the next 

step is to verify the explanation: 

4. Postulated causal and intentional explanations are 

confirmed or denied using prior causal theories. 

OCCAM 

OCCAM is a program which maintains a memory of events in several 

domains. As new events are added to memory, generalizations are created 

which describe and explain similarities and differences between events. 

This paper focuses on the generalization process. Details of the memory 

organization are found in [27]. 

-. 
If prior causal theories confirm the explanation, a new generalization is 

created. This type of generalization is called an explanatorv generalization. 

As in explanation-based learning, the features of the new generalization are 

those which are necessary to establish the causal relationship. The relevant 

features depend on the prior causal theories. For example, some person’s 

causal theories could explain the high crime rate in certain areas due to the 

In one domain, OCCAM starts with general knowledge about coercion 

and family relationships. After some examples, it creates a generalization 

which describes a kind of kidnapping (along with the explanation that a **It is important to note that the generalization algorithm can operate on a single event. In 

this case, the “simila<’ features are simply all the features, and “always precedes”  is interpreted 
as “ precedes” . 
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racial make-up of the area. Other’s causal theories will place the blame on 

the high unemployment in the area. 

We distinguish another kind of generalization: a tentative generalization. 

A tentative generalization is one whose causal relationship is progtsed by 

generalization rules but not confined by prior causal theories. In a 

tentative generalization, the relationships postulated by the generalization 

rules are assumed to hold until they are contradicted by later examples. The 

verification of a tentative generalization occurs after Step 1. 

1.5 If the most specific generalization is 

tentative, compare the new event to the 

prediction made by the generalization. 

The primary difference between a tentative generalization and an 

explanatory generalization is how they are treated when a new event 

contradicts the generalization. In this case, a tentative generalization will be 

abandoned However, if an explanatory generalization is contradicted an 

attempt will be made to explain why the new event differs from previous 

events. For example, OCCAM constructs a explanatory generalization 

which states that in kidnapping the kidnapper releases the victim to keep his 

end of the trade demanded in the ransom note. After this generalization is 

made, it is presented with an kidnapping example in which the victim is 

murdered. Rather than abandoning the previous generalization it finds an 

explanation for murdering the victim: to prevent the victim from testifying 

against the kidnapper. In contrast, consider what happens if a tentative 

generalization were built by correlational means describing the release of 

the hostage: if a hostage were killed in a later kidnapping, the tentative 

generalization would be contradicted and abandoned. The perseverance of 

explained generalizations is supported by a study by Anderson et al. [2] in 

which subjects who were requested to explain a relationship showed a 

greater degree of perseverance after additional information than those who 

were not requested. 

Later in this paper, we will describe the mechanisms used by OCCAM to 

conftrm tentative generalizations. An example of OCCAM learning with 

and without prior causal theories should help to clarify how generalization 

rules and causal theories interact to create explanatory and tentative 

generalizations. 

Inflating Balloons 

In this example, the initial memory is essentially empty. The examples 

ate input as conceptual dependency representations [29] of the events taking 

place in Figure 1. 

First L. successfully blowing up a red balloon is added to memory. Next, 

the event which describes L. unsuccessfully blowing up a green balloon is 

added to memory and similarities are noticed. DIFFERENT-FEATURES is 

an applicable generalization rule: 
DIFFERENT-FEATURES 

If two actions have d@ erent results, and they are performed on similar 

objects with some difierent features, assume the differing features enable 

the action to produce the result. 

This generalization rule produces a question for the explanation process: 

“Does. the state of a balloon being red enable the balloon to be inflated when 

L. blows air into it?“. This cannot be confirmed, but it is saved as a 

tentative generalization. Associated with this generalization is the 

explanation which describes the difference in results as enabled by the color 

of the balloon. 

A green balloon successfully blown up by L. after M. deflated it is added 

to memory. It contradicts the previously created tentative generalization, 

which is removed from the memory. Next, a generalization rule is applied: 

PREVIOUS-ACTION 

If ACTION-l always precedes ACTION-2 which results in STATE-2, 

assume ACTION-I results in STATE-l which enables ACTION-2 to produce 

STATE-2. 

In this case, ACTION-l is M. deflating the balloon, ACTION-2 is 

L. blowing into the balloon and STATE-2 is that the balloon is inflated. 

The confirmation process attempts to verify that deflating a balloon results 

in a state that enables L. to inflate the balloon. However, this fails and a 

new tentative generalized event is created which saves the postulated 

explanation. Note that if there existed a proper causal theory, an 

explanatory generalization could be created which would save the 

information that STATE-l is that the balloon is stretched. 

“‘OCCAM does not always create a tentative generalization if it cannot create an 

explanatory one. See [27] for the details. 

548 / SCIENCE 

Mike is blowing up a red balloon. 

LYIUI: “Let me blow it up.” 

Mike lets the air,out of the balloon and hands it to Lynn. 

Lynn blows up the red balloon. 

Lynn picks up a green balloon and tries to inflate it. 

Lynn cannot inflate the green balloon. 

Lynn puts down the green balloon and looks around. 

LF: “HOW come they only gave us one red one?” 

Mike: “Why do you want a red One?” 

LF: “I can blow up the red ones.” 

Mike pi& up a green balloon and inflates it. 

Mike lets the air out of the green balloon; hands it to Lynn- 

Mike: “Try this one.” 

L~II blows up the green balloon. 
Lynn gives Mike an uninflated blue balloon. 

Lynn: “Here, let’s do this one.” 
_______ _________-______-------------------------------- 

Figure 1: Protocol of Lynn (age 4) trying to blow UP balloons. 

Economic Sanctions 

OCCAM is provided with a large amount of background knowledge in its 

newest domain of economic sanctions. In this section, we illustrate how a 

specific generalization rule is useful both in the previous example as well as 

in explaining the effects of economic sanctions. Due to space limitations 

we must ignore the memory issues. We assume the initial memory contains 

the following example summarized from [131: 

In 1980, the US refused to sell grain 

to the USSR unless the USSR 

withdrew troops from Afghanistan. 

The USSR paid a higher price to buy grain 

from Argentina. 

When the following event is added to memory, the generalization process is 

initiated when a similarity is noticed between the new event and a previous 

event: 

In 1983, Australia refused to sell uranium 

to France, unless France ceased 

nuclear testing in the South Pacific 

France paid a higher price to buy uranium 

from South Africa. 

Here, PREVIOUS-ACTION suggests an explanation for the similarities. 

In this case, ACTION-l is identified as the US or Australia refusing to sell a 

product, ACTION-2 is identified as USSR or France buying the product 

from another country, and STATE-2 is the USSR or France possessing the 

Product. PREVIOUS-ACTION postulates that ACTION-l (refusing to sell 

the product) resulted in STATE-l which enabled ACTION-2 (purchasing 

the product for more money from a different country) to result in STATE-2 

(possessing the product). OCCAM’S causal theories in the economic 

domain identify STATE-l as the willingness to pay more money for the 

product. Therefore, OCCAM constructs the explanatory generalization in 

Figure 2 from these two examples. 

In this generalization country-l is generalized from the US and Australia. 

A purely correlational approach could find a number of features in common 

between these two countries (e.g., both have a native language of English, 

both have a democratic government etc.). However, the explanation-based 

approach finds relevant only that both countries are suppliers of a 

product-l. Similarly, country-3 is generalized from Argentina and South 

Africa but only two of their common features are relevant: that they supply 

product-l and that they have a business relationship with country-2 



coerce 

ACTOR country-l 

VICTIM country-2 

DEMAND goal-l 

THREAT sell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ACTOR (country-l 

A-SUPPLIER-OF product-l) 

TO country-2 

OBJECT product-l 

AMOUNT amount-l 

MODE neg 
RESULT sell 

ACTOR (country-3 

A-SUPPLIER-OF product-l 

BUSINESS-REL country-2) 

TO country-2 

OBJECT product-l 

AMOUNT amount-2 

RESULT goal-failure GOAL goal-l 

can be inflated by L. contains an intermediate state which results from 

deflating the balloon which enables L. to inflate the balloon. If this 

intermediate state were identified in future examples, the tentative 

generalization could be confirmed. Similarly, cold weather was 

identified as a tentative cause for the Space Shuttle accident. 

Identifying a particular component whose performance is affected by 

cold weather and whose failure would account for the accident would 

confinn the cause. 

Finally, we have identified but 

confirm tentative generalizations: 

not yet implemented another strategy to 

l Ask an authority. Many children are constantly asking for 

explanations. There are two types of questions asked: verification 

(e.g., “Does X cause Y?“) which corresponds to confinning a tentative 

generalization in OCCAM and generation (e.g., “Why X?“) which 

corresponds to generating and confirming an explanation. 

Future Directions 

ACTOR country-l 

Figure 2: Explanatory generahzation created by OCCAM to 

explain one possible outcome of economic sanctions. This 

generalization indicates that country-l refusing to sell a 

product to country-2 to achieve goal-l wiii fail to achieve 

this goal if there is a country-3 which supplies the product 

and has a business relationship with country-2. 

Confirming Tentative Generalizations 

In many respects, tentative generalizations are treated in the same manner 

as explanatory generalizations. Both can be used to predict or explain the 

outcomes of other events. For example, after several examples of parents 

helping their children and some strangers not assisting children OCCAM 

builds a tentative generalization which describes the fact that parents have 

the goal of preserving the health of their children. This tentative 

generalization is used as a causal theory to explain why a parent pays the 

ransom in a kidnapping. 

However, as stated earlier tentative generalizations are treated differently 

when new evidence contradicts the generalizations. When a tentative 

gener-i&on is confirmed, it becomes an explanatory generalizatbn. 

There are a number of strategies which are useful in confirming a tentative 

generalization. 

l Increase confidence with new examples. When new examples 

conform to the prediction made by a generalization, the confidence in 

the generalization is increased. When the confidence exceeds a 

threshold, the generalization is confirmed. This strategy was the 

mechanism utilized by IPP [ 181. 

l Increase confidence when a tentative generalization is used as an 

explanation for another generalization. When the explanation 

stored with a tentative generalization is confirms a postulated causal 

relationship the confidence in the tentative generalization is increased. 

For example, when OCCAM uses the tentative generalization that 

parents have a goal of preserving the health of their children to explain 

why the parent pays the ransom in kidnapping, the confidence in the 

tentative generalization is increased. 

l Search for competing hypotheses. If no competing hypothesis can 

be found to explain the regularities in the data, the confidence of the 

generalization is increased. In OCCAM searching for competing 

hypotheses consists of trying other generalization rules. If no other 

generalization rules are applicable, the confidence in the tentative 

generalization is increased. 

The above strategies all increase the confidence in a tentative 

generalization. We have experimented with different values for the 

increment of confidence and the threshold. More research needs to be done 

in this area to determine reasonable values for these parameters. There is 

some evidence [26] that these parameters are not constants but a function of 

the vividness of the new information. The following strategies can confirm 

a tentative generalization with just one additional example: 

l Specify intermediate states or goals. Typically, a tentative 

generalization has intermediate states or goals which are not identified. 

For example, the tentative generalization describing which balloons 

Currently, OCCAM is a passive learning program which learns as it adds 

new observations to its memory. We are in the process of making OCCAM 

play a more active role in the learning process. There are number of ways 

that OCCAM can initiative: 

l Ask Questions. As discussed previously, a tentative generalization 

may be confmed by asking a authority (e.g., a parent). However, the 

explanation provided by the authority may report the cause of an event 

without illustrating the justification used by the authority to attribute 

causality. Recall that in explanation-based learning the preconditions 

of the inference rules used to deduce causal relationships determine 

what features are relevant (i.e., should be included in a generalization). 

When the explanation is provided by another person it may not include 

these preconditions. We intend to make use of similarities and 

differences between examples to induce these preconditions. 

l Suggest Experiments. Recall that one mechanism to confum a 

tentative generalization is to search for other explanations. If there are 

two (or more) possible explanations, they may make different 

predictions. We plan to extend OCCAM to suggest an experiment 

which would distinguish between the competing explanations [8]. 

Conclusion 

OCCAM is a program which integrates two sources of information to 

build generalizations describing the causes or motivations of events. The 

design of OCCAM was influenced by a number of studies which indicate 

that prior causal theories are more influential than correlational information 

in attributing causality. The combination of explanation-based and 

correlational learning techniques used by OCCAM improves on previous 

learning programs in the follow manners: 

l Purely correlational learning programs such as IPP [IS] require a large 

number of examples to determine which similarities among the 

examples are relevant and which are coincidental. In contrast, 

OCCAM builds explanatory generalizations which describe novel 

interactions among its causal theories. These causal theories indicate 

what features are relevant. 

l Explanation-based learning programs such as GENESIS [251 must 

have a complete causal theory to generalize. In contrast, OCCAM’s 

generalization rules enable the learning of causal theories. In addition, 

these generalization roles serve to focus the explanation process. 

. UNIMEM [20] integrates correlational and explanation-based learning 

by using a strategy which prefers correlational information to prior 

causal theories: explanation-based learning to rules out coincidental 

similarities in correlational generalizations. Empirical evidence 

indicates that in people, the causal theories are preferred to 

correlational information. One reason for this bias is that correlating 

features over a number of examples may exceed the limitations of a 

person’s memory. Due to the limitations of computer memory, 

UNIMEM does not perform correlation for combinations of features. 

Therefore, it cannot learn that a conjunction of features results in an 

outcome. In contrast, OCCAM’s learning strategy naturally discovers 

when a conjunction of features results in an outcome. This occurs 
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when it forms an explanatory generalization by recording the 

interaction between two or more inference rules. If the preconditions 

of these inference rules rely on different features of the same entity, 

then the conjunction of these features is relevant. 

In the generalization theory implemented in OCCAM, prior causal 

theories are used to infer causality. Generalizations are built to record novel 

chains of inference. Correlg+?al information has a role similiar to 

temporal information: to suggest or confirm causal the;ories. 
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