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The gut immune system is influenced by many factors, including dietary components
and commensal bacteria. Nutrients that affect gut immunity and strategies that restore
a healthy gut microbial community by affecting the microbial composition are being devel-
oped as new therapeutic approaches to treat several inflammatory diseases. Although
probiotics (live microorganisms) and prebiotics (food components) have shown promise as
treatments for several diseases in both clinical and animal studies, an understanding of the
molecular mechanisms behind the direct and indirect effects on the gut immune response
will facilitate better and possibly more efficient therapy for diseases. In this review, we
will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most
recently well-established scientific findings regarding the direct and indirect mechanisms
by which these dietary approaches can influence gut immunity. Emphasis will be placed
on the relationship of diet, the microbiota, and the gut immune system. Second, we will
highlight recent results from our group, which suggest a new dietary manipulation that
includes the use of nutrient products (organic selenium and Lithothamnium muelleri ) and
probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate
and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore,
the purpose of this review is to discuss and translate all of this knowledge into therapeutic
strategies and into treatment for extra-intestinal compartment pathologies. We will con-
clude by discussing perspectives and molecular advances regarding the use of prebiotics
or probiotics as new therapeutic strategies that manipulate the microbial composition and
the gut immune responses of the host.

Keywords: prebiotics, probiotics, gut inflammation, microbiota, mucosal immunity

INTRODUCTION
The gut associated lymphoid tissue is the largest in the body, and
mature lymphocytes in the gut mucosa vastly outnumber those
in the bone marrow (1). Large amounts of antigens pass through
the gut daily, making the gut mucosa the major site of lymphocyte
contact with antigens in the entire body. In addition, approxi-
mately 100 trillion bacteria are associated with our gastrointestinal
tract. This rich gut microbial community referred to as the micro-
biota has coevolved in a symbiotic relationship with the human
intestinal mucosa in such a way that the indigenous microbiota is
essential for gut homeostasis (2, 3). The microbiota are considered
a “super-organism” and are an integral part of the gastrointestinal
tract (4).

Numerous functions are ascribed to the microbiota in the
human gut. These partners act similarly to an organ that can
provide nutrients and help the host to digest foods, including
extraction of additional calories from and metabolism of com-
plex carbohydrates to generate short-chain fatty acids (SCFAs).
Furthermore, the gut microbial community is akin to a safeguard
of our health because the microbiota compete (for space and nutri-
ents) with potential pathogens and induce the secretion of antimi-
crobial peptides through interaction with intestinal epithelial cells

(5, 6). The gut microbiota can also stimulate the differentia-
tion and proliferation of epithelial cells, which regulate intestinal
homeostasis (7–9).

The contributions of the gut microbiota to the development of
the immune system have been extensively characterized. There is
coordinated cross talk between the gut microbiota and the immune
system, allowing the host to tolerate the large amount of anti-
gens present in the gut. Much evidence has highlighted the role
of the microbiota in health and disease. The advances in current
knowledge of gut microbial biodiversity allow us to understand
the mechanisms of how different microorganisms influence host
function and these mechanisms’ impact. Altered microbiota (dys-
biosis) are associated with gastrointestinal disorders, but more
recently, we observed microbial imbalance associated with broad
diseases that are not restricted to the gastrointestinal tract (10,
11). The newest evidence shows that the gut microbial composi-
tion is associated with malnourishment (which causes one of the
highest rates of child mortality in the world) in children from
Malawi in southern Africa (12). In this work, Smith and col-
leagues transplanted the gut microbiota of a malnourished twin
with kwashiorkor into germ-free (GF) mice (which are devoid
of microbiota) and observed that these animals lost more weight
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than mice transplanted with the healthy twin’s bacteria. Previously,
the association of the gut microbiota with metabolic diseases was
demonstrated by the same group, which showed that alterations
in the gut microbiota could affect human obesity (13, 14). How-
ever, the composition and functional characteristics of a healthy
gut microbiota remain to be elucidated.

Strategies that try to restore the normal gut microbiota have
been extensively studied in human and animal models, as these
methods represent a valuable tool to treat several disorders. A
randomized clinical study was the first to report that restoring
a healthy gut microbiota is a logical strategy for treating enteric
infection (15). The researchers showed the effectiveness of trans-
planting feces from a healthy patient into patients with recurrent
Clostridium difficile infections, which can cause severe diarrhea
(15). The composition of the gut microbiota varies during child-
hood, until the individual reaches adulthood. Differences in this
composition are related to colonization; host factors, such as sex
and age; genetic factors; and health state. The dynamic state of
the microbial ecology is increasingly being associated with an
expanding number of disorders. However, the importance of per-
turbations in the gut microbiota and the subsequent impact on the
development of inflammation has only recently been recognized.
Therefore, ecological principles such as colonization, succession,
resistance to change, competition, and cooperation between com-
munity members of the microbiota are beginning to be explored
(6). In the post-genomic era, new high-throughput method-
ologies such as metagenomics, transcriptomics, proteomics, and
metabolomics have greatly help the understanding the mecha-
nisms by which the microbiota contributes to host physiology
in healthy and diseases. Metagenomic studies of the human gut
microbiota, for example, have suggested that low bacterial diver-
sity affects host metabolism and is related with obesity and other
diseases (4, 16, 17). Both microbial diversity and abundance in
the gut are important to maintain human health. The microbiota
is essential to prevent the attachment, growth, and penetration
of pathogenic microorganisms on the gut surface. The intestinal
microbiota play an important role in pathogen resistance, both by
direct interaction with pathogenic bacteria and by influencing the
immune system (6, 18). The commensal bacteria that reside in the
gut are diverse, and in certain cases, individual species appear to
have distinct and opposing roles in the gut immune response. The
gut microbiota are essential for the development of the immune
system. Certain commensal bacteria appear to preferentially drive
T-regulatory lymphocyte development, whereas other bacteria
promote Th17 development in the gut (19). Much evidence for
how the microbiota shape the immune system comes from studies
in GF mice, which completely lack microbiota. Such mice exhibit
profound immune defects. The development of Peyer’s patches
and B and T cell compartments in the lamina propria, spleen, and
lymph nodes in GF mice is defective (20–22). Consequently, serum
immunoglobulin (Ig) G and intestinal IgA levels in GF mice are
reduced (23–25). Additionally, many studies in mice and humans
indicate that certain inflammatory diseases are associated with an
altered microbiota (26–29). Gut microbiota dysbiosis is related to
inflammatory disorders, although whether the microbiota change
first, leading to disease development, or respond to another fac-
tor is unclear; this is a “chicken and egg” problem. A prospective

study of children with a high risk of developing asthma suggested
that changes in the microbiota occur before disease development
(30). It is becoming clear that certain species of gut commensal
microbiota are required for the regulation of immune responses
and that perturbations in the microbiota could result in a lack of
immune regulation, the outgrowth of more pathogenic microbes,
and the promotion of inflammation. The microorganism to which
the newborn child is exposed during the first years of life will
mainly determine the microbial composition of the microbiota in
the adult human gut. Indeed strategies to manipulate the micro-
biota during infancy have been shown to prevent development of
allergic and atopic diseases later in adult life (31–33). Thus, the use
of probiotics and prebiotics during the early postnatal period has
been proposed to intentionally modulate the microbiota composi-
tion. In addition, diet and exposure to microbes during pregnancy
may influence the metabolic and immunologic profiles of the preg-
nant uterus and the risk of disease development in the offspring
(34). Thus the administration of probiotics and prebiotics during
pregnancy has also been proposed. The influence of probiotics
and prebiotics on the gut microbiota in both maternal and infant
health has been the subject of recent studies (35, 36).

The rapid growth of metagenomics strategies is being of great
help to understand the role of specific microorganism and the
overall diversity of the microbiota in many human diseases. This
knowledge can help the development of therapies focused on
specific effects of different probiotics and prebiotics on the gut
microbiota.

PROBIOTICS AND GUT IMMUNITY
The idea that bacteria in the gut could play a role as a regulator
of health and disease was first proposed by Elie Metchnikoff more
than a century ago. Metchnikoff proposed that toxins produced
by a putrefactive microorganism in the colon could inhibit the
growth of other bacteria. He came across research noting that a
certain rural Eastern European population whose staple was large
consumption of fermented milk had unusually long lives. Based on
this idea, Metchnikoff proposed that “good” lactic acid-producing
bacteria were beneficial to the host by reducing the growth and
thus the toxic products of other bacteria within the colon, pro-
moting homeostasis (health) in the host (37). He isolated Bacillus
bulgaricus and promoted its use as a therapy to maintain home-
ostasis and prevent aging, thereby popularizing yogurt (37), which
formed the foundation for probiotics.

Probiotics are defined by the World Health Organization as
“live microorganisms that can provide benefits to human health
when administered in adequate amounts, which confer a bene-
ficial health effect on the host ” (WHO/2001). Clearly, the con-
ceptual basis of probiotics is well grounded. However, the con-
cept that only “live microorganisms” can induce benefits should
be discussed. Microbe-associated molecular pattern (MAMP)-
elicited signaling has clear effects on epithelial cytoprotection,
survival/proliferation pathways, and barrier function (38, 39). Sev-
eral studies have been show that pattern recognition receptors
(PRRs), Toll-like receptors, and Nod-like receptors, have crucial
roles in maintaining a healthful stable relationship between the
host gut and its microbiota (28, 40). TLR activation results in
the up-regulation of pro-inflammatory mediators that facilitate
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host’s immune defense responses. The NLRs are cytoplasmic pro-
teins that regulate inflammatory responses and activation of these
PRRs by commensal microbiota has been evolved to contribute to
gut homeostasis (41). However, perturbations of PRR-microbiota
interactions, in different cells type and gut mucosal compart-
ment, are more likely to promote disease states associated with
exacerbated inflammation (42, 43).

The benefits that probiotics offer to the host have been shown
based on data from animal models and clinical evidence, including
effectiveness in the treatment or prevention of acute viral gastroen-
teritis; post-antibiotic-associated diarrhea; certain pediatric aller-
gic disorders; necrotizing enterocolitis; and inflammatory bowel
disease (IBD), such as Crohn’s disease and postsurgical pouchitis
(Tables 1 and 2). Probiotics have been long reported to aid in the
treatment of many dysfunctions of the GI tract, and the mech-
anisms by which probiotics work have recently been elucidated
(Table 3). Clinical trials have shown that the use of probiotics in
the prevention of diarrhea can be efficacious especially in newborn
and children (44–46). Acute diarrhea is the main symptom of acute
gastroenteritis whose most common etiologic agents in children
under 1 year are Rotaviruses. There is strong evidence of the clini-
cal benefit of Lactobacillus and Saccharomyces boulardii treatment
to decrease the duration of diarrhea (see Table 2) (45). Diarrhea
associated with antibiotics administration is also frequent affecting
up to 30% of newborn children (47). Diet supplementation with

Bifidobacterium lactis and Streptococcus thermophilus was shown
to reduce the frequency of antibiotic-associated diarrhea (AAD)
in infants (48). Increased production of short-chain fatty acids
in the colon that stimulates the absorption of sodium by the
colonocytes as well as a decrease in intestinal permeability and
invasion of pathogenic microorganisms have been proposed to
be the major mechanisms by which probiotics reduce diarrheal
symptoms (47, 49).

For the treatment of IBD, several probiotics have been shown to
be efficacious, and especially the commercially available mixture
VSL#3 (a mixture composed of four strains of lactobacilli: Lacto-
bacillus casei, Lactobacillus plantarum, Lactobacillus bulgaricus, and
Lactobacillus acidophilus; three strains of bifidobacteria: Bifidobac-
terium longum, Bifidobacterium breve, and Bifidobacterium infan-
tis; and S. thermophilus) (146–148). The Escherichia coli strain
Nissle 1917 has been demonstrated to improve intestinal home-
ostasis and to minimize the bacterium-induced reduction of the
intestinal barrier, thus decreasing the invasion of intestinal epithe-
lial cells by several pathogens. In this review, we highlight the most
commonly used probiotic products and the recently described
mechanisms in humans (Tables 1–3). Nevertheless, additional
research is still needed to elucidate the functional aspects and
the detailed mechanisms of action of probiotics and their impact
on human health in relation to various diseases. Different pro-
biotic strains exert their beneficial effects via various different

Table 1 | Main manufactured probiotic products commercialized worldwide for human applications.

Product name Microorganism strain(s) Manufacturer Type of product

Probio-Tec® Bifidobacterium animalis subsp. lactis BB-12 Chr. Hansen A/S, Denmark

(http://www.chr-hansen.com/)

Pharmaceutical

Culturelle® Lactobacillus casei subsp. rhamnosus GG Valio, Finland

(http://www.valio.com/)

Pharmaceutical

Enterogermina® Bacillus clausii Sanofi-Aventis, Italy

(http://en.sanofi.com/)

Pharmaceutical

Ultra-levure®(Florastor®) Saccharomyces boulardii Biocodex, France

(http://www.biocodex.com/)

Pharmaceutical

Miyarisan® Clostridium butyricum MIYAIRI 588 Miyarisan Pharmaceutical, Japan

(http://www.miyarisan.com/)

Pharmaceutical

Mutaflor® Escherichia coli Nissle 1917 Ardeypharm, Germany

(http://www.ardeypharm.de/en/)

Pharmaceutical

VSL#3 Four strains of Lactobacillus (L. casei, L. plantarum, L. acidophilus,

L. delbrueckii subsp. bulgaricus), three strains of Bifidobacterium

(B. longum, B. breve, B. infantis), and one strain of Streptococcus

salivarius subsp. thermophilus

VSL Pharmaceuticals, Inc., USA

(http://www.sigmatau.com/)

Pharmaceutical

Actimel®(DanActive) Lactobacillus casei DN-114001 Danone, France

(http://www.danone.com/)

Dairy (fermented

milk)

Activia® Bifidobacterium animalis DN 173 010 Danone, France

(http://www.danone.com/)

Dairy (yogurt)

Yakult® Lactobacillus casei Shirota Yakult Honsha Co., Japan (http:

//www.yakult.co.jp/english/)

Dairy (fermented

milk)
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Table 2 | Main medical/clinical benefits of the major pharmaceutical

probiotic products for human purposes.

Probiotic Medical/clinical benefits

Probio-Tec®a Relieves constipation (50–54)

Improves fecal properties and microbiota (51)

Has positive effects against acute diarrhea (52)

May have an effect on the gastrointestinal system (53)

Reduces antibiotic-associated diarrhea (54)

Enhances the intestinal antibody response in

formula-fed infants (53)

Culturelle® Prevents rotavirus-related diarrhea in children (55–57)

Gastrointestinal disorders in childhood (58–60)

Reduces the risk of respiratory tract infections in

children (61–63)

Useful in the prevention of atopic dermatitis in

children at high risk of allergy (64, 65)

Enterogermina® Reduces adverse effects and increases tolerability of

Helicobacter pylori eradication therapy (66, 67)

Allergic rhinitis in children (pilot studies) (68)

Florastor® Acute diarrhea (53, 69, 70)

Recurrent Clostridium difficile infection (71, 72)

Antibiotic-associated diarrhea (73–75)

Travelers’ diarrhea (76)

Inflammatory bowel disease (77–79)

Irritable bowel syndrome (76)

HIV/AIDS-associated diarrhea (76, 80)

Reduction of side effects of H. pylori treatment (76,

81, 82)

Miyarisan® Antibiotic-associated diarrhea (83)

Reduction of side effects of H. pylori treatment (84)

Mutaflor® Inflammatory bowel disease (85–87)

Acute diarrhea (88, 89)

Chronic constipation (90)

Irritable bowel syndrome (91, 92)

VSL#3® Inflammatory bowel disease (93, 94)

Pouchitis (95, 96)

Irritable bowel syndrome (97)

aMany of the positive effects of BB-12 were observed when it was combined with

prebiotic formula and/or other probiotic bacteria, especially L. rhamnosus LGG,

L. acidophilus LA-5, L. casei 431, L. paracasei subsp. paracasei F19, L. bulgaricus

LBY-27, and S. thermophilus STY-31.

mechanisms and may be synergistic with other microbiota. One
probiotic strain may have a different set of properties and clin-
ical effects than another probiotic strain, even if the strains are
of the same genus and species. Thus, it is important to note that
the efficacy of one probiotic strain does not imply that the other
strains will be equally efficacious; rather, further research needs to
be performed.

Fukuda and collaborators (149) showed that the probiotic Bifi-
dobacterium protects gnotobiotic mice from death induced by

Table 3 | Main mechanisms of action of the major pharmaceutical

probiotic products for human purposes.

Probiotic Mechanisms of action

BB-12® Enhancement of immune response (98, 99)

Effect on innate immunity (100)

Modification of microbiota (101)

Culturelle® Prevention of systemic bacteremia (102)

Improvement of intestinal epithelial homeostasis (102)

Attenuation of local and systemic inflammatory

responses (102, 103)

Reduction in lipid accumulation (104)

Secretion of anti-inflammatory substances (105)

Local induction of reactive oxygen species (ROS) (106)

Production of bacteriocin (106)

Interference in bacterium-induced signaling pathways

(107)

Enterogermina® Improvement of growth performance and immune

response (108)

Diminishment of intestinal bacterial overgrowth (109)

Antimicrobial and immuno-modulatory activities (110)

Florastor® Antitoxin effects (111–113)

Trophic effects on enterocytes (113, 114)

Anti-inflammatory effects (115, 116)

Enhancement of immune response (117, 118)

Enhancement of levels of disaccharidases (119)

Binding to and elimination of bacterial toxins (120)

Binding to and elimination of pathogenic bacteria (121,

122)

Interference in bacterium-induced signaling pathways

(123, 124)

Actions on bacterial virulence factors (125)

Interference in bacterial motility (126)

Effects on permeability (127)

Miyarisan® Normalization of intestinal microbiota (128)

Reduction in substances with harmful effects on

intestine (129)

Antimicrobial effects (130)

Butyrate production (131)

Mutaflor® Production of colicines (132)

Adhesin associated to colonization (133)

Effects on pathogens, epithelial cells, and immune

system (134)

Resistance to colonization by pathogens (135)

Effects on permeability (136)

VSL#3® Enhancement of immune response/anti-inflammatory

effects (137)

Enhancement of mucosal host defense (138)

Reinforcement of barrier function (139, 140)

Production of angiogenesis-promoting growth factors

(141)

Modulation of microbiota (142, 143)

Reduces inflammation in Food allergy (144, 145)
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enterohemorrhagic E. coli O157:H7. However, the protective and
probiotic effects were observed only for certain B. longum sub-
species. In contrast, other bifidobacterial strains, such as B. longum
subsp. infantis JCM 1222T (BT) and Bifidobacterium adolescentis
JCM 1275T (BA), showed no probiotic effects and failed to pre-
vent the death of mice with O157 infection. The researchers found
that this effect can be attributed, at least in part, to increased pro-
duction of acetate by the protective bifidobacterial strains, which
improves the intestinal defense mediated by epithelial cells (150).

Our research group also investigated certain probiotic proper-
ties of different microorganisms (Bifidobacterium animalis var.
lactis BB-12, E. coli EMO, L. casei, and the yeast S. boulardii)
(118). In vitro and in vivo tests showed that B. animalis and
E. coli EMO presented better ability to colonize the gastroin-
testinal tract of GF mice, most likely because the hydrophobic
property of the cell walls of these strains increases the strains sur-
vival capacity in the gastrointestinal tract of GF mice, without
pathological consequences (118). However, S. boulardii, followed
by E. coli EMO and B. animalis, induced higher levels of sIgA,
and only S. boulardii induced significantly higher levels of IL-10
in the intestine. Thus, we concluded that for a probiotic use, S.
boulardii had better characteristics in terms of immunomodula-
tion in the intestine (118). An investigation of the mechanism
by which different probiotic strains trigger a reaction could help
to indicate the best microorganism for therapeutic and prophy-
lactic application in several inflammatory diseases. In addition,
it is important to highlight that probiotic properties are not only
attributed to bacteria. Previous results from our group showed that
treatment with yeast Saccharomyces cerevisiae strain 905 signifi-
cantly reduced the translocation and dissemination of pathogenic
Salmonella typhimurium to all organs in GF and conventional mice
after oral infectious challenge (151). The protection conferred
by the probiotic against pathogenic bacteria that was observed
in this study was most likely due to modulation of both the
intestinal and the systemic immunity of mice treated with the
probiotic yeast. S. cerevisiae 905 induced a reduction in the levels
of pro-inflammatory cytokines and modulated the activation of
signaling pathways, such as the mitogen-activated protein kinase
(p38 and JNK), NF-κB, and AP-1 pathways, which are involved in
the transcriptional activation of pro-inflammatory mediators in
the intestine (152). In addition, the probiotic treatment elevated
the levels of secretory IgA in the intestine and of IgA and IgM in the
serum and the production of the anti-inflammatory cytokine IL-
10 in the intestine (153). Furthermore, Matins and collaborators
demonstrated in vitro and in vivo that probiotic therapies could
be useful as adjuvant when treating gastrointestinal diseases. S.
boulardii, S. cerevisiae UFMG 905, and S. cerevisiae BY474 strains
were shown to capture certain pathogenic bacteria on their surface,
preventing bacterial adhesion to specific receptors on the intesti-
nal epithelium and subsequent invasion of the host (151, 154).
Although most of the conditions under which the useful thera-
peutic application of probiotics were first described were in the
gastrointestinal tract, demonstrating regulation of gut immunity,
how probiotics could alter host physiology and function in sys-
temic disorders started to be explored once it became apparent
that microbial-immunologic relationships with the host may have
implications in extra-intestinal systems.

Although most of the effects of probiotics are beneficial, several
negative effects should be considered before therapeutic applica-
tion. The most important concern about probiotic use is the risk
of bacteremia, fungemia, and sepsis (155). Thus, use of probiotics
in immuno-compromised patients could generate serious health
risks. Probiotic research is moving forward due to basic science
and clinical trials evaluating the safety and efficacy of probiotics
for various medical conditions. However, clinical trials of probi-
otics still have limitations and further studies about the amount
and interval time are still required cause the benefits of probiotic
action vary according to that.

PREBIOTICS AND GUT IMMUNITY
Prebiotics are broadly defined as a food ingredient that is com-
posed of oligosaccharides that are not digestible by the host
and that has a beneficial effect on host health through selective
stimulation of the growth and/or activity of specific members
of the gut microbiota (156). Currently, only inulin and galacto-
oligosaccharides, which are natural food ingredients that are
present in certain plants as storage carbohydrates, fulfill all of the
criteria for prebiotic classification. Although the previous defini-
tion of prebiotics is only applicable to selectively fermented food
components, and although much of the prebiotic literature focuses
on non-digestible oligosaccharides, most dietary fibers that are fer-
mentable carbohydrates could be considered as prebiotics as well.
We hypothesize that any type of dietary or food supplement that
could promote the growth of beneficial bacteria and consequently
promote homeostasis in the gut and good health could be consid-
ered as a prebiotic, even though the supplement may not meet the
required criteria.

Fiber carbohydrates (including cellulose, pectin, gums, beta-
glucan, and lignin) are not digested in the upper gastrointestinal
tract because the host does not have the enzymatic capability
to degrade these carbohydrates (157). However, these substances
are thought to be selectively ferment by residential bacteria into
SCFAs, and particularly acetate, propionate, butyrate, and lactate,
once in the colon (158). The vast majority of the bacteria in the
colon are strict anaerobes that derive energy from fermentation.
The gut microbiota can ferment fiber due to their expression of
several enzymes and transport proteins.

Diet alone has the strongest and most direct effects on gut
microbial colonization because bacteria have different preferences
for different energy sources. Thus, diet is closely related to the
species present in the gut microbiota (156, 159). The profile of
dominant species in the human gut microbiota can potentially
be modified by dietary intake, with consequences for health. The
two most abundant phyla found in most healthy individuals are
the Bacteroidetes and Firmicutes (160, 161). Dietary fibers can act
as effective prebiotics by inducing major shifts in gut microbial
composition and directly affecting the mucosal immune system,
resulting in an improvement in enteric inflammatory disorders
and the systemic immune response (see Table 4).

The anti-inflammatory effects of fiber are likely to be driven by
SCFAs. SCFAs have been known to be beneficial for bowel health
for many decades. A decrease in “healthy” microbiota and SCFAs
is characteristic of patients with IBD, which is most likely due to
a reduction in anaerobic bacteria (182). Nevertheless, the delivery
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Table 4 | Main benefits of the major prebiotics and potential mechanisms of action.

Prebiotic Medical/clinical benefits Mechanisms of action Reference

Inulin Crohn’s disease Enhancement of immune response Emilia et al. (162)

Colitis Effect on innate immunity Macfarlane et al. (163),

Ramirez-Farias et al. (164)

Obesity Modification of microbiota and increase in Bifidobacteria Hopping et al. (165)

Diabetes type 2 Costabile et al. (166)

Colon cancer Ramnani et al. (167)

Constipation

FOS (Fructo-

oligosaccharides)

Crohn’s disease Increase in Bifidobacteria Scholtens et al. (168)
Colitis, Decrease in colon pH Benjamin et al. (169)

Obesity Reduction in lipid accumulation de Luis et al. (170)

Constipation Secretion of anti-inflammatory substances Cummings et al. (171)

Travelers’ diarrhea Local induction of reactive oxygen species (ROS) Arslanoglu et al. (172)

Colon cancer Boutron-Ruault et al. (173)

GOS (Galacto-

oligosaccharides)

Crohn’s disease Improvement of growth performance and immune responses Saavedra and Tschernia (174)
Colitis Diminishment of intestinal bacterial overgrowth Macfarlane et al. (163)

Obesity Drakoularakou et al. (175)

Soluble fiber

(Guar gum,

pectin)

Crohn’s disease Enhancement of short-chain fatty acid production, and mainly acetate Peng et al. (176)

Celiac disease Normalization of intestinal microbiota Slavin (177)

Colitis Effects on epithelial permeability Chen et al. (178)

Colon cancer Trophic effects on enterocytes Hu et al. (179)

Metabolic syndrome Anti-inflammatory effects Cao et al. (180)

Arthritis Enhancement of immune response Slavin (181)

Cardiovascular diseases Reduction of blood pressure and reduction of LDL serum concentrations

of SCFAs has been shown to be successful and effective in reducing
colitis (183, 184) and other colonic inflammatory disorders (185).
One of the most studied SCFAs is butyrate. Butyrate is the major
energy source of colonic epithelial cells affects the proliferation and
barrier function of the colonic epithelium and reduces oxidative
DNA damage (186, 187). This energy source is transported into
cells via monocarboxylate transporters, such as MCT-1107 (188).
Butyrate has been shown to reduce the incidence of colon cancer
by inhibiting histone deacetylases (HDACs), which affects bind-
ing to DNA and thereby transcriptional activity (189). Butyrate,
which is more highly produced on a resistant starch, soluble fiber,
and inulin diet, was also associated with increased percentages of
T-regulatory cells (Treg) and reduced production of IFN-γ, sug-
gesting a down-regulation of inflammation, in an experimental
model of IBD (190). High levels of butyrate induced the activation
of a nuclear transcription factor and peroxisome proliferator acti-
vator receptor γ (PPARγ) (191, 192). PPARγ was first shown to be
efficacious in suppressing intestinal inflammation in experimental
models of colitis (193). In addition, the activation of PPARγ was
shown to reduce pro-inflammatory pathways, such as the STAT,
AP-1, and NF-κB pathways, in gut inflammation.

Although most studies on SCFAs have focused on butyrate,
acetate is the most abundantly produced SCFA in the colon.
Recently, our group and others have shown the anti-inflammatory
effects of acetate on the inflammatory response and have started
to explore the mechanisms (183, 194, 195). The receptors GPR41
(Ffar1), GPR109A, and GPR43 (Ffar2) were identified as receptors

for the SCFAs butyrate, propionate, and acetate (196). GPR41 is
primarily expressed by adipose tissue and is also present at very low
levels in peripheral blood mononuclear cells (PBMCs). In contrast,
GPR43 expression is nearly exclusive to the immune system and
is particularly high on polymorphonuclear cells (eosinophils and
neutrophils) (183). Our group previously showed that mice that
lack the Gpr43 gene have increased inflammation and a poor
ability to resolve inflammation because their immune cells can-
not bind to SCFAs. Gpr43−/− mice were more susceptible to
IBD (183). However, treatment with acetate improved the clin-
ical and inflammatory responses in wt mice, and these effects
were dependent on acetate/Gpr43 activation. Interestingly, acetate
is largely produced in the colon but reaches a high concentra-
tion in the blood, so we could observe systemic anti-inflammatory
effects of this SCFA in other diseases, such as asthma and arthri-
tis. More recently, the effect of SCFAs on the specific induction
of Foxp3+ IL-10-producing Tregs and the consequent protection
of mice against colitis was shown to occur in a GPR43-dependent
manner (195).

The molecular mechanism that might explain how a diet
enriched in fiber affects the immune system is starting to be elu-
cidated. In addition to increasing the production of SCFAs, such
as acetate, propionate, and butyrate, other protective mechanisms
of prebiotic activity have been proposed. Prebiotics can also pro-
vide resistance to colonization by pathogenic bacteria by inhibiting
the adherence of pathogens to the gut epithelium. Other health
effects of prebiotics, such as prevention of diarrhea or constipation,
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positive effects on lipid metabolism, and stimulation of mineral
adsorption, are indirectly mediated by regulation of the intestinal
microbiota (197).

Our group has demonstrated that another marketed nutri-
tional supplement that has the potential to reduce gastrointesti-
nal inflammation is the marine alga Lithothamnium muelleri.
Although we still do not know the mechanisms by which L. muel-
leri induces protection in the gut, L. muelleri is known to be a
good source of polysaccharides and calcium carbonate, which is
largely formed in its cell walls. Others species of Lithothamnium
sp. were shown to be useful as dietary supplements as well and
were efficient in chemoprevention of colon polyp formation in
animal models (198). These data on the provision of polysaccha-
rides suggest that the use of marine algae as a dietary supplement
for anti-inflammatory purposes may provide a novel approach to
prebiotics.

Over the past decades, our diet has changed greatly. The con-
sumption of fiber has decreased, accompanied by an increase in
high-fat, high-calorie, and processed food. At the same time, the
number of people affected by inflammatory diseases has increased.
It seems reasonable to suggest that a change in environmen-
tal factors, such as diet, in Western societies could be altering
our microbiota and therefore our susceptibility to inflammatory
disease. In this context, restoring a healthy gut microbiota by
external dietary intervention is a logical strategy. Furthermore,
given the strong immuno-modulatory function of SCFAs, the pro-
duction of microbe-derived metabolites using prebiotics is being
explored as a promising avenue for prophylactic and therapeutic
intervention in gut inflammation. In this way, studies on prebi-
otics have multiplied in search of a promising new therapy to
treat disease and adjuvant therapy along with probiotics, forming
symbiotics.

PERSPECTIVE ON AND FUTURE OF SYMBIOTIC THERAPIES
Prebiotics could be administered along with live bacteria (probi-
otics) that are most able to exploit that energy source to improve
the health benefits to the host. The synergistic combinations of
probiotics and prebiotics are called symbiotics. The possible health
benefits of prebiotics, probiotics, and symbiotics are now being
explored in many situations, facilitated by their safety and ease of
use. It is important to note that the benefits of regulating the gut
microbiota to induce intestinal homeostasis largely extend to other
systems in the host. A substantial literature is accumulating on pre-
biotics and probiotics in several chronic diseases, such as obesity,
arthritis, diabetes, cancers, asthma, alcoholism, and cardiovascular
diseases, and their effects on host behavior.

The treatment strategies demonstrated by our group using
a probiotic S. cerevisiae strain enriched with organic selenium
in mice and rats with rheumatoid arthritis (RA) resulted in a
decrease in several inflammatory parameters, such as infiltration
by inflammatory cells, pro-inflammatory cytokine and chemokine
production, paw edema, and hypernociception. This inactive yeast
enriched with organic Se is a product called Selemax, and we
revealed the role of selenium in the amelioration of inflamma-
tion associated with the joints. As an antioxidant, selenium plays
a vital role in minimizing free-radical activity and is known to
strongly influence immune responses. The association of organic

selenium and the yeast S. cerevisiae (which can transform inor-
ganic Se into organic Se) is a good example of a symbiotic product
serving as a promising therapy. Given the effects of prebiotics and
probiotics on the gut microbiota, yielding a healthier microbiota
and immuno-modulatory properties, and the synergism between
these agents, the use of symbiotics to treat many disorders is
potentially of great interest. Dissecting the mechanisms by which
probiotics, prebiotics, and symbiotics confer benefit on the host
will lead to better utilization in treating human diseases involving
the immune system.

CONCLUSION
Despite recent advances in our understanding of the structure and
function of microbial community, we are still only beginning to
discover the mechanisms by which changes in the microbiota can
affect several disorders. A major challenge to understanding the
functional impact of microbial communities on health and dis-
ease is the heterogeneity of these communities and the fact that
their composition can be influenced by various factors, includ-
ing host genetics, nutrition, antibiotic treatment, infection, and
sequential microbial colonization in the neonatal period. Never-
theless, we have learned that certain species of bacteria can have
large effects on the gut immune system and that the balance of
these influences is important to the maintenance of homeostasis
and the development of novel disease treatment and management
strategies. In this context, prebiotics and/or probiotics are a pow-
erful strategy for manipulating the microbial composition and
immune responses of the host.
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