
focus

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0  ©  2 0 0 0  I E E E J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 33

Addressing the “better” aspect, one of
the Software Engineering Institute’s Capa-
bility Maturity Model’s1 main goals is to
improve process and software quality. The
CMM also aims to improve process pre-
dictability and manageability, which ad-
dresses “cheaper”—at least to the extent of
better controlling costs.

These software process goals reflect the
diversity inherent in software development:
the varying contexts in which it occurs and
beliefs of how to most successfully produce
the software in such contexts (where suc-
cess is ultimately defined by the organiza-
tions’ survival). A highly systematic and
measured approach to software process will
suit certain circumstances—for example,
negotiated or safety-critical software. How-
ever, that approach might be incompatible
with the typically fast-paced, reactive, and
innovative world of commercial software
development. This is especially true for
highly dynamic application domains such
as Internet-based electronic commerce, and

even more so for start-up companies with-
out an established product, customer base,
or revenue stream.

This contrast, between the need for
speed in getting products out and the need
for deliberation in maximizing process con-
trol, raises the questions of whether process
or process maturity can help a start-up soft-
ware company and how process and
process maturity are relevant, if at all. To
what extent does the theme of process ac-
commodate this diversity of contexts and
viewpoints? This article examines some of
the issues surrounding these questions and
particularly considers how you can apply
process to start-up companies developing
commercial products.

Characteristics of Start-up
Companies

EC Cubed (see the sidebar) exhibits many
characteristics that are widely representative
of software start-up companies. These char-
acteristics reflect both engineering and busi-

The Role of Process 
in a Software Start-up

Stanley M. Sutton, Jr., EC Cubed

In the start-up 
environment,

process technologies
and methodologies

that focus on 
advanced levels of

process maturity
can be out of

place. This article
gives an overview

of a start-up’s 
relationship with
process and gives

guidelines on 
how to apply

process to a 
start-up company.

I
t’s been said that “speed kills.’’ However, for a start-up software company,
especially one targeting the dynamic commercial marketplace, speed might
be what keeps the company alive. Although other factors contribute to 
the success of a new software product or producer, for a start-up company 

that aims for “better, faster, cheaper,” “faster” usually takes precedence.

process diversity

“If things seem
under control,
you’re not going
fast enough.’’

—Mario Andretti 



34 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 0

ness concerns, which define inescapable con-
straints under which start-up companies
must operate. 

Youth and Immaturity 
The most basic characteristics of start-up

companies is that they are new, or at least
relatively young and inexperienced com-
pared to more established and mature de-
velopment organizations. This means that
they have very little accumulated experience
or history. Thus, immaturities typically exist
not only in such companies’ process capa-
bilities but also in their organization.

Limited Resources 
Another typical characteristic is that re-

sources are limited. The first resources in-
vested in a company typically focus on out-
ward-looking activities: getting the product
out, promoting the product, and building
up strategic alliances. The sooner the com-
pany can accomplish these activities, the
better its chances for survival.

Multiple Influences 
In its early stages, a company might also

be particularly sensitive to influences from
various sources: investors, customers, part-
ners, and competitors (both actual and po-
tential). Divergent influences might also exist
within the company. To complicate the situa-
tion, these influences, although seemingly
critical, could be inconsistent. Consequently,
the company might continue to adjust and
readjust what it does and how it does it.

Dynamic Technologies and Markets 
New companies often get caught up in the

wave of technological change sweeping the

software industry (and IT industries in gen-
eral): new network technologies, proliferat-
ing communications channels, an increasing
variety of computing devices, new program-
ming languages, new system architectures,
new object and distribution technologies,
and more. New software companies are of-
ten established to develop technologically in-
novative products, and developing these
products, in turn, might require cutting-edge
development tools and techniques.

Start-ups versus Established Companies 
Of course, the conditions and challenges

that characterize the typical, commercial
start-up company can also apply to more es-
tablished or noncommercial software com-
panies. More established companies are not
chronologically youthful, although they
might still be immature (in a process sense)
or even outdated (in an organizational
sense). All software companies must address
in some way the issues of time to market,
cost, and quality, although the relative em-
phases can vary (for example, with the type
of software produced and the type of market
targeted). Also, all software companies are
to some degree subject to changing techno-
logical and economic environments (al-
though this, too, will vary with the type of
software and type of market). Still, software
start-ups, especially in today’s commercial
marketplace, tend to focus the characteris-
tics described here to an extreme degree.
They represent a software industry segment
that has been mostly neglected in process
studies, and it is possible that lessons drawn
from start-ups also apply to other develop-
ment organizations.

Start-ups versus Small Companies 
Some start-up companies are also small

companies, although by no means are all
start-up companies small or all small com-
panies start-ups. Small companies, like
start-ups, can face challenges in adopting
process-oriented technology and methodol-
ogy, although the reasons for this vary.
(Two important reasons commonly cited for
small companies are the lack of CMM
process improvement initiatives or their in-
applicability to the practices in small devel-
opment organizations.2) However, small
companies, especially those that are estab-
lished, can have certain advantages over

EC Cubed (www.eccubed.com) provides a representative example of a
start-up software company focused on the commercial market. Founded in
December 1996, EC Cubed produces a suite of Java-based application com-
ponents for the rapid development of distributed e-commerce applications.
The company has received multiple rounds of venture-capital funding from a
growing number of funding sources. At the time of writing, EC Cubed em-
ployed about 100 people and was continuing to grow. Most employees
served in a technical capacity and were divided between engineering and
professional services groups. The company has had two chief executives plus
an interim CEO, and in October 1999, it relocated its company headquarters
from Wilton, Connecticut, to Westborough, Massachusetts, to be closer to a
larger technical labor pool and to facilitate relationships with current and po-
tential partners and customers. Since then, the company has continued to
grow, spread geographically, and evolve its business and the way it works.

A Representative Start-Up



J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 35

start-ups. These can include fewer internal
communication and coordination problems;
greater flexibility and reactivity (due to low-
er organizational inertia); a foundation of
established products, partners, and cus-
tomers; and possibly a greater shared his-
tory and vision. Thus, start-up software
companies and small software companies
have some problems in common but face
different sets of challenges under different
circumstances. In recent years, process im-
provement for small companies has received
attention. Examples are given elsewhere as
this article focuses on process concerns in
start-ups.

Is Process Immaturity Inevitable?
Process immaturity in start-ups might in-

deed be inevitable. Many common character-
istics of start-ups militate against maturity:

■ Process maturity requires repeatability.
The SEI CMM’s1 second level is the “re-
peatable” level, in which specific pro-
cesses might vary between projects, but
the goal is project management for re-
peatable success. Implementers who de-
velop and use realistic project plans
based on previous projects typically ex-
pect success. Yet the youth and dy-
namism of start-up organizations prac-
tically preclude repeatability. New pro-
cesses occur under new circumstances,
and the processes are subject to change
as those circumstances change. You
might adopt new directions and ap-
proaches in response to influences from
cooperating or competing organiza-
tions, and you might take on special,
one-time-only projects for customers
whose business is considered critical for
company survival. Thus, not only indi-
vidual processes, but also their manage-
ability, could greatly vary.

■ Process maturity requires organizational
maturity, but young software companies
might lack the corporate direction, or-
ganization, and experience needed to
foster and maintain such maturity. Pro-
cess maturation requires buy-in up and
down the corporate hierarchy and across
a breadth of corporate departments. The
relevant corporate groups might not ap-
preciate process maturity and might
view it as desirable but remote and irrel-

evant to more immediate and critical
needs.

■ Process maturity requires resources,
both human and technological, for
process definition, implementation,
management, training and awareness,
measurement and analysis, and more.
What start-up software company could-
n’t spend more on speeding up or ex-
panding production, service, marketing,
and sales? In start-up situations, espe-
cially, limited resources battle with nu-
merous needs, leaving process seldom
marked as a top priority (and correctly
so, as some might argue).

■ Process maturity’s primary benefits do
not address young, commercial software
companies’ primary needs. Process ma-
turity tends to promote product quality
and process predictability and reliability.
In contrast, a start-up company often
aims to minimize the time to market and
other goals might suffer. 

For all these reasons, you can’t reason-
ably expect substantial process maturity in
young, commercially oriented software or-
ganizations. Indeed, it’s not clear that matu-
rity in the traditional sense is appropriate
for such organizations.

Does Process Matter?
Process, if not traditional process matu-

rity, can crucially affect start-up companies.
In one sense, a start-up’s ability to execute is
perhaps its key capability. Software devel-
opment still occurs by means of some
process, even if by means of an ad hoc or
improvised process. And software develop-
ment necessarily remains an engineering ac-
tivity that depends on some degree of rigor
and order.

Processes that a company creates in its
early stages might form the basis for, or con-
tribute experience toward, established and
repeated processes as the company matures.
The ability to repeat a process can critically
affect a start-up’s success. At a company
such as EC Cubed, the opportunity to re-
peat processes arises because the company
produces a family of components that the
company can treat more or less similarly.
Repeatable processes span the life cycle, in-
cluding development, quality assurance,
documentation, and training. Processes can

Process, if not
traditional
process

maturity, can
crucially affect

start-up
companies. 



3 6 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 0

be repeated across components and (in
some cases) shared between them. Repeat-
ing these processes effectively thus forms an
important part of planning and scheduling,
achieving proficiency, and instituting pro-
cess improvements.

Of course, a company might eventually
define, manage, and improve repeated pro-
cesses, possibly following the SEI’s CMM or
through some other plan. Indeed, repeated
processes demand process improvement,
which can be feasible regardless of the orga-
nization’s formal level of process maturity.

To the extent that you can define develop-
ment processes, they can be useful for several
purposes. You can design them to help assure
product quality and minimize process costs.
Process definitions can set expectations about
development activities and provide a frame-
work for process and project management,
including planning, resource estimation, and
milestone tracking. Development processes
provide a means to state and communicate
important engineering practices across devel-
opment groups and the broader organization.
They also help inform new personnel who
join the company as it grows. In the CMM,1

process definition (Maturity Level 3) follows
process repeatability (Maturity Level 2), but
in a start-up company, process definitions can
help promote and establish repeatability—
and its resulting benefits.

Process models and process management
provide a basis for relationships with other or-
ganizations, including collaborating hardware
and software vendors, subcontractors and out-
source organizations, service providers and
systems integrators, and customer organiza-
tions. (Subcontract management forms one of
the Key Process Areas (KPAs) in CMM Level
2.) Indeed, a new software company’s survival
and growth might depend on alliances with
other, more well-established organizations, but
these other companies might very well be at a
higher level of process maturity. Moreover,
such alliances might provide a start-up with
motivation and leverage for improving its own
process capabilities.

How to Approach Process
A start-up company has numerous options

for supporting processes that address its more
immediate needs while also facilitating long-
term process improvements. The following
recommendations primarily speak to compa-

nies developing commercial products, al-
though some contracting organizations and
systems integrators might also find them rele-
vant. You can also view these recommenda-
tions as analogous to CMM KPAs that can in-
crease a start-up’s chances for survival.

Define Software Processes 
You should define your software devel-

opment processes. As noted earlier, process
definitions can serve many purposes related
to the understanding, communication, exe-
cution, and management of development
processes. Process definitions also form a
basis for formulating potentially crucial re-
lationships with other organizations.

However, you must appropriately define
software processes. You should emphasize
capturing significant process features rather
than fine details. When change is the only
constant, fine details often become irrele-
vant. Additionally, when speed is a factor,
elaborate instructions can be a stumbling
block to progress. In either of these cases,
an overly detailed process definition can be
counterproductive and is likely to be ig-
nored, in practice if not in spirit.

EC Cubed develops products according
to a defined software life cycle that spans re-
quirements specification through release
(and includes quality assurance). Process de-
finitions focus on the higher levels of the life
cycle, their flows and feedback between
stages. Lower-level details are left to process
participants and group managers, who can
adapt their activities according to their ex-
perience, the product, and the project’s con-
tingencies. This reliance on process partici-
pants and managers is appropriate and ef-
fective for three main reasons:

■ Process definition guides the process’s
overall structure and flow. 

■ Process participants and managers are
generally aware of the process’s state
and progress and can closely coordinate
their actions. 

■ The overall approach, combining higher-
level structure with lower-level flexibility,
has proven effective, and its imple-
menters appreciate the approach’s bene-
fits—in terms of product quality, project
efficiency, and process adaptability. (Ben-
efit appreciation can be a key motivator
of process adoption and improvement.3) 

Process
definitions

focus on the
higher levels of
the life cycle,

their flows and
feedback
between 
stages.



J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 37

These conditions certainly do not apply to
all software development organizations, but
you can often find them in start-up software
companies.

Remain Flexible 
Flexibility, perhaps even more than struc-

ture, plays an important role in a start-up
company’s development processes. You
need flexibility to accommodate changes in
personnel and infrastructure, product speci-
fications, resource levels, release schedules,
and so on. Often, you can’t predict or con-
trol the external conditions driving such
changes (although even that ability is not al-
ways helpful, such as with Y2K!). These
conditions often require a rapid and timely
response. Redefining a process every time
the process parameters change can be pro-
hibitively slow and costly. A defined but
flexible process is the best way to maximize
continuity while facilitating adaptation.
Flexibility greatly facilitates handling pro-
cess exceptions and deviations; a flexible
process definition can provide an effective
model for the desired results of irregular ex-
ecutions, without inhibiting the handling of
irregular situations.

Use the Right Form of Process Definition 
Despite all of the research in process lan-

guages, the language used to define the pro-
cess is not particularly important, provided
that it permits clear communication and
statement of the process’s critical points.

If, in a process definition, you aim to cap-
ture activity and artifact flow, you can rep-
resent this in various ways, including flow
charts and natural language. Although typi-
cal formalisms of these sorts have oft-cited
limitations (ambiguity, incompleteness, in-
formality, and so on), your reasons for de-
fining a process might make such limita-
tions irrelevant. For example, if you repre-
sent the artifacts you want to develop in
terms of files and databases, it lessens the
importance of using a process language as a
data definition language, and your ability to
represent in a process definition the flow of
artifacts (as opposed to their schemas or in-
terfaces) might suffice.

If you need a process’s more specialized
aspects, such as data definition, transactional
properties, or concurrent-activity synchro-
nization, selecting an appropriate language

might be more critical. A language with more
specialized features, such as one based on a
database programming language or Petri
nets, or even a specially designed software-
process programming language,4,5 might be
appropriate. However, even such specialized
or powerful languages do not suit all pro-
cesses or situations. Additionally, you should
probably abstract noncritical points from the
process definition in any case.

Generalize 
In building up a start-up organization’s

processes, you should give first priority to
generally useful standards and protocols.
This most affects companies that produce a
family of products that it can treat in a par-
allel way, or when you can plan a number
of alternative or successive versions of a
product in advance. For example, a com-
mon graphical interface standard that ap-
plies across several products will afford a
greater return on development than devel-
oping particular standards for each product
in the family. Similarly, generic review pro-
cesses and test plans that you can readily
specialize for each product-family member
are more useful than customized processes
and plans. When a company is first start-
ing, you might need to define all processes,
standards, and guidelines as special cases.
However, you should seize the opportunity
to generalize when it arises.

Similarly, you should define protocols and
procedures for recurrent development activi-
ties—such as design reviews, configuration
management, or release builds—as early as
possible. Such protocols and procedures
form building blocks for higher-level activi-
ties, and you can reconfigure and reuse them
in many processes. They could be useful even
before you can fully define higher-level pro-
cesses and might remain stable and useful
even as higher-level processes are prototyped,
refined, and evolved.

Analogously, a general-purpose techno-
logical infrastructure is important. Examples
include configuration management (a KPA
for CMM Level 21); problem reporting and
tracking systems; planning, scheduling, and
notification systems; and intranets. Such
technologies support the activities that prac-
tically any software development organiza-
tion will need, yet they are not tied to any
particular life cycle, method, or process. You

Flexibility,
perhaps even

more than
structure, plays

an important
role in a 
start-up

company’s
development
processes.



3 8 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 0

can apply them in various ways in many con-
texts and reuse them as the organization and
its processes evolve. Such technologies
should at a minimum accommodate change,
but they could also facilitate change. For ex-
ample, you can use intranets to communicate
new processes and put proposed processes up
for organizational review, apply configura-
tion management systems to manage process
and product versions, and use problem-re-
porting and tracking systems to record and
repair problems with new (or established)
processes.

Learn and Reuse 
Some of what I’ve discussed relates to

the theme of “learn and reuse.” You can
generalize and reuse experience gained or
lessons learned from one member of a pro-
duct family or one step in a process across
the product family or development life cy-
cle. Unless special needs exist, you should-
n’t adopt procedures, protocols, and tech-
nologies for one product or life cycle phase
unless you can reuse them for other prod-
ucts or phases.

Some experiences from EC Cubed illus-
trate this point. According to the defined
life-cycle process, the Development teams
perform a certain level of unit and integra-
tion product testing, after which they pass
the products to the Quality Assurance (QA)
group for more comprehensive testing. EC
Cubed adopted the test plans that Develop-
ment developed and used as the QA’s core
of testing. However, QA was responsible
for more extensive testing than Develop-
ment performed. These additional tests of-
ten revealed bugs in the code that caused
repeated cycles between Development and
QA. To meet its needs to test against the
full range of anticipated problems, QA de-
veloped more comprehensive test plans to
address a wider range of test cases. EC
Cubed prototyped these plans first for some
specific products, then generalized them
across the product family. At the same time,
the company refined the development pro-
cess to require Development to test the
products more thoroughly before releasing
them to QA. This testing significantly re-
duced the number of cycles between Devel-
opment and QA, reduced the amount of
time each product spent in QA, and im-
proved the overall release-cycle time. Ap-

preciating the benefits of more intensive
upstream testing, the Development teams
began to adopt the more comprehensive
QA test plans, thus further raising the qual-
ity of product released by the teams and
further allowing the QA group to expand
its testing scope.

Get Good People 
Software project managers have long rec-

ognized the importance of good people for
successful software development. Most typi-
cally, others have linked the significance of a
superior programmer or architect to a prod-
uct’s or project’s success.6 One challenge for
many start-up companies is to hire and re-
tain such star developers.

In a start-up company, however, technical
survival and success might depend most
heavily on the executives and managers re-
sponsible for shaping, directing, and imple-
menting technical strategies. The importance
of people in these roles derives from the need
to keep the company focused and moving
ahead. It also derives, perhaps even more
fundamentally, from the need to define and
redefine the direction in which “ahead” lies.
This direction shifts continually, due to the
organization’s inherently evolving nature and
the dynamic and unpredictable context in
which it operates. Thus, when looking to
build a start-up development organization,
you need to select managers who are both
leaders and navigators.

General competence among developers,
in all roles and at all stages of the life cycle,
remains crucial. However, superstar devel-
opers often play less crucial roles than capa-
ble but flexible developers. Developers must
be able to change direction, take on and ex-
ecute new tasks, fill new roles, adapt spe-
cific results to general cases, and apply pre-
vious experiences to new challenges. Thus,
when looking for good developers, you
should give high priority to general skills
and adaptability. Still, you’ll need star man-
agers to get the greatest benefits from versa-
tile development teams.

S tart-up companies should concern
themselves to some extent with
process and process improvement,

which are the CMM’s central themes. In-

Software
project

managers have
long recognized
the importance
of good people
for successful

software
development.



deed, many of the particular process issues
and technologies that the CMM addresses
apply to start-up companies. However,
start-ups often lack the foundations re-
quired for success in the CMM—a histori-
cal record of experience, infrastructure for
process instantiation and improvement,
and repeatable and predictable practices.
Thus, while the CMM touches on themes
relevant to start-up companies, it can be
problematic for a start-up to strictly adhere
to the CMM. Consequently, you must se-
lect and prioritize process issues and tech-
nologies according to the start-up’s needs
and available resources. A start-up’s ability
to survive hinges on how (and how well) it
does this until the CMM can become rele-
vant and useful. They need approaches that
help them operate more efficiently and ef-
fectively at lower levels of maturity, where
they must first flourish if they are to even-
tually mature. Although it might be less
than ideal from an engineering perspective,
start-up software companies often must
learn to run before they can walk. 

References
1. Carnegie Mellon University Software Engineering Insti-

tute, The Capability Maturity Model—Guidelines for
Improving the Software Process, Addison-Wesley, Read-
ing, Mass., 1994.

2. J.G. Brodman and D.L. Johnson, “What Small Business
and Small Organizations Say About the CMM,” Proc.
16th International Conf. Software Engineering, IEEE
Computer Soc. Press, Los Alamitos, Calif., 1994, pp.
331–340.

3. G. Yamamura, “Process Improvement Satisfies Employ-
ees,” IEEE Software, Vol. 16, No. 5, Sept./Oct. 1999,
pp. 83–85.

4. L.J. Osterweil, “Software Processes are Software,
Too,” Proc. Ninth Int’l Conf. Software Eng., IEEE
Computer Soc. Press, Los Alamitos, Calif., 1987, pp.
2–13.

5. A. Fugetta, “Software Process: A Roadmap,” The Fu-
ture of Software Engineering 2000, Proc. 22nd Int’l
Conf. Software Engineering, ACM Press, New York,
2000, pp. 25–34.

6. F.P. Brooks Jr., The Mythical Man-Month—Essays on
Software Engineering, Addison-Wesley, Reading,
Mass., 1975.

About the Author

Stanley M. Sutton Jr. is a visiting scientist at the IBM T.J. Watson Research Center in
Hawthorne, New York, where he is a member of the Advanced Enterprise Middleware group.
This article is based on experience gained while working as a Quality Assurance engineer at EC
Cubed, Westborough, Mass. His interests are software engineering, software and business
processes, process languages and environments, middleware, and enterprise software systems
development. He received a PhD in computer science from the University of Colorado, Boulder,
and is a member of the IEEE Computer Society and ACM. Contact him at IBM T.J. Watson Re-
search Center, Hawthorne, NY, 10532; suttonsm@us.ibm.com.

COMING 
SOON

Distributed Systems Online
c o m p u t e r . o r g / c h a n n e l s / d s


