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terials, e.g. fruits or vegetables. The need to detect and 
suppress anti-CCD IgE without interference from peptide 
epitopes can be best met by artificial glycoprotein allergens. 
Hydroxyproline-linked arabinose (single  � -arabinofurano-
syl residues) has been identified as a new IgE-binding carbo-
hydrate epitope in the major mugwort allergen. However, 
currently the occurrence of this O-glycan determinant ap-
pears to be rather restricted.  Copyright © 2007 S. Karger AG, Basel 

 Introduction 

 The word carbohydrate is a potent stop signal for the 
‘readosome’ of a typical allergist. This is unfortunate be-
cause carbohydrate determinants are almost certainly 
the most frequently encountered individual epitope 
structures for IgE. They have therefore been baptized 
cross-reactive carbohydrate determinants (CCDs)  [1] . 
Fortunately for patients who have developed IgE against 
CCDs, the clinical effect of these antibodies appears to be 
negligible in most cases  [2–5] . At first instance, the car-
bohydrate nature of CCDs appears to hold a simple ex-
planation for this phenomenon, but for the impartial bio-
logical chemist, carbohydrates are not by nature mole-
cules of minor significance. This review deals with (i) the 
history and current status of the knowledge on the 
structure(s) of CCDs in plants, insects and also parasites; 
(ii) the specificity of animal and human anti-CCD anti-
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 Abstract 
 The asparagine-linked carbohydrate moieties of plant and 
insect glycoproteins are the most abundant environmental 
immune determinants. They are the structural basis of what 
is known as cross-reactive carbohydrate determinants 
(CCDs). Despite some structural variation, the two main mo-
tifs are the xylose and the core-3-linked fucose, which form 
the essential part of two independent epitopes. Plants con-
tain both epitopes, insect glycoproteins only fucose. These 
epitopes and other fucosylated determinants are also found 
in helminth parasites where they exert remarkable immuno-
modulatory effects. About 20% or more of allergic patients 
generate specific anti-glycan IgE, which is often accompa-
nied by IgG. Even though antibody-binding glycoproteins 
are widespread in pollens, foods and insect venoms, CCDs 
do not appear to cause clinical symptoms in most, if not all 
patients. When IgE binding is solely due to CCDs, a glycopro-
tein allergen thus can be rated as clinical irrelevant allergen. 
Low binding affinity between IgE and plant N-glycans now 
drops out as a plausible explanation for the benign nature of 
CCDs. This rather may result from blocking antibodies in-
duced by an incidental ‘immune therapy’ (‘glyco-specific im-
mune therapy’) exerted by everyday contact with plant ma-
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bodies; (iii) the current view of the clinical significance 
of CCDs and anti-CCD IgE and possible reasons for the 
innocuous nature of carbohydrate epitopes; (iv) strate-
gies for the improvement of in vitro measurement of IgE 
by recognition and inhibition of anti-CCD IgE, and
(v) the new but small area of O-glycan epitopes on plant 
allergens. 

 The review is confined to protein-linked glycans of 
known structure. The possibly large and interesting, but 
to date rudimentary, area of fungal glyco-allergens has 
been touched elsewhere  [6]  and will not be presented 
here. 

 The Malaise of Allergy Diagnosis by in vitro  
 Measurement of IgE 

 It is common ground that type I hypersensitivities (in 
simple terms: most phenomena usually understood as al-
lergy) are caused by immunoglobulins of class E  [7] . De-
pending on the eliciting agent, IgE from different patients 
binds to very different antigens, then called allergens. Re-
markably, and not untypical for the current status of this 
science, the term allergen equally means a single type of 
molecule containing the IgE-binding determinants as 
well as the natural package of various molecules and 
structures, e.g. venoms, pollens or hair, which may then 
contain several allergens in the molecular sense. On sci-
entific grounds, to support a patient’s anamnesis, type I 
allergies are diagnosed by skin prick testing (SPT) or by 
in vitro determination of allergen-specific IgE, as far as 
methods are concerned. The   in vitro method has the ad-
vantages of being less time consuming (at least for the 
patient), less painful and of allowing a larger number of 
allergens to be screened. In theory, reaction of a patient’s 
IgE with a certain allergen extract points to sensitization 
towards this allergen. The concentration of IgE indicates 
the severity of allergic symptoms to be expected on con-
tact with the allergen. This prognostic value is of impor-
tance especially for allergies having life-threatening po-
tential, e.g. insect venom or peanut allergy. Patients with 
a high radioallergosorbent test (RAST) class towards bee 
or wasp venom are advised to always carry with them an 
emergency set to rescue them in the event of an insect 
sting. 

 Unfortunately, the correlation between specific IgE 
(sIgE) levels and the severity of real clinical symptoms is 
remarkably loose. On the one side, in vitro tests may fail 
to detect sIgE and thereby overlook sensitization towards 
the allergen. This has been observed in the diagnosis of 

food allergies, e.g.   against apple and carrot  [8, 9] , and the 
reasons may be quite trivial ones such as low stability of 
the allergen or varying concentrations in the raw mate-
rial used for extraction. Standardization of allergen ex-
tracts for prick testing and serum IgE determination is 
therefore a challenging and serious task  [10] . On the oth-
er side, the observation has been made that the mere 
binding of IgE to components of an allergen extract does 
not always correlate with the clinical diagnosis obtained 
by SPT or even by more physiological tests such as a dou-
ble-blind placebo-controlled food challenge  [2, 3, 11, 12] . 
In this review, we will show that  1 20% of allergic patients 
have IgE that binds to carbohydrate compounds, which 
are essentially unable to elicit clinical symptoms. These 
supposedly clinically irrelevant carbohydrate determi-
nants compromise the significance of serum IgE deter-
minations. In vitro reactivity with protein panallergens 
such as profilin likewise cannot always be taken as an 
unambiguous indication of the clinical role of carbohy-
drate determinants  [4, 13–15] . 

 A Short History of CCDs 

 It all began in the 1970s when a Japanese group eluci-
dated the strange structure of a protease from pineapple 
 [16] . Later, it was confirmed that this bromelain (Brl) con-
tained an oligosaccharide with two structural features, 
which had not been found in mammalian glycoproteins, 
i.e. core  � 1,3-fucose and xylose ( fig. 1 )  [17] . Of note, bro-
melain is a special case as glycans with three mannose 
residues are more usually found in plant glycoproteins, 
e.g. on horseradish peroxidase (HRP;  fig. 1 )  [18–21] . 

 The link between plant glycobiology and allergy was 
made in 1981 by some short but pioneering work from 
Aalberse et al.  [1] . They showed that IgE from patients’ 
sera cross-reacted with extracts from various allergenic 
foods as well as with insect venoms, but treating the ex-
tracts with periodate abolished the reaction. Conclusions 
from periodate oxidation experiments must be drawn 
with caution as this harsh treatment can also destroy pep-
tide epitopes  [22] . However, their finding was corrobo-
rated by later reports. The first one showed N-glycans 
were involved in the IgE binding to honeybee venom 
phospholipase A 2  (PLA 2 ; Api m 1)  [23] . Aalberse et al.  [1]  
had already perceived a connection between reactivity to 
plant CCDs and a history of insect stings. The structural 
basis for the cross-reaction of IgE with insect and plant 
glycoproteins only became evident once the structural 
particularities of insect N-glycans, i.e. the presence of a 
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core  � 1,3-fucose just like in plants  [24] , had been re-
vealed. In sera from patients allergic to bee venom, gly-
copeptides (GPs) made from pineapple stem Brl were 
shown to inhibit IgE from binding to Api m 1  [24] . As the 
peptide moieties of such GPs comprise only two to four 

amino acids at maximum, they hardly constitute epitopes 
on their own. The conclusiveness of this approach ap-
pears much stronger than that of destructive methods 
such as periodate oxidation or chemical deglycosylation. 
In the succeeding years, an ever growing number of pa-

  Fig. 1.  Comparison of plant and mammalian N-glycans. The oligosaccharide structures are shown in the sym-
bolic depiction suggested by the Consortium of Functional Glycomics (www.functionalglycomics.org) with the 
additional information about linkage positions. The structure codes comply with the proglycan system (www.
proglycan.com). The upper two structures MMXF 3  and MUXF 3  represent typical complex-type plant N-gly-
cans, e.g. HRP or bromelain, respectively. The Man9 structure is one example of the series of oligomannose-
type glycans Man5 to Man9 (Man 5 GlcNAc 2  to Man 9 GlcNAc 2 ), which occur in all eukaryotic organisms. The 
glycan NaNaF constitutes a typical mammalian complex-type N-glycan with sialic acids. Note the different 
position of the fucose residues. 
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pers reported that anti-CCD IgE was involved in   in vitro 
reactivity of patients’ sera to a wide variety of allergens. 

 Asn-Linked Oligosaccharides in Plants 

 Different taxonomic groups are distinguished by dif-
ferent structural features of their Asn-linked glycans (N-
glycans) as well as their ability to generate certain types 
of O-glycans, which will be dealt with in a separate chap-
ter. The biosynthesis of N-glycans is textbook knowledge 
allowing us to start with the assertion that the first steps 
of protein N-glycosylation are essentially conserved in all 
eukaryotic organisms  [25, 26] . The first large phyloge-
netic group to leave the common trail are fungi, which 
lack the enzymes that   lead to complex-type glycans,   e.g.  
 GlcNAc transferase I – at least, this holds true for yeasts 
 [27] . In plants and animals, the Man5 structure is pro-
cessed by GlcNAc transferase I and subsequently Golgi 
 � -mannosidase (often referred to as  � -mannosidase II) 
and GlcNAc transferase II. But already at this stage the 
‘higher animals’, i.e. the deuterostomia, begin to deviate 
from the taxonomic protostomia (e.g. insects), acoelo-
mata (e.g.  Caenorhabditis elegans  and many parasitic 
worms) and noteworthily plants  [28] . 

 The term plant must be restricted again, as except 
from the moss  Physcomitrella patens   [29] , all other plants 
whose N-glycan structures have been investigated belong 
to the  Tracheophyta  (vascular plant). However, within 
these taxonomic limitations, we can claim that all plant 
species have the same spectrum of N-glycan structures, 
certainly the angio- and gymnosperms  [20] , but also 
ferns and horsetails [Altmann, unpubl. results]. The most 
important differences from human N-glycans are: (1) the 
core  � 1,3-fucose, i.e. the fucosylation of the innermost 
GlcNAc at position 3; (2) the xylosylation of the  � -man-
nosyl residue, and (3) the ‘premature’ termination of the 
antennae with mannose, GlcNAc or galactose residues 
instead of sialic acids ( fig. 2 ). A further feature of certain 
plant glycoproteins is the occurrence of Lewis a determi-
nants, which are branched, terminal trisaccharides made 
of galactose, fucose and N-acetylglucosamine ( fig. 2 ). 
Lewis structures are also found in mammals, albeit usu-
ally together with sialic acid. 

 Plants have not been very inventive with their glycan 
structures. Essentially every plant and plant material 
contains the entire spectrum of N-glycans but with large 
quantitative differences  [20, 30] . The very large Lewis a 
type structures are rarely found on soluble allergens and 
are currently thought to play only a minor, if any, role in 

IgE binding even though many plant foods (apple, ba-
nana, celery, onion, orange, pear, and strawberry) con-
tain large amounts of these near-mammalian N-glycans 
 [20] . The cedar pollen allergens Cry j 1 and Jun a 1 are the 
only allergens known to contain Lewis a antennae  [31, 
32] . Complex-type glycans without terminal galactose/
fucose comprise the most abundant species in most (food) 
plants. For isolated allergen proteins, the prototypical N-
glycan structure is the so-called MMXF 3  ( fig. 1 ). This 
structure occurs so frequently on plant proteins that try-
ing to list all known carriers would be futile. Examples 
among non-allergens are HRP  [18]  and many lectins  [33, 
34] , and among allergens, Phl p 1, Phl p 13  [35] , Lyc e 2 
 [36]  Hev b 4  [37] , Lol p 11  [38] , and Api g 5  [39] . Tree pol-
lens  [30]  and tree pollen allergens  [39]  tend to bear ter-
minal non-reducing GlcNAc residues, a feature which 
may reduce IgE binding (see paragraph on specificity of 
IgG). Olive pollen Ole e 1, hazelnut Cor a 11 and peanut 
Ara h 1 differ by essentially lacking the core fucosyl resi-
due  [38, 40, 41] . In contrast, Cyn d 24 and other glycopro-
teins from Bermuda grass pollen carry non-xylosylated 
glycans, mainly MMF 3  ( fig. 2 )  [42, 43] . 

 Important to understand is that the nature of the pro-
tein to which such sugar chains are attached is irrelevant, 
comparable to a traffic light for which it hardly matters 
where and how exactly it is mounted. Having said this, 
cases where the protein moiety may affect presentation of 
carbohydrate determinants can admittedly be found. An 
example is phospholipase, the major protein of honeybee 
venom (see also next paragraph). In immunoblots with 
anti-CCD sera, the much less abundant hyaluronidase 
stains stronger  [44] . The glycan profiles of these allergens 
hardly pose an explanation for this difference  [45] . To 
stay with the above picture, the traffic light could be 
shielded by the branch of a tree. 

 Asn-Linked Oligosaccharides (N-Glycans) of Insects 

 Core  � 1,3-fucose is regularly found in insect glycopro-
teins, e.g.   in honeybee venom PLA 2   [46, 47]  and hyal-
uronidase  [40, 45] , and in yellow jacket venom hyaluron-
idases  [48] . Most often it is accompanied by a second, 
 � 1,6-linked fucose ( fig. 2 ). Apart from insect venoms, 
this cross-reactive structure is found in neuronal cells of 
insects  [18, 28] . Xylosylation has never been found in in-
sect glycoproteins. Proteins from house dust mites, de-
spite their phylogenetic relationship, are probably not 
core 3-fucosylated as they fail to bind rabbit anti-CCD 
antibodies  [19] . 



 CCDs  Int Arch Allergy Immunol 2007;142:99–115 103

 Asn-Linked Oligosaccharides of Snails and Parasitic 
Worms 

 Immunogenic glycans with both xylose and core  � 1,3-
fucose have been found in parasitic worms (helminths) 
such as  Schistosoma mansoni  and  S. japonica  or  Haemon-
chus contortus  ( fig. 2 )  [49–53] . Given the considerable 
problems associated with the analysis of glycoproteins 
from such sources, a large number of unknown cases can 
be expected. Core  � 1,3-fucosylated glycans have not been 
found in cercaria of  S. mansoni   [49] , which may point to 
a stage- and/or tissue-specific expression of this determi-
nant. Snail glycoproteins have been shown to contain xy-
lose residue  [54–56] . Although the relevant fucosyltrans-
ferase could be detected in the snail  Lymnea stagnalis 
  [57] , only traces of core  � 1,3-fucosylated glycans could 
hitherto be found in snails  [55] . 

 It is crucial to appreciate that parasitic helminths, e.g. 
schistosomes, express additional glyco-antigens on the 
non-reducing side of N-glycans as well as O-glycans  [50, 
58–63] . Apart from the well-known Lewis x structure, 
several determinants have been found with GalNAc-con-
taining LacdiNAc antennae instead of the usual Gal-con-
taining LacNAc antennae [reviewed in ref.  58, 59 ]. Lac-
diNAc structures may be fucosylated or difucosylated 
and they may form repeats. Even substitution of fucosyl 
residue by fucose has been found  [63, 64] . Remarkably, 
some of these glyco-determinants also appear in mol-
lusks, which are phylogenetically quite distant to hel-
minths  [60, 65] . These – for mammals – highly unusual 
structures elicit generation of antibodies of all kinds of 
classes  [58, 66]  and they induce granuloma formation 
 [60] . Most importantly, they skew the host immune sys-
tem towards a Th2 response  [66–70] . At the same time, 
the course of the Th2 response is attenuated by down-
regulatory cytokines (e.g. IL-10)  [58, 59, 66, 71] . 

 Sheep infected with parasites generate mainly IgE 
against glyco-determinants, some of which are also found 
in plant and insect glycoproteins  [52] . Nevertheless, the 
immune response to such parasites does not resemble al-
lergic hypersensitivity. On the contrary, there is evidence 
that a history of infection by parasitic worms strongly re-
duces the allergy risk by restraining the Th2 responses 
against allergens  [59, 72] . Parasite glycoconjugates have 
not yet been directly associated with allergy. However, 
one could meditate if the immunomodulatory nature of 
parasite glycans on the one hand and the apparently be-
nign conduct of glyco-allergens on the other are purely 
coincidental phenomena. 

 Specificity and Affinity of IgG Raised against Plant 
Glycoproteins 

 Despite the long history of carbohydrates as immuno-
gens – just think of blood group antigens or bacterial 
polysaccharides (used for example   in the  Haemophilus 
influenzae  type b vaccine) – allergologists originally met 
the idea of anti-glycan antibodies of the IgE class with 
considerable skepticism if not sheer rejection. Differenc-
es in serum reactivity between glycosylated and non-gly-
cosylated allergens were discounted as changes in protein 
structure induced by the glycans or just as another kind 
of non-specific binding. Therefore, the thorough charac-
terization of the epitope structure recognized by rabbit, 
goat or rat antibodies was an important prerequisite for 
the appreciation of plant N-glycans as specific antibody 
determinants on their own, both for IgG and IgE. 

 Concomitant with the first observations on the immu-
nogenicity of plant N-glycans, conclusions about the 
chemical nature of the carbohydrate epitope were drawn 
based on the structural difference between plant and hu-
man glycans. At first, the xylose residues were implicated 
as the essential element  [73, 74] . Detailed work on the 
HRP epitope corroborated this finding and added the 
core  � 1,3-linked fucose as a second antibody-binding el-
ement  [18] . With the discovery of core  � 1,3 fucose in in-
sect glycoproteins  [45, 46] , it became apparent that this 
widely distributed residue is involved in cross-reactions 
between plant and insect glycoproteins. Using different 
forms of Brl-GPs and oligosaccharides, it could be shown 
that only reducing glycans or GPs – but not reductively 
aminated or reduced oligosaccharides – inhibit rabbit 
anti-HRP from binding to various glycoproteins includ-
ing honeybee venom PLA (Api m 1)  [24] . Besides, 0.3  �  M  
GP was required to achieve 50% inhibition of antibody 
binding  [24] . At about that time, rabbit serum raised 
against carrot  � -fructosidase or HRP was successfully 
fractionated into a ‘fucose-specific’ and a ‘xylose-specif-
ic’ fraction by affinity chromatography on immobilized 
PLA  [75] . This work re-introduced xylose as a CCD. In-
terestingly, later work on the cross-reaction of anti-HRP 
and of a rat monoclonal antibody did not indicate any 
substantial contribution of xylose  [19, 76] . The conclu-
sions on the structure of the CCD were drawn from inhi-
bition experiments with Brl-GP or defucosylated Brl-GP. 
A reason for the inconsistent findings about the role of 
xylose may be that Brl contains MUXF 3  (or simpler: 
MUXF), a truncated version lacking one mannose resi-
due, instead of the more common MMXF 3  (or MMXF) 
structure ( fig. 1 ). In fact, MUXF was recently found to be 
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  Fig. 3.  Model of a CCD. The cartoon de-
picting the 3D structure of the most abun-
dant CCD N-glycan MMXF 3  was emulat-
ed from Bouwstra et al.  [79] . It shows that 
the core  � 1,3-fucose (shown in red) and 
the 6-linked mannose lie on the same side 
of the glycan whereas the xylose (in blue) 
is located at the opposite side. Thus xylose 
and fucose form independent epitopes. 
The cartoon shall, however, not be under-
stood the way that the two types of anti-
body can bind simultaneously to the same 
molecule. 

  Fig. 2.  Glycans of plants, insects and para-
sites.  a  Some complex-type N-glycans as 
found in plants. The lack of terminal 
GlcNAc or Lewis a determinants of either 
of the two antennae generates additional 
combinations. The non-xylosylated MMF 3  
glycan found in Bermuda grass  [42]  is 
shown in  c .  b  Examples of N-glycans found 
in snails and parasitic helminths.  c  Typical 
core 3-fucosylated N-glycans from insect 
venoms. 
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a poorer ligand for Xyl-dependent antibodies than MMXF 
 [77] . In this work, recombinant xylosyl-transferase and 
core  � 3-fucosyl-transferase were used to ‘plantify’ hu-
man apotransferrin that had been treated with glycosi-
dases to carry GnGn oligosaccharides, which serve as 
substrate for the glycosyltransferases  [77] . No hint of a 
comparable influence of the presence or absence of the 
 � 3-linked mannose on the binding of fucose-dependent 
antibodies has been found. The different dependence of 
the xylose and the fucose epitopes on  � 3-mannose may 
be explicable by the different orientation of xylose and 
 � 3-fucose as found in NMR-based modeling studies of 
the N-glycan of Brl  [78, 79] . 

 Another important finding was that efficient binding 
of anti-HRP, for example, to re-modelled transferrin was 
only obtained after removal of the GlcNAc-residues at the 
non-reducing termini, i.e. after the conversion of GnGnF 
and GnGnX to MMF and MMX, respectively  [77] . This 
means, that terminal substituents shield the Fuc epitopes 
and therefore larger plant N-glycans may not function as 
CCD despite their content of Xyl and Fuc. Exceptions to 
this rule may however be found as immunization with 
MMX glycoprotein, which also contained some GnGnX, 
elicited antibodies able to bind to GnGnX  [80] . 

 Taken together, recent work produced conclusive evi-
dence that plant N-glycans harbor two essentially inde-
pendent epitopes, one containing core  � 1,3-fucose and 
the other one the  � 1,2-linked xylose ( fig. 3 )  [75, 77, 80] . 
Since in both cases other parts of the oligosaccharide 
confer individually weak, but in concert important, con-
tributions to the binding of antibodies  [18, 77] , such anti-
CCD immunoglobulins should not be termed Fuc or Xyl 
specific but rather Fuc or Xyl dependant. Also, there may 
be differences in binding strength of similar N-glycans to 
the same serum as well as small differences in the sub-
strate specificity of antibody populations. However, apart 
from the above example with MMX, MUX and GnGnX 
(with or without Fuc), no such differences have been 
demonstrated. 

 Species-Related Aspects of the Immune Response 
 Some of the above-mentioned studies were probably 

done on the implicit understanding that what is found for 
rabbit antibodies would also hold true for human IgG 
and, hopefully, even IgE. There is, however, no guarantee 
of such a similarity. For example the murine immune sys-
tem behaves very different from that of rabbits  [77, 81] . 
Although a monoclonal antibody against  Cupressus ari-
zonica  glycoproteins could be generated from Balb/c mice 
 [82] , this strain is usually found not to react measurably 

against the glycans when immunized with plant glyco-
proteins  [81] . Raising anti-CCD antibodies and generat-
ing hybridoma cell lines that produce monoclonal anti-
bodies is apparently easier in C57BL/6 mice and rats than 
elsewhere  [19, 81–85] . However, as far as analyzed in de-
tail, these murine antibodies cannot discriminate differ-
ent truncated complex-type (‘paucimannosidic’) N-gly-
cans such as MM, MMF 3  or MMX  [77, 80, 85] . Human 
IgE, however, has proved able to discriminate MMF 3  
from MM or MMX  [77] . A similar picture can be seen in 
a study with non-allergic people, where 25% exhibited 
IgG binding to honeybee PLA (core  � 3-fucosylated) 
whereas 50% reacted with  Helix pomatia  hemocyanin, 
which is known to contain xylose but also a panel of oth-
er immunogenic carbohydrate determinants  [65, 81, 
86] . 

 Anti-CCD IgE in Allergic Patients 

 With growing awareness among allergologists of the 
existence of IgE-binding carbohydrates, the number of 
papers implicating glycans as part of an allergen is steadi-
ly increasing. Such IgE binding has been observed with 
insect venoms, grass and tree pollens and foods  [2, 11, 35, 
36, 38, 39, 44, 76, 87–104] . Possibly the first work measur-
ing anti-CCD IgE in individual sera was on a panel of 
patients allergic to bee venom  [24] . From 122 sera, 28% 
bound to GPs from bee venom PLA and from Brl, which 
were coupled to bovine serum albumin (BSA;  fig. 4 ). 
Only two sera also reacted with a pentasaccharide core 
devoid of xylose and fucose  [24] . The anti-CCD IgE from 
many of the bee-venom-allergic patients could be inhib-
ited by GPs prepared from pineapple Brl, but not if the 
GPs had been defucosylated  [24] . A similar percentage of 
CCD reactivity was found in a large study on patients al-
lergic to insect venom  [5] . Here, CCD-positive patients 
were detected on the basis of a positive CAP test with Brl 
and negative SPT with different pollens. Thus, as admit-
ted by the authors, the 16% of CCD-positive patients did 
not include all those who had anti-glycan IgE and at the 
same time a SPT reaction with pollens – regardless of 
which allergen molecule had caused the reaction  [5] . In 
studies of carrot and celery allergens, 45–55% of the sera 
were CCD positive when tested with Brl-GPs  [11, 105] . 
Using proteinase-K-digested grass pollen extract as the 
CCD source, van der Veen et al.  [2]  showed that one third 
of 32 patients allergic to grass pollen exhibited anti-CCD 
IgE, which was responsible for reactivity with peanut in 
vitro. 
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 The major work on CCD reactivity is that of Mari  [12] , 
where a large cohort of allergic patients who showed re-
activity to Brl in vitro was challenged with Brl by SPT. In 
a CAP assay, 23% of the sera from 1,831 patients showed 
IgE to Brl. The prevalence of CCD reactivity somehow 
correlated with the number of pollens with which the pa-
tients gave a positive SPT. However, almost none of the 
patients had a positive SPT against Brl (see also next para-
graph). 

 The specificity of human IgE may at first be consid-
ered similar to that of rabbit IgG. This can be deduced 
from studies where Brl-GPs and their defucosylated form 
were used to inhibit IgE binding to plant glycoproteins 
 [24, 77]  and from a recent study with biosynthetic glyco-
allergens  [77] . Interestingly, only Fuc-dependant IgE 
could be detected  [77] , which may just reflect a coinci-
dental bias in serum selection or the postulated role of 
insect stings as elicitors of anti-CCD IgE  [2, 5] . 

 In conclusion, many allergic patients develop specific 
IgE directed against plant/insect protein-linked glycans. 
This anti-CCD IgE will lead to ‘false-positive’ results in 
in vitro testing whenever natural allergen extracts are 
used  [3, 5, 6, 72, 77] . 

 On the Clinical (In)Significance of anti-CCD IgE 

 Any patient with anti-CCD IgE would be a very poor 
creature if glycan epitopes were to trigger severe clinical 
symptoms like notoriously strong allergens, e.g. Ara h 1 
and 2, Bet v 1 or Api m 1, do. Obviously, and fortunately, 
this is not the case. Several recent studies make a clear 
point about the clinical insignificance of carbohydrate 
determinants  [2, 4, 5, 12, 38, 106, 107] . In these studies, 
the discrepancies between RAST/CAP and SPT results or 
other in vivo tests formed the basis of the conclusion. Us-
ing proteinase-K-digested grass pollen as the CCD source, 
van der Veen et al.  [2]  observed that about one third of 
patients allergic to grass pollen had a positive RAST with 
peanut extract but a negative SPT with the same extract 
or with isolated Ara h 1 or ‘Ara h 2’. [From the sequence 
given, it is rather Ara h 6 (Q9SQG5) than what is now 
termed Ara h 2 (Q8GV20). For both allergens, the glyco-
protein nature is not evident.] The in vitro reactivity was 
shown to be due to CCD epitopes. As Ara h 1 is monova-
lent, the soundness of this rationale is arguable. However, 
a later study by Mari  [12]  who selected over 1,000 sera 
with positive CAP against Brl corroborated the observa-
tion. The patients from whom the sera had been taken 
were challenged with three monovalent allergens, i.e. Brl, 

ascorbate oxidase (P37064) and honeybee phospholipase 
and the multivalent glycoprotein HRP. In accordance 
with the theory that cross-linking of IgE receptors on 
mast cells triggers an allergic response, only HRP elicited 
a positive SPT in at least 21% of the patients. The response, 
which may or may not have actually been caused by the 
glycans, hardly ever exceeded SPT class II, which is below 
the threshold above which people visit their doctor  [12] . 
Not to be overlooked, almost 80% of the patients did not 
even react with the polyvalent HRP. As a side note, a few 
patients did react with phospholipase but probably be-
cause of a protein-directed sensitization. Thus, as long as 
HRP is not convicted of being a particularly poor elicitor 
for whichever reasons, these results score a clear point 
against a clinical significance of N-glycans. 

 Kochuyt et al.  [5] , who concentrated on insect-sting-
allergic patients, found that allergic patients who were 
CCD positive to insect stings did not react towards grass 
pollens in a nasal provocation test. Similar results were 
found for the glycoproteins orange germin-like protein 
(Cit s 1) and latex Hev b 2  [95, 96] . Also, the carbohydrate 
of vicilin (mainly MMX) was found not to contribute to 
eliciting symptoms  [41] . Because of this clinical insignif-
icance, CCD epitopes and in many cases also profilin can 
be seen as ‘mimickers of allergy’  [4] . 

 Degranulation by Glyco-Allergens 
 These observations contrast with several reports on 

histamine release by glycoproteins and anti-CCD IgE. 
One of the first of these papers compared the histamine 
release capabilities of Brl-GPs coupled to BSA (Brl-BSA; 
 fig. 4 ), defucosylated Brl-BSA, rBet v 1, and celery extract 
were compared  [101] . The concentration of Brl-BSA re-
quired to release histamine was about 10 times higher 
than that of Bet v 1, whereas the celery extract concentra-
tion required was up to 1,000 times higher. In other 
words, natural extracts may be a rather poor source of 
polyvalent CCD allergens and their comparison with 
pure protein allergens may be misleading. In a study on 
natural and recombinant Cup a 1 in several patients, the 
concentration dependence curves were very similar  [92] . 
Studies with tomato allergens, HRP and Brl-BSA conju-
gate also favor the idea of a similar potency of CCD  [36, 
108] . Other studies have not emphasized the quantitative 
aspect so much  [35, 39, 89] . In the case of the olive aller-
gen work, it should be added that deglycosylation by 
PNGase F cannot be expected to be successful because of 
the enzyme’s restricted substrated specificity and hence 
the interpretation of the results is difficult  [89, 109] . For 
patients allergic to peanut, rather high threshold concen-
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  Fig. 4.  Preparation of CCD reagents. Start-
ing point are glycoproteins containing dif-
ferent N-glycans.  a  The work flow for bo-
vine fibrin, which contains diantennary 
N-glycans as shown in figure 1 from which 
GPs with GnGn and MM structures can be 
obtained.  b  Brl with its MUXF N-glycan.
 c  A glycoprotein with a MMXF structure. 
Digestion with an unspecific protease 
(usually from  Streptomyces griseus ) yields 
GPs with just a few amino acids as depict-
ed in the middle line. These can be chemi-
cally coupled to a carrier protein or a solid 
support, which is symbolized by an oval 
area. The dotted line from the fibrin 
GnGn-GP to the MMXF-GP indicates an 
alternative route, where recombinant gly-
cosyltransferases are used to ‘plantify’ the 
mammalian substrate by the addition of 
xylose and fucose residues to yield 
GnGnXF GPs in the first place. Removal 
of GlcNAc residues by  N -acetylglucosa-
minidase finally leads to MMXF struc-
tures. 

  Fig. 5.  Effective valency of glyco-allergens. 
Mediator release from mast cells or baso-
phils requires IgE molecules to be cross-
linked. Therefore, allergens have to be at 
least divalent. The left cartoons show mod-
els of glycoproteins, which can be consid-
ered ineffective because they carry only 
one glycan ( a ), or even two glycans but one 
of them cannot bind IgE because the CCD 
epitopes are masked by terminal GlcNAcs 
(blue squares;  b ) or it is of the oligoman-
nose type ( c ). The cartoons on the right 
side depict cases where cross-linking could 
happen (provided spatial requirements are 
fulfilled) because of two peptide epitopes 
( d ), a peptide and a CCD epitope ( e ) or two 
glycans with CCDs ( f ). This latter case rep-
resents a glycoprotein, which is unrelated 
to the sensitizing agent and where IgE 
binding occurs solely on the basis of 
CCDs. 



 Altmann  Int Arch Allergy Immunol 2007;142:99–115 108

trations were found for peanut extract, Ara h 1 (monova-
lent) and ‘Ara h 2’ (or rather Ara h 6)  [2] . On the basis of 
these high threshold concentrations, van Ree  [110]  pro-
posed low binding affinity of anti-CCD IgEs as an expla-
nation for their weak clinical relevance. Similarily, rice-
produced human lactoferrin was able to effect basophil 
histamine release only at very high concentrations, but it 
was anyway ineffective in SPT up to 0.5 mg/ml [presenta-
tion by Mari et al. at the XXVth Annual Congress of the 
European Academy of Allergology and Clinical Immu-
nology (held on June 10–14, 2006, in Vienna)]. Lactofer-
rin can carry two N-glycans. The major structure in the 
rice-produced protein was MMXF, however, in mixture 
with other glycans devoid of fucose. Therefore, the ques-
tion remains whether a large fraction actually had been 
at least divalent in terms of core fucose. 

 In summary, despite conflicting observations about 
the required dosage for histamine release or disputes 
about proper test systems, there are strong in vitro indica-
tions that glycoproteins can trigger IgE-mediated degran-
ulation of granulocytes and/or mast cells. At the same 
time, it appears that the in vitro effects are mild. Although 
the carbohydrate nature of CCDs may have sometimes 
been taken as an answer to this discrepancy, it does not 
hold an explanation. Besides, such an attitude affronts the 
enthusiastic glycobiologist. Carbohydrates stood at the 
cradle of immunology and they continue to be useful as 
bacterial antigens, e.g. for  Haemophilus influenzae  vacci-
nation. How then can the benign nature of plant/insect 
N-glycans as allergenic determinants be explained? 

 Reasons for the Clinical Insignificance of CCDs 
 A first explanation comes from the requirement of 

cross-linking of IgE receptors (Fc � R) on effector cells, 
which is only met by allergens that are at least divalent. 
For glycoproteins, this can mean that the allergen har-
bors peptide epitopes in addition to a CCD ( fig. 5 ). This 
could be the case if the glycoprotein actually were the 
sensitizing agent. The sugars are just one additional epi-
tope and their efficacy does not need separate consider-
ation. The other possibility is that the patient’s serum 
solely recognizes glycan determinants on the allergen. 
Then it would not be sufficient that the glycoprotein car-
ries two, three or more glycan chains, which also must 
exhibit structures that facilitate antibody binding. Given 
the structural variety on plant glycoproteins, this may 
not be so easily fulfilled, and therefore many plant glyco-
proteins may have little potential to trigger degranulation 
even though they bind IgE in in vitro tests for which mon-
ovalent binding is sufficient. Besides, many of the well-

known glyco-allergens are monovalent, e.g. Api m 1 
(PLA), Ara h 1, or Phl p 1. 

 A second, more general hypothesis is based on the rel-
atively high (glyco)protein concentrations required for 
histamine release, which van Ree  [110]  suggested was due 
to an assumed low binding affinity of IgE to glycan epit-
opes. This hypothesis may have been fuelled by earlier 
findings on the affinity of animal lectins and their car-
bohydrate ligands  [111] . It does, however, not apply to an-
tibody glycan interactions. In particular, the affinity of 
rabbit anti-CCD antibodies has recently been determined 
to be around 10 –9   M   [80] . Human anti-CCD IgE likewise 
appears to have a rather high binding affinity [Jin et al., 
unpubl. results]. Thus, low binding affinity drops out as 
an explanation. 

 A third hypothesis could be formulated if patients’ 
sera were found to contain considerable amounts of 
blocking antibodies (presumably IgG 4 ) of sufficient af-
finity. Preliminary results from our laboratory favor this 
idea. Interception of IgE binding by blocking antibodies 
is one important mechanism contributing to the efficacy 
of allergy vaccination (specific immunotherapy = SIT) 
 [112–114] . CCD-specific IgG 4  antibodies have indeed 
been found in patients who have received grass pollen im-
munotherapy  [115] . However, the more than 1,000 people 
examined by Mari  [12]  and patients in similar studies 
mentioned above did not receive such treatment. How-
ever, these people just like everybody else will have had 
contact with plant material probably every day of their 
life. So, many people may undergo an incidental or natu-
ral ‘immune therapy’ (‘glyco-SIT’) with CCDs before, 
while or after they are sensitized to glyco-allergens. The 
situation might resemble that recently described for oc-
cupational exposure to animal plasma proteins where 
some sensitized patients had developed IgG 4  levels to ap-
parently protect them from adverse effects  [116]  and it 
reminds of the old observation that beekeepers develop 
high levels of IgG, which protect them from allergic reac-
tions against bee venom. A recent work estimated 25% of 
normal healthy people have Fuc-dependent IgG (IgG 1  
and IgM)  [81] . Phospholipase (Api m 1) was used as a Fuc-
containing test antigen which, however, led to false-posi-
tive results due to peptide determinants as well as under-
estimation because Api m 1 is a relatively poor ligand of 
anti-CCD IgE  [44] . Even more sera reacted with  H. po-
matia  hemocyanin, which carries Xyl-containing glycans 
 [56] , but binding to other epitopes of a peptide or carbo-
hydrate nature cannot be strictly excluded. 

 The blocking antibody concept does not contravene 
positive histamine release as in this semi-physiological 
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test, IgG would largely be removed from the assay sys-
tem. 

 Regrettably, little is known about the patients’ usual 
age at IgG induction, about the subclass distribution (al-
though a bias towards IgG4 may be assumed), about the 
relation between IgE and IgG levels and about the relative 
binding affinities of these antibodies in humans. Can we 
safely assume that a sufficient level of blocking antibodies 
is generated in each patient to prevent relevant allergic 
reactions? Put another way, can we find patients who do 
respond to CCDs and can conditions be defined where 
CCDs play a clinical role? Some CCD-reactive, celery-al-
lergic patients were found to develop true allergic symp-
toms on contact with carrot despite the absence of mea-
surable anti-protein IgE  [105] . In some patients, moder-
ate SPT reactions with rape pollen extract likewise could 
not be explained by epitopes other than CCDs  [117] . 
However, the overwhelming majority of patients with 
anti-CCD IgE appear to be protected against severe symp-
toms. It is highly unlikely that physicians would fail to 
notice if up to 20% of their patients had allergic episodes 
after they had ingested virtually every kind of vegetable 
food. A glycoprotein which binds IgE by CCDs only must 
therefore be rated as just a clinically irrelevant allergen. 

 A fascinating side aspect of the glyco-SIT hypothesis 
is the speculation that the innocuous nature of highly 
conserved protein panallergens such as profilin could 
 derive from an analogous mechanism. Remember that 
panallergens from different sources exhibit increasingly 
different structures with growing phylogenetic distance 
whereas CCD structures do not vary in this way. 

 A fourth line of reasoning could be developed from the 
observation that fucosylated glycoconjugates of parasites 
interact with components of the innate immune system 
to facilitate the induction of a Th2 response, which, how-
ever, is quantitatively restricted (see paragraph on para-
site N-glycans). Although a connection of parasite im-
mune response and allergic response to CCDs is entirely 
speculative, it might pay to keep an eye on the adjacent 
borders of these subjects. 

 Discrimination between Anti-Peptide and 
Anti-CCD IgE 

 Specificity is a core quality of any diagnostic test. Re-
grettably, because of interference from cross-reactive car-
bohydrate determinants, serum IgE diagnosis is afflicted 
by an awkwardly high degree of unspecificity  [5, 12, 38, 
88, 91] . This has to taken into account whenever extracts 

of natural allergens from plants and insects are used as 
antigens as in current in vitro allergy diagnosis. While 
this may pose a case for recombinant allergens  [118, 119] , 
more instantaneous solutions are required to improve di-
agnoses. A good start might be to detect false-positive 
serum diagnosis of insect venom allergies in patients who 
react with insect venoms solely because of anti-CCD 
IgE. 

 To our mind, a proper strategy would detect whether 
a particular serum contains anti-CCD IgE and, if so, spe-
cifically prevent this IgE fraction from binding to the al-
lergen. These two steps can either be performed consecu-
tively or simultaneously, which means that all sera would 
be treated in the same way at the outset. For detection, a 
plant glycoprotein or a ‘plantified’ mammalian protein 
(to be explained later) could be used and introduced as an 
additional ‘allergen’ in a serum diagnosis work flow. We 
believe it is high time to solve the CCD problem in serum 
IgE diagnosis. Considering the high cost of specific IgE 
determinations, a tiny extra expenditure must not be al-
lowed to hinder securing more specific and reliable re-
sults. Moreover, current developments towards minia-
turization of serum diagnosis by microarray methodol-
ogy should meet any objections based on cost  [120, 121] . 
Recognizing a serum as containing anti-CCD IgE is only 
the first step. The compulsive consequence is to perform 
sIgE determination in a way that eliminates the reactiv-
ity of anti-CCD IgE. This is probably best achieved by 
adding an inhibitor (other options are discussed below). 
It must be emphasized that while the presence of anti-
CCD IgE will lead to many positives only because of sug-
ar-IgE interaction, it does not at all exclude the presence 
of anti-peptide antibodies capable of triggering adverse 
reactions against a few allergens. CCD inhibition will al-
low this anti-protein IgE to be detected in spite of the 
presence of cross-reactive anti-CCD IgE. The suppres-
sion of signal from clinically irrelevant IgE should in-
crease the reliability of serum IgE diagnosis by eliminat-
ing most if not all false-positive results. 

 The CCD inhibitor as well as the CCD pseudo-aller-
gen should have no protein-based IgE reactivity, it should 
contain the relevant glycan structures, and, to provide 
high inhibitory potency, it should be a large and polyva-
lent molecule. Free GPs for example have a poorer inhib-
itory potency than the same GP coupled to BSA with 
moderate density has ( ! 2 mol/mol) [Dalik and Altmann, 
unpubl. results]. The first demand is fulfilled by protease 
digestion of the CCD source, which could be any rela-
tively pure and well-characterized plant glycoprotein, e.g. 
HRP or pineapple stem Brl  [19] . Important results have 
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recently been obtained with proteinase-K-digested grass 
pollen extract  [77, 110] . However, this extract is a rather 
expensive and heterogeneous source where the absence of 
residual peptide-based IgE binding has to be ensured. Brl 
is an inexpensive source but lacks the 3-arm mannose  [16, 
19, 24] . As this residue may both have beneficial  [77, 110]  
and inhibitory effects  [77, 110] , especially for Xyl-depen-
dant antibodies, a mixture of MUXF-GP from Brl and 
MMXF-GPs from another plant glycoprotein might best 
fulfill the requirements. Digestion with protease (e.g. 
from  Streptomyces griseus ) followed by purification of the 
resulting GPs ensures absence of peptide determinants 
( fig. 5 )  [19, 24, 39, 44, 76] . Coupling of such GPs to an in-
ert carrier increases the inhibitory potency per mole of 
glycan chain about 100-fold [Dalik and Altmann, un-
publ. results]. In addition, these conjugates can be used 
for ELISA and, due to their polyvalency, for histamine 
release assays  [35] . Preparing control conjugates from 
mammalian glycoprotein (bovine fibrin) that lack the 
plant-specific sugars is also possible  [24, 77] . Alternatives 
could be plant glycoproteins, e.g. Brl or HRP (multivalent 
with mainly MMXF glycans), but negative controls, i.e. 
the protein without plant-specific sugar residues, are not 
available for them. Therefore, protein-based reactivity 
cannot be recognized. Besides, Brl may be an odd choice 
because firstly it is a protease, secondly it just has one gly-
can, which thirdly has the rare MUXF structure. 

 Instead of making use of ready-made CCDs of plant 
glycoproteins, a mammalian glycoprotein can be modi-
fied with glycosidases and recombinant glycosyltransfer-
ases  [77, 80] . This approach avoids artificial linkers and 
allows reliable controls to be prepared and, for scientific 
purposes, distinction between Fuc-dependant and Xyl-
dependant antibodies. 

 In the following, alternative strategies for interfering 
with IgE binding to CCDs and their inherent drawbacks 
are presented. 

 Other Approaches for Anti-CCD IgE Detection 
 Carbohydrate determinants can be destroyed by ei-

ther periodate or glycosidase treatment  [6] . Periodate is a 
powerful reagent, which abolishes glycan-based IgE reac-
tivity. However, its specificity is occasionally questioned. 
Indeed, we have recently observed that Art v 1 looses its 
protein-based, IgE-binding capacity upon mild periodate 
treatment  [22] . Periodate treatment strongly reduced IgE 
binding by Mal d 1 even though Mal d 2 is not glycosyl-
ated  [129] . The use of glycosidases is less hampered by 
unspecificity – although proteases can be an issue – than 
by the sad fact that peptide N-glycosidases (PNGases) A 

or F are inefficient, but for different reasons  [109] . Treat-
ment with exo-glycosidases, especially  � -mannosidase, 
might attenuate the glycan epitopes  [18, 19] . However, 
both terminal  � -mannosidases must be removed quanti-
tatively, which can only be achieved by rather high en-
zyme doses  [45] . An only temporary solution could be the 
use of proteinase K for example to destroy any protein-
bound reactivity. Persisting IgE binding indicates carbo-
hydrate epitopes  [6] . However, converting a large and 
polyvalent allergen into small monovalent fragments 
may in itself interfere with the test system in various ways 
leading to lower IgE binding. 

  Discrimination of Glycan and Peptide Epitopes of 
Allergens  
 One important route to understanding allergy is the 

molecular characterization of individual allergens, which 
in its ultimate format includes the definition of all rele-
vant epitopes. Although this an ambitious and laborious 
task, it is pretty simple to assess the relative importance 
of IgE binding to peptide versus carbohydrate epitopes 
using the above-described CCD allergens as inhibitor. It 
is suspected that many high-molecular-weight proteins 
currently listed as minor allergens merely fell victim to 
cross-reactive antibodies. 

 O-Glycans in Plants 

 Much has now been said about N-glycans but these are 
not the only carbohydrates on allergens with the ability 
to bind IgE even though in our view they will remain the 
most prominent class of carbohydrate determinants in 
allergy. Recently, Art v 1, the major allergen of mugwort 
 (Artemisia vulgaris) , has been shown to be O-glycosylat-
ed in two ways  [22] . The prominent glycan, a hydroxy-
proline-linked arabinogalactan, did not bind serum IgE 
from allergic patients but the single  � -arabinosyl residues 
linked to the many, often adjacent, hydroxyproline resi-
dues of the non-globular domain of Art v 1 did. This new 
type of carbohydrate determinant explained the different 
performance of recombinant and natural Art v 1 in RAS-
Ts  [122] . The somewhat lower   in vivo reactivity of recom-
binant as compared to purified Art v 1 may indicate a 
contribution of the  � -arabinoses to the development of 
clinical symptoms  [123] . The O-glycans of potato lectin 
have been implicated in IgE binding some time ago  [1, 2] . 
A cross-reaction of sera binding to Art v 1 with potato 
lectin was, however, not observed  [22] . 



 CCDs  Int Arch Allergy Immunol 2007;142:99–115 111

 O-glyco-allergens from other weeds are currently un-
known. Related plant species might be assumed to equip 
their proteins with similar determinants. However, what 
can be guessed from recent work with rabbit anti-Art v 1 
serum and various allergen extracts is that the volume of 
arabinose-based cross-reactivity is not at all comparable 
with that caused by N-glycans [Léonard, pers. com-
mun.]. 

 Glycans and T Cells/Jokes Played by 
Lectins/Mammalian CCD 

 The immune response to polysaccharides is T-cell in-
dependent and therefore rather weak. In contrast, Asn-
linked oligosaccharides of honeybee PLA have been 
found to contribute to the proliferation of some human 
T-cell clones, which did not respond to unglycosylated 
PLA  [124] . The involvement of the glycan moiety in T-cell 
responses is well established in cancer immune therapy 
 [125] . Here it should be mentioned that oligosaccharides 
of Cry j 1 were found to have an inhibitory potential for 
Cry-j-1-specific T cells  [103] . 

 A totally different effect of protein glycosylation was 
found when calf intestine alkaline phosphatase conju-
gates were used to identify cat allergens. A strong staining 
of cat IgA and IgM was revealed to be caused by IgE-in-
dependent cross-linking with the phosphatase via pa-
tients’ anti-glycan IgM  [126] . A similar case of reverse 
glycan binding occurred in immunoblots of banana and 
pea extracts, where lectins led to direct binding of IgG 4  
or IgE antibodies, respectively  [2, 127] . 

 Finally, a hint at the existence at a yet undiscovered 
third CCD in mammalian tissues was presented by Wong 
et al.  [128] . 

 Concluding Remarks 

 Our knowledge of CCDs in the form of Asn-linked 
glycans from plants and insects precludes us from ignor-
ing this large group of IgE determinants for any longer. It 
is high time to implement anti-CCD IgE detection in al-
lergy diagnosis to prevent misdiagnosis. Patients allergic 
to grass pollen may all too often have been scared by be-
ing erroneously categorized as insect venom allergic. To 
avoid the however apparently small risk of errors in the 
other direction, the possibility of clinically relevant reac-
tions based on CCDs alone must be investigated by care-
ful evaluation of the IgE specificity data from large num-
bers of patients. The glyco-SIT hypothesis does not ex-
clude the possibility of severe symptoms due to CCDs. It 
would, however, suggest that the allergic status of a pa-
tient persists only for a short period and that the severity 
of symptoms decreases over time. Then glycoproteins are 
clinically irrevelant allergens for this patient. 
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