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The Role of Pyruvate Dehydrogenase Kinase in 
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The pyruvate dehydrogenase complex (PDC) is an emerging target for the treatment of metabolic syndrome. To maintain a 
steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and 
glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA), and oxidized nicotinamide adenine 
dinucleotide (NAD+) into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH), and carbon dioxide. The 
activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, re-
spectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glu-
cose, glycerol, fatty acids, and nonessential amino acids.
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INTRODUCTION

To maintain a continuous and steady supply of adenosine tri-
phosphate (ATP) during the feed-fast cycle, cells must select 
fatty acid or glucose for fuel [1]. This process is largely con-
trolled by the pyruvate dehydrogenase complex (PDC), which 
regulates the entry of glycolytic products into the tricarboxylic 
acid cycle by catalyzing the oxidative decarboxylation of pyru-
vate to acetyl-coenzyme A (CoA) in the mitochondria of 
mammalian cells [2]. The PDC is usually active during the 

fed-state in most tissues, where it suppresses pyruvate dehy-
drogenase kinase (PDK)-induced phosphorylation [3]. PDKs 
and pyruvate dehydrogenase phosphatases (PDPs) are key 
regulators of PDC activity, and they act in a phosphorylation-
dephosphorylation manner [2]. The role of PDC in the regula-
tion of glucose metabolism is briefly summarized in Fig. 1. In 
this review, I will discuss the correlation between PDC activity 
and metabolic diseases in humans.

TISSUE-SPECIFIC REGULATION OF THE 
MAMMALIAN PDC AND PDKs

The mammalian PDC is a large complex composed of three 
enzymes: pyruvate decarboxylase (E1 subunit), dihydrolipoyl 
acetyltransferase (E2 subunit), and dihydrolipoyl dehydroge-
nase (E3 subunit). The PDC catalyzes the oxidation of pyru-
vate to acetyl-CoA [4,5]. The PDC complex is inactivated by 
PDKs and activated by PDPs. Four PDK isoenzymes (PDK1, 
2, 3, and 4) and two PDP isoenzymes (PDP1 and PDP2) are 
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involved in this phosphorylation [6,7]. The four PDK isoen-
zymes are expressed in a tissue-specific manner [6]. PDK2 is 
highly expressed in heart, liver, and kidney of humans and ro-
dents [8]. PDK4 is dominantly expressed in oxidative skeletal 
muscle, heart, lactating mammary gland, and liver [9,10]. 
PDK1 is expressed in heart [11] and pancreatic islets [12], 
while PDK3 expression has only been detected in testis, kid-
ney, and brain [6]. 
 The PDKs are transcriptionally regulated by insulin, gluco-
corticoids, thyroid hormone, and fatty acids. There is emerg-
ing evidence that transcriptional up-regulation of PDK [13-
15] decreases PDC activity, which has been observed in sever-

al metabolic disorders, such as diabetes [16-18], heart disease 
[19,20], and fatty liver [21].

INSULIN RESISTANCE AND TYPE 2 
DIABETES

Metabolic inflexibility, defined as insufficient glucose utiliza-
tion followed by increased lipolysis in the peripheral tissues, is 
a manifestation in patients with insulin resistance, obesity, and 
type 2 diabetes. A previous study has shown that PDK4 ex-
pression increases in the skeletal muscle of rats receiving a 
continuous infusion of intralipids (a fat emulsion), indicating 

Fig. 1. Schematic representation of the regulation of glucose metabolism by pyruvate dehydrogenase complex (PDC). The activity 
of PDC is strongly inhibited by phosphorylation of its dehydrogenase component by pyruvate dehydrogenase kinases (PDKs) and 
enhanced by dephosphorylation by pyruvate dehydrogenase phosphatases (PDPs). The main regulatory factors of PDKs and PDPs 
are shown as above. Pyruvate enters into mitochondria via the voltage-dependent anion channel (VDAC) and mitochondrial py-
ruvate carrier (MPC) and is then converted into either oxaloacetate by pyruvate carboxylase or acetyl-CoA by PDC. Acetyl-CoA 
then enters into the tricarboxylic acid cycle, yielding nicotinamide adenine dinucleotide (NADH) and favin adenine dinucleotide 
2 (FADH2) and promoting oxidative phosphorylation. PEP, phosphoenolpyruvate; CoASH, coenzyme A-SH; PEPCK, phospho-
enolpyruvate carboxykinase; cAMP, cyclic adenosine monophosphate; ADP, adenosine diphosphate; ATP, adenosine triphos-
phate.
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a disruption in the suppression of PDK4 by insulin. These re-
sults also show a direct relationship between free fatty acid 
levels and PDK4 expression in the muscle [16]. Pdk4 levels are 
also elevated in fasting and diabetic individuals [9,22,23]. In 
contrast, high-fat fed, insulin-resistant mice lacking PDK4 ex-
hibit lower blood glucose levels and better glucose tolerance 
than wild-type mice [24]. In mice that are null for the hepatic 
insulin receptor substrates 1 and 2, which is a novel model for 
type 2 diabetes, additional knockout of the PDK4 gene im-
proved glycemic control and glucose tolerance [25]. 
 In contrast, growth hormone (GH), whose function is op-
posite to that of insulin, stimulates PDK4 expression in the liv-
er of wild-type mice during fasting by activating the janus ki-
nase/signal transducer and activator of transcription (STAT5) 
pathway and increasing gluconeogenesis. Metformin inhibits 
GH-induced PDK4 expression via the AMP-activated protein 
kinase/small heterodimer partner-dependent pathway that in-
hibits the combination of STAT5 to the PDK4 promoter [26]. 
Additionally, overproduction of GH can increase the blood 
glucose level in patients with acromegaly. PDK2/PDK4 dou-
ble-knockout mice are unable to tolerate long-term fasting (48 
hours), succumbing to hypoglycemia, ketoacidosis, and hypo-
thermia. These findings indicate that partial activation of the 
PDC, which inhibits PDK activity, may alleviate some symp-
toms of type 2 diabetes; however, complete activation of the 
PDC by inhibition of phosphorylation may be harmful and 
even fatal due to hypoglycemia and hypothermia [27,28].

FATTY LIVER 

Hepatic steatosis is closely associated with multiple metabolic 
abnormalities including increased fatty acid influx from the 
adipose tissue and de novo lipogenesis, decreased fatty acid 
oxidation and ketogenesis, and abnormal triacylglycerol secre-
tion [29]. Previous study has shown that PDK4 expression is 
higher in the muscle than in the liver of insulin-resistant mice 
[24]. Thus, PDC in the liver is less active compared to that in 
the muscle of PDK4 knockout mice fed with high-fat diet 
(HFD), indicating that PDK4 plays a more important role in 
the muscle than in the liver [24]. Unpublished data from our 
laboratory has also shown the increase in PDK2 expression 
and the decrease in PDK4 expression in the liver of HFD-in-
duced obese mice, demonstrating that PDK2 is primarily re-
sponsible for the inactivation of hepatic PDC activity during 
HFD feeding.

HEART DISEASE

PDK4 overexpression in the heart of transgenic mice shows 
decreased glycolysis, increased fatty acid oxidation with meta-
bolic inflexibility, and exacerbated cardiomyopathy. The 
mechanism of hypertrophy and fibrosis in cardiomyocytes of 
PDK4 Tg mice is associated with an increase in calcineurin 
expression, which is mediated by PDK4 [20]. By contrast, di-
chloroacetate (DCA), a PDK inhibitor, and PDK2/PDK4 defi-
ciency show protective effects in the heart after ischemia [30]. 
DCA also has beneficial effects on right ventricular hypertro-
phy and pulmonary hypertension by increasing carbohydrate 
metabolism, reactive oxygen species production, and apopto-
sis and by decreasing smooth muscle cell proliferation in the 
right ventricle and pulmonary vasculature [31].
 Recently, we found that PDK4 plays an important role in 
vascular calcification. Our unpublished data shows that PDK4 
levels are up-regulated and the PDC was phosphorylated in 
cultured vascular smooth muscle cells and calcified vessels of 

Table 1. Pyruvate dehydrogenase kinases and associated path-
ological conditions

PDK isoforms Associated conditions Reference

PDK1 Glioblastoma [32]

Brain aging [33]

PDK2 Type 2 diabetes [34]

Brain aging [33]

Glioblastoma [35]

Ovarian cancer [36]

PDK3 Charcot-Marie-Tooth neuropathy [37]

PDK4 Type 2 diabetes [16,34,38]

Hemochromatosis [39]

Glucocorticoid excess, e.g.,
   Cushing syndrome 

[40]

Cardiac hypertrophy [19]

Dilated cardiomyopathy [41]

Angiotensin II-induced heart failure [41,42]

Right ventricular hypertrophy and
   pulmonary hypertension 

[31]

Statin-induced myopathy [43]

Disuse osteoporosis [44]

Ovarian cancer [36]

Anoikis and tumor metastasis [45]

PDK, pyruvate dehydrogenase kinase.



184

Lee IK

Diabetes Metab J 2014;38:181-186 http://e-dmj.org

patients with atherosclerosis. PDK4 promoted osteogenic dif-
ferentiation of vascular smooth muscle cells by phosphorylat-
ing SMAD1/5/8 and enhancing bone morphogenic protein 2 
signaling. 

PDKs AS PROMISING THERAPEUTIC 
TARGETS 

PDK expression is elevated in patients with diabetes, vascular 
calcification, heart failure, pulmonary hypertension, cancer 
and a variety of pathological conditions summarized in Table 
1 [16,19,31-45] and a disruption of PDK expression or the de-
velopment of PDK inhibitors may help to treat these disorders. 
Although the mechanisms behind these beneficial effects are 
not entirely understood, PDC activity is critical in glucose uti-
lization. The level of PDK4 is elevated in patients with type 2 
diabetes and in animals and humans on a HFD. An increase in 
PDC activity by a PDK inhibitor enhances insulin activity by 
promoting glucose oxidation and lowering the blood glucose 
concentration. Therefore, small molecule inhibitors for PDKs 
are promising therapeutic agents for patients with metabolic 
syndrome.
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