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Neurodegenerative diseases a	ect not only the life quality of aging populations, but also their life spans. All forms of
neurodegenerative diseases have a massive impact on the elderly. �e major threat of these brain diseases includes progressive
loss of memory, Alzheimer’s disease (AD), impairments in the movement, Parkinson’s disease (PD), and the inability to walk,
talk, and think, Huntington’s disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of
brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been
known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of
studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications
are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to
treat the symptoms of these neurodegenerative diseases. Extensive studies scienti
cally validated the bene
cial e	ect of natural
products against neurodegenerative diseases using suitable animal models. �is short review focuses the role of oxidative stress in
the pathogenesis of AD, PD, and HD and the protective e�cacy of natural products against these diseases.

1. Introduction

Neurodegenerative diseaseswere believed to be incurable and
debilitating conditions, which primarily a	ected the neurons
in the human brain resulting in the loss of nerve structure and
function and ultimately leading to the death of nerve cells [1].
�e major characteristic features of neurodegenerative dis-
eases include ataxias (impairment inmovement) and demen-
tia (decline inmemory).�e threemain types of neurodegen-
erative diseases that a	ect the life quality and life span of the
elderly include Alzheimer’s disease (AD), Parkinson’s disease
(PD), and Huntington’s disease (HD) [2, 3].

2. Alzheimer’s Disease

Alzheimer’s disease (AD) is one of the most common
neurodegenerative disorders a	ecting the elderly population
worldwide [4]. �e speci
c pathological lesions that were
noticed in AD include deposition of amyloid beta protein,
neuronal and/or synaptic loss, and brain atrophy in speci
c
brain areas [5]. Both the neocortex and hippocampus are
a	ected and brain plaques and tangles are the major features
of AD. AD symptoms usually start with mild confusion and
amnesia and end with a dramatic personality change. AD
destroys memory and other important mental functions.
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Other signs of AD include 
nding the right words, vision/
spatial issues, and impaired reasoning or judgment [6].
Worldwide, around 16million peoples are a	ected by AD and
over four million Americans are currently a	ected, a 
gure
that may rise further due to the increase in the life span
[7].�is age-related, progressive, neurodegenerative disorder
is the fourth leading cause of death in developed nations
and accounts for 70% of dementia in the elderly population
[8]. It has been suggested the incidence of AD could double
every 
ve years beyond the age of 65 [9]. Currently available
medications only treat the symptoms of neurodegenerative
diseases.

3. Oxidative Stress and Alzheimer’s Disease

�e etiology of AD is multifactorial. Both genetic and envi-
ronmental factors are regarded as a risk factor of AD [9, 10].
Free radicals are chemical species with an unpaired electron
and are formed during both physiological and pathological
processes. Although reactive oxygen species (ROS) play a
pivotal role in several cellular and signaling pathways at
physiological concentrations (cell cycle regulation, phagocy-
tosis, and enzyme activation), excessive generation of ROS
leads to several harmful e	ects including DNA, lipid, and
protein damage [11–14]. ROS are, however, scavenged by
defencemechanisms, known as enzymatic and nonenzymatic
antioxidants. An imbalance in this oxidant-antioxidant status
could determine the extent of cell damage. Oxidative damage
due to ROS has been implicated in the pathogenesis of
neurodegenerative diseases, cancer, diabetes, and aging [15].

Mitochondrial dysfunction and enhanced apoptosis
accompanied by a poor antioxidant status are the mecha-
nisms for AD pathogenesis. Extensive studies pointed out
the role of superoxide anion, hydroxyl radical, hydrogen
peroxide, and nitric oxide in the oxidative stress mediated
neurodegeneration in AD [16, 17].Microglia activation due to
neuronal lesions generates excessive superoxide radicals [18].
Higher metabolic demand and the postmitotic nature of glial
cells and neurons make them more susceptible to oxidative
stress. �e low rate of brain regeneration and insu�cient
antioxidant potential in the brain further favors oxidative
stress [19]. Mitochondrial autophagy serves as a major source
of ROS production [20].

A�(1-42) has been recognized as a key factor in the neuro-
degeneration inADpatients and itmediates its harmful e	ect
via inducing oxidative stress in the brain [21–23]. A positive
association has been shown between the amyloid plaque and
the lipid peroxidation markers such as 4-hydroxynonenal
and malondialdehyde [24]. Elevated lipid peroxidation and
insu�cient enzymatic and nonenzymatic antioxidants were
shown in the peripheral tissues of AD patients [25, 26]. A
large number of studies have shown an elevated level of lipid
peroxidation marker in the brain of AD patients, especially
in the region of the temporal lobe [27–29]. An increased
level of 4-hydroxynonenal, the byproduct of oxidative stress,
has been reported as well [30, 31]. Iron-induced oxidative
stress, as evidenced by iron accumulation in the brain of AD,
is responsible for neurodegeneration in patients diagnosed
with AD [32]. Profound studies explored iron accumulation

in the brain of AD patients and found that, as a transition
metal, it is capable of generating hydroxyl radical through the
Fenton reaction [33, 34]. �-Amyloid could elevate oxidative
stress mainly by binding with iron [35]. �e neuronal death
occurs due to reactive oxygen species mediated changes in
the neuronal lipid molecules, which includes alterations in
the membrane, �uidity, rigidity, permeability, and transport
[36]. It has been noticed that the entorhinal cortex and CAI
region of the hippocampus are the two major susceptible
cerebral regions to oxidative stress [37]. Mitochondrial dam-
age in AD could lead to excessive generation of ROS and
lowered ATP production [38, 39]. Vitamin E, the major lipid-
soluble nonenzymatic antioxidant, inhibits oxidative damage
induced by A�(1-42) [40]. Diminished levels of reduced
glutathione in astrocytes have been reported [41]. Melo et
al. [42] suggested that addition of antioxidants inhibited the
activity of acetylcholine esterase in the neuronal culture. Also,
superoxide dismutase activity was shown to have increased
in the CAI regions of hippocampus and amygdale [43]. �e
causes of oxidative stress in AD are given in Figure 1.

4. Natural Products and Alzheimer’s Disease

Medicinal plants serve as a good source for the treatment
of several illnesses, including neurodegenerative diseases,
diabetes mellitus, and cancer [44, 45]. A large number of
therapeutic medicines recommended worldwide for several
diseases have been identi
ed from medicinal plants. Indian
traditional medicine has recommended several medicinal
plants for the treatment of neurodegenerative diseases. In
traditional medicine, several plants have been used to treat
the symptoms of neurodegenerative diseases. A large number
of studies scienti
cally validated the bene
cial e	ects of
natural products in the treatment of ADusing suitable animal
models [46, 47].

Veerendra Kumar and Gupta [48] explored the neu-
roprotective e	ect of aqueous extract of Centella asiatica
in a streptozotocin model of AD in rats. �ey suggested
that Centella asiatica reduced the oxidative stress as well.
Dhanasekaran et al. [49] pointed out the neuroprotective role
of Centella asiatica in B6C3-Tg(APPswe, PSEN1dE9)85 Dbo/J
(PSAPP) mice. �ey concluded that the antioxidant role of
Centella asiaticamodulated the amyloid pathology in PSAPP
mice. Clementi et al. [50] suggested that Aloe arborescens
exerted a signi
cant neuroprotective e	ect in IMR-32 cells
via reducing the oxidative stress in the cells. Gong et al.
[51] suggested the lotus seed pod Proanthocyanidins was a
promising candidate for the treatment of AD as it exhibited a
signi
cant protective e	ect against cognitive impairment and
brain aging induced by D-galactose. Turgut et al. [52] pro-
posed oxidative stress reduction as amajormechanism for the
neuroprotective e	ect of Capparis spinosa L. in D-galactose-
induced cognitive impairment. Yu et al. [53] demonstrated
the neuroprotective role of rutin against amylin-induced
neurocytotoxicity in neuronal cells and concluded that the
antioxidant property of rutin might have played a role in the
protection of neuronal cells. Mairuae et al. [54] showed the
in vitro neuroprotective e	ect of okra in SH-SY5Y cells and
suggested that the antioxidant e	ect of okra was responsible
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Figure 1: �e causes of oxidative stress in Alzheimer’s disease.

for the protective role. Uddin et al. [55] pointed out that the
potent phenolic antioxidants present in the Vanda roxburghii
could be responsible for the inhibition of the activation of
acetylcholinesterase and butyrylcholinesterase. Barbagallo et
al. [56] suggested that fermented papaya powder counter-
acted the excessive generation of reactive oxygen species
in patients diagnosed with AD. Lu et al. [57] explored the
protective role ofRhubarb extract against irradiation-induced
apoptotic neuronal cell death and excessive ROS generation.

Giacoppo et al. [58] revealed the neuroprotective e	ect
of isothiocyanates by highlighting their antioxidant potential
as a major mechanism. Zhao et al. [59] demonstrated the
neuroprotective e	ect of curculigoside on memory impair-
ment in APP/PSI mutated transgenic mice. �ey suggested
that its antioxidant character played a major role. Muthaiyah
et al. [60] reported that walnut extract has the ability to
counteract amyloid beta peptide-induced oxidative stress in
PC12 cells. Hartman et al. [61] pointed out that the antioxi-
dant polyphenolic substances of pomegranate juice reduced
amyloid load and improved behavior in an AD mouse.
Subash et al. [62] suggested that dietary supplementation
of dates and 
gs improved cognitive and behavioral de
cit
via maintaining oxidant-antioxidant balances in APPsw/Tg
2576 transgenic ADmice. Nakajima et al. [63] suggested that
nobiletin signi
cantly reduced oxidative stress and improved
the cognitive impairment in a 3XTg-AD mouse model. Sun
et al. [64] proposed antioxidant potential of saponin as one
of the mechanisms involved in neuroprotection. Prasanthi
et al. [65] showed that ca	eine reduced the oxidative stress
and improved the cognitive de
cits induced by cholesterol-
enriched diet in rabbit hippocampus. Boyd-Kimball et al.
[66] reported that glutathione upregulation protected neuron

against oxidative stress and neurotoxicity induced by A(1-42)
in theADa	ected brain.Hanish Singh et al. [67] reported that
ethanolic extract of Alpinia galangal improved the antioxi-
dant status and inhibited the acetylcholine esterase activity
in AD mice. Our research group from Oman reported the
bene
cial e	ects of natural products including pomegranate
and 
gs on AD transgenic mice models [62, 68–77].

5. Parkinson’s Disease

Parkinson’s disease (PD), the most common neurodegener-
ative disease of the elderly, is characterized by progressive
loss of muscle control. Premature death o�en results due to
complications such asmovement impairment-related injuries
or pneumonia [78, 79]. PD is predominant at the 6th
decade of life and men are 1.5 to 2 times more likely to
contract the disease than women [80]. Head trauma, illness,
or exposure to environmental toxins is identi
ed as a risk
factor. �is neurodegenerative disorder is characterized by
tremor, rigidity, bradykinesia, and impairment in balance
[81]. PD also causes cognitive, psychiatric, autonomic, and
sensory disturbances. Cognitive impairments are common
in a large fraction of patients with PD at initial diagnosis
and a�ict a majority of patients as the disease progresses.
�e secondary manifestation includes anxiety, insecurity,
stress, confusion, memory loss, constipation, depression,
di�culty in swallowing and excessive salivation, diminished
sense of smell, increased sweating, erectile dysfunction, skin
problems, and a monotone voice [82, 83].

�e pathology of PD is characterized by the gradual
and selective loss of dopaminergic neurons in the substantia
nigra pars compacta. Imbalance in dopamine metabolism
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Figure 2: �e causes of oxidative stress in Parkinson’s disease.

due to oxidative stress has been recognised as a contributor
to this disease [84]. �e major pathological 
ndings include
the presence of Lewy bodies in the substantia nigra and
loss of nerve cells in the portions of its ventral tier [85].
�e treatment modality for PD involves either enhancing
the activities of dopaminergic neuron activity or inhibiting
the cholinergic e	ects to the stratum. While there is no
cure for PD, medications provide dramatic relief from the
symptoms. Recent advancement in medical and surgical
treatment options has enormously improved the quality and
length of life for patients with PD [86]. Worldwide, it is
the second most common neurological disease and a	ects
around 1.5 million Americans [87]. It has been pointed out
that PDmay double over the next 25 years in theUnited States
and more than double in the developing nations of Asia and
South America [88]. Research has indicated that 80% of the
untreated PD patients die within 10 to 14 years a�er the onset
of the disease [89].

6. Oxidative Stress and Parkinson’s Disease

�e brain utilizes around 20% of the basal oxygen from the
total oxygen supplied to the human body. ROS mediated
oxidative DNA damage is one of the prominent features in
PD [90]. Several studies have reported impaired respiratory
chain and somatic mitochondrial DNA mutations in the
brain of patients with PD, which suggests the extensive role
of oxidative metabolism in PD [91]. Enhanced dopamine
metabolism in the brain of patients with PD could account
for the accumulation of toxic radicals such as hydroxyl in the
brain [92]. Iron accumulation in the neurons in the redox

active form plays a crucial role in pathogenesis of this
disease [93]. Accumulation of iron has been reported in
the substantia nigra in patients diagnosed with PD, which
suggests the critical role of iron-induced lipid peroxidation
in pathogenesis of PD [94–96]. �e accumulation of lipid
peroxidation byproducts has been reported in the serum and
cerebral spinal �uid of patientswith PD [97]while an increase
inmalondialdehyde and hydroperoxides has been reported in
the substantia nigra of patients diagnosed with PD [98, 99].

Elevated levels of malondialdehyde, thiobarbituric acid
reactive substance, and 4-hydroxy-2,3-nonenal have been
reported in the substantia nigra and stratum of PD brains
[100, 101]. A twofold increase in protein oxidation has been
shown in the substantia nigra of PD patients compared
to healthy subjects [102]. Accumulation of hydroxyl rad-
ical due to lowered glutathione content in the brain has
been reported in PD patients [103]. Lowered activities of
antioxidant enzymes and nonenzymatic antioxidants could
be responsible for the progression of PD [104, 105]. Reduced
glutathione and increased oxidized glutathione levels have
been reported in PD patients while lowered glutathione
content in the substantia nigra, due to neuronal loss, has been
reported in patients with PD [106–109]. Decreased activity of
glutathione peroxidase and a decline in glutathione content
have been reported in the brain of PD patients and reduced
glutathione content was found to be decreased in both human
and experimental models of PD [110–112]. Lowered GSH
content was reported in the substantia nigra and corpus
striatum of PD patients [113]. �e causes of oxidative stress
in Parkinson’s disease are given in Figure 2.
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7. Natural Products and Parkinson’s Disease

Extensive studies scienti
cally explored the protective e	ect
of natural products against Parkinson’s disease using suitable
animal models. Weng et al. [114] reported that ce�riaxone
prevented the loss of neuronal activity and decreased the neu-
rogenesis in the brain of PD rats. Sharma et al. [115] suggested
that administration of quercetin attenuated the neuronal
death and reduced the oxidative stress in aluminium-induced
neurodegeneration in the rat hippocampus. Saha et al. [116]
explored the antineurogenic and antioxidant potential of
Acacia catechu leaf extract using in vitro studies. Ren et
al. [117] reported that sa�ower �avonoid extract could be
used as the herbal therapy for PD treatment. De Pedro et
al. [118] explored the in vitro protective e	ect of isolecanoric
acid against the PD development. Wu et al. [119] investi-
gated the neuroprotective e	ect of carnosic acid against 6-
hydroxydopamine induced neurotoxicity. �ey concluded
that the antioxidant and antiapoptotic potential of carnosic
acid could play a protective role in the prevention of neurode-
generation. Siddique et al. [120] demonstrated the neuropro-
tective e	ect ofOcimum sanctum leaf extract in the transgenic
Drosophila model of PD. Antunes et al. [121] suggested that
hesperidin attenuated 6-hydroxydopamine induced oxida-
tive stress in aged mice. Pérez-Barrón et al. [122] explored
the antioxidant and neuroprotective e	ect of Buddleja cor-
datamethanolic extract in the 1-methyl-4-phenylpyridinium
induced PD rat model. Beppe et al. [123] suggested that
the aqueous extract of Albizia adianthifolia leaves pos-
sesses antioxidant potential, which was responsible for
the memory-enhancing activities in the rodent model of PD.

Gokul and Muralidhara [124] reported that tomato seeds
alleviated motor abnormality, oxidative impairments, and
neurotoxicity in a chronic ROT model of neurotoxicity in
mice. Siddique et al. [125] reported that epicatechin gallate
dietary supplementation reduced the oxidative stress and
apoptosis in the brain of transgenic Drosophila model of
PD. Khurana and Gajbhiye [126] showed the ameliorative
e	ect of Sida cordifolia against rotenone-induced oxidative
stress and neurochemical and behavioral alterations in a rat
model of PD. Chandran and Muralidhara [127] showed the
neuroprotective e	ect of aqueous extract of Selaginella del-
icatula in a chronic ROT exposure model of neurotoxicity
in mice. �ey suggested that the neuroprotective property
of Selaginella delicatula is largely attributed to the antiox-
idant properties. Prakash et al. [128] demonstrated the neuro-
protective role ofWithania somnifera root extract in parkin-
sonismmice.�ey suggested thatWithania somnifera extract
improved the behavioral, anatomical, and biochemical defor-
mities. Mansouri et al. [129] suggested that the neuroprotec-
tive e	ect of oral gallic acid is due to the enhancement of cere-
bral antioxidant defense against oxidative stress induced by 6-
hydroxydopamine in rats. Shalavadi et al. [130] suggested that
the neuroprotective e	ect of the methanolic extract of Stere-
ospermum suaveolens DC could be attributed to its antioxi-
dant potential in 6-OHDA induced PD rats. Liu et al. [131]
explored the neuroprotective e	ect of Acanthopanax sentico-
sus in PD. Anandhan et al. [132] suggested that the neuro-
protective e	ect of thea�avin may be due to its antioxidative

and antiapoptotic activities in chronic MPTP/probenecid
induced PD. Some of our research group members reported
the bene
cial e	ects of natural products on PD animals [133–
137].

Ahmad et al. [138] pointed out that the antioxidant
e�cacy of sesame seed oil is responsible for the neuropro-
tective e	ect in 6-hydroxydopamine induced neurotoxicity
in mice. Martins et al. [139] demonstrated the protective
e	ect of Melissa o�cinalis in manganese-induced oxidative
stress in chronically exposed mice. �ey concluded that
the antioxidant potential of this plant is responsible for
the neuroprotective e	ect. Hritcu et al. [140] pointed out
that the methanolic extract of Hibiscus asper leaves exerted
neuroprotective activity through antioxidant and antiapop-
totic activities in PD model. Ranpariya et al. [141] suggested
that the antioxidant potential of Matricaria recutita could
be largely attributed to its neuroprotective activity against
�uoride-induced stress in rats. Wang et al. [142] suggested
that the free radical scavenging activity of resveratrol pro-
tected the abnormal rotational behavior and the loss and
apoptosis of nigral cells in Parkinsonian rats. Verma and
Nehru [143] demonstrated the antioxidant e	ect of centro-
phenoxine against rotenone-induced oxidative stress in PD
rodent. Kaur et al. [144] demonstrated the bene
cial e	ect of
lycopene in rotenone-induced model of PD. �ey suggested
that the therapeutic potential of lycopene is attributed to
its antioxidant e�cacy. Khan et al. [145] pointed out that
rutin can protect dopaminergic neurons from oxidative
stress in a PD rat. Essa et al. [146] suggested that walnut
partially reversed MPTP-induced neurodegeneration in a
mouse model of PD.�ey suggested that the antioxidant role
of walnut might have played a neuroprotective role. Jahromi
et al. [147] suggested that the antioxidants present in the
Decalepis hamiltonii roots attenuated neuromotor de
cits in
transgenic Drosophila model of PD.

Tseng et al. [148] showed the protective e	ect of Liuwei
Dihuang in Parkinson’s toxin-induced dopaminergic neu-
rodegeneration. Guo et al. [149] suggested that tetram-
ethylpyrazine nitrone rescued dopaminergic neurons by
reducing ROS and increasing cellular antioxidative defense
capability in the animal models of PD. Sudati et al. [150]
concluded that Valeriana o�cinalis improved the antioxi-
dant defence mechanism in the rotenone-induced toxicity
in Drosophila melanogaster. Pasban-Aliabadi et al. [151]
suggested that the protective e	ect of olive (Olea europaea
L.) leaf extract in the 6-hydroxydopamine-induced PC12
cell apoptosis is due to their antioxidative and antiapoptotic
properties. Kim et al. [152] explored the neuroprotective role
of Rhus vernici�ua in rotenone model of PD via its antiox-
idant e�cacy. Li and Pu [153] reported that kaempferol
inhibited MPTP induced oxidative stress in the mouse
model of PD. Liang et al. [154] pointed out that tenuigenin
exhibited potent neuroprotective e	ect through antioxidant
potential in a SH-SY5Y cell model with 6-OHDA-induced
injury. Hu et al. [155] showed that the ginseng attenuated
(MPP(+)) induced cytotoxicity in SH-SY5Y cells through
its antioxidant potential. Choi et al. [156] suggested that
Polygalae Radix, through its antioxidant and antiapoptotic
e�cacy, inhibited the neuronal death in PDmodels. Sengupta
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et al. [157] reported that the hydroxyl scavenging potential of
Hyoscyamus niger seeds is responsible for its neuroprotective
e	ect.

An et al. [158] reported that Acanthopanacis senticosus
prevented theMPP+ induced damage in PC12 cells by reduc-
ing the levels ofMDA, which suggested its antioxidant poten-
tial. Kim et al. [159] pointed out that Chunghyuldan exhibited
neuroprotective e	ect against ROS-mediated neuronal cell
death in PDmodel. Lee et al. [160] suggested that Cyperi rhi-
zome exhibited the neuroprotective e	ects through antiox-
idant and antiapoptotic activities in an in vitro PD model.
Shu et al. [161] suggested that the neuroprotective e	ect of
Chuanxiong Chatiaomay be associatedwith its potent antiox-
idant e�cacy in MPTP-induced Parkinson’s mice. Shim et
al. [162] suggested that Uncaria rhynchophylla exhibited neu-
roprotective e	ect through antioxidative and antiapoptotic
activities in PD models. Sankar et al. [163] suggested that
Withania somnifera root extract exhibited potent neuropro-
tective e	ect by mitigating MPTP-induced oxidative stress
in PD mice. Ahmad et al. [164] showed the neuroprotective
e	ect of Delphinium denudatum via its antioxidant property
in PD rats. Ahmad et al. [165] reported that Nardostachys
jatamansi attenuated 6-hydroxydopamine-induced parkin-
sonism in rats via antilipid peroxidative potential. Zhang et
al. [166] explored the neuroprotective e	ect of Forsythia sus-
pensawith antioxidant property in an experimental model of
rotenone-induced neurotoxicity. Lu et al. [167] suggested that
resveratrol showed aneuroprotective e	ect inMPTP-induced
parkinsonism through free radical scavenging potential. A
large number of experimental studies on neurodegenerative
diseases highlighted curcumin as a potent neuroprotective
agent [168]. Braidy et al. [137] explored the neuroprotective
e	ect of pomegranate extract in MPTP induced oxidative
stress in human primary neurons.

8. Huntington’s Disease

Huntington’s disease (HD) is a devastating familial and inher-
ited disease characterized by the progressive loss of brain
and muscle function. It occurs due to the genetically pro-
grammed degeneration of neurons, which causes uncon-
trolled movements, loss of intellectual abilities, and emo-
tional disturbances. HD is caused by a CAG trinucleotide
expansion in exon 1 of the Huntingtin (HTT) gene, which is
located on chromosome 4 (4p63) [169]. Healthy individuals
have 6–35 CAG repeats, and a	ected individuals have more
than 36 repeats. �e accumulation of mutant Huntingtin
proteins contains a long polyglutamine region which causes
neuronal death and the degeneration of neuronal networks
within the brain. �e pathological changes in the cerebral
cortex and striatum elicit the development of chorea and
cognitive impairments and lead to premature death. �ere
is a 50% chance that children will inherit HD from HD
a	ected parents. Men and women are equally a	ected by HD
which appears during 4th to 5th decade of life.�e symptoms
usually appear between the ages of 35 and 55. However, the
age of onset and its progression varies from person to person
[170].�e clinical course ofHD typically progresses over 10 to
20 years from a presymptomatic state to complete disability

and death. �e early symptoms includes tumbling, lack of
focus, concentration and movement problems, clumsiness,
lapses in short-term memory, and depression. As the disease
progresses, di�culty in speech,weight loss, feeding problems,
swallowing di�culties, uncontrollablemovements of the face,
and itching and stumbling are the major symptoms. It has
been estimated that around 6000 and 30,000 people are
a	ected by HD in UK and USA, respectively [171].

9. Oxidative Stress and Huntington’s Disease

�e exact cause of neuronal death in HD is unknown.
However, oxidative stressmay play an important role.�e two
major factors that make the brain more prone to oxidative
damage are higher lipid concentrations and high energy
requirement [172]. Compelling data supports a critical role
for oxidative stress in the pathogenesis of HD, a disorder
caused by polyglutamine expansion in Huntingtin (Htt).
mHTT proteins serve as the source of reactive oxygen species
(ROS), due to a signi
cant amount of oxidized proteins in
partially puri
ed mHTT aggregates [173]. �ough oxidative
damage is not much reported in the early stages of HD, it
is proposed as one of the major mechanisms in HD as it
progresses [174].

Elevated oxidative stress plays a critical role in the
late stage of HD pathogenesis. Impairment in the electron
transport chain andmitochondrial dysfunction are themajor
mechanisms involved in the ROS mediated etiopathogenesis
of HD [175, 176]. Dysfunction in the oxidative phosphoryla-
tion components has been documented in the brain tissues
of HD patients [177]. HD patients showed an increased
level of oxidative stress markers accompanied by a decrease
in antioxidant status compared to healthy subjects [178].
ROS mediated oxidative damage to mitochondria has been
postulated as a reasonable mechanism for the defect in
glucose metabolism in the brain tissue of symptomatic HD
patients [179]. A positive correlation between plasma lipid
peroxidation byproduct and the severity of disease in patients
with HD has been shown [180]. Enhanced lipid peroxidation
has been reported in patients with severe symptoms of
HD [178, 181]. An increase in the plasma lipid peroxida-
tion accompanied by reduced glutathione content has been
reported in HD patients [182]. �e extensive oxidative DNA
damage has been reported in a HD mouse model [183, 184].
Enhanced oxidative stress and a decline in nonenzymatic
antioxidants have been reported in the peripheral blood of
HD patients [185]. Stoy et al. [186] reported that abnormal
tryptophanmetabolism with enhanced oxidative stress could
be responsible for brain dysfunction in HD. Duran et al. [187]
reported that symptomatic HD patients are more prone to
oxidative stress than asymptomatic HD patients. �e causes
of oxidative stress in HD are given in Figure 3.

10. Natural Products and Huntington’s
Disease

Researches utilized suitable experimental models to scien-
ti
cally validate the protective e�cacy of natural products
against HD. Oliveira et al. [188] suggested that the protective
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Bene�cial natural products with antioxidant properties 

Protopanaxatriol, resveratrol, lipoic

acid, 3-alkyl luteolin, and so on

Impairment in electron transport chain and
mitochondrial dysfunction

Accumulation of mHTT 
protein

Imbalance in oxidant-
antioxidant status

Higher lipid concentration and high energy 
requirement

Oxidative stress
Poor antioxidant status

Calendula o�cinalis, Ginkgo biloba,
olive oil, green tea, Withania
somnifera, Centella asiatica,
Convolvulus pluricaulischois,
Matricaria recutita, and so on

Figure 3: �e causes of oxidative stress in Huntington’s disease.

e	ect of luteolin derivatives on Huntington’s mouse striatal
cells is due to its antioxidant potential. Shivasharan et al.
[189] showed the protective e�cacy of Calendula o�cinalis
�owers in 3-nitropropionic acid-induced HD in rats. �ey
concluded that the anti-in�ammatory and antioxidant poten-
tial of Calendula o�cinalis might have played a neuropro-
tective role. Mahdy et al. [190] explored the bene
cial e	ect
of Ginkgo biloba extract on 3-nitropropionic acid-induced
neurobehavioral changes and striatal lesions.�ey concluded
that the antioxidant and antiapoptotic potential of Ginkgo
biloba extract might be responsible for the neuroprotective
role. Tasset et al. [191] reported that olive oil reduced oxida-
tive damage in 3-nitropropionic acid-induced HD in rats.
�ey concluded that extravirgin olive oil and hydroxytyrosol
served as a powerful brain antioxidant. Sagredo et al. [192]
provided preclinical evidence for the neuroprotective e	ect
of phytocannabinoid-basedmedicines in HD. Gao et al. [193]
investigated the neuroprotective e	ect of protopanaxatriol
against 3-nitropropionic acid-induced oxidative stress in
experimental HD. Túnez et al. [194] showed the protec-
tive e	ect of melatonin in 3-nitropropionic acid-induced
oxidative stress in synaptosomes in rat with HD. �ey
concluded that melatonin modi
ed the neural response to 3-
nitropropionic acid with the antioxidative mechanism.

Rocha-González et al. [195] reported the neuroprotective
role of resveratrol against HD. Andreassen et al. [196] sug-
gested that lipoic acid, as an antioxidant, has the potential
to improve the survival of transgenic mouse models of
HD. Ehrnhoefer et al. [197] pointed out that green tea
(-)-epigallocatechin gallate prevented the early events of HD

pathogenesis such as Huntington’s misfolding. Denny Joseph
and Muralidhara [198] suggested that 
sh oil in combination
with quercetin provided better neuroprotection against 3-
nitropropionic acid-induced HD. Fu et al. [199] suggested
that trans-(−)-�-Viniferin could be considered as a promising
candidate to treat HD, since it increased mitochondrial
sirtuin 3 (SIRT3) and activated the AMP-activated protein
kinase. Huang et al. [200] explored the neuroprotective role
of N(6)-(4-hydroxybenzyl) adenine riboside against experi-
mentalHD. Ranpariya et al. [201] showed the neuroprotective
e	ect of German chamomile against aluminium �uoride-
induced oxidative stress in rats. P. Kumar andA. Kumar [202]
explored the neuroprotective e	ect of Withania somnifera
root extract against 3-nitropropionic acid-induced HD.�ey
suggested that neuroprotective actions ofWithania somnifera
are mediated via its antioxidant activity. Shinomol and
Muralidhara [203] reported that the prophylactic neuropro-
tective property of Centella asiatica could be related to the
enhancement of GSH, thiols, and antioxidant machinery in
the brain regions of 3-nitropropionic acid-induced HD pre-
pubertal mice. Kaur et al. [204] suggested that Convolvulus
pluricaulis exhibited a potent neuroprotective e	ect by accel-
erating the brain antioxidant defence mechanisms in 3-nitro-
propionic acid treated rats. Al-Sabahi et al. [205] reported the
bene
t of pomegranate seed oil on 3-NP induced HD.

11. Conclusion

Neurodegenerative diseases impose a signi
cant health bur-
den not only to the a	ected patients, but also to their families
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and society. �e incidences of these life threatening disor-
ders are rapidly increasing in aged populations worldwide.
Although several mechanisms have been postulated for the
pathogenesis of neurodegenerative diseases, oxidative stress
and mitochondrial dysfunctions are pointed out as a major
mechanism. At present, medications are only available to
treat the symptoms of neurodegenerative diseases. Several
in vivo and in vitro studies have documented the protective
role of various natural products or synthetic entities in
the prevention of neurodegenerative diseases. However, the
solution for these neurodegenerative diseases has not yet
been found.�us, researches are warranted to investigate the
nontoxic active constituents found in natural resources which
could correct the biochemical, metabolic, and behavioral
abnormalities that occur in neurodegenerative diseases.

12. Opinion of the Authors

�is reviewhighlights the crucial role of oxidative stress in the
pathogenesis of various neurodegenerative diseases. Based
on the literature researched for this paper, it is clear that
oxidative stress mediates its adverse e	ects either directly,
causing neuronal damage, or by inducing the harmful e	ects
of neurotoxicants. �is review also explores the bene
cial
e	ects of various natural products against neurodegenerative
diseases.

While many reports have focused on the role of pro-
tective e�cacy of natural products against oxidative stress-
induced neurodegenerative diseases, as yet, there have been
no e	ective treatment solutions reported for these diseases.
�is indicates that the antioxidants alone are not su�cient
to treat neurodegenerative diseases. �us, intense research
should be undertaken to investigate, or identify, the novel
compounds that could be used to counteract the oxidative
stress pathogenesis and for a better therapeutic agent for the
treatment of neurodegenerative diseases.

13. Literature Search Strategy

For this study, an intense literature search on neurodegener-
ative diseases (AD, PD, and HD) was mainly done through
PubMed articles published from 1982 to 2016. �e articles
were then scrutinized and the most relevant selected to write
this review. We have also referred to previous review articles
on neurodegenerative diseases and the references cited were
also considered. �e key words used to search the relevant
articles included neurodegenerative diseases, Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, Reactive
Oxygen Species, antioxidants, medicinal plants, and so forth.
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