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Reading speed is commonly used as an index of reading fluency. However, reading speed is not a
consistent predictor of text comprehension, when speed and comprehension are measured on the same
text within the same reader. This might be due to the somewhat ambiguous nature of reading speed,
which is sometimes regarded as a feature of the reading process, and sometimes as a product of that
process. We argue that both reading speed and comprehension should be seen as the result of the reading
process, and that the process of fluent text reading can instead be described by complexity metrics that
quantify aspects of the stability of the reading process. In this article, we introduce complexity metrics
in the context of reading and apply them to data from a self-paced reading study. In this study, children
and adults read a text silently or aloud and answered comprehension questions after reading. Our results
show that recurrence metrics that quantify the degree of temporal structure in reading times yield better
prediction of text comprehension compared to reading speed. However, the results for fractal metrics are
less clear. Furthermore, prediction of text comprehension is generally strongest and most consistent
across silent and oral reading when comprehension scores are normalized by reading speed. Analyses of
word length and word frequency indicate that the observed complexity in reading times is not a simple
function of the lexical properties of the text, suggesting that text reading might work differently compared
to reading of isolated word or sentences.
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Skilled reading is associated with good comprehension. Com-
prehension of a text arises during the reading process, and skill
shapes this process so that better comprehension can be
achieved—or so that the same level of comprehension can be
achieved with less effort and in shorter time. However, relating the
process of reading to its outcome, that is, relating the degree of
skill exerted during reading to the understanding of a text, has
proved to be anything but trivial. The main aspect of the reading

process that has been investigated in the literature is its “fluency.”
Fluency is usually operationalized as reading speed, given that
comprehension is sufficient. This is spelled out in theories of
automatic and fluent reading processes, where automaticity in
word identification (e.g., LaBerge & Samuels, 1974) trades off
with the effort to comprehend text (e.g., verbal efficiency theory;
Perfetti, 1985). Thus, fluent word reading should contribute to
better comprehension, and vice versa. Accordingly, studies report
high correlations between measures of the speed aspect of reading
fluency and comprehension (Hosp & Fuchs, 2005; Hintze, Calla-
han, Matthews, Williams, & Tobin, 2002; Jenkins, Fuchs, van den
Broek, Espin, & Deno, 2003), and it is believed that this relation
is a bidirectional one (Dowhower, 1987; Fuchs, Fuchs, Hosp, &
Jenkins, 2001).

However, a conceptual problem arises in this context. On the
one hand, reading speed is used as a descriptor of the reading
process. It is considered an index of skill such that faster reading
indicates fluency and correlates positively with comprehension.
Measures of timed reading that use words-per-minute reading rates
to score reading ability, such as the Dynamic Indicators of Basic
Early Literacy Skills (Good & Kaminski, 2002) and the Gray Oral
Reading Test (Wiederholt & Bryant, 2001), rely on reading speed
in this way to arrive at a reading score. On the other hand, reading
speed can be considered as an outcome of the reading process itself
(Kintsch, 1998; Kuhn & Stahl, 2003). Furthermore, reading speed
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as a process measure has a natural correlation with reading skill,
but can also be used to compensate for the lack thereof—for
example, when readers trade in reading time to increase compre-
hension (Carver, 1992). In this way, adjusting one’s reading rate is
a strategic resource, and the relationship between reading speed
and comprehension has remained elusive when measured on the
same text—sometimes showing positive correlations, but more
often yielding null results (compare Schroeder, 2011, and
Berninger et al., 2010, with LeVasseur, Macaruso, & Shankweiler,
2008; LeVasseur, Macaruso, Palumbo, & Shankweiler, 2006; Mc-
Nerney, Goodwin, & Radvansky, 2011; Wallot, 2011b). The am-
biguous nature of reading speed—being both process and product,
skill and compensatory resource—requires a careful examination
of how we conceptualize and quantify the reading process.

The goal of this article is to resolve these conceptual issues and
diverse findings by presenting a different conceptual and measure-
ment perspective on the reading process. As an alternative to
operationalizing reading fluency as speed, one can consider read-
ing fluency in terms of the structuredness, stability, or instability of
the reading process (Wallot & Van Orden, 2011). As readers
progress through a text, their understanding develops (i.e., Donald,
2007; van Dijk & Kintsch, 1983), and it has been suggested that
reading can be seen as a dynamic system, with fluctuations and
phase transitions and attractors that are shaped by the quest for
meaning (Paulson, 2005). A reading process that brings about
good comprehension can be understood as being subject to con-
straints, as if being pulled into a specific semantic/conceptual
space that delimits options for interpretation of what is being read
(e.g., Frazier et al., 2005). As long as readers stay in this semantic
subspace and maintain good comprehension, the reading process
proceeds smoothly. As comprehension is jeopardized, the reading
process is perturbed, for example, as evident in sudden increases in
reading times within garden path sentences (Bailey & Ferreira,
2003), or the initiation of regressive eye movements during read-
ing of inconsistent sentences (Rayner, Chace, Slattery, & Ashby,
2006).

The problem with these examples is that they confound the
perturbation of the successful reading process with its speed (or
lack thereof). What is needed is measures of the reading process
that quantify the degree of perturbation independently from speed.
From a measurement perspective, information about the temporal
order within the reading process could be a solution to the prob-
lem. Time series analysis techniques drawn from complex systems
theory, which are now applied to data from physiology and psy-
chology, might provide a potential solution here (Wallot & Van
Orden, 2011). Moreover, applying ideas from the framework of
complex systems to reading provides new conceptual ideas for
how to understand the reading process. Complexity metrics char-
acterize cognitive performance in terms of structure, instability,
and interdependence, and it has been argued that these properties
are indicative of cognitive organization during tasks (Holden, Van
Orden, & Turvey, 2009; Van Orden, Holden, & Turvey, 2003).

Three measures that capture these aspects of reading times are
monofractal scaling, multifractal scaling, and percent determinism
(%Determinism) of recurrence plots, which are described in the
following sections. By employing these measures, we ultimately
seek a means of measuring reading processes related to compre-
hension that does not rely solely on speed, which obfuscate process
versus product, and skill versus compensatory resource. Rather,

measures are called for that capture the process capabilities of
comprehension and how the reading process adapts to changes in
comprehension.

In a previous article, we examined reading speed together with
two of these three measures of reading times: monofractal scaling
and recurrence (O’Brien, Wallot, Haussmann, & Kloos, 2013).
The aim was to see whether these measures distinguished between
readers of different age (Grades 2–6 and adults), where age served
as a proxy for reading skill. We found that reading speed and
recurrence measures distinguished groups of readers of different
ages, but the monofractal scaling measure did not show differences
between the groups.

In this article we present a reanalysis of that data in order to
systematically expand the previous, more exploratory work: In-
stead of examining gross differences in reading skill between
groups, we investigate how individual differences in concrete
aspects of reading skill, namely, speed and comprehension, can be
predicted by complexity measures of the reading process. This is
of importance, as especially the prediction of text comprehension
from features of the reading process has proved to be a persisting
challenge (Berninger et al., 2010; LeVasseur et al., 2006, 2008;
McNerney et al., 2011; Wallot, 2011b). Also, since monofractal
scaling did not yield reliable differences between reader groups
(O’Brien et al., 2013), we include an analysis of multifractal
scaling in reading times, which is an extension of monofractal
scaling, to investigate whether the time dependency of scaling
might have masked effects of the overall strength of scaling
(Mandelbrot, 1997). Finally, we also conduct an analysis of the
role of lexical variables in this reading task. This is important in
order to clarify the origin of complexity properties in reading
times. One the one hand, lexical variables are thought to be a main
driving force behind the reading process, and corpus analyses
showed that the distributions of lexical variables in connected texts
also exhibit complex fractal (Ebeling & Poeschel, 1994; Monte-
murro & Pury, 2002) and recurrence (Orsucci et al., 2006) prop-
erties that we use in our analysis of reading times. On the other
hand, recent work on text reading found that lexical features do not
play a substantial role in connected text reading (Wallot, Hollis, &
van Rooij, 2013).

Before we present the details of the study and the results of the
analyses, the aim of the next sections is to give a brief description
of what the applied complexity metrics mean statistically, what
their interpretation is in the context of text reading, and what their
putative relations to comprehension are.

Monofractal Scaling

Monofractal scaling is a property of a time series that indicates
the strength of power–law scaling relations, also called long-range
correlations, across a series of measurement values. Trial-by-trial
measurements, such as consecutive response times obtained from
an experiment, differ in terms of the degree of temporal carryover
effects from one trial to the next. If response times are strictly
independent of each other, then there is no carryover effect, and
the response time fluctuations are random, conforming to a white
noise pattern. If response times possess short-term correlations,
then local carryover effects are observed, whereby the response on
trial t2 is affected by the outcome of trial t1 and somewhat affected
by the outcome of trial t0. Here correlations between trials decay
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quickly, affecting only—more or less—adjacent trials. However,
in recent years monofractal scaling relations have been reported in
many psychological experiments, where carryover effects span the
whole sequence of trials in an experiment (see Kello et al., 2010;
Van Orden, Kloos, & Wallot, 2011). This means that trial re-
sponses are not just a function of the processes on fast timescales
that connect one trial’s onset with the execution of the response on
that particular trial, but that processes across many timescales (and
trials) interact to produce a particular trial response.

The presence of scaling relations is usually observed as a pattern
of fluctuations over time, whereby the fast timescales (i.e., fluc-
tuations across only a few trials) are small in magnitude, but are
nested in fluctuations on slower and slower timescales that in-
crease in magnitude. The magnitude of fluctuations increases
proportionally with the size of the timescale, and the faster the
fluctuations grow with increasing timescale, the stronger the effect
of long-range dependencies in the time series (see Figure 1).

An early hypothesis for the role of monofractal scaling in
cognitive performance was that optimal performance in a task
yields a so-called pink noise pattern. It was thought that pink noise
would indicate skill and health of the cognitive systems (e.g.,
Goldberger et al., 2002; Wijnants, Bosman, Hasselman, Cox, &
Van Orden, 2009). However, there have been several inconsistent
findings with regard to the role of pink noise as an indicator of
optimal performance (˜ skill), and it has been proposed that
strengths of scaling relations are rather indicative of the degree to
which external control sources drive cognitive performance (Kloos
& Van Orden, 2010).

For example, the clearest cases of monofractal scaling have been
observed in response time tasks under stable task conditions, such
as simple reaction times (Holden, Choi, Amazeen, & Van Orden,
2011), tapping (Chen, Ding, & Kelso, 1997), or time estimation
(Gilden, 2001). The strength of scaling relations can also distin-
guish between different experimental conditions or tasks. For
example, Kuznetsov and Wallot (2011) asked participants in a time
estimation task to press a button every time a second had passed.
Participants were provided either with accuracy feedback about
their performance or with no feedback at all. In the no-feedback
condition, they produced time estimates with strong scaling, that
is, highly interdependent response times. In the feedback condi-
tion, scaling strength was significantly reduced; that is, their time
estimates were constrained to more local, within-trial dependent
fluctuations. That is, when participants processed information
from the environment to perform the time estimation task, long-
range dependencies in their time series’ data decreased and there-
fore monofractal scaling also decreased. This interpretation is also
in line with earlier findings in a study on silent versus oral reading,
where oral reading produced reduced monofractal scaling, as ar-
ticulatory processes during reading enhanced the effect of local
word properties on individual reading times (O’Brien, et al., 2013).

In the case of reading, it is usually assumed that lexical or other
text properties are the driving informational force of reading times
(e.g., Coltheart, Rastle, Conrad, Langdon, & Ziegler, 2001; Eng-
bert, Nuthmann, Richter, & Kliegl, 2005; Grainger & Jacobs,
1996; Reichle, Rayner, & Pollatsek, 2003), affecting the length of

Figure 1. Illustration of monofractal time series and their monofractal scaling properties in detrended
fluctuation analysis (DFA). (A) Time series of idealized brown noise. (B) Time series of idealized pink noise.
(C) Time series of idealized white noise. (D) The DFA log-log plot illustrates the change of variance with
changing window size for the three noises. As can be seen, variance increases faster with growing sample size
as the time series deviates from white noise toward brown noise. When the logarithm of the variance is plotted
against the logarithm of the sample size over many different sample sizes, the slope of the line that captures the
relation between variance and sample size gives the Hurst exponent H, which estimates the strength of
monofractal fluctuations in a time series. A Hurst exponent of H � 0.5 indicates growth of variance with
increasing sample size in line with the central limit theorem, which suggests independence of data points in the
time series. Deviations of H toward greater numbers indicate greater degrees of interdependence of data points
in the time series.
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fixations and response times during reading (Reingold, Reichle,
Glaholt, & Sheridan, 2012).

Just as in the example of time estimation from Kuznetsov and
Wallot (2011), when repeated keypresses in time estimation are
guided by external feedback, keypresses that are contingent on text
properties should also lead to a decrease of long-range correlations
in the series of time estimates. Hence, we hypothesize that skilled
reading (i.e., high reading speed and high comprehension) should
be indexed by reading times that are systematically driven by text
features, as indicated by weak traces of long-memory across read-
ing times, that is, reading times that are closer to white noise.

Multifractal Scaling

Multifractal scaling is an expansion of the concept of monofrac-
tal scaling. If a time series, for example, of reading times, exhibits
significant multifractal structure, reading times are very heteroge-
neously distributed in the time series, with periods of low-
magnitude fluctuation interspersed with periods of high-magnitude
fluctuation. The occurrences of these different fluctuation patterns
over time are not random but correlated with each other. This
distinguishes multifractal fluctuations from simple outliers, that
is, the random occurrence of isolated data points that “stick out” of
the overall pattern of measurements. Hence, multifractal fluctua-
tions signify systematic fluctuations that are indicative of interac-
tions among timescales (Ihlen & Vereijken, 2010; Kelty-Stephen,
Palatinus, Saltzman, & Dixon, 2013).

Statistically, these instabilities can be seen as a change in local
monofractal patterns (see Figure 2). As laid out, monofractal
structure in reading times can be interpreted as the degree of
constraints that are brought by the text structure onto the intervals
between button presses, turning them into measures of word read-
ing times. Multifractals quantify the degree to which these con-
straints change over time and lead to on-line reorganizations of the
reading process during text reading—the breaking and formation
of cognitive constraints (Stephen, Anastas, & Dixon, 2012).

Even though multifractal fluctuations are observed throughout a
whole variety of cognitive measures (Ihlen & Vereijken, 2010;
Stephen et al., 2012), no systematic experimental manipulations
have been devised that change mulitfractal structure in cognitive
tasks. Still, multifractal structure has a special conceptual appeal
for reading, as it is indicative of sudden on-line changes that occur
in a time series of measurement values. We argue that such
changes capture an adaptive aspect of reading fluency that indexes
drastic changes in comprehension on the side of the participant.

In contrast to this, current theories of the reading process that try
to capture the emergence of meaning above the level of word
features assume the process of text understanding to be a piece-
wise buildup of information, adding bits of information as the
reader advances through the text (e.g., Donald, 2007; Zwaan,
Magliano, & Graesser, 1995). Here comprehension is conceptual-
ized as a gradual process akin to building a mosaic piece by piece.
In some circumstances this seems plausible. However, the devel-
opment of comprehension during reading may involve more than
just gradual shifts. In a study by Zwaan et al. (1995), situation
model variables explain only tiny amounts of variance in text
reading times, and in McNerney et al.’s (2011) study, in which
participants read a whole book, the situation model approach
comes to its limits: From a larger set of predictor variables that
should code for psychologically relevant content, some show the
expected effects, some yield null results, and some show effects
exactly opposite to the predictions. Perhaps this could be a func-
tion of comprehension that does not always evolve in a gradual
way. An example of how little pieces of information can dramat-
ically change understanding is provided in Asch’s (1946) classical
study. Participants were presented with different lists of adjectives
that described a putative person. Afterward, participants were
asked to characterize this person. While the presence or absence of
some of the adjectives on those lists (such as intelligent and
determined) led to only minor changes in the characterizations
made by the participants, other adjectives (such as cold and warm)

Figure 2. Monofractal and multifractal fluctuations. (A) Monofractal white noise time series. (B) Multifractal
white noise time series. As can be seen, the multifractal time series displays intermittent fluctuations, suggesting
interactions among timescales. (C) The multifractal spectrum width is the difference between the smallest and
largest �(q) values. The bigger the width of the multifractal spectrum, the more heterogeneous the fractal scaling
properties of a time series.
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completely changed the impression of the putative person and also
changed the meaning of the other adjectives on the list.

Multifractal fluctuations might pick out exactly these kinds of
pivotal conceptual changes in the fluctuation patterns of reading
times. Along this line of reasoning, we hypothesize that the pres-
ence of multifractal structure is an index of adaptive development
of comprehension during reading, quantifying the degree to which
the reader picks up important pieces of information in a text and
makes appropriate connections within the larger context of the
text’s content. However, this is a speculative proposal, given the
few studies that have examined this property in cognitive tasks
(Stephen et al., 2012).

%Determinism of Recurrence Plots

%Determinism is a measure of the stability and structuredness
of fluctuations in a time series, obtained from recurrence quanti-
fication analysis (RQA). RQA is a method to characterize the
behavior of complex time series that are the result of many
interacting variables (Webber & Zbilut, 1994). Text reading is a
complex cognitive activity that involves perceptual, memory, rea-
soning, and output processes (Reichle & Reingold, 2013; Schroe-
der, 2011; Van Orden, Holden, Podgornik, & Aitchison, 1999).
Although all these processes contribute to the product of reading,
we are limited to a single measurement of reading (i.e., the
one-dimensional time series of word reading times in the present
study), and therefore our measurement conflates the contribution
of these different processes. The method of phase space recon-
struction through time-delayed embedding (Takens, 1981) can be
used to work around this problem of not having independent
measures of all contributing processes. By utilizing the method of
phase space reconstruction, RQA allows for the reconstruction of
the multidimensional dynamics of the cognitive system from a
single, one-dimensional time series. Phase space construction is
possible because the single time series of measurements contains
information from all participating processes. Figure 3 gives an
example of phase space reconstruction by using time-delayed
copies of the original time series as surrogates for the dimensions
of the reading dynamics that have not been directly measured.

The manner in which a phase space is filled by the time-
delayed signal is called an attractor. As can be seen in Figure 3,
the trajectories in the example phase space show a clear, repet-
itive structure, crossing the same neighborhoods in the phase
space again and again. This behavior of the time series converts
to diagonal lines on the recurrence plot (see Figure 3C) and
signifies a high degree of stability of the temporal behavior. The
measure of %Determinism is a statistic of stability and struc-
turedness of the time series that is created by quantifying the
extent to which a time series produces such diagonal line
structure—repetitive sequences— over time.

RQA has been applied in many psychological tasks, mainly to
assess aspects of interpersonal coordination (for reviews and dis-
cussion, see Fusaroli, Konvalinka, & Wallot, in press; Riley &
Shockley, in press), but also to quantify cognitive, neuro-, and
motor dynamics, such as the learning of mathematical rules (Ste-
phen, Boncoddo, Magnuson, & Dixon, 2009), the onset of epilep-
tic seizures (Thomasson, Webber, & Zbilut, 2002), or the devel-
opment of motor-language coordination (Abney, Warlaumont,
Haussmann, Ross, & Wallot, 2013). Furthermore, RQA has been

applied to response times of naming tasks (Wijnants, Hasselman,
Cox, Bosman, & Van Orden, 2012) and reading times in text
reading (O’Brien et al., 2013; Wallot et al., 2013), where recur-
rence measures of the stability of the time series have been shown
to be indicative of reading skill.

The stability of reading times as understood by the measure
%Determinism is linked to text comprehension through the attrac-
tor concept. If the behavior of a system has an attractor quality,
the system displays ordered behavior in time. It does not bounce
randomly through the phase space, but is rather confined to some
kind of subsection of the phase space, thereby expressing some
degree of repetitiveness, that can be captured by the measure of
%Determinism. Successful text reading, that is, reading with com-
prehension, means that a reader progresses through a text with a
growing understanding for its content, topics, and themes. This
understanding, in turn, delimits the options for comprehending
newly read words and sentences, as they are not isolated, but
understood in terms of a particular context (e.g., Brisard, Frisson,
& Sandra, 2001; Gibbs, 1984). Hence, the reading of words in a
connected text is “biased” toward a particular meaning. Unlike in
randomized single-word reading tasks, skilled text readers are
attracted to a certain semantic space. %Determinism captures the
degree to which this overarching semantic attractor exerts control
over the reading process. In this sense, an attractor for reading is
described as neither a property of the reader’s behavior itself nor
a property of the text itself, but instead a structured interaction
between the two. Even though it might vary—during the course of
reading, or between different readers—what information in a text
is utilized, or how it is utilized, skilled readers will utilize some
structure provided by a text. Hence, reading with comprehension
should show a kind of global stability, despite trial-by-trial varia-
tions or interindividual differences in the reading process.

Relation of the Complexity Measures to Each Other
and to the Reading Process

As these measures are fairly new in psychological research and
as there is little precedent for their use in reading research, we
summarize the most important points before moving on to intro-
duce the reading study.

First, what is common across all three of these measures is that
they capture global as opposed to local aspects of the reading
process: Many psychological studies of reading ask how local
aspects of a trial (such as the word frequency of a word in a lexical
decision task) specifically affect the response of that particular trial
(such as the time that it takes a participant to press a button in
response to that word). The complexity measures described here
offer a kind of complementary perspective to that, asking how the
process of reading is systematically coordinated across many trials.
Hence, we are interested in how reading globally affects measures
of the reading process and, in particular, how it affects measures of
the reading process differently for better readers (i.e., fast reading
speed and good comprehension) versus poorer readers (i.e., slow
reading speed with low comprehension).

To understand these metrics in the context of reading, it is
helpful to think of a “null model” for our observable of the reading
process: As the current reading study, described below in more
detail, features a self-paced reading task, where participants press
a response key to reveal every new word of the text (Just, Car-
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penter, & Woolley, 1982), our observable of the reading process is
sequences of repeated keypresses. A basic null model for repeated
keypresses in the absence of reading comes from tapping studies,
where participants simply press a response key repeatedly without
much information processing demands between keypresses. Here

the global pattern of response times mainly reflects the endoge-
nous (motor) activity that instantiates simple, repeated finger
movements (Gilden, 2001). This activity is by no means random,
but exhibits pink-noise-type long-range correlations that are well
captured by monofractal scaling (see Figure 1). When keypresses

Figure 3. Illustration of phase space reconstruction from one-dimensional time series and the associated
recurrence plots. (A) A sine wave with its time-delayed copy. (B) Phase space of the sine wave, reconstructed
by plotting the original data series against its time-delayed copy. (C) Recurrence plot of a sine wave. All
recurrent points of the time series form clear diagonal line patterns (dark lines in the plot). (D) The sine wave
plus random noise with its time-delayed copy. (E) Phase space of the sine wave plus noise. (F) Recurrence plot
of the sine wave plus noise. Recurrences of the time series (dots in the plot) cluster along diagonal lines in the
recurrence plot, but are much more dispersed than without noise. The measure %Determinism is the sum of all
dots in the plot that form connected diagonal lines divided by the sum of all dots in the plot. The more dots form
the diagonal lines, the higher the %Determinism.
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are contingent on the need to process information between trials,
such as when participants are provided with accuracy feedback
between tapping trials, then endogenous activity is constraint by
the exogenously provided information, leading to a decrease in
long-range correlations. Furthermore, the more feedback is pro-
vided, the greater the decrease in monofractal scaling (Kuznetsov
& Wallot, 2011). Hence, for monofractal scaling, we expect that
the more attentively participants read, the more contingent their
keypresses during self-paced reading will be on the information
provided in the text, and the more reading times will depart from
pink toward white noise.

However, information also structures keypresses. For the case of
text reading, this can happen in many ways. For example, at the
paragraph level, sentences are ordered in a particular way to
systematically construct concepts that are not encapsulated within
a single sentence, but transcend many sentences (e.g., Altmann,
Cristadoro, & Esposti, 2012). At the sentence level, syntactic
constructions mandate a particular ordering of words, so the inte-
gration of the different information pieces is not arbitrarily possi-
ble at any time, but preferably happens at the end of sentences, for
example, resulting in wrap-up effects (e.g., Just & Carpenter,
1980). At the word level, pieces of information that characterize
one word, such as its part of speech (e.g., Abrams & Rodriguez,
2005), semantic content (e.g., Perea & Rosa, 2002) or co-
occurrence (e.g., Landauer & Dumais, 1997), prepare reading of
adjacent words, resulting in local carryover effects. Insofar as
readers’ keypressing behavior during reading is contingent on the
information in a text, such reoccurring structures in texts should be
reflected in reading times, resulting in a greater sequential order of
reading times that is captured by %Determinism.

An important note is in order here, as the predictions for
monofractal scaling (� less long-range correlation with better
comprehension) and %Determinism (� more sequential repetitive-
ness with better comprehension) might seem to contradict each
other. The answer to this apparent contradiction lies in the way
each measure captures temporal structure: Long-range correlations
of the monofractal type capture a homogeneous, self-similar kind
of activity, where reading of a text would unfold in the same way
across words within sentences and words between sentence bound-
aries, and across words, sentences, and paragraphs alike. However,
reading is more heterogeneous than that, showing systematic
breaks and qualitative changes in reading activity, for example, at
the sentence boundary (Just & Carpenter, 1980), but also occa-
sional changes in reading activity, such as rereading of a sentence
(Rayner et al., 2006) or long pauses during reading (O’Brien et al.,
2013) that intersperse an otherwise well-structured process.

This leads us to the third measure of global reading activity that
we employ: multifractal scaling. Multifractal scaling captures re-
organizations of the reading process, such as the rereading of a
sentence that was not properly understood, that are, on the one
hand, a coordinated, systematic part of the reading process but, on
the other hand, mark a strong departure from the “standard mode”
of reading where readers give each line of the text just one pass
that is organized along the line of text regularities, such as syn-
tactic, semantic, and lexical features. One could say that multi-
fractal structure distinguishes unsystematic “outlier” activity from
reading activity that is an outlier in the sense that it is singular or
rarely occurring, but a natural and systematic part of the reading
process. Here one has to consider the functional relation between

the standard mode of reading (such as captured by %Determinism)
and the rarely occurring systematic departures from that mode:
Understanding of a text develops through the text, where later parts
of a text are understood based on what has been read previously.
If this is done skillfully by a reader throughout the text, we expect
that the reader’s behavior (such as measured by word reading
times) follows the salient structural aspects of the text (indexed by
low monofractal scaling and high %Determinism). However, if
earlier parts of the text are not well understood, and comprehen-
sion of later parts is dependent on that information, then there are
basically two alternatives of our conception of the reading process.
Either the reader starts a temporary but systematic departure from
the reading mode. This could be, for example, rereading of an
earlier passage or pausing to think about what was being read. This
will ensure that the reader can enter the standard mode of reading
after this temporal departure again, leading again to well-
structured reading behavior—an effect that has been observed in
mathematical rule-learning tasks (Stephen et al., 2009). Alterna-
tively, if the reader does not resolve central ambiguities about the
text, then the standard mode will be severely compromised, read-
ing will become more difficult, and the reader will continue to
depart from a well-structured reading process (e.g., Rayner, 1986).
This again highlights our initial concern about the role of reading
speed, where a certain level of reading speed can be reflective of
both a time investment (careful reading, rereading, etc.) and se-
verely compromised reading activity (problems with decoding,
prolonged but unresolved uncertainty, etc.), but with very different
consequences for the quality and outcome of the reading process.

Admittedly, much of the outlined logic regarding the three
complexity measures stems from reasoning about what kind of
structure they pick up in time series, or from what has been learned
in other areas of psychology, and there is little empirical precedent
for reading research. However, prior work of ours has at least
shown the utility of monofractal and %Determinism measures to
distinguish between text difficulty (Wallot, 2011a) and different
stages of reading development (O’Brien et al., 2013) that fit with
the outlined logic, respectively. By employing these three metrics,
we thus examine the features of external constraints (monofractal),
structuredness and stability (%Determinism), and adaptability
(multifractal) on the reading process across a range of individuals’
skill level and across oral and silent reading modes.

The Reading Study: Reading Times and
Comprehension

In the present study, we reanalyzed the data from O’Brien, et al.
(2013), a self-paced reading task resulting in reading time series
data from children (second, fourth, and sixth graders) and adults
(undergraduate students). All participants read the same text—an
appropriate, moderately challenging text for second graders. In this
self-paced reading task, readers pressed a response key to reveal
every new word in the text, resulting in a series of word reading
times for each participant. Half of the participants read the text
orally, the other half silently. After reading the story, participants
answered a multiple-choice questionnaire about the content of the
text to assess their comprehension.

In the original study, O’Brien et al. (2013) showed that %De-
terminism of reading times increased with reader age, indicating
that it captures developmental differences in reading fluency. No

Th
is

do
cu

m
en

ti
s

co
py

rig
ht

ed
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
lA

ss
oc

ia
tio

n
or

on
e

of
its

al
lie

d
pu

bl
is

he
rs

.
Th

is
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

tt
o

be
di

ss
em

in
at

ed
br

oa
dl

y.

1751COMPREHENSION DYNAMICS



developmental trend was observed for monofractal scaling of
reading times (the measure of multifractality was not employed).
Comprehension scores were collected together with reading time
data, but were not analyzed further.

Hence, in the present study, we pursue the relationship between
aspects of reading fluency as captured by monofractal scaling,
multifractal scaling, and %Determinism and their relation to text
comprehension. As we are interested in the relation between read-
ing process measures and reading outcome measures, the time-
ordered reading time data are subjected to fractal and recurrence
analyses. The results from these analyses are then correlated with
the outcome measures of comprehension scores and overall read-
ing speed (words per minute [WPM]). We also computed a com-
prehension ratio score: comprehension divided by reading time, as
readers might “trade in” reading speed for gains in comprehension.

The main theoretical dimension of the dynamics of reading
pertains to the adaptive fluency of the reading process, and how the
reading outcome, measured by comprehension and speed, comes
about as a result of this process. Given our theoretical outline of
the meaning of complexity measures in the context of reading and
text comprehension, we can summarize our hypotheses as follows:
It has been argued that monofractal scaling represents the extent to
which cognitive activity is driven by internal sources or external
constraints. In the case of reading, it is commonly assumed that the
ongoing informational input provided by the text strongly drives
the reading process; hence, a reading process that is systematically
guided by text structure should be an index of skilled reading,
reflected in a negative relationship between the strength of mono-
fractal scaling in reading times and comprehension scores. Multi-
fractal structure in reading times is an index of cognitive reorga-
nization, reflecting changes or developments in the understanding
of the text’s content. Hence, the presence of multifractal structure
in reading times should correlate positively with text comprehen-
sion. Finally, if high comprehension acts as an attractor, constrain-
ing the ongoing reading activity within the context of what has
already been read, then %Determinism, an index of attractor
strength, should correlate positively with comprehension. In line
with prior research findings, it is furthermore expected that reading
speed and comprehension are positively correlated with each other
as well.

Method

Participants

Sixty-two children between 6 and 13 years of age were recruited
from urban elementary schools in the United States serving pre-
dominantly middle-class families of mixed racial background.
Eight children (seven of whom were in the silent reading condi-
tion) were tested but excluded from the final sample because they
did not advance far enough through the story and thus did not meet
the inclusion criterion of having produced a data series of more
than 900 data points. This criterion was adopted as a trade-off,
considering that it would include those who had read at least five
out of the six pages of the story, and that 900 data points are still
sufficient to estimate reliable fractal scaling exponents (Holden,
2005). The final sample (26 boys and 28 girls) consisted of 19
second graders (M � 7.8 years, SD � 4.9 months), 20 fourth
graders (M � 10.0 years, SD � 5.7 months), and 15 sixth graders

(M � 12.0 years, SD � 3.9 months), as well as 17 adults (M �
24.5 years; six men, 11 women) who functioned as a comparison
group. All participants were native speakers of English, and all had
normal or corrected-to-normal vision. Also, all participants re-
ported that they were unfamiliar with the story they read for this
study. Participants were randomly assigned to either the silent
reading condition (n � 35) or the read-aloud condition (n � 36).

Stimuli and Apparatus

Children read the story “Alien and Possum: Hanging Out” by
Tony Johnston (2003). The text describes two friends, Alien and
Possum, and the various things they do over several days (such as
having conversations about their lives, celebrating birthdays, and
climbing trees). The difficulty of the text was rated to be appro-
priate for somewhat advanced second graders (ATOS book level
of 2.5), with the content being rated as interesting (4.5 out of 5) by
readers (“Book Details,” n.d.). The original text consisted of 1,201
words, but it was carefully trimmed down to 1,099 words to reduce
reading time for the children, while at the same time satisfying the
lower bound of data points necessary to conduct the analyses (see
Holden, 2005; Wallot, O’Brien, & Van Orden, 2012). Besides,
none of the illustrations in the original book were presented with
the text. The text was displayed on a conventional 15-in. (38.10-
cm) MacBook, with a custom script (MATLAB Psychophysics
Toolbox; Brainard, 1997) running the text presentation software.
Participants advanced through the text in a self-paced manner by
pressing the space bar to reveal every new word of the text, with
text accumulating on the screen word by word. The time between
keypresses was taken to estimate the reading time of each word
unit.

Procedure

Children were tested individually in a quiet area at their school,
and adults were tested in a university laboratory room. A sample
sentence was presented first, before commencing the story. Par-
ticipants were instructed to read at their own pace for understand-
ing, and that they would be given comprehension questions after
they had completed the story. Participants in the silent reading
condition were instructed to “read the words as they come up
silently, to yourself.” Participants in the read-aloud condition were
instructed to “say the words as they come up—so you are reading
out loud.” Comprehension was assessed with six multiple-choice
questions that included literal questions about events taken from
different points in the story. The comprehension questions and
multiple-choice answers were read to the participants as they read
along, and then they gave their response. Each participant’s ses-
sion took between 10 and 20 min, and children were afterward
rewarded with a little gift.

Data Analysis

In a first step, extreme response times of 10 s or longer were
removed (eliminating 0.1% of all data points). Then the complex-
ity metrics were computed. The measure %Determinism was ob-
tained from recurrence computed with the Commandline Recur-
rence Plots software (Marwan, 2006). The RQA parameters were
estimated following recommendations by Webber and Zbilut
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(2005). Fractal scaling exponents were quantified with detrended
fluctuation analysis (Peng, Havlin, Stanley, & Goldberger, 1995)
following recommendation by Holden (2005). Multifractal spectra
were quantified with multifractal detrended fluctuation analysis
(Kantelhardt et al., 2002) following recommendations by Ihlen and
Vereijken (2010). Details about the analysis techniques can be
found in the Appendix.

Pearson correlations were used to assess the relationship be-
tween the different metrics of reading times and reading speed, raw
comprehension scores, and ratio comprehension scores where
comprehension was divided by reading time. Finally, stepwise
regression analysis was used in order to select the best predictors
of comprehension from all variables of the reading process that
were computed.

Results

Reading Rate and Comprehension

As reported by O’Brien et al. (2013), mean reading rates (WPM)
differed between grades; that is, speed increased with age as
expected, F(3, 66) � 19.44, p � .001. Furthermore, we observed
a Grade � Reading Mode interaction, indicating that reading rate
differed across modes only for Grade 2 and adult groups, F(3,
66) � 6.63, p � .001, as planned contrasts of oral versus silent
reading only reached significance for Grade 2 and adult groups
(ps � .003; see Table 1). Comprehension (correct responses) also
increased with age, F(3, 66) � 6.72, p � .001. With respect to the
reading mode conditions (oral vs. silent), comprehension was
equivalent across modes, F(1, 66) � 1.26, p � .266.

Reading Time Statistics

When looking at developmental differences in the structure of
reading times, O’Brien et al. (2013) found that WPM and %De-
terminism, but not monofractal scaling, differed significantly
across age groups. In order to rule out that the effects are primarily
driven by a general maturational factor, we ran correlational anal-
yses and controlled for reader age. As can be seen in Table 2, when
age is controlled for, reading speed and comprehension are signif-
icantly correlated only for oral reading and not during silent
reading. Further, %Determinism for both oral and silent reading

shows a significant and stronger relation to comprehension than
does reading speed. On the other hand, monofractal structure does
not show any significant relationships with comprehension, and
the expected positive relation between multifractality and compre-
hension is only observed during silent reading. All of these effects
are corroborated when the ratio score is used as a measure for
comprehension. As the ratio score equals correctly answered com-
prehension questions divided by overall reading time, the correla-
tion between reading speed and the ratio score is trivial. For the
interested reader, we also present the correlations between age,
speed, comprehension, and the complexity measures in the Ap-
pendix.

Regression of Reading Outcome Onto Reading
Process Variables

To assess which aspects of the reading process are unique
predictors for comprehension, we used a stepwise regression pro-
cedure where predictors were successively added to the model (in
the order WPM, %Determinism, monofractal scaling, multifractal
scaling). During each step of the procedure, a predictor was first
added to the model. Then all predictors were evaluated as to
whether they still contributed unique predictive power to the
model (at � � .05), and those that did not (anymore) were
removed from the model.

As can be seen in Tables 3 and 4, %Determinism of reading
times came out as the single and best predictor for comprehension
during oral and silent reading. For the ratio score, %Determinism
of reading times was also the best predictor. For the oral reading
condition, monofractal fluctuations of reading times also added
unique predictive power.

Table 1
Averages and Standard Deviations of Reading Rate and
Comprehension Scores for Oral and Silent Reading by Grade

Reading rate (WPM) Comprehension (%)

Grade Oral Silent Oral Silent

2 43.0 (10.7) 92.4 (35.8) 66.6 (28.5) 57.3 (31.2)
4 78.2 (26.4) 78.7 (22.7) 85.4 (17.6) 88.1 (23.0)
6 90.1 (21.5) 88.8 (22.5) 85.6 (17.7) 91.5 (16.5)
Adults 112.1 (28.3) 174.3 (34.3) 100 (0.0) 98.1 (5.7)

Note. Reading rate is reported as average words per minute (WPM), and
comprehension is reported as percent correct on average for the groups.
Four answer options per multiple-choice question for each comprehension
item make for a chance performance value of 25% correct. Standard
deviations are in parentheses.

Table 2
Correlations Between Reading Time Statistics and
Comprehension Measures When Controlling for Age

Variable 1 2 3 4 5 6

Oral reading (interkeypress intervals) with age parceled out
1. WPM — .332� .798�� .602�� .045 .395�

2. Comp. — .664�� .566�� .004 .018
3. Ratio — .652�� �.060 .174
4. DET — .250 .265
5. DFA — .289
6. MFDFA —

Silent reading (interkeypress intervals) with age parceled out
1. WPM — .278 .761�� .698�� �.353� .402�

2. Comp. — .714�� .397� .019 .348�

3. Ratio — .608�� �.183 .398�

4. DET — .000 .450��

5. DFA — �.210
6. MFDFA —

Note. Correlation coefficients without asterisks are not statistically sig-
nificant. WPM � words per minute; comp. � comprehension scores;
ratio � ratio comprehension scores (comprehension scores are divided by
reading time); DET � %Determinism; DFA � monofractal scaling esti-
mated by detrended fluctuation analysis; MFDFA � multifractality esti-
mated by multifractal detrended fluctuation analysis.
� p � .05. �� p � .01.
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Word Frequency and Length

The distribution of lexical properties in texts has been shown to
exhibit complex scaling patterns (Ebeling & Poeschel, 1994; Mon-
temurro & Pury, 2002). Hence, the observed complexity in reading
times might have its origin in lexical text properties. To investigate
whether this is the case, we apply the monofractal, multifractal,
and %Determinism measure to the vector of word lengths and
word frequencies of the text used in this study. Figure 4 shows
these vectors together with four examples of reading time series
from second graders and adult readers.

Visual inspection of the data series suggests some structural
differences between reading times and lexical properties. Com-
pared to the word length and frequency vector, reading times seem
to be composed of a more extreme variation between pockets of
relative uniformity (i.e., many equally fast reading times in a row)
and pockets of extreme fluctuations. To quantify this first impres-
sion, Table 5 presents the monofractal, multifractal, and %Deter-
minism properties of the word length and word frequency vectors,
together with the values for these measures for silent and oral
reading times. Word frequencies were taken from the norms of the
English Lexicon Project (Balota et al., 2007) and were logarith-
mized. As can be seen, word length and frequency lie outside the
95% confidence interval of the reading time data on all three
complexity metrics, compared to reading time data (see Table 6).
Furthermore, correlations between word length and frequency with
reading times are relatively low (see Table 6). Given that word
length and word frequency are highly correlated with each other
(r � �.724), together they explain only 1.3% (oral reading) and
0.7% (silent reading) of the variance in reading times, respectively.
In sum, this suggests that lexical properties are at least not in a
simple, straightforward manner the source of complexity in read-
ing times during text reading.

Discussion

In search for new characterizations of fluency of the reading
process that do not rely solely on speed or duration, we hypothe-
sized that good comprehension during reading is reflected by
reading time patterns with high temporal stability, but also inter-
spersed with adaptive fluctuations. We presented three metrics that
measure the external constraint, adaptability, and stability of the
reading process: the influence of external information on time
series measurements (monofractal scaling), the occurrence of re-
organizations during the reading process (multifractal scaling), and
the degree of temporal structuredness of reading times (%Deter-
minism).

The %Determinism measure showed consistent effects across
oral and silent reading, predicting absolute comprehension scores,
as well as comprehension ratio scores, when comprehension scores
were normalized by reading time. Against our expectations, mono-
fractal scaling did not show significant relations with comprehen-
sion. We only observed a moderate correlation with reading speed
during silent reading. Multifractal scaling, on the other hand, did
show the expected relations to the comprehension measures, but
only for silent reading. There was also a moderate correlation with
reading speed in both the oral and silent reading conditions.
Reading speed itself, however, showed only a moderate correlation
to comprehension during oral reading (faster reading goes along
with better comprehension), while this was not the case for silent
reading.

There may be several reasons for the lack of relations between
monofractal scaling and comprehension. First of all, these metrics
have not been much employed in reading research, and hence our
proposal regarding the conceptual role of this measure might be
flawed or misguided. For example, in keeping with the early
literatures on monofractal scaling (e.g., Wijnants et al., 2009), we
previously predicted that a Hurst exponent closer to pink noise
would be related to more fluent reading, following findings of
fractal scaling for more coordinated behavior (O’Brien et al.,
2013). In a more recent conceptualization (Van Orden et al., 2011),
on the other hand, the prediction was opposite, based on the model
that fluent reading, in terms of automatic word recognition, would
be externally driven by the text and thus appear closer to white
noise (compared with pink noise). Therefore, before discarding the
potential utility of monofractal scaling as an interesting measure
for reading, two alternatives could be considered.

First, monofractal scaling might capture how far the informa-
tional context impinges on the endogenous fluctuations of the time
series measure of reading. As we laid out, simple repeated key-
presses that are not contingent on informational processing of
stimuli exhibit strong monofractal long-range correlations (pink
noise). Pink noise seems to be a basic feature of unconstraint
motor-physiological processes. Besides keypresses, it is found in
several other observables that are used to measure reading, such as
eye movement fluctuations of the resting eye (Coey, Wallot,
Richardson, & Van Orden, 2012) and resting-state functional
magnetic resonance imaging (fMRI; He, 2011). Pink-noise-type
long-range correlations seem to capture general endogenous motor
and physiological processes.

In a task context, where the motor-physiological processes be-
hind these observables have to sustain the performance of a spe-
cific function, usually decreases of long-range correlations toward
white noise are observed, such as in the keypress fluctuations

Table 4
Stepwise Regression of Ratio Comprehension Scores

%Determinism � t p

Oral reading .652 5.09 �.000
Silent reading .608 4.68 �.000

Note. The model for oral reading explains R2 � .425 of the variance in
comprehension ratio scores, F(1, 34) � 25.17, p � .001. The model for
silent reading explains R2 � .379 of the variance in comprehension ratio
scores, F(1, 35) � 21.32, p � .001.

Table 3
Stepwise Regression of Comprehension Scores

%Determinism � t p

Oral reading .566 4.07 �.000
Silent reading .397 2.60 .014

Note. The model for oral reading explains R2 � .321 of the variance in
comprehension scores, F(1, 34) � 16.07, p � .001. The model for silent
reading explains R2 � .158 of the variance in comprehension scores, F(1,
35) � 6.56, p � .015.
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during self-paced reading (O’Brien et al., 2013), in eye movements
during reading (Wallot, 2011b), and in the fMRI signal during
reaction time performance (He, 2011). Hence, monofractal scaling
may primarily measure the difference between “reading” the text
by pressing a response key in accordance with the unfolding of the
text and simply pressing the button repeatedly in the absence of
information. This would stand in contrast to our proposal that
monofractal scaling reflects how well participants utilize linguistic
features of written language during reading. It might rather mea-
sure that a participant is reading, but not how well a participant
does so. Accordingly, decreases in monofractal scaling might just
distinguish between participants who are actually reading and
those who press the button without paying attention.

Second, the developmental nature of our sample might have
worked against the effect of monofractal fluctuations. It has been
shown that simple button press performance develops from white
noise in young children toward pink noise in adults (Kiefer et al.,
2014), indicating improvement in the fluency of fine motor coordi-
nation. For the case of reading here, we predicted that the reading
skill, as reflected in comprehension, should have the opposite effect
on monofractal scaling in reading times, being closer to pink noise in
the case of poor comprehension and closer to white noise in the case
of good comprehension. As younger readers are expected to show a
lower degree of fluency in motor coordination in button presses (i.e.,
white noise), but also poorer reading skill and comprehension (i.e.,
pink noise), these two effects might have canceled each other out.

Table 5
%Determinism, Monofractal, and Multifractal Characteristics of Lexical Text Properties and
Reading Times

Reading times

Oral Silent

Variable Word length Log word frequency Average 95% CI Average 95% CI

DET 0.521 0.700 0.917 [0.891, 0.942] 0.958 [0.940, 0.976]
DFA 0.542 0.515 0.570 [0.547, 0.594] 0.611 [0.579, 0.644]
MFDFA 0.076 0.040 0.300 [0.254, 0.346] 0.488 [0.423, 0.554]

Note. Monofractal, multifractal, and %Determinism (DET) values for word length and the logarithm of word
frequency. Furthermore, the averages of monofractal, multifractal, and DET values for the whole sample of oral
and silent readers, together with the associated 95% confidence intervals (CIs). DFA � monofractal scaling
estimated by detrended fluctuation analysis; MFDFA � multifractality estimated by multifractal detrended
fluctuation analysis.

Figure 4. Vectors of lexical properties and example reading times. (A) Vectors of word length and log word
frequency (freq.) for the text. (B) Example time series of oral and silent reading displaying a second grader’s (top
row) and an adult’s (bottom row) reading time for each mode. Visual, lexical properties seem to differ form
reading times in their degree of heterogeneity.
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That multifractal scaling showed the expected relations to com-
prehension in the silent reading condition is encouraging, since
silent reading performance has been much harder to reliably quan-
tify compared to oral reading (Price, Meisinger, D’Mello, & Lou-
werse, 2012). The absence of effects in oral reading might have
something to do with the somewhat different nature of button
presses during oral reading. Traditionally, reading times during
oral reading are measured from stimulus onset to the articulatory
onset (Kessler, Treiman, & Mullennix, 2002). In our case, the
whole articulation phase of a word was part of the recorded
reading times, which might have resulted in a decreased sensitivity
of the oral reading condition with regard to the multifractal scaling
measure. The additional time provided by the sounding out of a
word might have dampened out some of the fluctuations due to
change in text comprehension that are evident in the silent reading
times, which are putatively more reflective of the “raw content” of
the text.

Our findings concerning the relation between reading speed and
straight comprehension scores mirror the somewhat mixed effects
that have been reported in the literature. The overall correlations in
the present study are rather moderate, and the effect for silent
reading did not reach significance. The asymmetry of oral and
silent reading in this regard might highlight that the compensatory
role of reading speed for comprehension plays a bigger role in the
faster paced silent reading, compared to reading out loud, obscur-
ing the overall relationship. This seems to be corroborated by
differences observed in the stepwise regressions for the raw com-
prehension scores compared to the ratio score, where comprehen-
sion was normalized by reading time.

When we used stepwise regression to select the best predictors
for comprehension, the measure of %Determinism was retained in
the model in favor of speed and yielded significant effects across
both reading modes. When comprehension was normalized by
reading time, the explanatory power of the %Determinism measure
increased—especially for silent reading. That is, the relationship
between predictors derived from the reading process and the
overall outcome measure shows strong and comparable effect sizes
across both reading modes. This is important to highlight, because
the bulk of literature on reading fluency and comprehension is
concerned with oral reading (Share, 2008; Kim, Wagner, & Foster,
2011), and reading metrics for silent reading are currently limited
(e.g., Fuchs et al., 2001; Price et al., 2012). Taking speed as an

outcome rather than a process measure disambiguates the recorded
comprehension scores. The similar relations of the ratio scores to
%Determinism, that is, the stability of the reading times, suggest a
common core that characterizes the reading process in both tasks.

However, these commonalities do not seem to stem from the
lexical properties of the text. Even though corpus analyses have
shown that variables such as word frequency show complex fractal
distributions in texts (Ebeling & Poeschel, 1994; Montemurro &
Pury, 2002), an analysis of the lexical structure of the text used in
this study suggested that it differed substantially from the patterns
observed in reading times. Furthermore, correlations between
reading times and word frequency were generally very low, cor-
roborating earlier research that found that lexical variables do not
play much of a role in text reading (Wallot et al., 2013). Naturally,
this casts up the question as to what the salient structure is, which
readers pick up on in text reading. As our study did not contain
variations of different texts or text features, we cannot at present
answer this question. However, more abstract, entropy-related text
metrics might prove to be a viable next step for further investiga-
tions into what the salient textual structures are that readers utilize
during reading (Grenzel & Charniak, 2002; Montemurro & Za-
nette, 2011). These metrics capture not only general lexical but
also idiosyncratic contextual variations in text, which might be a
key difference between reading situations that feature isolated
words or sentences compared to connected texts.

Hence, even though more work is needed in order to clarify the
role of fractal and recurrence variables in reading and text com-
prehension and their grounding in a psychological theory of the
reading process, the results of the present study point to the
promising role of complexity metrics for the investigation of
complex cognitive tasks such as reading. Apart from their utility as
predictors of reading performance outcomes, these metrics might
furthermore provide the missing link that binds together features of
texts and cognitive abilities across words, trials, and timescales.

Conclusion

In this study, we examined how complexity metrics of reading
times that measure structuredness and adaption of the reading
process can be used to predict aspects of reading skill, such as text
comprehension. This investigation was motivated by conceptual
and empirical problems with reading speed as a measure of the
reading process. Conceptually, the role of reading speed is ambig-
uous, because it is used both as an outcome measure of reading and
as a measure for the reading process. And as a process measure it
is problematic, because it conflates two roles for reading speed in
text reading, namely, speed as an index of fluency and speed as a
compensatory resource. Empirically, reading speed is problematic,
because it is not a reliable predictor of text comprehension, the
hallmark of skilled reading.

Our results corroborate that reading speed is not a reliable
predictor of text comprehension across silent and oral reading.
Instead, the degree of temporal structure in reading times (%De-
terminism) turned out to be a good predictor of comprehension
across conditions. Furthermore, the predictive power of structure
in reading times increased when comprehension scores were nor-
malized by speed, highlighting the multiple roles that speed can
play in reading. The results for other complexity metrics (mono-
and multifractal scaling) were less clear, showing mainly effects

Table 6
Average Correlation Coefficients for Word Length and Word
Frequency With Reading Times

Variable

Oral Silent

r 95% CI r 95% CI

Word length .099 [.081, .116] .072 [.053, .091]
Log word frequency �.134 [�.114, �.153] �.101 [�.081, �.121]

Note. Average correlations between word length and the logarithm of
word frequency with reading times during oral and silent reading, together
with the associated 95% confidence intervals (CIs). The effect of word
length and word frequency on reading times is weak, but reliable at the
95% CI. Using the nonlogarithmized word frequency or nonlogarithmized
reading times led to decrease of the effect size, while further trimming of
the reading times (e.g., discarding all reading times greater than 2.5 s) did
not improve the correlations.
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for silent reading, which might be due to the fact that self-paced
reading, as we employed it in the current study, is not a good way
to measure oral reading.

Finally, analyses of word length and word frequency yielded
only minimal effects of lexical properties on reading times in text
reading, explaining only around 1% of the variance in reading
times. This implies that the complex structure of reading times is
not a simple function of the distribution of word properties in a
text. Also, it suggests that the textual aspects that structure reading
times during text reading do not reside on the level of individual
words. Differently from reading isolated words or sentences, read-
ing of connected text might not be so much a one-way relation
from linguistic properties to cognitive processes, but rather
emerges as an interaction between reading process and text struc-
ture. A deeper investigation of the matter might warrant further
research that focuses on reading of complex text stimuli, and it
might need measures of the reading process that can be applied to
complex reading behavior—such as the ones we presented here.
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Appendix

Analysis Techniques

Correlations With Age

Table A1 presents the correlation coefficients of reading speed,
comprehension, and the complexity metrics with age, for silent and
oral reading.

Introduction to Fractal and Recurrence Analysis

This last part of the Appendix aims at giving a brief, step-by-
step explanation of the monofractal, multifractal, and recurrence
analyses techniques. After the description of each analysis tech-
nique, we summarize the parameter settings that were used to
generate the results for this article. As part of an Appendix, this
overview will necessarily stay somewhat limited in its scope.
Therefore, we also compiled a list of more extended introductions
to each analysis technique and summaries for best practices for the
interested reader at the end of the Appendix.

Detrended fluctuation analysis (DFA) for monofractal
scaling. We used DFA to estimate the degree of long-range
correlation present in each time series of reading times, also called

monofractal scaling (Peng et al., 1995). As we outlined in the
introduction, monofractal scaling in a time series can be quantified
with DFA as a scaling relation between variation in a time series
and length of a time series. One can also think of the analysis as
providing a measure for how variation in a time series changes
across different timescales. We use as an example a reading time
series from a fourth grader during silent reading (see Figure A1,
left panel) to illustrate the process.

First, the type of the time series needs to be classified. If the
time series x is noise (as opposed to a random walk), then it is first
integrated (see Figure A1, right panel), yielding the integrated time
series y. As we are interested in how variation changes across
different timescales, the first step in DFA is to break the time series
into nonoverlapping bins of different bin size. If we start with a
small timescale, we could, for example, break the time series into
adjacent bins of four data points. As the bins should be nonover-
lapping and the time series contains 1,099 data points, this results
in 274 subseries, with the last three data points being lost for the
analysis on this scale (note that resampling techniques can be used
to mitigate such losses; see, e.g., Kantelhardt et al., 2002). Since
simple long-term trends that might be present in the data can bias
the estimation of monofractal scaling relations (Caccia, Percival,
Cannon, Raymond, & Bassingthwaighte, 1997), each subseries of
four data points is individually detrended. Usually, this is done by
removing linear trends, but one could also choose quadratic or
cubic trend functions if these seem more appropriate for the data.
After trends have been removed from each subseries, the root-
mean-square (RMS) for each subseries is calculated across all
four-data-point segments (see Equation A1) and averaged to result
in the average fluctuation magnitude for that scale (RMSs). This
process is repeated for increasingly larger bin sizes. Figure A2 (see
also Figure A3) illustrates the process for subseries with bin sizes
of 55, 110, and 275 data points. Usually, the largest bin size
corresponds to maximally one quarter of the overall length of the
time series.

(Appendix continues)

Table A1
Correlations Between Age, Reading Time Statistics, and
Comprehension Measures

Age (months) WPM Comp. Ratio DET DFA MFDFA

Oral reading .569�� .428�� .680�� .441�� �.200 �.128
Silent reading .621�� .401� .796� .405� �.119 .016

Note. Correlations between age, reading speed comprehension, and com-
plexity metrics. Correlation coefficients without asterisks are not statisti-
cally significant. WPM � words per minute; comp. � comprehension
scores; ratio � ratio comprehension scores (comprehension scores are
divided by reading time); DET � %Determinism; DFA � monofractal
scaling estimated by detrended fluctuation analysis; MFDFA � multifrac-
tality estimated by multifractal detrended fluctuation analysis.
� p � .05. �� p � .01.
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RMSs �� 1
N�

k�1

N

�y�k� � ys�k��2 (A1)

where

RMSs � root-mean-square for a particular scale.

N � number of subseries at a particular bin size.

y(k) � integrated subseries k.

ys(k) � local trend for at a particular bin size for the particular
subseries k of y.

The slope of that line (S) is the estimate for H, where H � S. H
is now informative about the strength of monofractal long-range
correlations in the data, as depicted in Figure 1. For H � 0.5, the
variation in the time series corresponds to white noise. For H �
1.0, the time series exhibits persistent fluctuations, indicative of
strong long-range correlations. In our example, the reading time
series exhibits a moderately strong degree of monofractal scaling,
as H � 0.86 lies between H � 0.5 and H � 1.0, but somewhat
closer to 1.0. For the analysis of the data sets in our study, we
chose four as the smallest bin size and one quarter of the maximum
length of the time series as the biggest bin size.

Multifractal detrended fluctuation analysis (MFDFA).
Multifractal analysis is warranted when the strength of the mono-
fractal scaling relations is not (more or less) homogeneous across
the data set, but when H is time dependent. For example, this is
often evident in changes between persistent and antipersistent
fluctuations in the time series, or bursting behavior (such as can be
seen in the time series displayed in Figure 1, around data points
300, 450, 600, and 700). In order to quantify whether there is
systematic variation of fractal scaling in the time series, we cal-
culate the multifractal spectrum (MF), which gives the range of the
different scaling regimes that operate in a single time series.

The calculation of MF can be done by a direct estimation,
whereby local Hurst exponents are calculated within a single time
series and the spread of the distribution of local Hurst exponents
estimates MF. Here we present an equivalent technique, the so-

called indirect estimation of MF (Ihlen, 2012), which we used for
the data in the present study. The indirect estimation of MF
proceeds basically in the same way as the monofractal DFA
analysis. The difference is that in addition to the standard RMS
computation, one computes Hurst exponents H for different qth
orders of RMS (see Equation A2). The standard RMS computes the
quadratic mean, that is, the average of the squared values. For the
q-order RMS, the scaling function for the mean of a range of larger
and smaller exponents q is calculated as well. Hence, for the
standard RMS, q � 2. In addition to that, we also compute H for
exponents ranging from q � 0.1 to q � 3.0 (see Ihlen & Vereijken,
2010).

RMSsq �� 1
N�

k�1

N

�y�k� � ys�k��q (A2)

where

RMSsq � root-mean-square for a particular scale for a par-
ticular q order.

N � number of subseries at a particular bin size.

y(k) � integrated subseries k.

ys(k) � local trend for a particular bin size for the particular
subseries k of y.

q � the exponent of fluctuation magnitude.

The different q-order RMS effectively accentuate the magnitude
of fluctuations on different scales, where small q accentuates the
fluctuations on faster scales (i.e., smaller bin sizes) and larger q
accentuates the fluctuations on slower scales (i.e., bigger bin
sizes). The rational is that when a time series is composed of
homogeneous long-range correlations, then H will not change with
variations in q. However, if long-range correlations in a time series
are time dependent, then H will be different for smaller and bigger
q, and the range of H across different values of q estimates the
magnitude of multifractal fluctuations, MF.

(Appendix continues)

Figure A1. Example time series of one reader’s 1,099 word-reading times during text reading. The original
time series data are displayed on the left-hand side. On the right-hand side is the integrated version of the time
series, which is a preliminary step in the calculation of detrended fluctuation analysis.
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Figure A4 depicts scaling H for the standard value of q � 2.0,
as well as for the maximum and minimum value of what we
employed (q � 3.0 and q � 0.1, respectively). As can be seen, H,
estimated by the slope of each regression line on the log-log plot,
decreased with increased q. From this, the indirect estimation of
the multifractal spectrum can be computed (as presented in Figure
2), resulting in a multifractal spectrum width of hqmax � hqmin �
0.291 (for details of the computation, and the reason why multi-
fractal spectrum width is not straightforwardly equal to the range
of H as displayed in Figure A4, left panel, see Ihlen & Vereijken,
2010).

The value of hqmax � hqmin � 0.291 does not correspond to the
straightforward strength of the multifractal fluctuations. Surrogate

tests with shuffled data can be employed to find out more about the
actual time-dependent multifractal fluctuations (see Ihlen & Ver-
eijken, 2010; Kantelhardt et al., 2002). Also, the selection of q
values will influence the actual estimation for the width of the
spectrum. Following the recommendations of Ihlen and Vereijken
(2010) for relatively short time series of keypress data, we chose
q values from 0.1 to 3.0 in steps of 0.1. Furthermore, we used the
same bin sizes as for the standard DFA, ranging from four to a
maximum of one quarter of the time series.

For introductions and best practices guidelines, the following
sources can be recommended: For both DFA and MFDFA (as well
as related analysis techniques), a recent research topic in Frontiers
in Fractal Physiology discusses various aspects of applying fractal
analysis techniques (Holden, Riley, Gao, & Torre, 2014). Here
especially the tutorial introduction on multifractal analysis by
Ihlen (2012) can be recommended. Another good introduction to
multifractal analysis for psychologists can be found in Kelty-
Stephen et al. (2013). A good introduction to monofractal analysis
is available on the website of the National Science Foundation
(Riley & Van Orden, 2005), as well as in Wallot et al. (2012), who
discuss applications to psycholinguistic data.

(Appendix continues)

Figure A2. Illustration of the binning and detrending procedure. The time
series is broken into increasingly larger bins (consisting of 55, 110, and 275
data points, from top to bottom) to calculate the average magnitude of
variation across different scales. After the average root-mean-square
(RMS) has been computed over many different bin sizes between 4 and
275, a log-log plot is constructed, charting the logarithm of the average
RMS against the logarithm of the corresponding bin size. If the change in
average RMS over different bin sizes forms a linear relationship, a scaling
exponent H (the Hurst exponent) can be computed by fitting a least-square
regression line to the plot (see Figure A3).

Figure A3. Log-log plot of how the average magnitude of variation
(average root-mean-square [RMS]) changes with the scale of variation (bin
size). The slope of the regression line fitted to the plot estimates the
strength for long-range correlations in the data, captured by the Hurst
exponent H. The r2 might appear very high. However, these kinds of
log-log plots usually exhibit monotonically increasing functions; hence, an
r2 of lower than .8 or .9 warrants a more detailed investigation of the
scaling relation. For example, it might be that there is systematic deviation
from linearity on the log-log plot and the data exhibit no clear scaling, or
only a subrange of scales actually shows a scaling relation.
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%Determinism of recurrence quantification analysis
(RQA). RQA is a rather general class of time series analyses that
captures various aspects of stability and instability in time series
data (Zbilut, Giuliani, & Webber, 1998). In our case, we were
especially interested in the %Determinism measure that quantifies
the degree of temporal structuredness and predictability of a time
series. To calculate %Determinism for our example time series in
Figure A1, a recurrence plot (RP) of that time series needs to be
constructed, from which the %Determinism measure can be cal-
culated. As already mentioned in the introduction, RQA uses the
method of time-delayed embedding (see Figure 3), whereby a
one-dimensional time series is plotted against itself to construct a
phase space of that time series. To embed a time series properly,
several parameters have to be estimated.

Usually, the embedding procedure begins with estimating a
delay parameter (�), but pertains mainly to continuously sampled
signals (Webber & Zbilut, 1994). Keypress series, however, are
series of interevent times, and no delaying of the time series is
necessary in this case (i.e., the delay parameter � equals 1). As a
next step, we need to find out how often we need to embed the time
series, that is, how many dimensions the phase needs to have to
properly hold the data (D). This can be done by the false nearest
neighbor (FNN) function (Kennel, Brown, & Abarbanel, 1992).
The basic idea of this function is that if the phase space of a time
series is too small, then data points in that phase space lie close
together (i.e., are neighbors) just because the time series has not
been embedded properly. This can be solved by seeking an em-
bedding dimension D where data points are sufficiently far away
from each other and the number of neighbors stays relatively
constant.

To employ the FNN function, the one-dimensional time series is
consecutively embedded into higher and higher dimensions and
the percentage of neighboring points in each dimension is re-
corded. Usually, the first local minimum where the number of
neighboring points in the phase space stays low across several
dimensions is selected as a good estimate for the embedding
dimensions parameter. Figure A5 displays the FNN function for
our example time series and the first 10 embedding dimensions. As
can be seen, the number of nearest neighbors initially deceases
with embedding dimension and stays close to a local minimum for
D between 3 and 6. As dimension 4 marks the absolute local
minimum, selecting 4 for the embedding parameter seems an
appropriate choice.

Now the time series can be embedded into a phase space with a
� of 1 and D of 4. Practically, this means that the one-dimensional
series x is plotted against itself 4 times, each time with a lag of 1
to construct the four-dimensional vector v that constitutes the
phase space (i.e., for our 1,099 data point series, this means that
points 1–1,096 are plotted against 2–1,097, against 3–1,098, and
against 4–1,099; see Equation A3).

vi � �xi, xi��, xi�2�, xi�2�, . . . , xi�(D�1)� (A3)

where

vi � is the D-dimensional vector that constitutes the phase
space.

Xi � is the ith subseries of the time series x that is used for
embedding.

(Appendix continues)

Figure A4. Illustration of the indirect estimation of multifractal spectrum (MF). The left panel displays the
scaling functions for three q-order root-mean-square (RMS): q � 0.1 (black), q � 2.0 (dark gray), and q � 3.0
(light gray). As can be seen, the slopes of the lines differ with different q. The right panel displays the
multifractal spectrum: The three circles mark the scaling exponents for q � 0.1 (black), q � 2.0 (dark gray), and
q � 3.0 (light gray). The dotted line marks the scaling exponents for other values of q that lie between 0.1 and
2.0, and 2.0 and 3.0, respectively. The range of the scaling exponents, hqmax � hqmin � 0.291, provides the
estimate of MF.
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� � is the delay parameter that gives the lag at which the time
series x is embedded.

D � is the dimensionality of the reconstructed phase space.

Finally, before we can start to compute RQA, the phase space
needs to be normalized by selecting a norm parameter. Normalization
of the phase spaces ensures that differences observed between data
sets are actually a function of the sequential ordering in a time series,
and not due to simple differences in the overall magnitude of the
values in that time series. Hence, the most important point about the
norm parameter is to keep it constant across all data sets. Because it
is less sensitive to single values in the time series, the Euclidean
normalization can be recommended as standard choice.

This normalized phase space allows us to create a RP of the
time series, which is basically a representation of the distances
between points in the phase space. However, the RP is a binary
representation: One selects a threshold parameter, and all dis-
tances in the phase space that are smaller than the threshold are
counted as recurrence, where patterns in the time series are
systematically reoccurring, while all distances greater than the
threshold parameter are counted as nonrecurrent behavior in the
time series. There is usually no absolute value for the threshold
parameter for physiological and psychological data. Rather, it is
recommended that the threshold is set in a way that 1%–5% of
the data points in a time series are counted as recurrent. This
way, RQA is sensitive to the systematic structure in a time
series (Webber & Zbilut, 2005).

Figure A6 presents the RP of our example reading time series. As
a visualization tool, RPs make patterns in time series visible and show
structure as a time series repeats itself. RPs are similar to auto-cross-
correlation plots, in that they visualize time-lagged dependencies in a
time series. Time at lag0 runs along the main diagonal of the plot,
stating the simple fact that a time series is always the same with itself
at lag0 (i.e., maximally recurrent). Furthermore, the plot is symmetric
about the diagonal. The two time series below and to the left of the RP
can be used to navigate the plot. For example, when one looks at the
coordinate 500 on the x-axis and 500 on the y-axis, one lands on the
main diagonal. When one looks at the coordinate 350 on the x-axis
and 1,050 on the y-axis, one can see that reading time patterns that
occurred around word 350 repeat themselves around word 1,050,
indicated by the dark area of the plot that is populated with many
recurrent points (in contrast, for example, to 25 on the x-axis and
1,050 on the y-axis, where the white area indicates the absence of
recurrent behavior).

A first measure of structure within a time series is %Recurrence,
which is related to linear autocorrelation and is simply computed
as the sum of all recurrent (black) dots on the plot divided by the
size of the plot (see Equation A4). However, one can also see the
recurrent points on the plot appear in a more clustered structure,
and one measure for this patterning is %Determinism, which is
computed as the number of all recurrent points that are diagonally
adjacent to each other divided by the sum of all recurrent points on
the plot. Hence, %Determinism is a measure of how much reading
times are organized in larger temporal patterns that span over
sequences of multiple reading times (see Equation A5).

(Appendix continues)

Figure A5. Plot of the false nearest neighbor function for the first 10
embedding dimensions. The first local minimum of the function spans
Dimensions 3–6.

Figure A6. Recurrence plot of the reading time series. The actual time series
from which the plot was computed are below and to the left of the plot, making
it easy to identify where in the time series reading time patterns recur.
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%Recurrence � 100 *
# of recurrent points in RP

size of RP
(A4)

%Determinism � 100 *
# of diagonally adjacent points in RP

# of recurrent points in RP

(A5)

Our example data set exhibits 7.55% Recurrence and 87.20%
Determinism. Similar to the multifractal spectrum, the absolute
values of these measures are usually not meaningful in psycho-
logical data. Rather, they need be contrasted with an interesting
base line or experimental condition—or provide predictive power,
such as for comprehension measures of reading. Especially for
RQA, the proper parameter setting provides extra challenges for
group analysis, as individual data sets will usually differ in optimal
delay or dimension parameters. Also, the threshold parameter
needs to be set in a way to fit all the data sets in a sample. The
standard procedure is to find a single value of delay, dimension,
and threshold that fits all data sets reasonably well, and then

examine how recurrence variables (e.g., %Determinism) differ
across data sets when contrasted on the same parameter settings.
Wallot et al. (2012) provide practical advice on how to use RQA
with multiple data sets.

For the current study, all parameters were first estimated for
each participant’s reading time data, and the average values across
all participants were used for the analysis, resulting in a Delay �
1 and Dimension � 5. The phase space was normalized with the
Euclidean norm.

For further readings on RQA, again the web book on the website
of the National Science Foundation can be recommended (Riley &
Van Orden, 2005). Also, a repository of introductory guidelines,
free software packages, and a comprehensive bibliography of
recurrence-plot-related scientific publications can be found in
Marwan (2014).
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