
Propelled by technological advances, we will soon have 
essentially complete catalogues of all but the rarest genetic 
variants in humans and several other species. Individuals 
in most species differ from each other by thousands to 
millions of DNA sequence variants. Some of this varia-
tion contributes to observable phenotypic differences in 
traits ranging from morphology, physiology and behav-
iour to predisposition to many human diseases. While 
the identification of variants that affect pheno types is  
rapidly progressing, the fundamental challenge now is to 
understand how these variants exert their effects.

An important class of variants, termed expression 

quantitative trait loci (eQTLs), influence the expression 
level of genes (BOX 1). The genetics of expression varia-
tion of single genes has been studied since at least 1962 
(REF. 1). Genome-wide eQTL mapping was proposed in 
2001 (REF. 2) and first carried out in its modern form 
at about the same time in a cross between two yeast 
strains3. Brem et al.3 used microarrays to measure varia-
tion in mRNA abundance for all expressed genes among 
recombinant offspring of these two parent strains. Relating 
this variation to the alleles that each offspring inherited 
from either parent allowed the identification of regions 
in the genome that harbour sequence variants that influ-
ence gene expression. The now-ubiquitous term eQTL 
for such regions was coined shortly thereafter4, although 
the related term protein quantity loci (pQLs; now more 
commonly known as protein QTLs (pQTLs)) was used 
in an examination of the genetics of protein levels for a 
limited number of genes in 1994 (REF. 5). Since then, there 

has been tremendous progress in the study of regula-
tory variation. Maps of eQTLs are being built in increas-
ingly large-scale studies in humans6–12 (see REF. 13 for 
earlier landmark studies) (TABLE 1), rodents4,14–20, flies21,22, 
plants4,23–30, worms31,32 and other species. The early 
observations in yeast of local and distant eQTLs, eQTL 

hot spots, a complex genetic basis of expression traits, 
and connections between expression and organismal  

phenotypes3,33 (see below) have since been found to hold 
in other species.

Beyond ever larger catalogues of eQTLs, our under-
standing is now being expanded in two directions. 
Although eQTLs were typically identified as ‘loci’ — that 
is, statistical associations between regions of the genome 
and the expression of genes — the identity of the pre-
cise causal variants and their molecular mode of action 
are coming into increasingly sharper view. Additionally, 
there is a growing understanding of the consequences of 
variation in gene expression levels for organisms. This 
second aspect is especially important because a crucial 
rationale for large eQTL studies is that they can help to 
prioritize likely causal variants among the multiple poly-
morphisms within the regions identified by genome-
wide association studies (GWASs), as well as to reveal 
the precise biological mechanisms through which DNA 
differences influence organismal traits. For example, the 
majority of loci identified in human GWASs are found in 
non-coding regions that are not in linkage disequilibrium 
with coding exons and must therefore reflect the effects 
of regulatory variation34.
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Expression quantitative 
trait loci
(eQTLs). Genomic regions  

that carry one or more DNA 

sequence variants that 

influence the expression level 

(typically mRNA abundance)  

of a given gene.

Recombinant offspring
Offspring of sexually 

reproducing organisms that 

carry a random combination  

of the alleles that they have 

inherited from their parents.

The role of regulatory variation in 
complex traits and disease
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Abstract | We are in a phase of unprecedented progress in identifying genetic loci that 

cause variation in traits ranging from growth and fitness in simple organisms to disease in 

humans. However, a mechanistic understanding of how these loci influence traits is 

lacking for the majority of loci. Studies of the genetics of gene expression have emerged 

as a key tool for linking DNA sequence variation to phenotypes. Here, we review recent 

insights into the molecular nature of regulatory variants and describe their influence on 

the transcriptome and the proteome. We discuss conceptual advances from studies in 

model organisms and present examples of complete chains of causality that link 

individual polymorphisms to changes in gene expression, which in turn result in 

physiological changes and, ultimately, disease risk.
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Protein QTLs
(pQTLs). Genomic regions  

that carry one or more DNA 

sequence variants that 

influence the protein 

abundance of a given gene.

eQTL hot spots
Regions of the genome that 

contain more expression 

quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?

eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Organismal phenotypes
Traits that are detectable at the 

level of the whole organism, 

such as shape, size, colour, 

growth rate or the risk of 

developing a certain disease.

Linkage disequilibrium
The phenomenon whereby 

specific allele combinations 

occur more frequently than 

expected by chance, typically 

because they are physically 

close to each other on the 

same chromosome.

QTLs
Genomic regions that carry  

one or several DNA sequence 

variants which influence a 

continuously variable trait  

of interest.

Table 1 | A sampling of recent human eQTL data sets

Year Cell type or tissue 
studied

Design Number of 
individuals

Disease or trait being compared to* Refs

Blood

2014 Whole blood Twins 2,752‡ Many 63

Whole blood Unrelated 922 NA 47

2013 Whole blood Unrelated 5,311§ Type 1 diabetes and cholesterol 
metabolism

70||

2012 Whole blood and LCLs Families 862 NA 216

2011 Whole blood Unrelated 1,469 Blood traits 71

Bone

2011 Osteoblasts Unrelated 113 Asthma 217

Brain

2014 10 brain regions Unrelated 134 Parkinson’s disease and other brain 
disorders

218

2012 Cortex and cerebellum Unrelated 400 Parkinson’s disease and other brain 
disorders

219

2011 Developmental time series Unrelated 269 NA 220

2010 4 brain regions Unrelated 150 NA 221

Heart

2014 Heart Unrelated 129 Cardiac traits 222

Immune system

2014 LCLs Unrelated 869 Type 1 diabetes and ulcerative colitis 72

Dendritic cells Unrelated 534¶ Autoimmune and infectious disease 74

Lymphocytes and 
monocytes

Unrelated 461 Autoimmune disease and 
neurodegenerative diseases

73

T cells Unrelated 348¶ Autoimmune disease 150

Stimulated monocytes Unrelated 432 Immunity-related (for example, bacterial 
infection, inflammation, multiple 
sclerosis and Crohn’s disease)

67

2013 LCLs Unrelated 462 Many 88

2012 Monocytes and B cells Unrelated 283 Immunity-related (for example, 
ulcerative colitis and systemic lupus 
erythematosus)

66

2010 Monocytes Unrelated 1,490 Many 148

2009 Fibroblasts, LCLs and T cells Unrelated 75 NA 8

2007 Lymphocytes Extended 
families

1,240 HDL-C 49

Liver

2011 Liver tissue Unrelated 266 Diabetes, drug response, lipid levels and 
prostate cancer

223

2008 Liver tissue Unrelated 427 Type 1 diabetes, coronary artery disease 
and plasma LDL-C

224

Lung

2012 Lung tissue Unrelated 1,111 Asthma 225

Multiple tissue types

2012 Adipose tissue Twins 856 Triglyceride levels and birth weight 62

Skin tissue Melanoma

LCLs Immunity-related

2010 Liver tissue Unrelated 960 Plasma LDL-C and myocardial infarction 100

Subcutaneous fat 433

Omental fat 520
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Homologous
Pertaining to the two copies of 

the same chromosome that 

were inherited from the mother 

and the father in diploid 

organisms (such as humans).

RNA sequencing
A method to determine the 

sequence of RNA molecules  

in a biological sample. By 

counting the RNA molecules 

that were transcribed from 

each gene, RNA sequencing 

can be used to quantify mRNA 

expression levels.

Genetic distance
A measure of how often  

two sites in a genome are 

separated during meiosis. 

Genetic distance is correlated 

with physical distance but can 

differ quantitatively because of 

variation in recombination rate 

along a chromosome.

designed experimental crosses, existing pedigrees or fam-
ilies9 or unrelated individuals from natural populations 
— the most common eQTL study design in humans6,11 

(FIG. 1A). eQTLs are often classified according to the rela-
tive locations of the eQTLs and the gene or genes that 
they influence, and according to the type of mechanism 
through which they affect expression (FIG. 1C).

Local eQTLs. An early observation was that some  
eQTLs are located near the genes they influence, whereas 
others are located elsewhere in the genome3. The for-
mer have been called ‘local’ eQTLs13. Local eQTLs can 
influence gene expression by two different mechanisms. 
Most obviously, they can act in cis and affect expression 
in an allele-specific manner. By definition, each allele of  
such eQTLs affects only the expression of the copy  
of the gene that is located on the same physical chromo-
some with it and not the expression of the copy on the 
homologous chromosome. Therefore, cis-eQTLs can be 
detected in heterozygous individuals by quantifying the 
relative expression levels of the two alleles, for example, 
by counting the number of times each allele is observed 
in RNA sequencing data. If there is an imbalance in the 
expression levels of the two alleles, then the gene is 
affected by a cis-eQTL41–46.

Local eQTLs do not always act in cis13,41,45 but can 
also act in trans. Trans-eQTLs are due to polymorphisms 
that alter the structure, function or expression of a dif-
fusible factor (FIG. 1C). The resulting differential activity 
or abundance of this factor alters expression levels of the 
genes that are influenced by the trans-eQTL. As the dif-
fusible intermediate is equally available to both alleles of 
a target gene, trans-eQTLs do not lead to allele-biased 
expression in heterozygous individuals. Furthermore, 
trans-eQTLs can be located anywhere in the genome 
relative to the genes they regulate. If they happen to be 
close to the given gene, then they will appear as local but 
not cis-acting eQTLs. An extreme example of a trans-
acting local eQTL is a single amino acid substitution in 
the yeast AMN1 gene, which results in differential regu-
lation of AMN1 itself through a regulatory feedback loop 
that involves several additional factors41. Although it 

has become common to use the terms ‘local eQTLs’ and 
‘cis-eQTLs’ interchangeably in human eQTL studies, we 
advocate using the appropriate precise terminology to 
clearly delineate relative position from mode of action.

Local eQTLs are abundant in all species studied so 
far. In humans, nearly 80% of expressed genes in whole 
blood had a local eQTL in a recent survey of nearly 1,000 
individuals47. In yeast, ~25% of genes had a local eQTL 
in a comparison of two different isolates41, and many 
more local regulatory variants are expected to exist in 
additional yeast strains that have not been studied so 
far. Indeed, a population genetic extrapolation predicted 
that most or all yeast genes will have local eQTLs across 
the global yeast diversity48.

Distant eQTLs. Distant eQTLs are defined as loci that 
are located further away from the genes they influence. 
The precise distance required for an eQTL to be distant 
is arbitrary and can be defined in physical or genetic 

distance; consequently, it differs between studies. For 
example, such a distance can range from 10 kb in yeast3 
to 2 Mb in humans7; some studies even require distant 
eQTLs to be located on different chromosomes from 
the genes they influence49. Distant eQTLs usually act 
in trans. The number of distant eQTLs that have been 
identified so far is much more variable between spe-
cies than that of local eQTLs. In yeast3,50,51, the nema-
tode Caenorhabditis elegans31, the plant Arabidopsis 
thaliana23,25 and rodents16,52–54, there are multiple strong 
trans-acting-eQTL hot spots that can each affect the 
expression of up to hundreds of genes. In yeast, many 
of the expression effects at some of these hot spots are 
caused by variation in single genes33,50. Other yeast hot 
spots may contain multiple causal genes55,56 — a finding 
also seen in mouse mapping panels16,57. Studies of model 
organism panels also routinely identify large numbers of 
distant eQTLs that do not fall into hot spots31,50.

In contrast to these findings in model organisms, 
distant eQTLs have been harder to find in human pop-
ulation-based samples, and family-based analyses have 
provided mixed support for distant-eQTL hot spots9,58. 
The apparent difference in the prevalence of distant 

Table 1 (cont.) | A sampling of recent human eQTL data sets

Year Cell type or tissue 
studied

Design Number of 
individuals

Disease or trait being compared to* Refs

Tumours

2014 Colorectal tumours and 
normal tissue

Unrelated 103 Colorectal cancer 226

5 tumour types# Unrelated 145–391 5 types of cancer 227

2013 Breast cancer Unrelated 219 Breast cancer 228

eQTL, expression quantitative trait loci; GWAS, genome-wide association study; HDL-C, high-density lipoprotein cholesterol; LCL, 
immortalized lymphoblastoid cell line; LDL-C, low-density lipoprotein cholesterol; NA, none reported in eQTL paper, although 
overlap is often reported in follow-up analyses in the context of additional GWASs. The table shows recent studies that presented 
new eQTL data sets in humans. Unless otherwise indicated, meta-analyses, computational reanalyses or GWASs of diseases that 
compare to published eQTL data sets are not shown. The table is not meant to be exhaustive but to provide an overview of the 
breadth and scale of the field. *Selections of traits from those highlighted in the given paper are shown; eQTLs are usually 
compared to many more traits. ‡An additional 1,895 unrelated individuals were studied in a replication data set. §An additional 
2,775 unrelated individuals were studied in a replication data set. ||The largest eQTL meta-analysis so far. ¶eQTL mapping was 
carried out on the basis of measurements of a targeted subset of genes. #Based on publicly available data.
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Linkage blocks
Continuous haplotypes that 

are not broken up in the 

population under study such 

that sequence variants within 

them all show the same 

patterns of association with  

a certain trait of interest. 

Haplotypes
Stretches of DNA that carry 

certain combinations of alleles 

at two or more DNA variants.

Variance
A statistical measure of the 

variability of a trait in a 

population.

Heritability
The fraction of variance in  

a trait that is due to genetic 

differences among  

the individuals in a population.

eQTLs between species is most likely due to the fact 
that the detection of distant eQTLs is more difficult in 
human populations than in experimental crosses. In 
crosses, few alleles segregate at high frequencies at each 
locus, and linkage blocks are relatively large, resulting in 
high statistical power at any position in the genome.  
In human population samples, there are multiple haplo-

types at most positions in the genome, multiple variants 
per region (most of which are at low frequencies) and 
shorter linkage blocks. Together, these features necessi-
tate many more association tests. The strict significance 
thresholds required to correct for this large number 
of tests result in low statistical power, making distant 
eQTLs harder to find. Indeed, to reduce the multiple-
testing burden, most human eQTL searches have been 
restricted to local variation around each gene, such that 
distant eQTLs cannot be discovered by design. Distant 
eQTLs also have smaller effect sizes59 and seem to be 
more tissue-specific than local eQTLs59,60, which further 
complicates their detection.

Several recent studies estimated the relative impor-
tance of local and distant genetic variation on human 
mRNA abundance variation61–63. This can be achieved 
even without knowing the identity of individual eQTLs. 
Genome-wide genotyping data can be used to partition 
the variance in a trait into various sources such as genetic 
or environmental variation64,65. The genetic component 

(that is, the ‘heritability’) of the gene expression variance 
can be further partitioned into the contribution of the 
genomic region centred on the gene itself and the con-
tribution of the remainder of the genome. This distant 
contribution accounts for the majority (60–75%) of the 
heritability in human gene expression61–63. Thus, dis-
tant eQTLs clearly exist in humans just as they do in  
model organisms. Indeed, as sample sizes increase  
in human studies, more distant eQTLs are being discov-
ered62,63,66–73. In both yeast50 and humans67,74, the effects 
of distant eQTLs can change considerably in different 
environments. Based on the evidence so far, the trans-
acting component in human populations seems to be 
more dispersed across many loci across the genome than 
the major hot spots seen in model organisms. It remains 
unclear whether this is due to the comparatively low 
power in human studies, a result of the fact that more 
variation is examined in human population studies than 
in crosses in model organisms, or a true reflection of 
biological differences.

The molecular chain of causality

The molecular nature of cis-eQTLs. Regulatory varia-
tion can affect organisms by interfering with any of the 
steps along the gene expression cascade from DNA to 
protein (FIG. 1B). For many years, technology largely lim-
ited eQTL studies to measures of mRNA abundance. 
Now, new technologies fuelled by the advances in mas-
sively parallel sequencing enable detailed examination 
of how sequence variation influences the individual 
steps of gene expression. The first wave of these studies 
examined transcription factor (TF) binding75–79, chro-
matin accessibility80,81, DNA methylation82–86, alternative 
splicing43,44,87–89, small RNAs88,90,91, large intergenic non-
coding RNAs (lincRNAs)92,93, RNA editing89 and mRNA 
degradation94. It is now clear that all of these types of 
transcripts and processes can be affected by regulatory 
variants39. There is emerging evidence that much of 
the variation at multiple genomic levels is orchestrated 
through cis-acting sequence differences that affect TF 
binding.

A major advance in understanding the nature of the 
causal DNA variants that underlie eQTLs is the growing 
availability of whole-genome sequences88,95. All sequence 
variants are essentially known in these studies, so that the 
causal eQTL variants themselves (rather than a linked 
single-nucleotide polymorphism (SNP) on a genotyp-
ing array) will often show the highest association with 
gene expression. For example, a recent eQTL mapping 
of 462 fully sequenced human individuals found that 
short insertions and deletions (indels) are more likely 
to result in local eQTLs than SNPs88. Causal eQTL vari-
ants are further enriched in DNase I-hypersensitive sites, 
in regions annotated96 as active promoters and strong 
enhancers, and in TF binding sites88.

Investigation of allele-specific histone modifica-
tions, TF binding and mRNA levels in human parent–
offspring trios has provided additional support for the 
importance of variation in TF binding97–99. Sequence var-
iants that are located in TF binding sites are correlated 
not only with variation in TF binding itself but also with 

Box 2 | Controlling and using non-genetic sources of expression variation

Large studies of gene expression, such as studies of expression quantitative trait loci 

(eQTLs), will invariably be carried out over a long time span and sometimes in multiple 

laboratories108. Even with the most standardized techniques, the resulting data sets 

usually contain some degree of systematic variation that is not the focus of the 

experiment. This can be technical (for example, batch effects due to slightly  

different experimental conditions) or biological (for example, different age or sex of  

the individuals in the study)200. This extra variation can obscure true signals or, worse, 

generate false positives if it is confounded with variables of interest200,201.

There are many strategies to control systematic variation. When they are known (for 

example, sex and age, or processing date), the sources of this variation can be explicitly 

taken into account during analysis. Alternatively, the expression data can be used to 

identify principal components, surrogate variables202 or hidden factors in a Bayesian 

analysis203. These capture large systematic effects that can then be removed before the 

remaining analyses, sometimes markedly improving eQTL detection in the ‘de-noised’ 

data203. However, strong real genetic effects (such as trans-acting eQTL hot spots) can 

inadvertently be removed by these approaches204. One way to avoid this is to jointly 

estimate confounding factors and genetic signals205. There are many related 

approaches to account for non-genetic sources of variation in eQTL mapping206–211.

In addition to treating non-genetic variation as noise during eQTL mapping, this 

variation can sometimes be used to extract useful information. For instance, the  

gene expression data can be combined with external information (for example, on 

transcription factor (TF) binding motifs) to infer unobserved cellular states such as  

the activities of TFs212,213 or of post-transcriptional regulators214. In turn, these inferred 

activities can be used to better understand the biological modes of action of the 

observed eQTL.

In another example, Francesconi and Lehner215 reanalysed an eQTL data set in 

Caenorhabditis elegans31. The worms in the panel had been synchronized to the same 

developmental stage but still varied from each other within a range of several hours. 

The authors used expression data from a developmental time series to assign each 

strain to its precise ‘developmental age’ and then used this ‘age’ as a covariate in eQTL 

mapping. They found not only many more eQTLs but also QTLs that affected the 

dynamics of expression changes during development215.
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differential histone modifications, mRNA levels and 
DNA methylation84. A parsimonious explanation for 
these observations is that differential TF binding is the 
primary molecular change. In turn, the TFs then direct 
the changes in histone modifications, DNA methylation 
and mRNA expression.

These global analyses complement multiple exam-
ples of individual human cis-eQTLs that are caused 
by sequence differences in TF binding sites49,74,100–103. 
However, only 25–35% of genetically variable TF bind-
ing events are associated with a known sequence variant 
within the corresponding TF binding core motif 77,79,98,99. 
Some of the remaining cases may be due to missed 
motif variants. Alternatively, causal sequence variants 
outside core motifs may influence TF binding, perhaps 
by altering the local shape of the DNA or by influenc-
ing the binding of other TFs that form complexes with 
the assayed TF. An interesting variation on this theme 
is a 2-bp deletion in a promoter that segregates among 
yeast strains and causes variation in the expression of 
the ERG28 gene104. The deletion allele does not disrupt 
a TF binding motif but instead moves two neighbouring  
TF binding sites closer together, resulting in reduced 
binding by both factors. Experimental dissection of 
additional cis-eQTLs will reveal the full spectrum  
of their molecular causes.

The molecular nature of trans-eQTLs. Trans-eQTLs can 
be due to a diverse set of molecular causes. They can be 
coding variants in regulatory genes or local eQTLs of 
such genes. Work in yeast showed that the regulatory 
genes that act as trans factors themselves have diverse 
functions. Proteins encoded by trans-acting yeast 
eQTLs are not enriched for TFs33. Instead, the func-
tions they encode range from RNA-binding proteins 
(such as MKT1)55,105,106 to members of signalling cas-
cades (such as IRA2 (REF. 50) and GPA1 (REF. 33)) and 
modifiers of nucleosome composition (such as swc5 in 
Schizosaccharomyces pombe51).

Recent work in humans is beginning to reveal simi-
lar molecular diversity among trans-eQTLs66–68,70,74. For 
example, IRF7 (which encodes interferon regulatory 
factor 7, a transcription factor) is influenced by a local 
eQTL in activated dendritic cells, a type of immune cell. 
The same eQTL SNP is associated with the expression of  
a set of genes in trans74. Experimental overexpression 
of IRF7 influences the same set of genes, demonstrat-
ing that the altered expression of IRF7 caused by the 
local eQTL is responsible for driving further expression 
changes74. Adding another level of complexity, in human 
monocytes IRF7 is influenced by another trans-acting 
locus that maps to a local eQTL in EBI2 (also known as 
GPR183, which encodes a G protein-coupled receptor)69. 
Other trans-eQTLs in humans include an amino acid 
substitution in a cytochrome P450 enzyme67 that reduces 
the half-life of the protein107, a local eQTL for the LYZ 
gene encoding the secreted enzyme lysozyme66–68, and 
multiple associations within the highly variable human 
major histocompatibility complex (MHC) region66,67. 
When more human trans-eQTLs have been fine-
mapped, it will be interesting to examine whether certain 
types of molecular causes (coding versus regulatory) or 
genes (encoding TFs, signalling molecules or others) are 
more likely to result in trans-acting variation.

From the transcriptome to the proteome. The vast major-
ity of current studies use mRNA rather than protein 
abundance as the measure of gene expression. However, 
coding genes ultimately function through their protein 
products. The experimental preference for mRNA is 
because transcript levels can be measured more easily 
than protein levels. Whereas eQTL studies can rely on 
standardized methods that readily quantify most of the 
transcripts in the genome108, the few studies that have 
examined proteome variation used a wide range of 
assays, including commercial antibody kits for certain 
blood proteins109, 2D difference gel electrophoresis110, 
microwestern arrays111 and different types of mass spec-
trometry112–118. Many of these studies were limited in the 
number of samples and/or proteins.

Two questions arise when comparing genetic influ-
ences on the transcriptome and the proteome. Does a 
typical eQTL feed forward into variation in protein lev-
els? Conversely, are most pQTLs simply a reflection of 
the underlying mRNA variation, or do they arise from 
genetic influences on post-transcriptional mechanisms? 
These questions are an important area of active research, 
and a consistent picture has yet to emerge. The first direct 
comparisons of eQTLs and pQTLs obtained by mass 
spectrometry in model organisms57,119,120 suggested that 
most eQTLs did not seem to influence protein levels and, 
conversely, that most pQTLs seemed to arise without  
corresponding differences in mRNA abundance.

More recent proteome-wide studies reported better 
agreement between eQTLs and pQTLs. For example, an 
analysis of 22 diverse yeast strains found that most of the 
identified eQTLs had concordant effects on protein lev-
els118. Studies in human cell lines have not only reported 
substantial overlap between eQTLs and pQTLs but also 
detected a number of protein-specific pQTLs without 

Figure 1 | Designs for genetic mapping of variation in gene expression and other 

molecular traits. Molecular variation is mapped in genetically variable populations. 

Aa | These populations can be generated through designed crosses in model 

organisms. For example, the genetic backgrounds of a set of yeast strains are  

reshuffled by mating followed by meiosis, resulting in a set of recombinant offspring. 

Ab | Alternatively, outbred populations can be used that carry genetic variation which 
was spread and recombined by historical genetic processes (illustrated by the genetic 

history of a hypothetical region of the genome). This is the most popular design for 

expression quantitative trait locus (eQTL) mapping in humans. Pedigrees or families of 

related individuals can also be used (not shown). B | The molecular quantity of interest 

is measured in each individual in the study panel. The figure illustrates the results for 

two individuals that differ in the expression of a certain gene. To map the loci involved 

(marked by the star), this molecular variation is compared to genetic variation among 

the individuals (BOX 1). Many of the steps along the gene expression cascade can be 

studied in this way, including DNA methylation (Me), histone modifications, 

transcription factor (TF) binding, active transcription, mRNA levels (resulting in  

eQTLs), translation and protein levels (resulting in protein QTLs (pQTLs)). In the 

example, the altered protein level due to the genetic polymorphism influences disease 

risk, an organismal trait. C | eQTLs can be classified according to their location (local or 

distant to the gene they influence) and according to their mode of action (cis or trans). 

MRCA, most recent common ancestor.

◀
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apparent effects on mRNA111,112,117. The effects of eQTLs 
seemed to be attenuated at the protein level relative to 
their effects on mRNA levels112. These studies used mod-
est numbers of individuals (<100) so that only local loci 
with large effects could be examined. Some of the ‘miss-
ing’ eQTLs or pQTLs might therefore have been due to 
low statistical power.

To overcome the limitation of sample size, a novel 
experimental design was recently introduced in yeast. 
The approach allows the detection of distant and local 
pQTLs by comparing the genetic make-up of pools of 
single cells with very high protein levels to those with 
very low protein levels from populations of hundreds of 
thousands of genetically different cells121,122. Both studies 
showed that more than half of the known distant eQTLs 
that previously seemed to be mRNA-specific do in fact 
have concordant pQTLs. Importantly, the high detec-
tion power also revealed that a typical protein is affected 
by several times more distant pQTLs than seen before. 
It remains to be seen whether the many newly discov-
ered pQTLs only arise at the protein level or whether 
they reflect eQTLs with small effects that have not been 
detected so far.

Protein translation may provide a plausible target for 
sequence variants that influence protein, but not mRNA, 
levels123,124. However, recent studies that used ribosome 
profiling125 in yeast126,127 and in humans112 found strong 
concordance between eQTLs and ribosome occupancy 
QTLs, suggesting that protein-specific genetic effects are 
likely to act beyond the stage of translation.

Lessons from model organisms

Testing causality of human variants. Model organisms 
can provide insights into the consequences of sequence 
variants that are suspected to be important in human 
disease. For instance, it is possible to engineer the 
genome and observe the effects of a given sequence vari-
ant on the whole organism rather than on a molecular or 
cellular trait. A regulatory element upstream of the MYC 
oncogene (which encodes a TF), for example, contains a 
SNP that is associated with cancer in humans. The SNP 
alleles lead to differential expression of MYC128, but the 
association between differential expression of MYC 
and cancer was inconclusive. To test this, transgenic 
mice were generated in which the mouse orthologue 
of the SNP-containing cis-regulatory element (CRE) 
was deleted129. Ablation of the CRE resulted in mod-
estly reduced Myc expression levels. Crucially, the CRE-
deleted mice were also more resistant to tumorigenesis. 
However, although this work shows that the CRE is an 
important determinant of cancer risk, it does not prove 
that the SNP within the element contributes to this risk 
through gene expression. To formally achieve this, it 
would be necessary to generate transgenic mice that 
differ in the SNP alleles.

The Myc study in mice was facilitated by the fact that 
the orthologous CRE actually exists in mice, in spite  
of the fact that individual regulatory elements turn over 
rapidly in mammalian evolution130. Many other human 
CREs would have to be inserted into the mouse genome 
in order to study their sequence variation. For example, 

transgenic mice were created that carried a human CRE 
that is not present in mice and that regulates the KIT 
ligand (Kitl) gene131. The mice were engineered to carry 
either of the alleles of a human SNP inside the CRE. 
The SNP was suspected to contribute to blond hair in 
humans. The two CRE alleles drove differential expres-
sion of Kitl in the skin and also resulted in a difference 
in mouse coat colour, suggesting that this variant may 
influence human physical appearance through altered 
gene regulation.

Genetic associations shared between species. The power-
ful mapping panels in model organisms are designed to 
maximize statistical power to detect genetic associations 
from sets of defined genetic backgrounds. The panels 
can be used to identify novel links between sequence 
variants, expression and disease40. Although the indi-
vidual causal DNA variants are most probably not the 
same as those in humans, the same genes, pathways and 
networks may nevertheless harbour important genetic 
variation in several species. For example, eQTL maps 
from a panel of genetically heterogeneous rats revealed 
a network of immune-related genes69 centred on the 
TF-encoding gene Irf7. In turn, the expression of Irf7 
is influenced in trans by a cis-acting eQTL for the Ebi2 
gene. Remarkably, an expression network with a similar 
structure to that in rats was also found in human mono-
cytes69. As in rats, the human network was also influ-
enced in trans by a cis-eQTL for EBI2. One of the human 
EBI2 cis-eQTL SNPs was found to be associated with the 
autoimmune disease type I diabetes, an association that 
had been missed previously.

Conceptual insights into causality. In addition to appli-
cations with direct relevance for human disease, model 
organisms can provide powerful conceptual insights into 
the relationship between regulatory variation and organ-
ismal traits. Genetic tools that allow precise genome 
engineering and experimental control of gene expres-
sion make yeast an especially suitable organism for such 
studies. These advantages allowed the first identification 
of a trans-acting eQTL that causes trait variation through 
expression changes. The protein encoded by the AMN1 
gene differs between a common laboratory budding 
yeast strain and other strains at two amino acids33. The 
Amn1 protein is a negative regulator of ACE2, which 
encodes a TF132. In turn, Ace2 activates CTS1 (REF. 133), 
which encodes chitinase, an enzyme required for cell 
separation134. The laboratory strain allele of Amn1 fails 
to repress ACE2, resulting in upregulation of CTS1 and 
separation between mother and daughter cells. In other 
strains, CTS1 expression is lower, and budding cells stick 
together to result in ‘clumpy’ growth33.

Recent work in yeast has provided further insights 
into how genetic effects on expression shape pheno-
types (FIG. 2). Rest et al.135 showed that effects on fitness 
of the expression level of the essential gene LCB2 are 
nonlinear and depend on both the environment and the 
genetic background (FIG. 2A). They replaced the native 
LCB2 promoter with a promoter system that can be used 
to finely control LCB2 expression and found that the 
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reduction in expression level compared with the wild-
type level led to a sharp decrease in fitness. By contrast, 
overexpression had only minor fitness effects. Growth 
in the presence of osmotic stress preserved the shape of  
the expression–fitness curve but shifted it such that 
higher expression of LCB2 was required for a given fit-
ness level. Wild yeast strains had lower expression levels 
of LCB2 than those seen in the laboratory strain, sug-
gesting that the expression–fitness curve is also shifted 
by different genetic backgrounds135.

Yeast eQTL hot spots often overlap with loci that 
influence growth rates. This observation could arise 
when gene expression differences cause growth dif-
ferences or vice versa, as well as when expression and 
growth do not affect each other but are both caused by 
the same locus or by different loci in close proximity 
(FIG. 2C). To distinguish among these scenarios, Gagneur 
et al.136 mapped yeast eQTLs in five environmental con-
ditions and compared the eQTLs to loci that influence 
growth in the respective conditions. Whenever a QTL 
affected growth in a given condition, this locus also 
affected the expression of multiple genes in that condi-
tion; that is, the locus was an eQTL hot spot. However, 
some QTLs affected growth in only a few conditions but 
remained eQTL hot spots even in conditions in which 
they did not affect growth. When a growth QTL was 
detected in several conditions, it was also an eQTL for 
some genes in all of these conditions but for other genes 
in only some of the conditions. The authors used a sta-
tistical model to show that those genes influenced by 
a hot spot irrespective of growth condition were more 
likely to cause growth differences than genes with  
condition-dependent eQTLs136.

Two studies used allelic engineering to show that four 
nucleotide changes in three TFs together explain nearly 
all of the variation in sporulation efficiency between 
two yeast isolates137,138 (FIG. 2B). By contrast, these same 
four variants accounted for much less variation in gene 
expression at the time point at which cells switch to the 
meiotic state137. The effects of these SNPs on gene expres-
sion had different magnitudes and different degrees of 
additive versus epistatic contributions compared with 
those on sporulation, suggesting that there is no simple 
direct relationship between the effects of these specific 
nucleotide variants on gene expression and on the cel-
lular phenotype. Together, these yeast studies show that 
the relationship between gene expression variation and 
higher-order traits can be highly complex, and they pro-
vide context for interpreting links between eQTLs and 
disease in humans.

The role of eQTLs in human disease

A region identified by GWASs as associated with dis-
ease typically contains more than one gene and multi-
ple sequence variants that are in linkage disequilibrium 
with each other. The next task is to find the causal genes 
and sequence variants, and to understand how they 
affect the disease. Although variants that alter coding 
sequences are obvious candidates, most human GWAS 
hits fall far from coding regions of genes and are over-
represented in regulatory elements34,139. Therefore, most 

causal variants probably influence traits by altering gene 
expression. A GWAS hit typically contains multiple 
regulatory elements, and these elements can influence 
genes at some distance140. It is therefore not easy to pin-
point the causal variants and to discern the genes that 
they affect. eQTLs can provide the crucial link between 
the variants in a GWAS region and the biological  
processes they affect.

Bigger data, better maps. When a GWAS hit is also an 
eQTL for a given gene, this provides the hypothesis that 
the expression of this gene influences the disease. It is 
now firmly established that GWAS hits for common 
diseases are enriched for eQTLs, and vice versa. This 
enrichment was first noted in a comparison of asso-
ciations for traits such as body mass index to eQTLs in  
adipose tissues and blood10, and was later observed  
in comparisons of GWAS results and eQTLs mapped in 
immortalized cell lines141,142. There have since been many 
eQTL studies in tissues with relevance for a given dis-
ease, providing numerous cases of GWAS–eQTL pairs 
that suggest plausible causal mechanisms (TABLE 1).

To maximize the chance of finding GWAS–eQTL 
links, eQTLs need to be mapped in additional tis-
sues143,144. For example, Kapoor et al.145 identified a 
causal regulatory variant that influences heart function 
by altering an enhancer in heart tissue; this variant had 
been missed in previous eQTL studies of different tis-
sues. Reference panels of eQTLs identified in multiple 
human tissues146 will be useful in this regard, as are 
current efforts to map eQTLs in purified primary indi-
vidual cell types (such as certain subtypes of immune 
cells66–68,73,74,147–151) rather than in tissues that contain 
a mixture of cell types (such as whole blood). Such 
analyses of purified cell types are especially important 
because eQTL architectures can change dynamically 
during developmental differentiation of related cell 
types, as demonstrated in the haematopoietic cell line-
age in mice152,153. For tissues that are difficult to obtain 
from primary sources, induced pluripotent stem cells 
(iPSCs)154, which can be differentiated into various 
cell types, provide a promising alternative. As a crucial 
prerequisite for using iPSCs, it was recently shown that 
gene expression differences between iPSCs derived from 
several donors are larger than the technical variation 
induced by cellular reprogramming and cell culture155.

Even in tissues and cell types that have been stud-
ied, the currently available maps are incomplete. This is 
partly because eQTL architectures can change consider-
ably in cells exposed to different growth conditions, as 
initially demonstrated in yeast50,106,136. A rapidly growing 
set of studies is mapping eQTLs in human cells exposed 
to physiologically relevant stimuli. So far, the main 
focus of this work is on comparing eQTLs in unstimu-
lated immune cells66,68,73,147–149,151 to eQTLs that are only 
seen after these cells have been activated by triggering 
the immune response16,67,74,150,156,157. Immune cell activa-
tion can reveal large numbers of eQTLs that are hidden 
in resting cells158. Stimulus-dependent eQTLs in whole 
blood also help to explain individual differences in the 
transcriptional response to vaccination159.
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Parts B and C from REF. 137 and REF. 136, respectively.
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Many eQTLs are missed owing to low statisti-
cal power in small samples. As sample sizes increase 
towards thousands of individuals, eQTL catalogues 
have grown remarkably. Recent studies of a thousand 
or more individuals report eQTLs for the majority of 
genes expressed in a given tissue47,63,70. Many of these 
eQTLs have small effects that were beyond the detec-
tion limit of the earlier, smaller panels, and there are 
likely to be thousands more eQTLs beyond our current 
statistical reach.

Analytical challenges and opportunities. A common 
approach for prioritizing likely causal variants among 
the variants that are linked to a genomic region impli-
cated by GWASs is to focus on variants that are eQTLs 
in a published data set (TABLE 1) and on variants that are 
located in functional elements such as promoters or 
enhancers160–163. Similar to eQTLs, maps of such regu-
latory features are available in a growing number of tis-
sues and cell types96,161. As both eQTL catalogues and 
maps of regulatory features continue to grow, more 
and more eQTLs will be found to colocalize with regu-
latory regions, requiring decisions on which overlaps 
are the most informative. Furthermore, GWAS signals 
would ideally be compared to eQTLs and regulatory 
features obtained from the ‘causal’ cell type in which 
the given disease emerges. However, for many diseases 
and traits it is not a priori clear which cell type is the 
most relevant.

Recently, integrative Bayesian methods have been 
developed to identify sets of functional sequence anno-
tations (for example, from sets of regulatory elements 
from many different cell lines) that are the most relevant 
for the given trait in an unbiased manner139,164–168. These 
methods complement similar approaches to fine-map 
the causal sites within eQTLs themselves47,105,169,170, to  
jointly analyse eQTLs across different tissues171 and 
to predict expression levels from genotypes172. When 
annotations inferred to be important for the trait 
come from a certain tissue, this suggests that the tis-
sue is biologically important for the trait. Not only can 
these links support known connections (for example, 
between high-density lipoprotein (HDL) levels and 
regulatory elements in liver cells164), but they can also 
generate new hypotheses. For example, GWAS hits for 
platelet volume were enriched in regulatory elements 
in the spleen, which is not obviously connected to this 
trait164. In turn, the annotations inferred to be the most 
important can then be used to select the most promising  
variants for future study.

The approaches show promise in fine-mapping indi-
vidual GWAS regions165 but often still result in sets of 
multiple potentially causal variants. A natural extension 
of these methods is to also consider whether each vari-
ant is an eQTL166,168. For example, in one analysis eQTLs 
were found to be the most important source of infor-
mation when prioritizing among GWAS hits for auto-
immune disorders166. Further information can be gained 
by including published functional knowledge about the 
gene that the eQTL regulates and by studying whether it 
is known to have functions related to the disease173. This 

type of information will be particularly useful when a 
given eQTL influences the expression of multiple genes, 
perhaps in different tissues. Other Bayesian approaches 
formally test whether an eQTL and a GWAS hit are due 
to the same causal variant rather than to two closely 
linked variants174, and may gain predictive power by 
considering functional annotations. As the diverse 
genomic data sets continue to grow, rigorous integration  
across them will be crucial.

Bridges across the causality gap. Several exam-
ples of causal links between human regulatory 
variants and disease have been uncovered in recent  
years49,101–103,145,175,176 (see REF. 177 for a review of earlier  
work). A prominent example is a common SNP at 
1p13, a locus associated with the risk of myocardial 
infarction100 (FIG. 3). Remarkably, although the SNP 
is located in the 3ʹ untranslated region of a gene, its 
causal effect on infarction is not mediated through this 
gene. Instead, the minor SNP allele, which is associ-
ated with reduced risk, creates a binding site for a TF 
that is preferentially expressed in the liver100. As a con-
sequence, the sortilin 1 (SORT1) gene, which is ~40 kb 
away and separated from the causal SNP by 2 addi-
tional genes, is upregulated specifically in the liver. 
Knockdown and overexpression studies in mouse liver 
confirmed that higher expression of the sortilin pro-
tein results in lower levels of low-density lipoprotein 
cholesterol (LDL-C). In turn, LDL-C is a well-known 
risk factor for myocardial infarction, providing the 
final link in the causal connection between this eQTL 
and a major human disease.

A second case involves SNPs associated with obe-
sity that are located within introns of the fat mass and 
obesity-associated (FTO) gene178. As knockout of Fto 
results in leaner mice179, it had been suspected (but 
not demonstrated) that the causal variants might act 
through expression levels of FTO. However, recent 
work showed that the genomic region containing the 
variants in the obesity-associated region is in physi-
cal contact with the iroquois homeobox 3 (IRX3) 
gene, which is located at a distance of ~500 kb from 
the variants180. SNPs in the obesity-associated region 
also showed association with the expression of IRX3 
in human cerebellum, albeit with only nominal sig-
nificance. Phenotypes of mouse knockout models of 
Irx3 are consistent with a causal role of IRX3 in obesity. 
More work will be needed to identify the precise causal 
variant or variants within the obesity-associated region 
and to determine whether their effects on obesity are 
mediated primarily by IRX3 expression variation.

Notably, these examples both involve SNPs in regu-
latory sequences that are located some distance away 
from the genes they influence. Such long-range regula-
tory interactions are usually mediated by physical con-
tact between the regulatory DNA and the regulated 
gene. Targeted181–185 and global186 methods for mapping 
the physical interactions of GWAS hits will be useful to 
systematically dissect the regulatory consequences of 
disease-associated variants, as recently demonstrated 
for several breast cancer risk loci184.
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Conclusions and perspectives

The work we have reviewed here demonstrates that 
eQTLs have important roles in influencing downstream 
traits ranging from yeast growth and fitness to human 
disease. The connections along the causal chain from 
DNA variant to altered expression and trait variation can 
be surprisingly complex. Dissection of the functional 
impact of regulatory variation will continue to require 
careful experimental follow-up work. The existing and 

rapidly growing catalogues of eQTLs will enable more 
precise targeting of these efforts. Large sample sizes will 
be crucial to ensure that no relevant eQTLs are missed, 
especially the more elusive trans-acting variants. To 
ensure that the relevant biology is captured, eQTL maps 
need to be constructed in a wide range of tissues and cell 
types, and under a variety of physiologically important 
conditions. When tissues are difficult to obtain or when 
they represent complex mixtures of cells (such as brain 
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Figure 3 | An example of a full chain of causality in humans. a | The 

minor allele of a non-coding single-nucleotide polymorphism (SNP) in 

the 3ʹ untranslated region (3ʹUTR) of the CELSR2 (cadherin, EGF LAG 

seven-pass G-type receptor 2) gene creates a transcription factor binding 

site for CCAAT/enhancer-binding protein (C/EBP), to which the major 

allele does not bind100. Binding of C/EBP at this site leads to increased 

expression of the sortilin 1 (SORT1) gene in liver cells. b | In mice, 

overexpression of Sort1 in the liver reduces low-density lipoprotein 

cholesterol (LDL-C) levels (calculated using fractions 10–26). c | Small 

interfering RNA (siRNA)-mediated knockdown of Sort1 increases LDL-C 

levels in mice. As LDL-C, in turn, is a known risk factor for myocardial 

infarction, this work provides a complete causal path from a non-coding 

variant to altered risk for a major human disease. SORT1 is separated 

from the causal SNP by two additional genes, and the causal effect on 

LDL-C is not mediated through CELSR2, although the causal SNP is in the 

3ʹUTR of this gene. Chr1, chromosome 1; MYBPHL, myosin-binding 

protein H-like; PSMA5, proteasome (prosome, macropain) subunit, alpha 

type, 5; PSRC1, proline/serine-rich coiled-coil 1; SARS, seryl-tRNA 

synthetase; SYPL2, synaptophysin-like 2. Figure adapted from REF. 100, 

Nature Publishing Group.
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