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Abstract

Advances in next-generation technologies have rapidly improved sequencing fidelity and

significantly decreased sequencing error rates. However, with billions of nucleotides in a human

genome, even low experimental error rates yield many errors in variant calls. Erroneous variants

can mimic true somatic and rare variants, thus requiring costly confirmatory experiments to

minimize the number of false positives. Here we discuss sources of experimental error in next-

generation sequencing and how replicates can be used to abate them.

Introduction

The emergence of next-generation sequencing (NGS) has revolutionized genetics and

provided valuable resources for other scientific disciplines. As NGS becomes more widely

accessible, its use has extended beyond basic research and into broader clinical contexts.

Hence, it is increasingly more important to account for the error that arises in the sequencing

process. Error can stem from the bioinformatic analysis1, and also from experimental

steps2,3, the latter of which can often be mitigated through the use of replicate experiments.

The use of replicates permeates almost all scientific disciplines. Yet in NGS, many

researchers use increased sequencing read depth and bioinformatic filters to address error in

lieu of biological replication. This practice is understandable given that replicates can

increase study costs substantially. However, sequencing costs have fallen dramatically4, and

now is the time to reevaluate the value of replication in sequencing studies.

Here we discuss sources of error in sequencing and the nascent use of replication in

published high-throughput sequencing efforts. In addition, we demonstrate how biological

replicates can be employed to reduce sequencing error. In particular, replicates can be used
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to assess the specificity and sensitivity of sequence variant calling methods in a manner that

is independent of the algorithms and chemistry used to call variants, thereby guiding the

appropriate selection of quality score thresholds.

Experimental Error in NGS

Technological advances and the digital nature of DNA are helping to achieve highly

accurate genome sequences. However, sequencing methods are imperfect. NGS

applications, such as whole genome sequencing, targeted capture, RNA-Seq and ChIP-Seq,

are prone to errors that result in miscalled bases, thus causing short read misalignment and

mistakes in genome assembly. Reported sequencing base call accuracy claims for leading

high-throughput sequencing technologies vary wildly, ranging from one error in one

thousand nucleotides (99.9%)5 to one error in ten million nucleotides (99.9999%)6. Even for

methods with the lowest reported rates, the absolute numbers of miscalled genomic variants

remain unwieldy, with possibly thousands of false positive variants in a fully sequenced

human genome. Furthermore, false positive error masquerades as rare and somatic variants,

thereby obfuscating true variants of clinical interest. Known sources for experimental error

can be grouped by where they occur in the sequencing workflow (Figure 1a; Box 1), i.e.,

during sample preparation, library preparation, or sequencing/imaging.

Sample Preparation

Sequencing error and bias can arise from sample degradation and contamination during

sample isolation and preservation. For example, during sample preservation, formalin

fixation causes degradation and nucleotide changes7,8. Also, inadequate amounts of high-

quality genomic material can increase amplification errors and decrease sequencing read

depth9. Finally, contamination poses a challenge when non-tumor cells mask oncogenic

somatic variants10, or when exogenous DNA interferes with calls of homo- or

heterozygosity11.

Library Preparation

Error also arises during sequencing library preparation, leading to uneven coverage,

sequence changes, and interruption of sequence tags. DNA fragmentation can produce

length biases, subsequently causing preferential amplification12. Library amplification is

subject to unmeasured primer biases, such as primer bias in multiple displacement

amplification (MDA)13, mispriming in PCR target enrichment14, and incorporation of

sequence errors during clonal amplification and PCR cycling15. When barcodes, adapters,

and other pre-defined sequence tags are added to the fragments being sequenced, disruption

and inadequate tag design can result in cross-contamination of datasets, read-loss, and

decreased read quality2,16. Chimeric reads also can arise in long-insert paired-end

libraries17, potentially confounding variant calls and assembly efforts.

Sequencing and Imaging

Current NGS platforms3 have platform-specific sequencing and imaging error types18. For

example, substitution error can arise in platforms like Illumina and SOLiD® when incorrect

bases are introduced during clonal amplification of templates. Furthermore, Illumina has

Robasky et al. Page 2

Nat Rev Genet. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



shown a sequence-specific error profile19 that possibly arises from single-strand DNA

folding or sequence-specific alterations in enzyme preference. Pacific Bioscience’s SMRT

platform yields long single-molecule reads that are subject to false indels from non-

fluorescing nucleotides20,21. Pyrosequencing (e.g., Roche/454 platforms) and semiconductor

sequencing (e.g., Ion Torrent) have difficulty counting homopolymer stretches, resulting in

carry-forward, insertion and deletion errors22.

Experimental error poses challenges in applications for which accuracy is critical, such as

detection of somatic mosaicism23,24 and other clinical applications. Error is often addressed

by increasing sequencing read depth, but can also be mitigated by supplementing with

careful barcoding strategies25, replicates, orthogonal sequencing technologies26 and

knowledge of variant priors27. Together, these approaches can help overcome variations in

experimental conditions, stochastic fluctuations, and systematic biases.

Replicates and Experimental Error

Many applications, such as the pursuit of rare causal variants, clinical applications, and

somatic variant detection, require high fidelity in sequencing, necessitating confirmatory

experiments, such as Sanger sequencing. The standard validation methods used for

confirmation tend to be costly and labor-intensive, thus necessitating lower-cost alternatives.

An approach that holds promise uses the tried-and-true scientific method of replication to

mitigate user error, stochastic differences, and other sources of experimental error. Different

types of replication are described below, including sequencing read depth, technical,

biological and cross-platform replication.

Sequencing Read Depth

The most straightforward approach to improve sensitivity and accuracy in sequence variant

calls is to increase sequencing read depth28,29. By increasing the number of short reads, one

can improve variant calling on easily sequenced regions. Consequently, one can reduce the

number of missed true variants (false negatives) and sometimes the number of true non-

variants that are incorrectly detected as variants (false positives). However, merely

increasing sequencing read depth cannot ameliorate issues arising from the wide-spread

batch effect phenomenon30 and many other error types introduced in the experimental

process. Thus, increased fold coverage is not necessarily an adequate proxy for biological

replication and is limited in its ability to mitigate error.

Technical Replicates

The frequency of certain error types can be reduced through technical replication. We define

technical replication as the repeat analysis of the exact same sample. For example, technical

replicates were used with monozygotic twins, and the data exhibited higher intra-individual

correlations than inter-individual correlations31. In another example6, many technical

replicate pools were sequenced, each containing dilute DNA. Pools containing haplotypes

with incongruent base calls that were suspicious for amplification errors were discarded, and

the sequence quality was significantly improved.
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Biological replicates

We define biological replication as the preparation and analysis of multiple biological

samples under the same conditions from the same host. Biological replicates in genome

sequencing can be employed to assess the efficacy of various bioinformatic filters32.

Additional benefits gained over technical replicates include the identification of rare somatic

mosaicism and differences in transcript abundance. Somatic mosaicism arises from

mutations occurring from mutagens and other causes24. Replicates indirectly help uncover

somatic mutations in complex and heterogeneous tumors when used to achieve the “normal”

baseline sequence in tumor/normal pairs.

Cross-platform replicates

Each sequencing platform introduces unique biases and error types. Thus, integrating

sequencing data from different technologies can further mitigate error. For example,

sequencing both blood and saliva on two different platforms (Illumina, Complete

Genomics), resulted in 88.1% concordance of SNVs across replicates33. Validation rates for

variants called on both platforms were higher than variants that were not. In another study,

sequencing on three platforms (Illumina, 454, and SOLiD®) showed 64.7% concordance5.

This disparity could result from multiple experimental error sources, as well as differences

in downstream bioinformatic processing. Cross-platform replicates greatly reduce the

number of false positive variants, but the different biases from each sequencing platform

may cause many true variants to be overlooked when comparing cross-platform replicates.

Reducing error and replicates

As sequencing further permeates science and medicine, replicates will be invaluable to

researchers and clinicians alike. Current efforts in sequencing error mitigation rely mainly

on filtering strategies, including filtering for sequencing read depth, base call quality, short

read alignment quality, variant call quality, known variants, strand bias, allelic imbalance

and sequence context10,21,25,27,34–37. All these post-processing techniques help reduce

uncertainty in the final genotyping variant call (Figure 1b).

Bioinformatic filtering techniques can be optimized using technical, biological, and cross-

platform replicates to improve specificity and sensitivity32. For example, optimal quality

score thresholds for each filter may be selected using replicate genome sequences. An

individual human genotype has roughly 3 million variants37; however variant callers can

predict >20 million variants of differing quality per genome, mainly from mismapped short

reads38, mosaicism, and sequencing error. Consequently, thresholds are chosen to limit the

variants called in the individual’s genotype. Ideally, these thresholds are chosen with

experimental confirmation39, but this can be costly. We assert that replicates can abet

bioinformatic filtering and reduce the number of variants requiring validation, thereby

improving the quality of the sequence being mapped or assembled.

To illustrate, we use biological replicates to conduct a simple analysis for assessing the

reliability of single nucleotide substitution calls (Figure 2). For genotyping, the number of

replicates should be chosen to attain adequate statistical power at the loci in question.

However, here we seek a set of likely false positives stemming from experimental error,
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which thus requires only three replicates for a voting majority. For the replicates, we

obtained sequence data from three distinct tissue samples of participant PGP1 in the

Personal Genome Project40 (see Supplementary Notes).

Loci were identified in which one or more replicates contain a single nucleotide variant

(SNV). In brief, SNV loci are deemed “concordant” when all replicate variant calls agree41,

and SNV loci are called “discordant” when other replicates differ from a target replicate.

Thus, concordant loci represent true positive variants, and discordant loci signal false

positive variants. See the Supplementary Notes for precise definitions of concordance and

discordance, for details on choosing a target replicate, and for implementation details.

Once discordant (false positive) and concordant (true positive) variants have been separated

from each other, metrics of variant call confidence (e.g., quality scores or read depth) are

used to rank-order the target variants. Using the rank-ordered sets, one can plot the

accumulation rate for concordant and discordant variants with decreasing score stringency,

in a representation similar to a receiver-operator characteristic (ROC) curve. Thus, variant

call quality score thresholds can be chosen to maximize the proportion of all concordant

variants seen at or below a particular threshold relative to the fraction of all discordant

variants. This analysis (Figure 3) suggests that, while adequate read depth across the genome

is essential28,29, read depth is not the best measure of reliability of a specific variant call at a

particular locus. Indeed, read depth at a particular locus is an inferior filter when compared

with error-model-based quality scores. We found that this holds true for quality scores

computed by software packages that process genomic35 and expression27,36 data. Even after

removing regions with abnormally high read depths (enriched for misalignment errors in

low-complexity sequence38), quality scores considered here still outperform read depth as a

filter for sequencing error.

In addition to comparing disparate error model quality scores, this approach can be used to

evaluate the effect of manipulating quality score thresholds for a specific data set of interest.

For example, sensitivity of a particular threshold can be evaluated by considering the false

negative rate, as estimated by the number of concordant variants that are lost as a result of

applying the threshold.

Post-processing Error in NGS

Even with replicates, some types of error cannot be addressed without further technological

advances and improvements in bioinformatic processing. For example, insertions and

deletions42 as well as paralogs and other repetitive sequence43 often confound NGS short

read alignment44,45, resulting in mismapped reads and ultimately, variant call errors. Other

sources of error can arise from limitations in software and configuration during secondary

analysis, including read clipping and filtering46, allelic bias47, and variant call confidence

models48. These cannot be addressed with replicates alone.

Erroneous variant calls also arise from incomplete reference data. This error type arises

when reads are mapped to unfinished reference genomes/transcriptomes and drafts

containing misassembled regions49. These errors will steadily decrease in frequency as
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reference genome assemblies and annotations such as GRChr3750 and RefSeq51 are

completed and corrected with each new build release.

Lastly, strides in haplotype phasing hold promise not only for reducing amplification

errors6, but also for reducing the causal variation search space. For example, only through

accurate haplotype phasing can we begin to discern the difference between two

dysfunctional gene copies (i.e., a double mutant) and a single normal copy52. This difference

can have important implications with regard to phenotype and clinical applications of

sequencing. Unfortunately, current mainstream NGS methods do not consistently discern

between these two cases. Thus, ad hoc experimental6,53,54 and computational

procedures55,56 are required to distinguish the haplotypes of diploid cells.

Concluding Remarks

In these past decades, amazing scientific and technologic advances have provided

molecular-level resolution for the inner workings of life. NGS technologies are providing

insights into genetic disease associations57–63, differences in human gut microbiota64, amino

acid essentiality in proteins65, experimental evolution66–68, biotherapeutic

development69–73, protein-DNA interactions74, epigenetics75, cancer genomics39,76 and

clinical diagnosis77. Efforts to find biologically and clinically relevant variants are steadily

improving as algorithmic advances more intelligently filter the large amounts of sequence

data. For example, variants can be prioritized by considering heritability or variant

association in populations61,78, correcting for gene-specific mutation rates10, accounting for

evolutionary conservation79–81, and providing network context through systems biology

approaches82–84. Beyond strictly biological applications, sequencing is also becoming an

analytical tool for more esoteric questions, such as recording fluctuations in ion

concentrations85 and even potentially detecting dark matter in astrophysics86. All these

sequencing studies, however, are limited by the accuracy of the underlying sequencing

experiments.

Here we have identified sources of sequencing error and presented a method for addressing

the stochastic effects. Additional approaches to address other sources of error, such as

experimental bias and software limitations, are also essential. These approaches include

identifying erroneous SNPs exhibiting Hardy-Weinberg disequilibrium11, masking poor

quality bases87, phasing and imputing variants in difficult-to-sequence regions or uncalled

regions55 and improved methods for calling of structural variants, CNVs and indels. In

conjunction with these computational approaches, the wise use of replicate genome

sequencing will play an increasingly important role in reducing the noise in data processing

and downstream analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Robasky et al. Page 6

Nat Rev Genet. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Acknowledgments

We offer a posthumous acknowledgement and sincere thank you to Dr. Tara Gianoulis for her feedback and

inspiration. We would like to acknowledge Dr. Josée Dupuis, Professor of Biostatistics at Boston University, for

her encouragement and feedback during the nascent stages of replicate analysis. We additionally would like to

thank Dr. Wendell Jones, Global Head of Genomic Bioinformatics, Quintiles, and also Erik Aronesty, author of the

popular ea-utils fastq processing package, for critical review of the manuscript. Some of this work was supported

by the National Institutes of Health grant P50HG005550.

Glossary

sequencing error errors seen in the base call of the short reads from next-generation

technology.

sequencing read

depth

the number of reads contributing to the variant call at a single

location, a.k.a. read depth, fold coverage, depth of coverage. This

term can also be used to refer to the average read depth across the

entire targeted sequence area.

short read a short sequence of nucleotide bases and their respective quality

scores, obtained via next-generation sequencing from a longer

target sequence.

misalignment The alignment of a sequencing read to an incorrect location on a

reference genome. This can occur when reads align equally well to

multiple genomic locations due to indels, repeats, and low-

complexity regions of the genome.

multiple

displacement

amplification

(MDA) a technique used for amplifying DNA sequence by

synthesizing DNA from random hexamer primers.

barcode a known DNA sequence appended to the ends of DNA fragments

prior to sequencing for the purpose of pooling samples together to

reduce cost.

substitution error when one base is substituted for another during sequencing.

indel a variant that is created by either the insertion or deletion of

nucleotides with respect to a matching reference.

homopolymer a sequence of two or more consecutive, identical nucleotides.

somatic mosaicism genetic diversity among cells of a single organism.

batch effect the statistical bias of indeterminate cause observed in samples

processed together with the same sample preparation, same library

preparation and same sequencing experiment.

base call the identification of the nitrogenous base (A,G,C or T) added to the

short read during sequencing.
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variant call error an accumulation of misaligned reads, or of reads with base call

errors over a particular locus, resulting in that locus being called

variant when it truly matches reference, and vice-versa.

read clipping removal of adapter and barcode sequences or low quality bases near

read ends following sequencing.
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Box 1. Experimental sources of error abound in sequencing

The significance and relative impact of each error source on downstream applications

depend on many factors, such as sample acquisition, reagents, tissue type, protocol,

instrumentation, conditions, analytical application, and the ultimate goal of the study.

Sequencing errors can stem from any time point throughout the experimental workflow,

including initial sequence preparation, library preparation, and sequencing. Some

examples include the following.

Sample preparation

• User error (e.g., mislabeling)

• DNA/RNA degradation from preservation methods (e.g. tissue autolysis, nucleic

acid degradation and crosslinking in FFPE)8,88,89

• Alien sequence contamination (e.g. mycoplasma, xenograft)90

• Low DNA input9

Library preparation

• User error (e.g., carry-over of DNA from one sample to the next, contamination

from previous reactions)91

• PCR amplification errors9

• Primer biases (e.g., binding bias, methylation bias, mis-priming, non-specific

binding, primer-dimer, hair-pins, interfering pairs, melting temperature too high/

low)92,93

• 3’-end capture bias (poly-A enrichment protocols in RNA-Seq)94

• Private mutations (e.g., repeat regions, mispriming over private variation)95

• Machine failure (e.g., incorrect PCR cycling temperatures)15

• Chimeric reads2,17

• Barcode/adapter errors (e.g., adapter contamination, lack of barcode diversity,

incompatible barcodes, over-loading)16,96

Sequencing and imaging

• User error (e.g., cluster crosstalk caused by flow cell overloading)97

• Dephasing (e.g., incomplete extension, addition of multiple nucleotides instead

of single nucleotide)3

• Dead fluorophores, damaged nucleotides, and overlapping signals20

• Sequence context (e.g., GC-richness, homologous and low-complexity regions,

homopolymers)19,98,99

• Machine failure (e.g., laser, hard-drive, software, fluidics)

• Strand biases98
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Figure 1. Sources of unexpected and erroneous variation and established post-processing tools
used to cope with unexpected variants

Sequencing experiments involve many steps from sample acquisition to final data analysis,

and a major challenge in the process stems from the emergence of unexpected variants a.

These can include legitimate somatic mosaicism and rare oncogenic variants. Additionally,

many erroneous sequence variants arise during experimental steps (e.g., via sample

degradation, PCR amplification, base-calling error). b. Several analytical tools and post-

processing mechanisms are often employed for separating true variation from false sequence

variants. These include indicators of data quality (e.g., base call and mapping quality scores)

and filters that are informed by those indicators. Additional tertiary analyses can also

highlight systematic biases through clustering methods and possible false positive variants

by accounting for Mendelian inheritance patterns58. Throughout the sequencing and post-

processing pipeline, the use of replicated sequencing experiments can help mitigate the

impact erroneous variants from the experimental steps and inform post-processing filters.

Thus, greater accuracy of germline variant detection can be attained and improved

sensitivity can be achieved for true somatic variation.
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Figure 2. Platform-independent method for choosing quality score thresholds using replicate
sequencing data

Variants are called for all replicates and then classified as concordant if the variant calls

agree among the replicates or discordant if they differ. Variants are then rank-ordered by the

desired metric (e.g., quality scores), and plotted similar to receiver-operator characteristic

(ROC) curves. That is, the cumulative distributions of concordant and discordant variants

are plotted left to right as the stringency of the confidence score of interest decreases.
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Figure 3. Plotting replicate scores to assess filter efficiency

The efficiency of different variant call filter metrics can be evaluated by plotting replicate-

based SNV concordance and discordance in a manner similar to a ROC curve. As one

travels from left to right on the plot, the rank-ordered quality score is reduced in stringency

and the fractions of retained concordant and discordant variants increase. Thus, this curve

quantifies the proportion of good data (concordant SNVs) retained and bad data (discordant

SNVs) discarded as a consequence of variable quality score cut-offs. For the genomes used

in our analysis, this graph indicates that filtering variants solely based on locus read depth is

inferior to filtering by genomic35 and expression27,36 quality scores35. Furthermore, filtering

by expression data quality scores is also inferior to filtering by genomic quality scores

(genomic quality scores from Complete Genomics Inc.), but nevertheless both are better

than filtering loci by read depth. The read depth curve that excludes outliers (read depth

higher than the 99.5th-percentile) outperforms the all-inclusive read depth curve. As an

example of how to understand the value of a threshold, note that choosing a threshold score

of 120 as a measure for highest quality for the genomic data will include the same fraction

of total predicted errors as choosing a threshold quality score of 23800 for the expression
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data. Meanwhile, when a similar threshold is chosen for read depth, the efficiency at

retaining true variants is worse than random.
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