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Abstract

In this paper, we explore how the audio respiration signal can contribute to multimodal analysis of movement qualities. Within

this aim, we propose two novel techniques which use the audio respiration signal captured by a standard microphone placed

near to mouth and supervised machine learning algorithms. The first approach consists of the classification of a set of acoustic

features extracted from exhalations of a person performing fluid or fragmented movements. In the second approach, the

intrapersonal synchronization between the respiration and kinetic energy of body movements is used to distinguish the same

qualities. First, the value of synchronization between modalities is computed using the Event Synchronization algorithm.

Next, a set of features, computed from the value of synchronization, is used as an input to machine learning algorithms. Both

approaches were applied to the multimodal corpus composed of short performances by three professionals performing fluid

and fragmented movements. The total duration of the corpus is about 17 min. The highest F-score (0.87) for the first approach

was obtained for the binary classification task using Support Vector Machines (SVM-LP). The best result for the same task

using the second approach was obtained using Naive Bayes algorithm (F-score of 0.72). The results confirm that it is possible

to infer information about the movement qualities from respiration audio.

Keywords Movement expressive qualities · Respiration · Intrapersonal synchronization

1 Introduction

Movement expressive qualities describe how a movement

is performed [2]. The same movement can be performed

with different qualities, e.g., in a fluid, fragmented, hesi-

tant, impulsive, or contracted way. It has been shown that

movement qualities might communicate interpersonal rela-

tions [29], personality traits [5], cultural background [44],

communicative intentions [8] and emotional states [12].

Many researchers [24,40,56] investigated movement qual-

ities and encoded them into categories. Probably the most

well known classification of the movement qualities was pro-
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posed by Rudolf Laban [27]. The Laban system has four

major components: Body, Effort, Shape, and Space. In partic-

ular, Effort and Shape are primarily concerned on movement

quality. The Effort is defined by 4 bipolar subcomponents: (i)

Space denotes relation with the surrounding space; it can be

Direct or Indirect; (ii) Weight describes the impact of move-

ment; it can be Strong or Light; (iii) Time corresponds to the

urgency of movement; it can be Sudden or Sustained, and

(iv) Flow defines the control of movement; it can be Bound

or Free. The Shape is characterized by three subcomponents:

Shape Flow, Directional, and Shaping/Carving.

Movement qualities are a very relevant aspect of dance,

where, e.g., they convey emotion to external observers, and

of various sport activities, where they are factors influencing

the evaluation of the performance (e.g., in Karate [30]). They

also play an important role in rehabilitation (e.g., Parkinson

disease and chronic pain [49]), therapy (e.g., autism [39]),

and entertainment (e.g., video-games [6]). Several compu-

tational models and analysis techniques for assessing and

measuring movement qualities have been proposed (see e.g.,

[32] for a review), as well as algorithms to automatically
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detect and compute movement qualities (see Sect. 2.4 for the

detailed overview).

In this paper, we explore whether it is possible to con-

tribute to movement qualities recognition by analyzing the

audio of respiration. Respiration is of paramount impor-

tance for body movement. The respiration pattern might

provoke certain visible movements, e.g., in case of laughter

[31] or fatigue [25]. The breathing rhythm can be influ-

enced by body movements, e.g., bowing usually corresponds

to the expiration phase. Rhythm of respiration is synchro-

nized with rhythmic motoric activities such as running or

rowing [21]. Several physical activities such as yoga or

tai-chi explicitly connect physical movement to respiration

patterns. There exist several techniques to measure the res-

piration e.g., through respiration belts. In this paper, we

collect the respiration data using the standard microphone

placed between nose and mouth. It allows us to collect

low-intrusively rich information about the human breath-

ing.

To show that it is possible to infer how a person moves

from the audio of respiration, we propose two exploratory

studies aiming to distinguish fluid and fragmented move-

ments. We intentionally focus on these relatively easy dis-

tinguishable and broad movement categories. If our attempt

is successful (i.e., audio respiration data provides the suf-

ficient information), in the future, more difficult tasks can

be addressed, e.g., classification of more subtle movement

qualities e.g., defined by Laban.

In this work dancers were used to collect the multi-

modal data of full-body movements as they are used to

display a huge variety of movement qualities, and they

dedicate a lot of effort and time to exercise their expres-

sive vocabulary. Thus, one can expect that various perfor-

mances by the same dancer, conveying different movement

qualities, can provide a solid ground to base our study

upon.

The rest of the paper is organized as follows: in Sect. 2, we

present existing works on analysis of human movement and

of respiration signals; in Sect. 3 we describe the movement

qualities we focus on. Section 4 introduces the overview of

proposed approaches and Sect. 5 explains the data collection

procedure. The two approaches for qualities classification are

presented in details in Sects. 6 and 7. We conclude the paper

in Sect. 8.

2 State of the art

2.1 Methods for measuring the respiration

In most of the works that consider respiration, data is captured

with respiration sensors such as belt-like strips placed on

the chest (e.g., [26,58]), or with other dedicated devices. An

example of such a device is the CO2100C module by Biopac1

that measures the quantity of C O2 in the exhaled air. This

sensor is able to detect very slight changes of carbon dioxide

concentration levels. Several alternative solutions were pro-

posed (see [17,43] for recent reviews). Folke and colleagues

[17] proposed three major categories of measurements for

the respiration signal:

– movement, volume, and tissue composition measure-

ments, e.g., transthoracic impedance measured with skin

electrodes placed on chest;

– air flow measurements, e.g., nasal thermistors;

– blood gas concentration measurements, e.g., the pulse

- oximetry method that measures oxygen saturation in

blood.

The choice of measurement device influences what kind

of features can be extracted from the respiration data. Boiten

at al. [7] distinguished three classes of approaches to process

the respiration signals: (1) the volume and timing parameters,

(2) the measures regarding the morphology of the breathing

curve, (3) the measures reflecting gas exchange. The first

group includes features such as: respiration rate (RR), dura-

tion of a respiratory cycle or duration of the interval between

the phases. Mean inspiratory (or expiratory) flow rate is an

example of the second type of features. Finally, features of

the third type measure the quantity of gases in exhaled air.

Recently Cho and colleagues [13] proposed to use the

low cost thermal camera to track the respiration phases. The

approach was based on tracking the nostril of the user and

analyzing temperature variations in this face area to infer

inhalation and exhalation cycles.

Another approach is to use Inertial Measurement Units

(IMUs). In [28] a single IMU sensor placed on the person’s

abdomen is used to extract the respiration pattern. The raw

signal captured with the IMU device was filtered with an

adaptive filter based on energy expenditure (EE) to remove

frequencies that were not related to respiration depending on

the type of physical activity: Low EE (e.g., sitting) Medium

EE (e.g., walking), and High EE (e.g., running).

2.2 Measuring respiration from the audio signal

Some researchers analyzed the respiration sounds captured

on the chest wall or trachea (see [34] for the review). They

focused on detecting different dysfunctions of the respira-

tory system by comparing the values of acoustic features

between healthy people and patients with some respiratory

problems and different pathology classification (e.g., [51]).

The audio signal was also used to segment the respiration into

phases. For instance, Huq and colleagues [22] distinguished

1 http://www.biopac.com/.
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between the respiration phases using the average power and

log-variance of the band-pass filtered tracheal breath. In par-

ticular, they found the strongest differences between the two

respiratory phases in the intervals 300–450 Hz and 800–

1000 Hz for average power and log-variance respectively.

Similarly, Jin and colleagues [23] segmented breath using

tracheal signals through genetic algorithms.

Acoustic features of respiration captured by the micro-

phone placed near mouth and nose area were explored by

Song to diagnose the pneumonia in children [50]. Using

supervised learning with more than 1000 acoustic fea-

tures (prosodic, spectral, cepstral features and their first

and second-order coefficients) he obtained 92% accuracy

for binary classification task: pneumonia vs. non-pneumonia

[50].

Pelegrini and Ciceri [36] studied interpersonal breath-

ing coordination during a joint action. In this context, they

checked whether breathing sounds convey information about

the activity being performed. They proposed multilayer anal-

ysis to respiratory behavior during different joint actions

composed of temporal (e.g., respiration rate) and acoustic

(e.g., spectral centroid) features. The multilayer analysis pro-

vided quantitative measurements of respiratory behavior that

enabled descriptions and comparisons between conditions

and actions showing the differences between different joint

actions performed by participants.

Wlodarczak and Heldner [58] studied the communicative

functions of respiratory sounds. They found that acoustic

intensity of inhalation is the feature that allows one to detect

the forthcoming turn-takings. The inhalations that precede

long speech are louder than those which occur during no-

speech activity or before short backchannel verbal utterances.

In [1], the audio of respiration captured with a microphone

placed near the mouth was used to detect the respiration

phases. First authors isolated the respiration segments using

a Voice Activity Detection (VAD) algorithm based on short

time energy (STE). Next, they computed Mel-frequency

cepstrum coefficients (MFCC) of respiration segments, and

they applied a linear thresholding on MFCC to distinguish

between the two respiration phases.

Yahya and colleagues [59] also detected respiration phases

in audio data. Again, a VAD algorithm was applied to the

audio signal to identify the respiration segments. Then, sev-

eral low-level audio features extracted from the segments

were used with a Support Vector Machine (SVM) classifier to

separate the exhilaration segments from the inspiration ones.

Ruinskiy and colleagues [45] aimed to separate respiration

segments from voice segments in audio recordings. First, for

each participant, they created a respiration template using

a mean cepstrogram matrix. Next they measured similarity

between the template and an input segment in order to classify

the latter as a breathy or not breathy one.

2.3 Respiration and physical activities

Several works analyzed respiration in sport activities such

as walking and running [4,21], and rowing [3]. Respiration

data was also used to detect emotions [26]. Bernasconi and

Kohl [4] studied the effect of synchronization between respi-

ration and legs movement rhythms for efficiency of physical

activities such as running or cycling. They measured syn-

chronization as a percentage of the coincidence between the

beginning of a respiration phase and the beginning of a step

(or a pedaling cycle). According to their results, the higher

synchronization results in higher efficiency and lower con-

sumption of oxygen.

Bateman and colleagues [3] measured synchronization

between the start of a respiration phase, and the phase of

a stroke in rowing by expert and non-expert rowers. Respira-

tion phases were detected with a nostril thermistor, whereas

the stroke phase (1 out of 4) was detected from the spinal kine-

matics and the force applied to the rowing machine. When

the synchronization was higher, the higher stroke rate was

observed for expert rowers. Additionally, the most frequently

observed pattern was the two breath cycles per stroke.

Schmid and colleagues [47] analyzed synchronization

between postural sway and respiration patterns captured with

a respiratory belt at chest level. A difference was observed

in respiration frequency and amplitude between sitting and

standing position.

2.4 Multimodal analysis and detection of movement
qualities

Recently Alaoui and colleagues [16] showed that combin-

ing positional, dynamic and physiological information allows

for a better characterization of different qualities of Laban’s

Effort than in unimodal recognition systems. In their work,

positional data from motion capture system is associated with

Space component, the jerk extracted from the accelerometer

placed on the wrist is related to Time component, while the

muscle activation signal from the EMG sensor is associated

with Weight component. Nevertheless, most of the existing

works use motion capture data to recognize and measure

movement qualities. For instance, Ran and colleagues [42]

applied supervised machine learning to detect Laban quali-

ties from Kinect data. For this purpose, they proposed a large

set of descriptors composed of 100 features related to Laban’s

qualities and other 6000 describing the Kinect skeleton data.

For example, Suddenness is computed using the acceleration

skewness. In the final step, multitask learning was applied

to 18 Laban qualities (Effort Actions, Shape Qualities, and

Shape Change) resulted in F-score of 0.6.

Hachimura and colleagues [20] developed a system to

detect the poses which correspond to four Laban subcom-

ponents: Space, Weight, Shape, and Time and validated their
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method as compared to experts annotation. First, they com-

puted four high-level features, each of them addressing one

subcomponent. Next, by observing the change over time of

these feature values, body movements corresponding to the

different Laban’s subcomponents were extracted.

Swaminathan and colleagues [52] proposed a Bayesian

fusion approach for identifying the Shape component from

motion capture data. Their method used a dynamic Bayesian

network to process movement. The results are 94.9% for

recall and 83.13% for precision.

Truong and colleagues [54] proposed around 80 descrip-

tors inspired by Laban’s movement qualities for machine

learning based gesture recognition. For example, Weight sub-

component is estimated with 30 descriptors computed by

applying 5 operators (mean, standard deviation, maximal

amplitude, number of local minima, relative temporal instant

of the global minimum value) to the vertical components of

the velocity and acceleration of 3 joints (the center of the

hip, the left and right hand). The descriptors were extracted

from the Kinect data of basic iconic and metaphoric gestures

and several supervised classification algorithms were applied

obtaining F-score around 97%.

Samadani and colleagues [46] proposed a set of continu-

ous measures of Laban Effort and Shape components. The

values of four components: Weight, Time, Space, and Flow

are computed from a set of low level features such as position,

kinetic energy, velocity, acceleration, and jerk extracted from

the motion capture data of hand and arm movements. For

instance, the Weight was estimated by computing the max-

imum of the sum of the kinetic energy of the moving parts

of the body. Similarly, the Shape Directional was computed

from the average trajectory curvature. The approach was val-

idated by measuring the correlation between the algorithm

values and the expert annotations. The results are up to 81%

on Effort components.

Similarly, other researchers proposed several systems to

compute different than Laban’s movement qualities from the

video. With the aim of emotion classification from the full-

body movements Glowinski and colleagues [19] extracted

movement features such as: Smoothness, Impulsiveness,

Kinetic Energy, Spatial Extent. Similar approach was used

by Caridakis and colleagues [11], who extracted movement

qualities from the video stream in real time with the purpose

of facilitating the interaction between humanoid computer

interface and human user. For instance, Fluidity was com-

puted as the sum of the variance of the norms of the motion

vectors, Power as the first derivative of the motion vector,

Spatial Extent as the distance between hands, and the Over-

all Activity as the sum of the motion vectors.

Regarding using different data sources than motion

captured and video data, Silang Maranan and colleagues

[48] used one wrist-mounted accelerometer and supervised

machine learning to detect eight Basic Effort Actions of

Laban’s system. In their approach, multiple sliding time win-

dows were used to analyze movement data incrementally by

examining it across three different time scales. Therefore,

around 400 low-level motion features were extracted from the

accelerometer data, which allowed them to train the model

with a weighted accuracy between 55 and 91% depending

on the type of Action. Ward and colleagues [57] proposed an

exploratory study of electromyography (EMG) signals cor-

responding to the execution of Free and Bound movements.

For this purpose, authors computed the amplitudes of EMG

signal from the Myo devices which were placed on the dancer

forearms. The same two data sources were fused in the work

proposed by Niewiadomski and colleagues [33] to compute

two movement qualities from the vocabulary of the choreog-

rapher Vittorio Sieni.

3 Movement testbed

Our main goal in this paper is to show that the informa-

tion obtained from the audio respiration signal is useful to

compute how a person moves in terms of her expressive-

ness. We specifically focus on two very different types of

movements: namely fluid and fragmented movements. These

two movement categories substantially differ in terms of

motor planning. Fluid movements are continuous, smooth

and harmonious performances of a global (i.e., involving

the whole body) motor plan, and without interruptions [37].

Fragmented movements are characterized by several abrupt

interruptions and re-planning motor strategies.

Fluid and fragmented movements are present in dance

context. Fluidity is the fundamental quality e.g., for classical

ballet, while Fragmented movements are a part of the expres-

sive vocabularies of the many contemporary choreographers,

e.g., Sagi Gross Company2.

Examples of fluid and fragmented movements can be seen

in the video attached to this article as Supplementary Mate-

rial.

Although neither fluid nor fragmented movements appear

in Laban’s terminology, there are several reasons to focus

on them in our explanatory study. First, in work, Vaessen

and colleagues [55] search for distinct brain responses in

fMRI data to the visual stimuli of full body movements,

which differ in terms of motor planning. Second, several

researchers observed spontaneous synchronization between

the full-body movements and respiratory rhythms [4,14,35].

This phenomena is often explained with the concept of

entrainment, i.e., by a temporal locking process in which one

system’s motion or signal frequency entrains the frequency

of another system [53]. Motivating from these studies, we

expect that differences in motor planning and its execution

2 www.grossdancecompany.com.
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might also influence the respiration patterns and intraper-

sonal synchronization of respiration and body movements.

Third, we would like to recall that, because of the differences

in terms of motor planning mentioned above, it is impossible

for any movement to be fluid and fragmented at the same

time (although a movement can be neither fluid nor frag-

mented). This important property allow us to perform binary

discrimination.

4 Overview of the approach

Common approach to recognize movement qualities is

using high-precision motion capture systems, then extracting

features, and applying classification algorithms that auto-

matically discriminate different qualities (see Sect. 2.4).

The motion capture systems are, however, intrusive as

they require a set of sensors or markers to be worn.

Often they also require calibration which is difficult in

a dynamically changing environment such as during the

artistic performance. Additionally, the high cost of the

technology and long post-processing are other important

shortcomings.

In this paper, we explore the audio signal as a source

of breathing data. It can be recorded with cheaper, low-

intrusive, yet portable and easy-to-use devices. This approach

is appropriate to capture e.g., dancers’ or athletes’ respiration

patterns, because they usually do not speak during a perfor-

mance, but they move a lot and cannot wear cumbersome

devices.

Herein, we propose two methods (see Fig. 1):

– unimodal approach; in the case, only audio data is pro-

cessed to extract the acoustic features; next they are used

to train supervised machine learning algorithms for the

binary classification,

– multimodal approach; two low-level features are

extracted such that one of them is from motion capture

data, and the other is from audio data. The degree of

synchronization between these two features is measured

using Event Synchronization algorithm [41]; the degree

of multimodal synchronization permits to discriminate

between the two qualities.

It is worth to highlight the differences between two meth-

ods. The first one uses only the audio of respiration and

computing some acoustic features but this computation may

require more computational power. The second approach is

based on very simple features that can be easily computed

in real-time even on mobile devices, but it requires exact

synchronization of data coming from different sensors. Addi-

tionally, the first method uses relatively rich information, and

thus, we expect that it provides high effectiveness for the dis-

crimination task. On the contrary, the second approach uses

only a small piece of respiration information and by using

this we want to see whether it is still possible to infer any

knowledge about the quality of corresponding movement.

Obviously, in the second case, we do not expect comparable

Effectiveness from our algorithm.

5 Experimental setup and the data collection

For the purpose of this work, we collected a set of short

trials of dancers performing whole body movements with

a requested movement quality. Each trial had a duration of

1.5–2 min. At the beginning of each session, dancers were

given definitions of the movement quality by means of textual

images. More details on the recording procedure is available

in [38]. The dancers were asked to perform: (i) an impro-

vised movements that, in their opinion, express the quality

convincingly, as well as (ii) several repetitions of predefined

sequences of movements by focusing on the given movement

quality.

We recorded multimodal data using (i) a Qualisys motion

capture system, tracking markers at 100 frames per second;

resulting data consists of the 3D positions of 60 markers; (ii)

one wireless microphone (mono, 48 kHz) placed close to the

dancer’s mouth, recording the sound of respiration; (iii) 2

video cameras (1280 × 720, at 50 fps).

The audio signal was recorded by a microphone with a

windproof mechanical filter positioned about 2 cm from the

Fig. 1 Two approaches for the classification of the movement qualities from the audio signal of respiration
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Fig. 2 Correct position of the microphone

Table 1 The quantity and duration of fragmented and fluid episodes

Class Number Total duration (min) Mean (s) SD (s)

Fragmented 28 7.3 16.3 9.5

Fluid 39 10.1 15.2 15

All 67 17.4 15.6 12.9

nose and mouth (see Fig. 2), ensuring stability of the bow on

the dancer’s head.

The freely available EyesWeb XMI platform, developed at

InfoMus Lab, University of Genoa3 was used to synchronize

recordings and to analyze of the multimodal data.

Motion capture data was cleaned, missing data was filled

using linear and polynomial interpolation. 48 kHz audio sig-

nals have been pre-processed by applying a high pass filter

with a frequency of 200 Hz, as the breath has a bandwidth of

between 200 and 2000 Hz [18].

Each quality was performed by three dancers. Next, an

expert (by watching just a video) selected from the whole

recordings episodes in which dancers have better interpreted

one or the other quality. Thus, segmentation was based not

only on the dancer’s expressive intention, but also on the

observer’s perception regarding the movement quality. 67

episodes, which are 17.4 min in total, were selected (see

Table 1 for details).

6 Classification of fluid and fragmented
movements from the unimodal data

The unimodal approach consists of the following steps. First,

we automatically extract exhalation phases from the audio

corpus. As a result, each exhalation phase becomes an indi-

vidual segment. We focus on the exhalation signal only since,

as it can be seen in Fig. 3, it has a higher spectral energy and

generally has a better noise signal ratio (SNR) [1]. Next, we

extract Mel-Frequency Cepstral Coefficients (MFCCs), i.e.,

3 www.infomus.org.

Fig. 3 Top: inhalation and exhalation signals during movement; bot-

tom: the corresponding audio signals

the coefficients that define Mel-Frequency Cepstrum (MFC).

The MFC is the representation of the short-term power spec-

trum of a sound, based on the Mel scale, which approximates

the human auditory system.

Consequently, we create four datasets by applying tech-

niques of feature reduction. In order to find the best classifi-

cation method we train eight classifiers on 2 out of 4 datasets.

In the final step the best classification algorithm (in terms of

F-score) is applied to all four datasets.

6.1 Data processing

The input to our model is a single exhalation. To obtain exha-

lations we performed automatic segmentation of the data

by modifying the algorithm proposed by Ruinskiy and col-

leagues [45]. The original algorithm was created to separate

respiration segments from voice segments in audio record-

ings. We adapted this approach to extract the exhalation

phases. For this purpose we built an exhalation template (i.e.,

mean cepstrogram matrix) from the manually annotated one

trial of respiration by the Dancer 1 (the total duration of the

annotated material was 6.2 s). Next, we applied the tem-

plate to 67 episodes. As a result, we obtained 467 exhalation

segments of total duration of 390.4 s, of which 232.03 s cor-

responds to fluid movements and 158.37 s corresponds to

fragmented movements (see Table 2).

A Mann-Whitney test indicated that there is no significant

difference in the durations of fluid and fragmented segments

(U = 25590.5, p = .572). Thus the fluid and fragmented

segments cannot be distinguished by considering the dura-

tions of their exhalations (Table 3).

The number of fluid and fragmented segments is similar

for all three dancers with the small prevalence of fluid over

fragmented segments (54, 64 and 60% of fluid movements).

123

www.infomus.org


Journal on Multimodal User Interfaces (2020) 14:1–15 7

Table 2 The duration of fluid and fragmented segments (only exhala-

tion phase)

Class Total (s) Mean (s) SD (s)

Fragmented 158.37 0.824 0.424

Fluid 232.03 0.844 0.558

All 390.40 0.836 0.507

Table 3 Average and standard deviations of F-score and Accuracy

obtained by SVM-LP

Dataset F-score Accuracy

AF-test 0.8689 (0.021) 0.8403 (0.027)

APCA 0.8571 (0.019) 0.8273 (0.023)

CF-test 0.8558 (0.027) 0.8272 (0.032)

CPCA 0.8201 (0.017) 0.7840 (0.023)

6.2 Feature extraction and reduction

Let us introduce three indexes i , j and k:

– i: index of a segment, i = 1,…, 467,

– j: index of a frame, j = 1,…, Ni ,

– k: index of a MFCC coefficient, k = 1,…, 26,

where Ni is the number of audio frames in the segment i (and

it varies between segments).

For each exhalation segment, an MFCC matrix is cre-

ated. We define the MFCC matrix of the i-th segment as

Mi = [mi
j,k] with j = 1, . . . Ni and k = 1, . . . 26. Each

element of the matrix corresponds to one audio frame of the

exhalation segment of a duration 10 ms. So, duration of the

i-th exhalation is 10 × Ni ms and mi
jk is k-th coefficient

MFCC of j-th frame of i-th segment.

Next, we reduce the dimensionality of the matrix Mi . For

thus purpose we use ten aggregation operators Φ0 −Φ9: Φ0-

Mean, Φ1-Standard Deviation, Φ2-Skewness, Φ3-Minimum,

Φ4-Maximum, Φ5-Range, Φ6-Kurtosis, Φ7-Zero Crossing

Rate (ZCR), Φ8-Linear Trend and Φ9-Median.

We create two different feature sets:

– feature set A is described by a matrix � of dimensions

467 × 130 where each row corresponds to 1 segment

and each column contains a result of the application of

one aggregation operator between Φ0 −Φ9 on Ni values

(i.e., all audio frames) of the coefficient k (where k =
1, . . . 13). Each operator is applied on thirteen MFCC

coefficients of the single segment, so we have 10 × 13

values for each segment. More precisely, an element of

the matrix � is computed according to the formula:

ai,h = Φ

⌊

h
13

⌋

j=1,...Ni

(mi
j,k) (1)

with h = 0, . . . , 129 and k = h mod 13.

– feature set C is described by a matrix � of dimensions

467 × 30 where each row corresponds to 1 segment and

each column is an aggregation of the MFCC coefficients.

More precisely each element in the matrix� is computed

as follows:

ci,h =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Φ1

j=1,...Ni

( Φh−1

k=1,...26
(mi

j,k)) i f h < 10

Φ3

j=1,...Ni

( Φh−11

k=1,...26
(mi

j,k)) i f 10≤ h < 20

Φ4

j=1,...Ni

( Φh−21

k=1,...26
(mi

j,k)) i f 20≤h < 30

(2)

with k = 1, . . . 26 and h = 0, . . . 29.

To avoid the problem of overfitting two standard approaches

for feature reduction were applied on � and �:

– F-test (20 best features for all the dancers),

– Principal Component Analysis (PCA; with 95% of total

variance explained).

By applying two features reduction techniques on two matri-

ces � and � we obtain four different datasets. Let us

introduce the notation X y where X is the feature set (A or C)

and Y is reduction method applied on the feature set (F-test

or PCA).

Finally, we performed the exploratory analysis of the

four datasets using unsupervised clustering. K-means was

applied, and confusion matrices4 and Cohen κ values were

computed for each dataset. The highest Cohen κ was obtained

for CPC A (κ = 0.48), and the second best result was

observed for AF−test (κ = 0.4). Next, we compared the

results of two feature reduction approaches. This showed

that AF−test had numerically better result than AC−test

(κ = 0.28) while CPC A had numerically better result than

APC A (κ = − 0.04). Therefore, in next Section, we focus on

only two best datasets: AF−test and CPC A.

6.3 Classification

In the first step, eight algorithms were tested: CART, Random

Forest (RF), ADA, LDA, Naive Bayes (NB), Neural Network

(NN), SVM with Gaussian Radial Basis Function (SVM-G)

4 While calculating confusion matrices, the predicted class label of each

cluster was taken according to the majority of the samples real labels.
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and SVM with Laplacian RBF (SVM-LP) on AF−test and

CPC A.

6.3.1 Comparison of eight classifiers on two datasets

Figure 4 shows the training process. Each dataset was ran-

domly divided into 2 parts: the training set (70%) and the

testing set (30%). During the training phase the K-fold algo-

rithm was used with K = 8 (inner loop). Next, each classifier

was evaluated using the testing set. The same procedure was

repeated 10 times: each time the training and testing sets were

chosen randomly (outer loop). Accuracy, F-score, Precision,

Recall were computed for each iteration of outer loop. In

Fig. 4 The overview of machine learning procedure

the last step mean and standard deviation of the Accuracy,

F-score, Precision, Recall were computed on 10 iterations

of the procedure. The corresponding results are presented in

Fig. 5, Tables 4 and 5.

To check whether there are significant differences between

8 machine learning algorithms within the dataset we used

ANOVA test. Only significant results are listed below. For

the post-hoc tests we used Bonferroni correction.

Given AF−T E ST ANOVA showed significant difference

between the classifiers, F(7, 72) = 9.4815, p < .001. Using

F-score results post-hoc tests showed that:

– CART performed significantly worse than SVM-G, RF,

NB, SVM-LP (p < .05),

– ADA performed significantly worse than SVM-LP (p <

.05),

– LDA performed significantly worse than SVM-LP, NN,

RF, SVM-G (p < .05).

Given CPC A ANOVA did not show significant differences

between the classifiers F(7, 72) = 1.073, p = 0.3896.

A B

Fig. 5 Average values of the quality indices calculated for each algorithm on the AF−T E ST and CPC A datasets: a F-score, b Accuracy

Table 4 Average values of the

quality indices calculated for

each algorithm on the AF−test

dataset

Algorithm Accuracy F-score Precision Recall

ADA 0.80 (0.032) 0.83 (0.027) 0.85 (0.046) 0.82 (0.033)

CART 0.76 (0.039) 0.79 (0.045) 0.80 (0.099) 0.80 (0.037)

LDA 0.75 (0.033) 0.79 (0.028) 0.81 (0.044) 0.79 (0.047)

NB 0.79 (0.043) 0.83 (0.033) 0.86 (0.038) 0.80 (0.042)

NN 0.81 (0.038) 0.84 (0.032) 0.83 (0.043) 0.85 (0.045)

RF 0.83 (0.030) 0.86 (0.024) 0.88 (0.035) 0.84 (0.032)

SVM-G 0.83 (0.022) 0.86 (0.018) 0.89 (0.026) 0.84 (0.025)

SVM-LP 0.84 (0.026) 0.87 (0.021) 0.89 (0.029) 0.85 (0.028)
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Table 5 Average values of the

quality indices calculated for

each algorithm on the CPC A

dataset

Algorithm Accuracy F-score Precision Recall

ADA 0.76 (0.034) 0.80 (0.030) 0.83 (0.039) 0.78 (0.026)

CART 0.75 (0.043) 0.80 (0.036) 0.85 (0.060) 0.76 (0.038)

LDA 0.76 (0.032) 0.80 (0.026) 0.84 (0.037) 0.76 (0.027)

NB 0.76 (0.030) 0.80 (0.027) 0.84 (0.050) 0.76 (0.023)

NN 0.76 (0.036) 0.79 (0.037) 0.80 (0.050) 0.79 (0.040)

RF 0.78 (0.044) 0.82 (0.037) 0.86 (0.047) 0.78 (0.030)

SVM-G 0.78 (0.032) 0.82 (0.027) 0.85 (0.034) 0.79 (0.026)

SVM-LP 0.79 (0.034) 0.82 (0.030) 0.83 (0.041) 0.81 (0.026)

6.3.2 Comparison of four datasets

Next we created classifiers using the SVM algorithm with

Laplacian Kernel for four datasets: AF−T E ST , CF−T E ST ,

APC A and CPC A. This algorithm was chosen as it performed

the best in the previous section (see Table 4). The correspond-

ing results are presented in Table 3.

We checked whether there are significant differences

between four datasets by applying ANOVA on results of

each iteration of training procedure. A significant main

effect of dataset was observed for the F-score, F(3, 36) =
9.928, p < .001. Post hoc comparisons with Bonferoni cor-

rection showed that F-score of CPC A was significantly lower

than F-score of AF−test (p < .001), APC A (p < .005) and

CF−test (p < .005).

6.4 Conclusion

In this section, we showed that it is possible to distinguish

fluid and fragmented movements from the audio of respira-

tion with the Accuracy up to 84% and F-score up to 87%.

We also compared two different feature reduction techniques

and two different features sets for the binary classification

task. The best result in terms of F-score (87%) was obtained

with SVM and 20 features computed from thirteen MFCC

coefficients. Similar result was observed when 11 features,

which were obtained after applying PCA on the same set of

MFCC-based features, were used (F-score 86%).

Regarding the differences between classifiers the only

significant performance drop was observed in the case of

decision tree based algorithms such as ADA and CART.

Regarding the performance difference of datasets, unsur-

prisingly the datasets extracted from matrix � performed

slightly better. It is worth to recall that the initial matrix �

is 4 times more bigger than the initial matrix �, the solution

based on matrix � was only 1% worse than the best solution

(see Table 3).

Some shortcomings of this study: first, the data of only

three dancers were used. Consequently, we could not val-

idate the classifiers with one-subject-out method. Second,

the inhalation data was excluded from the analysis. Possible

extensions include checking whether inhalation also brings

some useful information for the discrimination task. Third,

in the future, other audio features such as spectral centroid

will be extracted.

7 Classification of fluid and fragmented
movements from themultimodal data

Our multimodal approach is based on hypothesis (H1) that

different degree of synchronization can be observed for

movements performed with different movement qualities.

Our intuition is that if the fluid and fragmented movements

differ in terms of motor planning (see Sect. 3) also corre-

sponding respiration patterns may differ.

Our approach is as follows (Fig. 6): from the synchronized

recordings we extract one audio feature: the energy of the

audio signal, and one movement feature: the kinetic energy

of the whole body movement. These features were chosen as

they can be easily computed in real-time. In the second step,

we define events to be extracted from the time-series of the

features values and then we apply the Event Synchronization

algorithm [41] to compute the amount of synchronization

between them. Next, to check the hypothesis H1 we compare

the synchronization degree for two qualities. If the hypothesis

H1 is confirmed we build classifiers to distinguish between

two qualities.

7.1 Data processing

For the purpose of this study the corpus described in Sect. 5

was used. 9 out of 67 episodes were excluded because of

the signal synchronization problems. The remaining episodes

have duration between 4 and 85 s. To obtain the segments

of comparable duration we split episodes by applying the

following procedure:

– episodes were split if they were at least twice longer than

the smallest one,
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Fig. 6 Block diagram of the

analysis procedure. Event

Synchronization takes as input

events detected in the

time-series of (1) energy of the

respiration audio signal and (2)

kinetic energy from motion

capture data

– episodes were split into the segments of the same duration

(whether possible).

Consequently, we obtained 192 segments belonging into

two classes:

– Fluid Movements Set (FluidMS) consisting of 102 seg-

ments (average segment duration 4.77 s, sd = 0.70 s);

– Fragmented Movements Set (FragMS) consisting of 90

segments (average segment duration 4.193 s, sd = 0.66 s).

7.2 Feature extraction

The audio signal was split in frames of 1920 samples. To

synchronize the motion capture data with the audio signal,

the former was undersampled at 25 fps. Next, body and

audio features were computed separately at this sampling

rate.

7.2.1 Motion data

Motion data was used to compute kinetic energy. This

feature was computed in two stages: first, 17 markers

from the initial set of 60 were used to compute the

instantaneous kinetic energy frame-by-frame. The veloci-

ties of single body markers contribute to the instantaneous

kinetic energy according to the relative weight of the

corresponding body parts as retrieved in anthropometric

tables [15]. In the second step, the envelope of the instan-

taneous kinetic energy was extracted using an 8-frames

buffer.

7.2.2 Respiration audio

The instantaneous energy of the audio signal was computed

using Root Mean Square (RMS). This returns one value for

every input frame. Next, we extracted the envelope of the

instantaneous audio energy using an 8-frames buffer.

7.3 Synchronization computation

To compute the degree of synchronization we use the Event

Synchronization (ES) algorithm [41]. It is used to measure

synchronization between two time series in which some

events are identified. Let us consider two time-series of fea-

tures: x1 and x2. For each time-series xi let us define t xi as the

time occurrences of events in xi . Thus, t
xi

j is the time of the

j-th event in time-series xi . Let mxi
be the number of events

in xi . Then, the amount of synchronization Qτ is computed

as:

Qτ =
cτ (x1|x2) + cτ (x2|x1)√

mx1mx2

(3)

where

cτ (x1|x2) =
mx1
∑

i=1

mx2
∑

j=1

J τ
i j (4)

and

J τ
i j =

⎧

⎪

⎨

⎪

⎩

1 i f 0 < ti
x1 − t j

x2 < τ

1/2 i f ti
x1 = t j

x2

0 otherwise

(5)

τ defines the length of the synchronization window. Thus,

events contribute to the overall amount of synchronization,

only if they occur in a τ -long window.

In order to apply the ES algorithm to our data, two steps

were needed: (i) defining and retrieving events in two time-

series, and (ii) tuning the parameters of the ES algorithm.

7.3.1 Events definition

We defined events as the peaks (local maxima) of kinetic and

audio energy. To extract peaks, we applied a peak detector

algorithm that computes the position of peaks in an N-size

buffer, given a threshold α defining the minimal relative “alti-

tude” of a peak. That is, at time p, the local maximum x p
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Fig. 7 Excerpts of the two time-series of energy (audio energy and

kinetic energy), representing an example of fluid and fragmented move-

ment respectively (lower panel), and the events extracted from the two

time-series and provided as input to the ES algorithm (upper panel)

is considered a peak if the preceding and the following local

maxima xi and x j are such that xi +α < x p and x j +α < x p,

i < p < j , and there is no other local maximum xk , such

that i < k < j . We empirically chose the buffer size to be 10

frames (corresponding to 400 ms) and α = 0.4465. Figure 7

shows excerpts of the two time-series, representing an exam-

ple of fluid and fragmented movement respectively, and the

events the peak detector extracted.

7.3.2 Algorithm tuning

At each execution, the ES algorithm works on a sliding win-

dow of the data and it computes one value – the amount of

synchronization Qτ . In our case, the value of ES is reset at

every sliding window. Thus, the past values of ES do not

affect the current output. The algorithm has two parameters:

the size of the sliding window dimsw and τ . The size of

the sliding window was set to 20 samples (corresponding to

800 ms at 25 fps). This value was chosen as the breath fre-

quency of a moving human is between 35 and 45 cycles per

minute. Thus, 800 ms corresponds to half of one breath. We

analyzed multimodal synchronization with all τ in interval

[4, dimsw ∗ 0.5] (i.e., not higher than half of the size of the

sliding window dimsw).

7.4 Data analysis

We utilized datasets FluidMS and FragMS to test hypothesis

(H1). For each segment and each considered value of τ , we

computed the average value (AvgQτ ) of the amount of syn-

chronization Qτ on the whole segment. Next, we computed

the mean and standard deviation of AvgQτ separately for all

fluid and fragmented segments (see Table 6).

To test the differences between the amount of synchro-

nization in the segments of FluidMS and FragMS we applied

Mann-Whitney test on values of AvgQτ . Similar results were

obtained for all the tested τ . A significant effect of Quali t y

for τ = 4 (two tailed, U = 3598, p < .01), τ = 6 (two

tailed, U = 3250.5 p < .001), τ = 8 (two tailed, U = 3307,

p < .001) and τ = 10 (two tailed, U = 3101, p < .001)

was observed.

According to the results, our hypothesis H1 was con-

firmed as multimodal synchronization between the energy

of the audio signal of respiration and the kinetic energy of

whole body movement allowed us to distinguish between the

selected qualities. In particular, audio respiration and kinetic

energy were found to be more synchronized in fragmented

movements than in fluid movements.

7.5 Classification

We train classifiers per each considered value of τ . We use

the same 8 classification algorithms that we have used in the

previous Section.

First we compute the following features: the average

value (AvgQτ ), the Variance (V ar Qτ ) and the median value

(Med Qτ ) of the amount of synchronization Qτ on the whole

segment. The training procedure is the same as in the case

of unimodal algorithm (Sect. 6) with 8 fold inner loop and

10 repetitions of the outer loop. The results (see Table 7) are

Table 6 Average values and standard deviations of AvgQτ , V ar Qτ and Med Qτ for fluid and fragmented movements

τ AvgQτ V ar Qτ Med Qτ

Fluid Fragmented Fluid Fragmented Fluid Fragmented

τ = 4 0.130 (0.130) 0.180 (0.151) 0.235 (0.192) 0.295 (0.160) 0.020 (0.139) 0.064 (0.209)

τ = 6 0.184 (0.167) 0.275 (0.185) 0.290 (0.189) 0.351 (0.144) 0.076 (0.262) 0.157 (0.325)

τ = 8 0.249 (0.170) 0.339 (0.189) 0.363 (0.151) 0.386 (0.127) 0.085 (0.277) 0.219 (0.365)

τ = 10 0.284 (0.176) 0.399 (0.215) 0.389 (0.133) 0.401 (0.118) 0.122 (0.322) 0.321 (0.424)
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Table 7 Average values of the

F-score obtained for 8

algorithms

Algorithm τ = 4 τ = 6 τ = 8 τ = 10

ADA 0.67 (0.044) 0.68 (0.057) 0.69 (0.032) 0.71 (0.043)

CART 0.65 (0.077) 0.70 (0.066) 0.67 (0.045) 0.70 (0.046)

LDA 0.67 (0.042) 0.67 (0.062) 0.64 (0.036) 0.69 (0.053)

NB 0.65 (0.056) 0.66 (0.051) 0.65 (0.069) 0.72 (0.053)

NN 0.70 (0.040) 0.70 (0.060) 0.68 (0.046) 0.69 (0.074)

RF 0.67 (0.037) 0.63 (0.064) 0.63 (0.035) 0.66 (0.059)

SVM-G 0.67 (0.035) 0.67 (0.070) 0.67 (0.070) 0.64 (0.071)

SVM-LP 0.67 (0.038) 0.66 (0.048) 0.60 (0.040) 0.64 (0.065)

between 0.60 and 0.72 (F-score) depending on the dimension

of τ and the classification algorithm.

To check whether there are significant differences between

the different machine learning algorithms within the dataset

we used ANOVA test. Only significant results are listed

below. For the post-hoc tests we used Bonferroni correction.

Given τ = 4, ANOVA did not show significant differences

between the classifiers, F(7, 72) = 1.095, p = .096.

Given τ = 6, ANOVA did not show significant difference

between the classifiers, F(7, 72) = 1.493, p = .183.

Given τ = 8, ANOVA showed significant difference

between the classifiers, F(7, 72) = 3.701, p < .005.

Post-hoc tests showed that the F-score for: SVM-LP was

significantly lower than the F-score for ADA (p < .01) and

NN (p < .05).

Given τ = 10, ANOVA showed significant difference

between the classifiers F(7, 72) = 2.869, p < .05 while

post-hoc tests did not show differences between any specific

pair.

7.6 Discussion

In this section, a multimodal approach for the discrimination

of fluid and fragmented movements, that is based on Event

Synchronization, was presented. First, we observed that there

is a significant difference in the amount of the synchroniza-

tion between fluid and fragmented movements. We used the

amount of synchronization as an input to the binary classi-

fier. The highest numerical score was for τ = 10 when NB

algorithm (F-score 0.72) was used.

When comparing the results obtained on the same dataset

in the Sects. 6.3 and 7.5 it can be seen that the results of sec-

ond approach are numerically worse. However, it is important

to notice that the second solution uses only two very simple

features. Even with such a small amount of information as

the audio and movement data energy peaks contain, it is pos-

sible to compute whether the person moves fluidly or in a

fragmented manner.

Our long-term aim is to detect different movement quali-

ties without using a motion capture system. For this purpose,

in the future we plan to use the IMU sensors placed on the

dancers’ limbs, and to estimate their kinetic energy without

the need of using motion capture systems (see e.g., [9]).

It is important to notice that we did not ask dancers to

play dance patterns, but only to improvise typical movements

characterized by the two clusters of movement qualities. All

movements were therefore in normal standing positions (e.g.

not moving down to the floor). The availability of dancers is

to have a better mastery and awareness of movement to obtain

a cleaner movement dataset. It is probable that dancers have

higher consciousness and control their respiration patterns

better than the average people. Thus, the further research is

needed to examine if this method can also be successful to

analyze average persons, e.g., not dancers.

8 Conclusion

In this paper, we proposed two novel approaches to dis-

tinguish fluid and fragmented movements using the audio

of respiration. In the first method, MFCC coefficients were

extracted from the single exhilarations and used as an input

to the binary classification algorithms. The second approach

computed the degree of synchronization of multimodal data,

consisting of energy peaks of audio signal of respiration and

body movements. This degree of synchronization was then

used to distinguish between the fluid and fragmented move-

ments. Both methods were validated on the same dataset.

According to the results, both techniques were successful

to distinguish fragmented and fluid movements and the best

results were obtained with SVM-LP (0.87).

The main contributions of this work are:

– according to the authors’ knowledge, it is the first attempt

to use information extracted from the respiration audio

to analyze how a person moves in terms of movement

qualities,

– unlike the most of previous works on respiration data, we

used a standard microphone placed near to the mouth to

capture respiration data,
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– whilst most of the works that explored the respiration data

mainly focused on the respiration rhythm, however, we

investigated other features e.g., intrapersonal synchro-

nization between two modalities.

The paper proves that audio respiration can be useful to

recognize how a person moves. While we did not focus on any

specific Laban quality but we analyzed very broad movement

categories, the positive results obtained in this exploratory

study, allows us to assume that, in the future, it will be

possible to apply our techniques to recognize more subtle

movements qualities from Laban’s [27] or other frameworks,

e.g., [10]. As the first step in this direction, and inspired by

recent works [16] we have been working on creating the mul-

timodal dataset (containing IMU and audio respiration data)

of movement qualities of the expressive vocabulary [33]. Fur-

thermore, we expect that the methods proposed in this paper

can be useful to detect other human activities, cognitive and

emotional states.
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