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As neurons are one of the most highly polarized cells in our body, they require

sophisticated cellular mechanisms to maintain protein homeostasis in their subcellular

compartments such as axons and dendrites. When neuronal protein homeostasis is

disturbed due to genetic mutations or deletions, this often results in degeneration

of neurons leading to devastating outcome such as spinal muscular atrophy (SMA),

amyotrophic lateral sclerosis (ALS), and fragile X syndrome (FXS). Ribonucleoprotein

(RNP) complexes are macromolecular complexes composed of RNA binding proteins

(RBPs) and their target RNAs. RBPs contain RNA binding domains and bind to RNA

molecules via specific sequence motifs. RNP complexes have various functions in gene

expression including messenger RNA (mRNA) trafficking, RNA processing and silencing.

In neurons, RBPs deliver specific sets of mRNAs to subcellular compartments such as

axons and dendrites to be locally translated. Mutations or deletions in genes coding for

RNPs have been reported as causes for neurological disorders such as SMA, ALS, and

FXS. As RBPs determine axonal or dendritic mRNA repertoires as well as proteomes by

trafficking selective mRNAs and regulating local protein synthesis, they play a crucial role

for neuronal function. In this review, we summarize the role of well-known RBPs, SMN,

TDP-43, FUS, and FMRP, and review their function for local protein synthesis in neurons.

Furthermore, we discuss their pathological contribution to the neurological disorders.

Keywords: ribonucleoproteins, RNA binding proteins, mRNA translation, local protein synthesis, SMA, ALS, FXS,

neurodegeneration

INTRODUCTION

Dysfunctional RNA processing in neuronal tissue is often observed in neurodegenerative diseases
and plays a crucial role in neuronal pathology. This implies the essential part of ribonucleoprotein
(RNP) complexes, that play an important role in RNA metabolism. RNP complexes contain RNA
molecules with specific sequences/motifs bound to RNA-binding proteins (RBP). RNPs regulate
eukaryotic gene expression in various cellular mechanisms including formation of ribosomes,
spliceosomes and RNA-induced silencing complexes (RISCs) (Dreyfuss et al., 2002). In RNP
complexes, RNAs and RBPs influence the fate of each other. On the one hand, RBPs act on
processing, modification, stability, translation, and localization of RNAs, on the other hand, RNAs
can regulate function, interaction, stability, and localization of RBPs. One example are long non-
coding RNAs (lncRNAs). They can regulate the function of RBPs by recruiting transcription factors
or chromatin-modifying complexes to chromatin (Cech and Steitz, 2014). One of the most well-
characterized RNPs aremessenger RNPs (mRNPs). They are composed of specificmRNAs and their
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mRNA-binding proteins (mRBPs). Assembly of the mRNPs
can influence subcellular localization, post-transcriptional
modification and translation of the transcripts. The misregulated
assembly of mRNPs in the central nervous system (CNS)
often leads to neurodegenerative diseases such as amyotrophic
lateral sclerosis (ALS) and spinal muscular atrophy (SMA)
(Shukla and Parker, 2016). In pathology, alterations in RNA
metabolism manifest itself in misregulated splicing, adenylation,
transcription, mRNA transport, translation, and modified decay.
Those changes can be caused by various defects including
reduced RBP expression, aggregation-prone RBPs or RBP
sequestration in RNA foci. A detailed summary about general
mechanisms involved in RNA metabolism in pathology can be
found in a review by Nussbacher et al. (2019).

Due to the extreme cellular compartmentalization of
neurons, it is essential to provide local mRNA transcripts
and this especially makes neurons vulnerable to loss of RNPs.
It has been suggested that neurons can regulate protein
homeostasis at subcellular levels. Numerous evidences support
this hypothesis that neurons can synthesize proteins at the
synaptic compartment in response to extra stimuli. For example,
the cellular components necessary to produce proteins are
detected at the synaptic area such as ribosomes and mRNAs
(Ainsley et al., 2014; Scarnati et al., 2018; Poulopoulos et al.,
2019). In this scheme, RNPs deliver specific sets of mRNAs and
produce repertoires of mRNAs in subcellular compartments,
resulting in unique synaptic proteomes in neurons. Therefore,
accurate function of RNPs and efficient local mRNA translation
are crucial for neuronal development and function.

This review focuses on translational abnormalities caused
by defects in mRNPs in neurological disorders including SMA,
ALS, frontotemporal dementia (FTD), and fragile X syndrome
(FXS). Table 1 summarizes the reviewed RBPs, the resulting
neurodegenerative disorder as well as the underlying molecular
mechanisms leading to pathology.

PROTEIN SYNTHESIS IN NEURONS

Protein synthesis is an essential cellular process for function,
development and survival. In this process, a coordinated

TABLE 1 | Summary of RNPs in neurodegenerative disorders.

Disease RBP Gene Mechanism

Spinal muscular

atrophy (SMA)

Survival motor neuron

(SMN)

Homozygous

deletions, loss-of

function mutations

Reduced RBP

expression

Amyotrophic

lateral sclerosis

(ALS),

Frontotemporal

dementia (FTD)

TAR DNA binding

protein 43 (TDP-43),

Fused in

sarcoma/translocated

in liposarcoma

(FUS/TLS)

Mutations,

mislocalization

(abberant

methylation)

Aggregation-

prone RBP, RBP

sequestration in

RNA foci

Fragile X

syndrome (FXS)

Fragile X mental

retardation protein

(FMRP)

CGG>200 repeat

expansion in the 5′

UTR of FMR1

Reduced RBP

expression, RBP

sequestration in

RNA foci

interplay between proteins and RNA is crucial to produce
functional proteins. Mutations in genes involved in RNA
metabolism lead to various diseases. Interestingly, many
of these mutations are associated with neurodegenerative,
neurodevelopmental and neuromuscular disorders. Because
neurons are post-mitotic, highly polarized and larger in size
compared to other types of cells, less severe mutations in
genes involved in RNA metabolism may cause dysfunction in
neurons, but other types of cells might tolerate these mutations.
Dysfunction of RNA-related processes including tRNA synthesis,
ribosome biogenesis, sequestration and mislocalization of
mRNAs has been reported as pathological mechanisms in
neurological disorders (Jordanova et al., 2006; Butterfield et al.,
2014; Rossi et al., 2015). Furthermore, mutations in genes
involved in RNA metabolisms are also reported as causative
mutations in neurodegenerative diseases. For example, deletion
of a gene coding for fragile X mental retardation protein (FMRP,
a repressor of mRNA translation) causes mental retardation and
mutations in a gene coding for TAR DNA binding protein (TDP-
43), which impairs protein synthesis by sequestering mRNAs,
can cause ALS or frontotemporal dementia (Verkerk et al., 1991;
Coyne et al., 2017).

Ribosomes are crucial components of mRNA translation.
Recent data suggests that ribosomes are rather heterogeneous
and this may affect protein synthesis efficiency in subcellular
compartments (Simsek et al., 2017; Genuth and Barna,
2018). Mutations in genes important for ribosome biogenesis
such as ribosomal protein and ribosomal RNA can cause
neurodegenerative disorders (ribosomopathies) (Farley-Barnes
et al., 2019). Besides the conventional cap-dependent translation
initiation mechanism, Internal Ribosome Entry Site (IRES)-
mediated translation is reported in neurons (Pinkstaff et al.,
2001; Pelletier and Sonenberg, 2019). While the pathogenic
mechanism is unclear, it has been shown that TAU, which
contributes to Alzheimer’s pathology, is synthesized via IRES
mediated translation initiation (Veo and Krushel, 2009). In
addition, another non-conventional translation mechanism has
been reported, repeat-associated non-AUG (RAN) translation.
For example, a pathological expansion of trinucleotide repeats
in C9ORF72 forms IRES like structures in RNA, producing toxic
dipeptide repeats, which form aggregates in neurons (Ash et al.,
2013; Zu et al., 2013). These dipeptide-containing aggregates are
observed in ALS patient samples withmutations inC9ORF72 (Zu
et al., 2013). Taken together, these findings highly suggest that
protein synthesis is a particularly important process in neurons
and its dysregulation can cause neuronal dysfunction.

LOCAL mRNA TRANSLATION IN AXONS
AND DENDRITES

In neurons, mRNAs can be transported to axons and dendrites
as mRNPs and locally translated to maintain local protein
homeostasis. The localization sequence (also called zip code)
to neuronal projections is often located in the 3′-untranslated
region (UTR) of the mRNA (Andreassi and Riccio, 2009). It
is believed that activity-dependent synaptic protein synthesis
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is crucial for learning and memory formation (Buffington
et al., 2014). Cellular components necessary for regulating
protein synthesis have been found in the neurite compartments
including mRNAs, tRNAs, ribosomes, translation factors, the
RNA-induced silencing complex (RISC) as well as microRNAs
(miRNAs) (Tiedge and Brosius, 1996; Lugli et al., 2005;
Kye et al., 2007; Ainsley et al., 2014; Scarnati et al., 2018;
Poulopoulos et al., 2019). Local mRNA repertoire has been
profiled in many different contexts by various methods
(Matsumoto et al., 2007; Poulopoulos et al., 2019). In brief,
transcriptomes and proteomes in growth cones isolated from
cerebral cortices have been profiled by RNA sequencing andmass
spectrometry (Poulopoulos et al., 2019). This data suggests that
subcellular transcriptomes/proteomes play an important role
in neural circuit formation and more interestingly, subcellular
transcriptome distribution is mTOR dependent. In addition,
dendritic RNAs have been identified from the synaptosomes by
microarray analysis and their subcellular distribution can be
altered by neuronal activity (Matsumoto et al., 2007). These data
sets confirm that neuronal projections, either axons or dendrites
contain different sets of mRNAs compared to soma. These
findings highly suggest that local proteomes are supplied by local
mRNAs. Recently, it has been identified that mitochondria and
late endosomes play an important role for protein synthesis at
the synaptic site (Cioni et al., 2019; Rangaraju et al., 2019).
Due to these reports, late endosomes serve as a platform of
axonal local translation by binding to RBPs, ribosomes and
mRNAs. Furthermore, the proteins important for mitochondrial
integrity are produced on the late endosomes (Cioni et al., 2019).
Additionally, while it has been suggested that synaptic energy
can be supplied by glycolysis in presynaptic boutons (Ashrafi
et al., 2017), mitochondria seem to be the sole energy source
for post-synaptic plasticity as mitochondria-depleted dendritic
spines show clearly reduced levels of plasticity induced protein
synthesis as well as spine growth (Rangaraju et al., 2019).

Another interesting cellular component regulating neuronal
protein synthesis are RNA granules. Neurons contain various
RNA granules including stress granule, processing body (P-body)
and tRNP granule (Anderson and Kedersha, 2009). It has been
suggested that RNA granules can repress protein synthesis and
store mRNAs until they have reached their final subcellular
destination in neurons (Kiebler and Bassell, 2006). Importantly,
it has been shown that dendritically located RNP granules can be
disassembled in an activity-dependent manner and mRNAs can
be used as a template to produce synaptic proteins (Krichevsky
and Kosik, 2001). This process is crucial for neuronal health and
function as it is a cellular homeostatic mechanisms to handle
external stress and control synaptic plasticity. While many RBPs
are involved in assembly and disassembly of RNA granules, here
we will focus on the RBPs whose dysfunction is associated with
neurological disorders.

AXONAL RNA BINDING PROTEINS AND
AXONAL LOCAL TRANSLATION

It is still not fully understood how (or even whether) proteins
can be synthesized in mature axons in vivo, and whether this

is a universal mechanism happening in all kinds of neurons
or if it is a neuronal subtype specific phenomenon. However,
increasing numbers of evidence suggest that active protein
synthesis happens in growing and regenerating axons (Spaulding
and Burgess, 2017). To characterize the axonal local translation
mechanism, different approaches have been made including
profiling axonal transcriptome/proteome and identifying RNA
binding proteins for mRNA trafficking or splicing (Briese et al.,
2018; Poulopoulos et al., 2019; Zhang et al., 2019). One of the
most important player of protein synthesis, the ribosomes, are
detected in axonal compartments (Akins et al., 2017). Axonal
ribosomes can be trafficked from soma, but they can also be
transferred from surrounding cells such as glia or Schwann
cells via exosomes (Court et al., 2008; Muller et al., 2018).
Another important component of translation are messenger
RNAs (mRNAs). As mentioned above, RBPs bind to mRNAs
selectively, localize them in subcellular compartments and even
regulate protein synthesis. This will impact on local proteome
composition. For example, the zip code binding protein 1 (ZBP1)
binds the 3′-UTR of β-actin mRNA and hinders protein synthesis
by blocking translation initiation as long as β-actin mRNA is
not localized to its destination (Huttelmaier et al., 2005). Next,
mTOR kinase is an essential regulator of mRNA translation in
injured axons (Terenzio et al., 2018). The mTOR kinase can
regulate the efficiency of protein synthesis upon extracellular
signals or intracellular status via turning on signaling cascades.
Finally, numerous miRNAs and protein components of RISC
have been detected in axons and growth cones (Hengst et al.,
2006; Kye et al., 2014; Gershoni-Emek et al., 2018). This data
implies that miRNAs can function as a translational repressor in
axons. For example, it has been shown that miR-183 can repress
protein synthesis of mTOR by direct binding to 3′UTR of mTOR
mRNA in axons (Kye et al., 2014). Taken together, with current
knowledge, we can conclude that proteins can be synthesized in
axonal compartments.

Spinal Muscular Atrophy (SMA)
SMA is caused by a reduction of the ubiquitously expressed SMN
protein which leads to loss of lower motor neurons. In more
than 95% of SMA cases, homozygous deletions are found in
the SMN1 gene encoding the full length SMN protein. Humans
possess a duplication of the SMN1 gene, SMN2, which produces
a transcript lacking exon 7 due to a single point mutation located
in exon 7 (Lorson et al., 1999). Due to this, SMN2 encodes
for a unstable SMN protein, which is rapidly degraded by the
proteasome pathway (Chang et al., 2004). Therefore, the copy
number of SMN2 can determine the amount of SMN proteins
and the severities of SMA (Butchbach, 2016). Importantly,
complete loss of SMN is embryonically lethal in multiple
organisms including humans and mice (Schrank et al., 1997).
Therefore, SMA mouse models are generated by introducing
human SMN2 genes inmurine Smn-null background. Two copies
of SMN2 in Smn null background causes severe phenotypes in
mice mimicking type I SMA patients. In this model, mice are
born with a normal number of motor neurons, but lose 3–40%
of spinal cord and lower brainstem motor neurons by post-
natal day 5 (Monani et al., 2000). It is still under investigation
how a ubiquitously expressed protein like SMN leads to specific
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loss of lower motor neurons in SMA. It has been hypothesized
that specific sets of primary mRNAs are dysregulated in SMA
and that they are crucial for development and survival of motor
neurons. For example, Agrin (Agrn) is mis-spliced in motor
neurons of SMA mice, and notably it is important for organizing
acetylcholine receptors at the NMJ (Zhang et al., 2013; Kim et al.,
2017). Furthermore, an alternatively spliced form of SMN, the
axonal-SMN (a-SMN) has been reported. This isoform seems
highly expressed in the axonal compartment of motor neurons
and it enhances axon growth in neurons. While the molecular
mechanism underlying the role of a-SMN in axonogenesis
remains still unclear, this might hint at the selective phenotype of
SMN loss in motor neurons (Setola et al., 2007). Collectively, the
functions of SMN with respect to RNA homeostasis are shown in
Figure 1.

Splicing correction of SMN2 using an antisense
oligonucleotide (ASO) has been developed to restore SMN
protein levels. Briefly, ASO binds to an intronic silencer in
intron 7 and thereby it enhances the inclusion of exon 7 of
SMN2 (Hua et al., 2008, 2011). Noteworthy, this ASO-mediated
treatment, named Nusinersen became the first Food and Drug
Administration (FDA) approved treatment for SMA. In addition,
gene therapy using AAV9 has been also FDA-approved as a SMA
therapy. As SMA is caused by deficiency of SMN protein, SMN

protein can be restored in motor neurons by viral delivery
(Mendell et al., 2017).

Survival Motor Neuron (SMN) for Local mRNA

Translation
As mentioned above, SMA is caused by SMN protein deficiency.
SMN is an RNA binding protein, ubiquitously expressed
and performs multiple essential cellular functions, especially
in RNA processing. SMN protein levels are higher during
embryogenesis and decrease after birth (Jablonka and Sendtner,
2017). Correlating with SMN levels, assembly of small nucleolar
ribonucleoproteins (snRNP) declines in mouse spinal cord
during the early postnatal weeks (Gabanella et al., 2005). Basic
SMN complex consists of SMN and Gemin2-8, and SMN protein
itself is rather unstable without its binding partners (Lorson et al.,
1998; Otter et al., 2007). Reactive oxygen species (ROS) can
inhibit SMN complex formation. Even subtoxic levels of ROS
can inhibit SMN complex formation by inducing intramolecular
disulfide bridging (Wan et al., 2008). Activity of the SMN
complex is regulated by phosphorylation, and phosphorylation
of SMN enhances cytoplasmic localization and snRNP biogenesis
(Grimmler et al., 2005; Renvoise et al., 2012). The SMN complex
can be detected in the cytoplasm, nucleus and nuclear gems
(Gemini of Cajal bodies) (Carvalho et al., 1999). SMN levels are

FIGURE 1 | Spinal muscular atrophy (SMA) is caused by mutations or deletions in the SMN1 gene, that lead to reduced SMN protein levels. Physiologically, SMN is

mostly found in a complex. Besides snRNP biogenesis and splicing, SMN has important functions such as mRNP granule assembly, axonal mRNA transport and

local translation.
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especially higher in nuclear gems, which consist of RNAs and
proteins. It has been suggested that the composition of SMN
complex can be different in neurite compartments of neurons
(Todd et al., 2010).

SMN complex is a molecular chaperone, regulating structure,
biogenesis and function of snRNPs that are involved in splicing
(Liu and Dreyfuss, 1996). For snRNP biogenesis, SMN facilitates
the assembly of Sm proteins onto the Sm site of the snRNA
and produces functional snRNPs (also known as spliceosomes).
SMN also functions in the transport and assembly of other
ribonucleoprotein classes, including microRNPs or telomerase
RNPs (Buhler et al., 1999; Mourelatos et al., 2001, 2002).

SMN is involved in mRNA processing after being assembled
into mRNPs. These additional functions range from nuclear
export, intracellular trafficking to translation. In neurons, SMN
binds to mRNAs directly or via other mRBPs, and transports
polyA-tailed mRNAs to the axonal compartment to be locally
translated (Akten et al., 2011; Fallini et al., 2011; Ottesen et al.,
2018). Such mRBPs include HuD (ELAVL4, ELAV like RNA
binding protein 4), KSRP (KH-type splicing regulatory protein),
hnRNPs (heterogeneous nuclear ribonucleoproteins) and IMP1
(also known as IGF2BP1, Insulin like growth factor 2 mRNA
binding protein 1) (Tadesse et al., 2008; Akten et al., 2011;
Dombert et al., 2014; Fallini et al., 2014). The known SmnmRNA
cargo in neurons include mRNAs of β-actin, growth-associated
protein 43 (Gap43), annexin 2 (Anxa2), and neuritin/cpg15
(Akten et al., 2011; Fallini et al., 2016; Rihan et al., 2017; Ottesen
et al., 2018). Stable supply of β-actin protein seems important
for growth of neurons as a building block, GAP43 is crucial
for axonal pathfinding and regeneration, CPG15 is a known
neurotrophic factor, and ANXA2 is also important for growth of
cells. It is also worth to note that rapid bidirectional transport
of SMN protein has been observed in primary neurons and it
is microtubule dependent (Zhang et al., 2003). Taken together,
these data collectively suggest that SMN plays an important role
for local proteome composition by trafficking mRNAs, to be
translated in the axonal compartment.

Amyotrophic Lateral Sclerosis (ALS) and
Frontotemporal Dementia (FTD)
ALS is an adult-onset, progressive neurodegenerative disorder
causing deterioration and death of upper and lower motor
neurons (Cleveland and Rothstein, 2001). Most of ALS patients
die from respiratory failure within 3–5 years after onset (Swinnen
and Robberecht, 2014). The majority of ALS cases (90–95%)
is considered as sporadic ALS (sALS) without family history
and 5–10% of cases show Mendelian inheritance. Over the last
decades, genetic variants in over 25 genes are associated with
ALS (Nguyen et al., 2018). The most common and most well
established mutations contributing to ALS pathology are found
in Cu-Zn superoxide dismutase 1 (SOD1), TDP-43, FUS and
a hexanucleotide expansion repeat in Chromosome 9 Open
Reading Frame 72 (C9orf72) (Chia et al., 2018). Mutations in
SOD1 are the first reported ALS- associated mutations and
are the second most common mutations in ALS (Rosen et al.,
1993). Those mutations in SOD1 can be found in about 12%

of familial ALS (fALS) and around 1% sALS (Renton et al.,
2014). The most common mutated gene in ALS and FTD is
C9orf72, which forms highly stable RNAG-quadruplexes due to a
hexanucleotide repeat in the 5′ non-coding region (Renton et al.,
2011). Up to now, the protein function of C9ORF72 is rather
unknown, but the formation of G-quadruplexes are involved
in sequestering RNA metabolism such as telomere stability,
transcription, splicing, RNA transport, and translation in RNA
foci (Fratta et al., 2012). More importantly, a hexanucleotide
repeat in the 5′ non-coding region of C9orf72 can produce
dipeptide repeat proteins (Gly-Ala) via RAN translation. These
dipeptide proteins form aggregates in neurons and cause cellular
toxicity (May et al., 2014). In 2008, mutations in the gene coding
for the transactive response DNA-binding protein 43 (TDP-
43) have been reported as disease causing mutations in ALS
(Sreedharan et al., 2008). A recent study showed that mutations
in TDP-43 account for 4% of fALS and for <1% of sALS cases
(Chia et al., 2018).

In addition to ALS, mutations in TDP-43 can lead
to frontotemporal lobar degeneration (FTLD-TDP), which
is characterized by insoluble inclusions containing TDP-
43 aggregates (Seelaar et al., 2007). TDP-43 proteinopathies
show various molecular phenotypes including loss of nuclear
expression and pathological aggregations (Winton et al., 2008;
Zhang et al., 2009). The molecular mechanisms contributing
to ALS and FTD pathology are summarized in Figure 2.
At the moment, it is unclear whether TDP-43 mediated
neurodegeneration is caused by the loss of function or the gain
of toxic function.

Transactive Response DNA-Binding Protein 43

(TDP-43) for Local mRNA Translation
TDP-43 is a 43 kDa highly conserved, ubiquitously expressed
DNA/RNA-binding protein, encoded by the TARDP gene in
humans. It plays an important role in RNA processing and its
mutations are linked to neurodegeneration (Lee et al., 2011).
TDP-43 binds to a large variety of transcripts including mRNAs
and non-coding RNAs (Sephton et al., 2011; Tollervey et al.,
2011). Interestingly, some of those transcripts are related to
neuronal development or synaptic activity (Polymenidou et al.,
2011). Furthermore, TDP-43 also regulates microRNA (miRNA)
biogenesis by binding to the Drosha-DGCR8 (DiGeorge
syndrome critical region gene 8) microprocessor complex,
which is important for processing primary miRNAs. Indeed,
knockdown of TDP-43 results in altered levels of miRNAs
(Kawahara and Mieda-Sato, 2012).

In addition to the RNA binding motifs, TDP-43 contains a
C-terminal low complexity domain, where the majority of ALS-
associated dominant missense mutations are located (Figure 3)
(Pesiridis et al., 2009). It has been shown that TDP-43 binds to the
hnRNPs including hnRNP A1, hnRNP A2/B1, hnRNP A3, and
hnRNP C1/C2 via this glycine-rich domain (Buratti et al., 2005;
Freibaum et al., 2010). Interestingly, TDP-43 regulates splicing
of several transcripts including Smn mRNA (Bose et al., 2008).
Various stressors mediate the redistribution of TDP-43 from the
nucleus into the cytoplasm, where it is associated with RNAs and
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FIGURE 2 | Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTD) are caused by multiple mutations leading to defects in RNA metabolism. Mutated

TDP-43 or FUS protein aggregates in the cytoplasm and lacks nuclear import. TDP-43 and FUS function physiologically in transcription activation, mRNA splicing,

mRNP assembly, axonal transport of mRNA, and local translation. Due to loss of normal protein function and gain of toxic function, RNA metabolism is impaired.

recruited to stress granules (Colombrita et al., 2009; Dewey et al.,
2011; Mcdonald et al., 2011).

In neurons, TDP-43 binds to specific RNA structures,
G-quadruplex in mRNAs and deliver them to neurites to
be translated locally. Interestingly, TDP-43 protein with an
ALS-linked mutation in the C-terminal glycine-rich domain
diminishes the binding affinity to G-quadruplex in mRNAs and
their translation in neurites (Ishiguro et al., 2016). Furthermore,
ALS associated mutations in TDP-43 impairs mRNA trafficking
in axons (Alami et al., 2014). Taken together, these data imply that
disturbed local mRNA translation contributes to pathology of
ALS. It is worthy to note that TDP-43 is also crucial for regulating
dendritic local translation in response to neuronal activity (Endo
et al., 2018). This may suggest the role of TDP-43 for psychiatric
outcomes observed in FTD patients.

Fused in Sarcoma/Translocated in Liposarcoma

(FUS) for Local mRNA Translation
Fused in sarcoma/Translocated in liposarcoma (FUS/TLS) is a
DNA/RNA-binding protein andmutations in FUS are implicated
in ALS (about 4% of fALS and <1% of sALS) and FTLD (Chia

et al., 2018). FUS can shuttle between the nucleus and cytoplasm,
and is detected at the pre-synaptic site of hippocampal neurons
and at the neuromuscular junction (NMJ) (Schoen et al., 2015;
So et al., 2018). FUS plays various cellular functions including
transcriptional activation, RNA splicing, mRNA trafficking and
translation, and DNA repair as well as genome stability by direct
binding to nucleic acid molecules (Efimova et al., 2017). It has
been shown that FUS can act on mRNA trafficking and local
translation in neurons. Importantly, ALS-causing mutant FUS
harboring neurons showed impaired axonal protein synthesis
(Lopez-Erauskin et al., 2018). Additionally, FUS protein has
been detected in stress granules, which is known to function in
translation repression (Bosco et al., 2010). However, it is still
unclear whether wild-type FUS can be assembled into stress
granules or this is an exclusive phenotype of mutant FUS (Aulas
and Vande Velde, 2015).

Several mutations in FUS have been associated with ALS/FTD.
Unlike TDP-43, where the majority of mutations linked to
ALS/FTD are located in the low complexity domain, most
ALS/FTLD-associated mutations are found in the C-terminal
nuclear localization signal (NLS) in FUS (Figure 3) (Da Cruz
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FIGURE 3 | Representation of the protein domain structure of TDP-43 and FUS. The majority of ALS/FTD associated dominant missense mutations in TDP-43 can be

found in the glycine-rich c-terminus. Whereas, most ASL/FTLD associated mutations in FUS are described in the nuclear localization signal (NLS).

and Cleveland, 2011). Due to mutations in the NLS, mutant
FUS proteins seem mis-localized and form inclusions in
the cytoplasm (Vance et al., 2009). Proteomic approaches
showed that these inclusions contain various proteins important
for mRNA splicing, RNA processing and transport such as
eIF4A3 (eukaryotic translation initiation factor 4A3) and eIF3
(eukatyotic translation initiation factor 3). Importantly, FUS
regulates mRNA translation and non-sense mediated decay
(NMD), and mutations in FUS suppress protein synthesis
efficiency and cause hyperactive NMD resulting in impaired
protein homeostasis in cells (Kamelgarn et al., 2018). In
summary, mutant FUS induces inclusions, and this sequesters
important proteins for cellular processes such as mRNA
translation and NMD, which can be detrimental to cellular
function and survival.

Interestingly, it has been shown that motor and cognitive
deficits in ALS are caused by increase of mutant FUS in axonal
compartments, that lead to reduced intra-axonal translation and
therefore to synaptic dysfunction (Lopez-Erauskin et al., 2018).
This decreased protein synthesis is not accompanied with FUS
aggregation or loss of nuclear FUS function, suggesting a new
patho-mechanism caused by mutant FUS.

Notably, FUS can interact with TDP-43. This interaction is
increased by ALS-associated mutations in TDP-43 (Ling et al.,
2010). Therefore, mutations in TDP-43 and FUS might share

a common mechanism leading to ALS. In addition, FUS can
interact with SMN and their binding affinity to each other
increases by mutations in FUS. Furthermore, FUS inclusions
sequester cytoplasmic SMN, resulting in reduced axonal SMN
levels (Groen et al., 2013). As SMN delivers mRNAs to axons
and growth cones for local translation (Akten et al., 2011), this
data suggests that mutations in FUS induce impaired axonal local
translation by sequestering the axonal SMN-mRNA complex.
Taken together, these data imply that ALS and SMA might have
a common patho-mechanisms such as decreased mRNP activity
by SMN and impaired axonal local translation. Similar to TDP43,
the gain of toxic function and/or loss of normal function in FUS
contributes to ALS pathology.

DENDRITIC RNA BINDING PROTEINS AND
LOCAL mRNA TRANSLATION

Fragile X Syndrome (FXS)
Fragile X syndrome (FXS) is a genetic disorder with intellectual
disability caused by loss/deficiency of fragile Xmental retardation
protein, FMRP. FMRP is a polyribosome-associated RNA
binding protein, which is encoded by the fragile X mental
retardation 1 gene (FMR1) (Flannery et al., 1995). Mutations in
the FMR1 gene are also associated with other diseases including
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the fragile x-associated tremor/ataxia syndrome, premature
ovarian aging and the polycystic ovarian syndrome (Kenneson
and Warren, 2001). Mostly, loss of FMRP protein is caused by
a trinucleotide repeat expansion in the 5′-UTR of FMR1. When
this triple repeat exceeds 200 repeats, it is methylated together
with the FMR1 promoter, resulting in transcriptional repression.
In addition, missense mutations leading to FMRP dysfunction
have been identified as a cause for physical disability as well
as cognitive and behavioral impairments (Sitzmann et al., 2018;
Maddirevula et al., 2019).

Fragile X Mental Retardation Protein (FMRP) for

Local mRNA Translation
FMRP contains three RNA binding domains; two
ribonucleoprotein K homology domains (KH domains)
and one RGG domain, which can bind to poly-riboguanylic
acid (Ashley et al., 1993). FMRP is a well-described translational
repressor in neurons and FMRP deficient neurons show a
delayed maturation and abnormal morphology of the dendritic
spines (Comery et al., 1997; Weiler and Greenough, 1999). While
there are exceptions, FRMP represses mRNA translation via
direct binding to G-quadruplexes in target mRNAs (Schaeffer

et al., 2001). Interestingly, it has been shown that translation can
be inhibited by FMRP binding to the inter-subunit space of the
ribosome and this process is independent of G-quadruplexes on
the target mRNA (Chen et al., 2014).

While we discuss the role of FMRP in dendritic local
translation in this review, FMRP can be detected in axons
together with microRNAs and mRNAs, suggesting its role for
axonal local translation (Hengst et al., 2006). In sensory neurons,
FMRP granules delivers mRNAs such as Map1b and Calm1
to axonal compartments, and release them to be translated
upon stimulation by nerve growth factor (NGF). This process is
important to NGF induced axonal outgrowth (Wang et al., 2015).

The cellular mechanism of dendritic local translation has
been intensively studied as well as the role of FMRP in
postsynaptic protein synthesis. FMRP participates in dendritic
local translation in various steps (Figure 4). First, as mentioned
above, FMRP binds to certain sets of mRNAs and delivers
them to dendritic compartments. The experimentally validated
FMRP binding mRNAs include its ownmRNA Fmr1,Dlg4 (PSD-
95), and Mmp-9 (Matrix metalloprotease 9) (Schaeffer et al.,
2001; Zalfa et al., 2007; Janusz et al., 2013; Ifrim et al., 2015).
Surprisingly, high throughput sequencing of RNAs isolated by

FIGURE 4 | Fragile X syndrome (FXS) is caused by a trinucleotide repeat expansion in the 5′-UTR of the FMR1 gene. As a result, the RNA binding protein FMRP is

lost. FMRP exhibits multiple functions in RNA metabolism as it stabilizes mRNA, transports them along the axon to be locally translated.
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crosslinking immunoprecipitation (CLIP) assay has revealed
that FMRP binds to 842 mRNAs, and 32% of them code
for synaptic proteins (Darnell et al., 2011). This work has
been further confirmed by independent experiments (Ascano
et al., 2012; Maurin et al., 2018). Second, FMRP can repress
translation by binding to mRNAs via non-coding RNA BC1.
In this case, FMRP doesn’t bind to mRNA directly, but BC1
mediates FMRP function on translation (Zalfa et al., 2003).
Third, FMRP can stall ribosomes on mRNAs. It seems that
FMRP binds to ribosomes and inhibits the elongation process
(Darnell et al., 2011; Chen et al., 2014). Fourth, FMRP binds to
RNA induced silencing complex (RISC) and regulates microRNA
function for translational repression (Muddashetty et al., 2011).
In brief, FMRP regulates mRNA translation of PSD-95 via miR-
125a containing RISC. Finally, post-translational modifications
of FMRP also play an important role in mRNA translation
via mRNA granule assembly. Recent papers suggest that
phosphorylation of FMRP induces mRNA granule formation,
which can sequester mRNAs and proteins, resulting in inhibition
of new protein synthesis. Instead, methylation of FMRP in its
arginine-glycine rich (RGG) domain can cause disassembly of
mRNA granules leading to translational activation (Tsang et al.,
2019). While further in vivo studies are required, this data
unveiled a new cellular mechanism underlying neuronal activity
induced FMRP-mediated protein synthesis at the synaptic site.
Taken together, FMRP regulates local mRNA translation in
neurons via multiple layers of cellular mechanisms.

DISCUSSION AND SUMMARY

Here, we have reviewed the current knowledge about the
role of RNA binding proteins in local protein synthesis in

subcellular compartments of neurons. While there are many
more RNA binding proteins in neurons and their roles are
equally important and interesting, we have only covered the
most well-known four proteins, SMN, TDP-43, FUS, and FMRP.
Importantly, dysregulation of these proteins caused by mutations
and deletions is often associated with human neurological
disorders. As neurons are highly polarized, often large in size, and
their function is transient, neuronal protein homeostasis needs
to be regulated timely and spacially. Neurons solve this issue by
quick production of proteins at local sites when new proteins are
required. For this process, RNA binding proteins traffic mRNAs
and store them in mRNP granules in synaptic compartments,
and upon stimulus, mRNA can be released to produce new
proteins. As this process is important for neuronal function,
dysfunction of RNA binding proteins often cause neurological
disorders, in the worst case, leading to organismal death. While
many underyling cellular mechanisms have been characterized,
the molecular functions and biophysical properties of RNA
binding proteins are still not fully understood. Furthermore, it
will be important to understand how dysfunctional RNA binding
proteins and impaired local translation contribute to pathology
of human diseases.
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