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1. Introduction. Model predictive control (MPC), often also termed receding
horizon control (RHC), is a successful modern control method due to its ability to
take performance criteria directly into account and to guarantee satisfaction of hard
constraints [23]. However, it is well known that if the prediction horizon is chosen
too short, MPC can destabilize even open-loop stable linear systems. A practical
(nonlinear) example was shown in [22], for which MPC with a short finite prediction
horizon yields an unstable closed-loop.

Stability of MPC for nonlinear systems has been extensively studied over the
last decades. Most MPC schemes with guaranteed asymptotic stability make use of
additional terminal costs and/or constraints, cf. [18, 6]. For more details, we refer
to [2, 23] and the references therein.

An alternative are so called unconstrained MPC formulations, which have received
significant attention in recent years. Note that the notion unconstrained refers here
to the absence of stabilizing terminal constraints in the MPC formulation, but input
and state constraints can be taken into account in these control schemes. These un-
constrained MPC schemes are attractive because the computation time needed for the
online optimization may be reduced and more suitable numerical methods are avail-
able when no terminal constraint is imposed. Several approaches, such as [12, 16, 7],
use control Lyapunov functions as terminal weighting functions and remove the ter-
minal constraint from the finite horizon optimal control problem. Due to additional
conditions, the terminal constraints are implicitly guaranteed to be satisfied. The
additional requirement of control Lyapunov functions as terminal weighting func-
tions was removed in [13, 8, 9]. These unconstrained MPC schemes are of interest
in particular due to three reasons: First, the absence of terminal constraints facili-
tates the derivation of performance bounds on the infinite horizon performance of the
MPC closed-loop. Second, the unconstrained MPC formulation does not require the
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knowledge of a local control Lyapunov function. Third, unconstrained MPC without
terminal weighting is widely used in industrial applications [21].

However, the stability analysis of these unconstrained MPC formulations requires
different techniques compared to classical stability results for MPC with terminal
costs and/or constraints, cf. [14, 5]. It was shown in [13] that if the prediction horizon
is chosen sufficiently large, stability of the closed-loop can be guaranteed. However,
no explicit bounds on stabilizing prediction horizons were given. The first explicit
bound on a stabilizing prediction horizon was deduced in [8] and later improved in
[28]. The main ingredient in the stability analysis was the knowledge of an upper
bound of the optimal cost function. Independently, a typically smaller bound on the
minimal stabilizing prediction horizon was given in [9, 10] using a related controllabil-
ity assumption, but a significantly distinct analysis. The results use the solution of a
linear program, whose construction is based on the assumed controllability condition
and Bellman’s principle of optimality, in order to guarantee a decrease of the MPC
cost functional along the corresponding closed-loop trajectory. For a comparison be-
tween both approaches we refer to [29, Section 5.5]. The results from [9, 10] have
been extended to continuous time systems in [24, 25]. In the continuous time case,
the linear program has infinitely many decision variables and constraints — but a
solution can be derived due to its particular structure.

In the present work we are concerned with the connection of the discrete and
the continuous time approaches. A comparison of the continuous time methodology
with the sampled-data implementation of its discrete time counterpart in [25] indi-
cated a gap between the respective performance estimates — despite the similarity
of both techniques. In this comparison, the sampling period can be considered as a
discretization parameter. The main contribution of the present paper is to close this
gap. The key ingredient to achieve this goal is to decouple the sampling period and
the length of the interval on which the MPC control function is applied. To this end,
the concept of multistep feedback laws introduced in [9] is employed. This multistep
feedback gives a natural framework to take more information about the continuous
time system into account and, as a consequence, allows to recover the continuous time
horizon estimate as a limiting case and thus closes the observed gap. Furthermore,
we show that the continuous time results represent an upper bound in terms of guar-
anteed performance for the discrete time results applied in a sampled-data context.
Indeed, the technique to be presented allows to determine the required sampling rate
in order to approximate this performance estimate arbitrarily well and, thus, gives
insight into the trade-off between sampling time and performance.

The remainder of this work is organized as follows. In Section 2, we present the
problem setup to be considered and recall previous results on unconstrained MPC.
Section 2.1 is concerned with a continuous time setting whereas Section 2.2 discusses
unconstrained MPC for discrete time systems. In addition, a discretization is intro-
duced in order to connect both settings. The main results of this paper are presented
in Section 3. We show that the performance estimates obtained from the discrete
time setting are monotonically increasing for so called iterative refinements and con-
verge, for a discretization parameter tending to zero, to an upper bound which can
be computed in the continuous time setting. In Section 4 our results are illustrated
for an example of a reaction diffusion equation. Conclusions are drawn in Section 5.

Notation: Let N and R denote the natural and the real numbers, respectively. In
addition, the notation N0 = N∪{0} is used. Rn denotes the n-dimensional Euclidean
space with an arbitrary norm ‖ · ‖. bsc denotes the largest integer smaller or equal to
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s and dse denotes the smallest integer larger or equal to s. Furthermore, a continuous
function η : R≥0 → R≥0 is said to belong to class K∞ if it is strictly increasing,
unbounded, and satisfies η(0) = 0.

For the example of a partial differential equation considered in Subsection 4.1,
the following definitions of function spaces are required:

L∞(Ω) := {z : Ω→ R | z(·) is measurable and essentially bounded} ,

L2(Ω) := {z : Ω→ R | z(·) is measurable and ‖z(·)‖L2(Ω) =

√∫
Ω

z(x)2 dx <∞},

H1(Ω) :=
{
z : Ω→ R | z(·) ∈ L2(Ω) and Diz(·) ∈ L2(Ω)

}
.

Here, Ω ⊂ Rn denotes an open domain and Diz(·) the weak derivative with respect
to the ith component of the independent space variable x. Furthermore, a function
z : Ω→ R is essentially bounded if there exists a constantM ∈ R such that |z(x)| < M
holds almost everywhere. C(Ω) represents the space of continuous functions on Ω and
a subscript, e.g., C0(Ω), indicates that the support of the functions contained in the
respective class of functions is compact. In addition, the space

W (0, T ) := {z : z ∈ L2([0, T ),H1(Ω)) and zt ∈ L2([0, T ),H1(Ω)∗)}

is required. C([0, T ), B) represents the class of continuous abstract functions on [0, T )
mapping into a normed Banach space B. An abstract L2-function is measurable and
square integrable in the sense of Bochner, cf. [27] for details. H1(Ω)∗ denotes the
dual of H1(Ω).

2. Unconstrained Model Predictive Control. We consider nonlinear con-
tinuous time control systems

ż(t) = f(z(t), u(t)) (2.1)

with state space Z and set U of control values. Here, Z and U are allowed to be arbi-
trary metric spaces in order to deal with ordinary and partial differential equations.
zu(·; z0) = z(·; z0, u(·)) denotes the solution of the controlled differential equation (2.1)
which is manipulated by the function u(·) : R≥0 → U and emanates from the initial
state zu(0; z0) = z0 ∈ Z. The subsets Z ⊆ Z and U ⊆ U denote the set of feasible
states and controls, respectively. If the conditions

u(t) ∈ U, t ∈ [0, T ) and zu(t; z0) ∈ Z, t ∈ [0, T ]

hold, u(·) is called admissible on [0, T ). U [0, T ) denotes the set of all admissible control
functions on [0, T ) and U [0,∞) represents the set of control functions u(·) satisfying
u(·) ∈ U [0, T ) for each T > 0. We point out that the set U [0, T ), T ∈ R>0 ∪ {∞}, of
admissible control functions depends on z0. Our main objective is to steer the system
to an equilibrium z? ∈ Z which satisfies f(z?, u?) = 0 for some u? ∈ U.

2.1. Unconstrained MPC for Continuous Time Systems. In order to de-
sign a performance criterion which suitably characterizes the equilibrium z?, contin-
uous stage costs ` : Z × U → R≥0 are defined such that the conditions

`(z?, u?) = 0 and `(z, u) ≥ η1(dZ(z, z?)), (z, u) ∈ Z× U,
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hold with a K∞-function η1 : R≥0 → R≥0. Here, dZ : Z × Z → R≥0 denotes the
metric on Z. Based on these stage costs, a cost functional as well as the corresponding
optimal value function are defined by

JT (z0, u(·)) =
∫ T

0

`(zu(t; z0), u(t)) dt and VT (z0) := inf
u(·)∈U [0,T )

JT (z0, u(·))

(2.2)
with prediction horizon T ∈ R>0 ∪ {∞}.

Assumption 2.1. We assume that V∞(z0) < ∞ holds for each z0 ∈ Z. In
addition, we suppose that, for given T ∈ R>0, the infimum in (2.2) is attained in
order to avoid technical difficulties.

Ideally we would like to minimize the cost functional J∞(z0, ·). However, since
infinite horizon optimal control problems are, in general, computationally intractable,
we employ model predictive control in order to approximately solve this task. Firstly,
set ẑ := z0. Then, MPC is composed of three steps:

(1) Solve the optimal control problem on a truncated and, thus, finite time hori-
zon T ∈ R>0, i.e., find a control function u?(·) ∈ U [0, T ) satisfying

JT (ẑ, u?(·)) = VT (ẑ).

(2) For a constant control horizon δ ∈ (0, T ), define the feedback law µT,δ :
[0, δ)× Z → U by µT,δ(t, ẑ) = u?(t), t ∈ [0, δ), i.e., the MPC feedback equals
the first portion of the computed control function u?(·). Then, implement
µT,δ(t, ẑ)|t∈[0,δ) at the plant. Doing so yields

zµT,δ(δ; ẑ) = z(δ; ẑ, µT,δ(·, ẑ)).

(3) Shift the prediction (optimization) horizon forward in time, i.e., initialize the
optimal control problem with ẑ = zµT,δ(δ; ẑ) and repeat from step (1).

Supposing feasibility, iterative application of this methodology provides a control on
the infinite time horizon. The resulting closed loop control and its corresponding
solution are denoted by µMPC

T,δ (·; z0) and zMPC
µT,δ

(·; z0), respectively.
Our main tool in order to ensure stability of the resulting closed loop is the relaxed

Lyapunov inequality

VT (zµT,δ(δ; ẑ)) ≤ VT (ẑ)− α
∫ δ

0

`(zµT,δ(t; ẑ), µT,δ(t, ẑ)) dt (2.3)

with α ∈ (0, 1], cf. [17, 11]. This inequality has to be shown for each state ẑ of the
MPC closed-loop trajectory zMPC

µT,δ
(nδ; z0), n ∈ N0. Combining (2.3) with

η1(dZ(z, z?)) ≤ min
u∈U

`(z, u) =: `?(z) and VT (z) ≤ η2(dZ(z, z?)) (2.4)

for all z ∈ Z, in which η1(·) and η2(·) are class K∞-functions, ensures asymptotic
stability of the MPC closed loop, cf. [24, Proposition 1]. Hence, our goal is to
establish the relaxed Lyapunov Inequality (2.3). To this end, we pursue an approach
introduced in [25, 24] which is based on the following assumption.

Assumption 2.2. Let C ≥ 1 and µ > 0 be given. Suppose that, for each z0 ∈ Z,
a control function uz0(·) ∈ U [0,∞) exists which satisfies

`(zuz0 (t; z0), uz0(t)) ≤ Ce−µt`?(z0) for all t ∈ R≥0. (2.5)
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Assumption 2.2 is an exponential controllability assumption in terms of the stage
cost `(·, ·) with overshoot constant C and decay rate µ. We recapitulate the main
result deduced in [24]. Note that this theorem holds for our infinite dimensional
setting and with slight modifications also for settings including delay equations, cf.
[26].

Theorem 2.3. Suppose that Assumption 2.2 and Inequality (2.4) hold. Further-
more, let T > δ > 0 and α ∈ (0, 1) be chosen such that

αT,δ := 1−
(
eµδ − 1

)1/C(
eµT − 1

)1/C − (eµδ − 1
)1/C ·

(
eµ(T−δ) − 1

)1/C(
eµT − 1

)1/C − (eµ(T−δ) − 1
)1/C ≥ α

(2.6)
holds. Then, for each z0 ∈ Z, the MPC closed loop solution zMPC

µT,δ
(·; z0) is asympto-

tically stable and satisfies the suboptimality bound

J∞(z0, µ
MPC
T,δ (·; z0)) =

∫ ∞
0

`(zMPC
µT,δ

(t; z0), µMPC
T,δ (t; z0)) dt ≤ V∞(z0)

α
. (2.7)

Inequality (2.7) gives a performance estimates which compares the resulting MPC
closed loop costs with the theoretically achievable minimal costs on the infinite time
horizon. Here, the inherent monotonicity of unconstrained MPC schemes is crucial in
order to deduce this bound on the, in general, unknown quantity V∞(·). Note that,
for given suboptimality index α ∈ (0, 1), Condition (2.6) always holds for a suitably
chosen prediction horizon T , cf. [24, Section 4.1].

2.2. Unconstrained MPC for Discretized Continuous Time Systems.
Typically, continuous time controllers are implemented in a sampled-data fashion.
To this end, a discretization parameter τ , which is also called sampling period, is
required. The corresponding time axis τN0 consists of the time instants 0, τ, 2τ, 3τ, . . ..
Furthermore, Wτ := {ũ : [0, τ)→ U} denotes the set of control values, i.e., a discrete
time control value corresponds to a function ũ(·) defined on the (sampling) interval
[0, τ). Then, the discrete time system dynamics are defined by

z(n+ 1) = fτ (z(n), w(n)) = Φ(τ ; z(n), w(n)(·)), z(0) = z0. (2.8)

Here Φ(τ ; z(n), w(n)(·)) denotes the solution of the differential equation (2.1) emanat-
ing from the initial value z(n) and governed by the control function w(n)(·) at time τ .
Analogously to Subsection 2.1 existence and uniqueness of Φ(·; z(n), w(n)) are tacitly
assumed. The control constraints are incorporated by choosing W := {ũ : [0, δ)→ U}.
For N ∈ N and z0 ∈ Z, a sequence of control values w(n), n = 0, 1, 2, . . . , N − 1, is
called admissible if the conditions

w(n) ∈W and Φ(t; z(n), w(n)(·)) ∈ Z ∀ t ∈ [0, δ]

are satisfied for all n ∈ {0, 1, 2, . . . , N − 1} with z(0) = z0. WN =WN (z0) represents
the set of all admissible sequences of length N . Furthermore,W∞ =W∞(z0) contains
all sequences (w(n))n∈N0 whose restriction to its first N elements is contained in WN

for all N ∈ N.
Next, we want to adapt the presented MPC algorithm to our discrete time setting.

To this end, the corresponding prediction and control horizon are defined by N := T/τ
and m := δ/τ , respectively. In addition, discrete time stage costs `τ : Z ×W → R≥0
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satisfying `τ (z?, w?) = 0 for w?(t) = u?, t ∈ [0, δ), and `?τ (z) := minw∈W1(z) `τ (z, w) ≥
η̃1(dZ(z, z?)) for some η̃1 ∈ K∞ have to be defined. We point out that the discrete
time running costs can reproduce the continuous time costs `(·, ·) on the corresponding
sampling interval exactly but may also be designed according to some other criterion.
Here we allow for completely independent functions for which, however, we will assume
similar inequalities to hold. These preliminary considerations enable us to define the
cost functional

JN (z0, w(·)) =
N−1∑
n=0

`τ (zw(n; z0), w(n))

for N ∈ N ∪ ∞. Here, zw(n; z0) = z(n; z0, w(·)) denotes the solution emanating
from z0 with sequence of control values w(n), n = 0, 1, 2, . . . , N − 1. The optimal
value function is defined analogously to the continuous time setting, i.e., VN (z0) :=
infw(·)∈WN

JN (z0, w(·)). Again, an MPC feedback is defined. However, since we aim
at comparing results from the discrete time with the continuous time setting, we need
to decouple the sampling interval from the control horizon, which is achieved by the
following definition of a multistep feedback law.

Definition 2.4. Let N ∈ N≥2 and m ∈ {1, 2, . . . , N − 1} be given. A multistep
feedback law is a map µN,m : Z × {0, 1, . . . ,m − 1} → W which is applied according
to the rule zµN,m(0; ẑ) = ẑ,

zµN,m(n+ 1; ẑ) = fτ (zµN,m(n; ẑ), µN,m(ẑ, n)), n = 0, 1, . . . ,m− 1.

Let w?(·) ∈ WN (ẑ) be a sequence of control values minimizing JN (ẑ, w(·)). Then,
the MPC multistep feedback µN,m(·, ·) is defined by µN,m(ẑ, n) = w?N (n) for n =
0, 1, . . . ,m− 1.

The MPC closed loop control and solution generated by the multistep feedback
law µN,m are denoted by µMPC

N,m (·; z0) and zMPC
µN,m (·; z0), respectively. For m = 1 the

feedback law from Definition 2.4 equals “classical” MPC, i.e, only the first control
move is applied. The feedback law coincides with applying the first m values of the
sequence of control values which minimizes the cost functional JN (ẑ, ·) for the current
state ẑ. Then, the prediction horizon is shifted and the next MPC iteration is carried
out.

In order to conclude asymptotic stability of (2.8), a discrete time counterpart to
our exponential controllability Assumption 2.2 is needed.

Assumption 2.5. Let C ≥ 1 and σ ∈ (0, 1) be given. Then, for each z0 ∈ Z,
there exists (wz0(n))n∈N0 ∈ W∞ such that

`τ (zwz0 (n), wz0(n)) ≤ Cσn min
w∈W1

`τ (z0, w) = Cσn`?τ (z0). (2.9)

Based on this assumption we formulate our main stability theorem, cf. [9, 10].
Theorem 2.6. Let N ∈ N≥2, m ∈ {1, 2, . . . , N − 1}, and α ∈ (0, 1) be given as

well as Assumption 2.5 be satisfied with C ≥ 1 and σ ∈ (0, 1). Furthermore, assume
that K∞-functions α̃1(·), α̃2(·) exist satisfying

α̃1(dZ(z, z?)) ≤ `?τ (z) ≤ α̃2(dZ(z, z?)) ∀ z ∈ Z.



NMPC: Role of Sampling for Stability & Performance 7

In addition, let the inequality

αN,m := 1−

N∏
i=m+1

(γi − 1)
N∏

i=N−m+1

(γi − 1)(
N∏

i=m+1

γi −
N∏

i=m+1

(γi − 1)
)(

N∏
i=N−m+1

γi −
N∏

i=N−m+1

(γi − 1)
) ≥ α.

(2.10)
hold with γi := C

∑i−1
n=0 σ

i = C(1 − σi)/(1 − σ). Then, for each z0 ∈ Z, zMPC
µN,m (·; z0)

is asymptotically stable and the following suboptimality estimate holds

J∞(z0, µ
MPC
N,m (·; z0)) =

∞∑
n=0

`τ (zMPC
µN,m (n; z0), µMPC

N,m (n; z0)) ≤ V∞(z0)
α

, (2.11)

i.e., the cost assoziated with the MPC closed loop on [0,∞) are bounded by the optimal
costs multiplied by 1/α.

Remark 2.7 (Sampled-data systems with zero order hold). We point out that
if Assumption 2.5 holds for control functions which are constant on each sampling
interval [nτ, (n+ 1)τ), n ∈ N0 ∩ [0, T/τ), then we can conclude asymptotic stability of
the corresponding sampled-data system with zero order hold. This conclusion cannot
be drawn for the continuous time setting because the proof of Theorem 2.3 requires
that switching between different control signals is possible at each time instant.

3. Connections between the Continuous and the Discrete Time Re-
sults. Although the discrete and the continuous time setups use similar controlla-
bility assumptions, a gap between the corresponding suboptimality Estimates (2.7)
and (2.11) was observed in [25]. To be more precise, the continuous time analysis
yielded significantly tighter performance bounds than the discrete time analysis and,
thus, allowed to conclude asymptotic stability for smaller prediction horizons. This
behavior was due to the fact that the control horizon was chosen equal to the length
of the sampling interval. Since Theorem 2.6 is based on multistep feedback laws, this
coupling can be avoided in order to overcome this gap. In particular, by investigating
the impact of the discretization parameter τ on the suboptimality index α from The-
orem 2.6, we show that the continuous time estimate can be approximated arbitrarily
well by choosing the discretization parameter τ sufficiently small.

Let the prediction horizon T and the parameter δ, which determines the portion
of the computed control function to be implemented, be fixed. Furthermore, suppose
that Assumption 2.5 holds for each discretization parameter smaller than a given
τ0 ≤ δ. The following definition provides the needed technical tool in order to tackle
the asked questions.

Definition 3.1 (Discretization and Iterative Refinement). Let τ0 ∈ (0, δ] be
chosen such that the conditions m := δ/τ0 ∈ N and N := T/τ0 ∈ N hold. In addition,
let a decay rate σ0 = σ be given and assume that the overshoot C does not depend on
the discretization parameter τ . Furthermore, let a sequence (kj)j∈N0 ⊆ N with k0 := 1
be given. Then, a discretization D is defined by a sequence of quintruplets

D = (Dj)j∈N0 = (kj , τj , Nj ,mj , σj)j∈N0 := (kj , k−1
j τ0, kjN, kjm,σ

k−1
j )j∈N0 . (3.1)

Here, (τj)j∈N0 , τj := τ0/kj, represents the sequence of discretization parameters and
the parameters (Nj)j∈N0 and (mj)j∈N0 specify the MPC feedback laws (µNj ,mj )j∈N0 .
Note that also the decay rates of Assumption 2.5 are adapted depending on τ . If kj+1
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is a multiple of kj and kj+1 > kj holds, a sequence (kj)j∈N0 ⊂ N is called an iterative
refinement.

In the j-th discretization the interval [0, τ0) is subdivided into kj equidistant
parts, i.e., [0, τ0/kj), [τ0/kj , 2τ0/kj), . . . , [(kj − 1)τ0/kj , τ0). The discrete time dyna-
mics (fτj )j∈N0 as well as the stage costs (`τj )j∈N0 are also adapted depending on the
parameter τj .

The multistep feedback law from Definition 2.4 is employed in order to compare
the discretized and the continuous time setting. In the following the overshoot con-
stants from Assumptions 2.2 and 2.5 are assumed to be equal. Additionally, suppose
that σ = σ0 = e−µτ0 holds. We comment on these assumptions in Subsection 4.2.

Our goal is to show that Theorem 2.3, which deals with the continuous time
setting, can be interpreted as a limit of the discrete time results given in Theorem 2.6
for discretizations whose discretization parameters τj tend to zero for j approaching
infinity. Hence, the continuous time MPC feedback law µT,δ is approximated by its
discrete time counterpart µkjN,kjm.

For the derivation of the expression αT,δ in Theorem 2.3, the controllability as-
sumption and, in particular, Condition (2.5) is taken into account for all t ∈ R≥0. In
contrast to that, the discrete time results rely only on Inequality (2.9) at the sampling
instants, but no further information about times in between sampling instants is taken
into account. Loosely speaking, less information about the actual system is used in
the discrete time setup. More precisely, both (continuous and discrete time) results
are based on solving an “abstract” linear program, see [9] and [24] for more details.
However, the continuous time setup uses infinitely many constraints in contrast to
a finite number of constraints in the discrete time case. This directly leads to two
conjectures: the continuous time estimates should always yield an upper bound for
their discrete time counterparts and the finer the discretization given by Definition 3.1
is, i.e., the larger k is chosen, the closer the discrete time estimates should be to the
continuous time ones. In Subsection 3.1, we prove these conjectures. In particular, we
even show that the discrete time estimates actually converge to the continuous time
ones for k tending to infinity and thereby close the gap observed in [25]. Furthermore,
for iterative refinements, the convergence is proven to be monotone.

In order to establish Assumption 2.5 for the various parameters k, i.e., the discrete
time counterpart to Assumption 2.2, the time axis has to be rescaled appropriately.
Here, we emphasize the contribution of using a multistep feedback which allows for
employing the discrete time results without changing the underlying continuous time
prediction and control horizon.

3.1. Main Results. In this section, for a given Discretization D according to
Definition 3.1 with kj →∞ for j approaching infinity, the limit of the corresponding
sequence of suboptimality estimates resulting from Theorem 2.6 is calculated. In
particular, we show that this limit coincides with the suboptimality index of Theorem
2.3 dealing with the continuous time setting. Furthermore, if an iterative refinement
is considered, this convergence is monotone which implies that the continuous time
estimate represents an upper bound and that using finer discretizations improves the
corresponding stability estimates. These results clarify the connection between the
approaches pursued in [9, 10] for discrete time systems and their continuous time
analogon from [24].

Theorem 3.2. Let a discretization D = (Dj)j∈N0 = (kj , τj , Nj ,mj , σj)j∈N0 ac-
cording to Definition 3.1 with N ∈ N≥2 and m ∈ {1, 2, . . . , N − 1} be given. Fur-
thermore, suppose that, for each discretization parameter τj, j ∈ N0, Assumption
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2.5 is satisfied with decay rate σj and overshoot C ≥ 1. Furthermore, we define the
expression depending on the parameter k ∈ N0

γi,k := C

i−1∑
n=0

σnk = C

i−1∑
n=0

(
σ1/k

)n
=
C(1− σi/k)

1− σ1/k

and denote αN,m from (2.10) based on C and σk = σ
1/k
0 = σ1/k by αkN,km(k), i.e.,

the argument k indicates that γi is replaced by γi,k in (2.10). Then, we get

lim
j→∞

αkjN,kjm(kj) = 1−
(

1−σm
σm

)1/C(
1−σN
σN

)1/C − ( 1−σm
σm

)1/C ·
(

1−σN−m
σN−m

)1/C(
1−σN
σN

)1/C − ( 1−σN−m
σN−m

)1/C (3.2)

if the sequence (kj)j∈N0 ⊆ N satisfies kj →∞ for j tending to infinity. If, in addition,
Assumption 2.2 holds with the same overshoot constant C and such that the decay rate
satisfies the condition σ = σ0 = e−µτ0 ∈ (0, 1), then we get

lim
j→∞

αkjN,kjm(kj) = αT,δ (3.3)

with αT,δ from Formula (2.6), δ := mτ and T := Nτ for the continuous time control
and prediction horizon, respectively.

Proof. We begin with proving the claimed convergence, i.e., (3.2) and (3.3). To
this end, for kj ∈ (kj)j∈N0 , we rewrite

∏kjN
i=kjm+1(γi,kj − 1)∏kjN

i=kjm+1 γi,kj −
∏kjN
i=kjm+1(γi,kj − 1)

=

 kjN∏
i=kjm+1

(
γi,kj

γi,kj − 1
− 1
)−1

.

Considering the limit of the right hand side w.r.t. j and applying Lemma 3.6 yields

lim
j→∞

∏kjN
i=kjm+1(γi,kj − 1)∏kjN

i=kjm+1 γi,kj −
∏kjN
i=kjm+1(γi,kj − 1)

=

[(
1−σN
σN

)1/C(
1−σm
σm

)1/C − 1

]−1

=

(
1−σm
σm

)1/C(
1−σN
σN

)1/C − ( 1−σm
σm

)1/C . (3.4)

Repeating this line of arguments for the second factor of the subtrahend in the formula
for αkjN,kjm(kj) and combining the result with (3.4) shows (3.2). In order to complete
the proof, we have to establish equality of the right hand sides of (3.2) and (3.3). Using
the definitions of σ and δ we obtain(

1− σm

σm

)1/C

=
(

1− e−µmτ

e−µmτ

)1/C

=
(

1− e−µδ

e−µδ

)1/C

=
(
eµδ − 1

)1/C
.

Hence, taking the definition of T into account, repeating this argumentation and
pluggig the resulting expressions in (3.2) allows for concluding the assertion.

Theorem 3.2 shows the connection between the unconstrained MPC setup for
continuous time systems presented in Section 2.1 and the discrete time setting in
Section 2.2. The continuous time results can be interpreted as limit case of what
performance guarantee can be achieved for sufficiently fast sampling.
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For an iterative refinement, we can additionally show monotonicity of this con-
vergence, a result which generalizes [29, Proposition 5.13] to arbitrary iterative re-
finements.

Proposition 3.3. Let the sequence (kj)j∈N0 ⊂ N be an iterative refinement
according to Definition 3.1. Then, the sequence (αkjN,kjm(kj))j∈N0 defined in Theo-
rem 3.2 is monotonically increasing in j.

Proof. Rewriting Formula (2.10) analogously to (3.4) yields

αkjN,kjm(kj) =

 kjN∏
i=kjm+1

γi,kj
γi,kj − 1

− 1

−1

·

 kjN∏
i=kj(N−m)+1

γi,kj
γi,kj − 1

− 1

−1

.

Hence, showing that each of the two factors on the right hand side of this represen-
tation of αkjN,kjm(kj) is monotonically decreasing with respect to j is sufficient in
order to prove the claimed monotonicity. This is, in turn, equivalent to the condition
that the products

∏kjN
i=kjm+1

γi,kj
γi,kj−1 and

∏kjN

i=kj(N−m)+1

γi,kj
γi,kj−1 are both monotoni-

cally increasing in j. Since an iterative refinement is considered, κj := kj+1
kj
∈ N

holds. Hence, showing the following inequality allows to conclude the assertion

kj+1N∏
i=kj+1m+1

γi,kj+1

γi,kj+1 − 1
=

kjN∏
i=kjm+1

κj∏
%=1

γκj(i−1)+%,κjkj

γκj(i−1)+%,κjkj − 1
≥

kjN∏
i=kjm+1

γi,kj
γi,kj − 1

. (3.5)

In order to prove this inequality, it is sufficient to deduce the inequality

(γi,kj − 1)
κj∏
%=1

γκj(i−1)+%,κjkj ≥ γi,kj
κj∏
%=1

(γκj(i−1)+%,κjkj − 1) (3.6)

for each i ∈ {kjm + 1, kjm + 2, . . . , kjN}, which corresponds to showing (3.5) com-
ponentwise. Splitting up the left hand side of (3.6) and factoring out γi,kj leads
to

κj∏
%=1

γκj(i−1)+%,κjkj ≤ γi,kj

[
κj∏
%=1

γκj(i−1)+%,κjkj −
κj∏
%=1

(γκj(i−1)+%,κjkj − 1)

]
. (3.7)

According to Lemma 6.1 in Section 6, see also [29, Lemma 3.21], the term in square
brackets is equal to

κj∑
%=1

(
%−1∏
µ=1

γκj(i−1)+µ,κjkj

κj∏
µ=%+1

(γκj(i−1)+µ,κjkj − 1)

)
.

Hence, since C ≥ 1 holds, showing

κj∏
%=1

γκj(i−1)+%,κjkj ≤ γi,kj

[
κj∑
%=1

(
%−1∏
µ=1

γκj(i−1)+µ,κjkj

κj∏
µ=%+1

(γκj(i−1)+µ,κjkj − C)

)]
(3.8)

is sufficient in order to ensure (3.7). In (3.8) each summand contains the factor Cκj .
Hence, reducing this inequality by Cκj and, then, applying Lemma 6.1 once more in
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order to “undo” the transformation carried out leads to (3.6) with γi,k replaced by
γi,k/C, i.e.,

(γi,kj
C
− 1
) κj∏
%=1

γκj(i−1)+%,κjkj

C
≥
γi,kj
C

κj∏
%=1

(γκj(i−1)+%,κjkj

C
− 1
)
. (3.9)

Then, using the definition γi,k = C(1−σi/k)
1−σ1/k from Theorem 3.2 and simple manipula-

tions show that Inequality (3.9) holds with equality, which in turn implies (3.8) — an
observation which completes the proof.

A direct consequence of Proposition 3.3 is that the performance estimate resulting
from applying Theorem 2.3 represents an upper bound on the suboptimality bounds
obtained in the discrete time setting.

Corollary 3.4. Let the assumption of Theorem 3.2 hold. Then, for each k ∈
(kj)j∈N0 , the right hand side of (3.2) is an upper bound on αkN,km(k), k ∈ N0, i.e.,

αkN,km(k) ≤ 1−
(

1−σm
σm

)1/C(
1−σN
σN

)1/C − ( 1−σm
σm

)1/C ·
(

1−σN−m
σN−m

)1/C(
1−σN
σN

)1/C − ( 1−σN−m
σN−m

)1/C . (3.10)

Proof. Since for each k ∈ N0 an iterative refinement sequence given by (kj)j∈N0

with kj := 2jk can be constructed, the proof follows directly from the Limit (3.2)
shown in Theorem 3.2 and the monotonicity in Proposition 3.3.

The assertions of Theorem 3.2, Proposition 3.3, and Corollary 3.4 are illustrated
in Figure 3.1 for an iterative refinement. The discrete time estimates approximate
their continuous time counterpart already after very few refinements astonishingly
well. This observation is supported by the illustration drawn on the right which
shows that the discretization error decays exponentially.

Fig. 3.1. The figure on the left dipicts the monotone convergence of the sequence of subopti-
mality estimates (αkjN,kjm(kj))j∈N0 for kj = 2j to the limit computed in Theorem 3.2. On the
right, the deviations from the theoretically obtained upper bound are depicted. This error decays
exponentially in the iteration index j. Here, we choose N = 4, m = 1, τ = 1, C = 2, and σ = 0.5.

Summarizing, we showed that stability conditions and performance guarantees
obtained in the continuous time case represent an upper bound for their discrete time
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counterparts. However, the continuous time results can be arbitrarily well approx-
imated for a sufficiently small sampling period τ in combination with a multistep
feedback law. Hence, the discrete time results can be used in order to investigate the
trade-off between slow sampling and guaranteed performance: typically sampled-data
systems use piecewise constant control functions, i.e., the control value only changes at
the sampling instances. Hence, in order to approximate the continuous time solution
sufficiently fast sampling is, in general, required, cf. [20]. In particular, a larger dis-
cretization parameter k allows also to approximate the control function u(·)|0,δ more
precisely, cf. [1]. For such a setup, the discrete time results of Theorem 2.6 are also
applicable. The continuous time results of Theorem 2.3 can provide an upper bound
on the achievable guaranteed performance for infinitely fast sampling. In conclusion,
the results in this work give insight into the trade off between slow sampling and good
performance.

3.2. Auxiliary Results for the Proof of Theorem 3.2. This subsection
presents intermediate results for the proof of Theorem 3.2. We start with a technical
lemma whose proof is based on a simple Taylor series expansion.

Lemma 3.5. Let a parameter s ∈ (0, 1) and a constant c ∈ R>0 be given such
that c− 1 + s > 0 holds. Then, for each sequence (ni)i∈N ⊂ N satisfying ni →∞ for
i→∞, we get the convergence

(
1 +

1− s
1
ni

c− (1− s
1
ni )

)ni
−→

(
s−1
) 1
c for i→∞.

Proof. We define the analytic function f : R≤1 → R and calculate its first
derivative

f(x) :=
1− sx

c− (1− sx)
=

1− ex ln s

c− (1− ex ln s)
,

f ′(x) =
−c ln s · sx

(c− (1− sx))2
=

−c ln s · ex ln s

(c− (1− ex ln s))2
.

Furthermore, we point out that the norm of the second derivative f ′′(·) is uniformly
bounded on the interval [0, 1], i.e., there exists a constant M ∈ R>0 such that
supx∈[0,1] |f ′′(x)| ≤ M . In addition, f(0) = 0 and f ′(0) = −(ln s)/c hold. Hence,
for each element n ∈ (ni)i∈N, using the Taylor series expansion of f(1/n) at x = 0,
cf. [15, Chapter XIII], yields the existence of a real number ξn ∈ (0, 1/n) such that

f(1/n) = f(0) +
1
n
f ′(0) +

∞∑
j=2

(
1
n

)j
f (j)(0)
j!

= − ln s
cn

+
f ′′(ξn)

2n2
. (3.11)

Since ξn ∈ (0, 1/n) ⊆ (0, 1), |f ′′(ξn)| ≤ M independently of the considered element
n. Moreover, for an arbitrarily chosen constant ε > 0 and sufficiently large n (which
holds for all ni ∈ (ni)i∈N with sufficiently large index i), (1 + f ′(0)/n)n ≤ ef

′(0) + ε
holds because (1 + f ′(0)/ni)ni → ef

′(0) ∈ [1,∞) for i tending to infinity. These
prelimary considerations enable us to deduce the following estimate which is essential
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in order to conclude the assertion. Since 1 + 1
nf
′(0) ≥ 1, we get

0 ≤
n∑
j=1

(
n

j

)(
1 +

f ′(0)
n

)n−j ( |f ′′(ξn)|
2n2

)j

=
n∑
j=1

(
|f ′′(ξn)|

2

)j 1
j!
n

n

(n− 1)
n

(n− 2)
n

· · ·
· · ·

(n− j + 1)
n︸ ︷︷ ︸

≤1

(
1 +

f ′(0)
n

)n−j
︸ ︷︷ ︸
≤(1+ 1

n f
′(0))n

(
1
n

)j
︸ ︷︷ ︸
≤ 1
n

<
(
ef
′(0) + ε

) 1
n

n∑
j=0

(M/2)j

j!
<
(
ef
′(0) + ε

) eM2
n

n→∞−→ 0.

Taking this into account and carrying out a binomial expansion, cf. [15, p.466], we
obtain

(1+f(1/ni))
ni (3.11)

= (1+f ′(0)/ni)ni+
ni∑
j=1

(
ni
j

)(
1+

f ′(0)
ni

)ni−j(f ′′(ξni)
2n2

i

)j
i→∞−→ ef

′(0).

In view of the definition of f(·), ef ′(0) = e−(ln s)/c =
(
s−1
) 1
c completes the proof.

The next lemma embodies the cornerstone needed in order to prove Theorem 3.2.
Lemma 3.6. Let σ ∈ (0, 1), C ≥ 1, N ∈ N≥2, and m ∈ {1, 2, . . . , N − 1} be given

and define σk := k
√
σ. Then, for γi,k = C

∑i−1
n=0 σ

n
k and a sequence (kj)j∈N0 ⊂ N

satisfying kj →∞ for j tending to infinity, the following convergence holds:

Nkj∏
i=mkj+1

γi,kj
γi,kj − 1

−→
(
σ−(N−m) · 1− σN

1− σm

) 1
C

for j →∞. (3.12)

Proof. Let the sequence (kj)j∈N0 be an iterative refinement according to Defini-
tion 3.1. This restriction is justified in view of Remark 3.7 in which the necessary
modifications needed for arbitrary discretization sequences are briefly sketched. Fur-
thermore, let k? denote an arbitrary but fixed element of the parameter sequence
(kj)j∈N0 . Then, for each k ∈ (kj)j∈N0 satisfying k ≥ kj? the left hand side of (3.12)
can be rewritten as

Nk∏
i=mk+1

γi,k
γi,k− 1

=
N−1∏
ν=m

k∏
i=1

(
1 +

1− σ 1
k

C
[
1− σνσ i

k

]
− 1 + σ

1
k

)

=
N−1∏
ν=m

k?−1∏
l=0

k/k?∏
i=1

(
1 +

1− σ 1
k

C
[
1− σν+ l

k? σ
i
k

]
− 1 + σ

1
k

)
. (3.13)

The denominator of the involved factors, i.e., C(1−σν+ l
k? σ

i
k )− (1−σ 1

k ), is (strictly)
greater than C(1−σν)−(1−σ) ≥ (C−1)(1−σ) and, thus, (strictly) positive. Hence,
dividing the respective denominators increases the corresponding fractions, i.e., leads
to an estimate from above. Bearing this in mind, yields(

1 +
1− σ 1

k

C
[
1− σν+ l+1

k?
]
− 1 + σ

1
k

)
≤

(
1 +

1− σ 1
k

C
[
1− σν+ l

k? σ
i
k

]
− 1 + σ

1
k

)

<

(
1 +

1− σ 1
k

C
[
1− σν+ l

k?
]
− 1 + σ

1
k

)
(3.14)
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for i ∈ {1, 2, . . . , k/k?}. Note that the lower and upper estimate do not depend on
the index i which motivates, for ν ∈ {m,m+ 1, . . . , N − 1} and l ∈ {0, 1, . . . , k? − 1},
the definitions

gν,l(k; k?) :=

(
1 +

1− σ 1
k

C
[
1− σν+ l

k?
]
− 1 + σ

1
k

) k
k?

,

g
ν,l

(k; k?) :=

(
1 +

1− σ 1
k

C
[
1− σν+ l+1

k?
]
− 1 + σ

1
k

) k
k?

.

Carrying out the transformation kj = k?k̃j , i.e., kj/k? = k̃j , for kj ≥ k? enables us to
apply Lemma 3.5 with s := σ1/k? and c := C[1− σν+l/k? ] ≥ 1− σν > 1− s (k? ≥ 1)
to gν,l(·; k?) which provides

gν,l(kj ; k
?)

j→∞−→
(
s−1
) 1
c =

(
σ−

1
k?

) 1
c

=
(
σ−

1
k?

) 1
C[1−σν+l/k? ] =: g?ν,l(k

?).

Analogously, the convergence g
ν,l

(kj ; k?) →
(
σ−

1
k?
) 1
C[1−σν+(l+1)/k? ] =: g?

ν,l
(k?) for j

approaching infinity follows. Note that these formulas confirm 0 < g?
ν,l
< g?ν,l < ∞.

We continue our examination of these auxiliary approximations. To this end, we
define

G(k?) := lim
j→∞

N−1∏
ν=m

k?−1∏
l=0

gν,l(kj ; k
?) and G(k?) := lim

j→∞

N−1∏
ν=m

k?−1∏
l=0

g
ν,l

(kj ; k?).

Note that the above computations ensure that G(k?) and G(k?) are located in the open
interval (0,∞) and that, for each j ∈ N0 satisfying kj ≥ k?, the following inequality
holds

G(k?) ≤
Nkj∏

i=mkj+1

γi,kj
γi,kj − 1

≤ G(k?) .

Clearly, choosing a larger element k? refines the approximation. Hence, G(k?) is
monotonically decreasing and G(k?) is monotonically increasing with respect to k?

which, since G(k?) < G(k?) holds for all k? ∈ N, guarantees the existence of the
respective limits for k? approaching infinity and limk?→∞ G(k?) ≤ limk?→∞ G(k?).
Indeed, this inequality turns out to be an equality:

G(k?)
G(k?)

=
N−1∏
ν=m

k?−1∏
l=0

limj→∞ gν,l(kj)
limj→∞ g

ν,l
(kj)

=
N−1∏
ν=m

k?−1∏
l=0

(
σ−

1
k?
) 1
C[1−σν+l/k? ](

σ−
1
k?
) 1
C[1−σν+(l+1)/k? ]

=

(
σ−

1
k?
) 1
C(1−σm)(

σ−
1
k?
) 1
C(1−σN )

k?→∞−→ 1.

This allows for drawing conclusions on the limit of the left hand side of (3.12). For
k? tending to infinity, each of the two introduced approximations converges to the
same finite limit. Hence, it remains to verify that the expression specified in the right
hand side of (3.12) equals the limit of the introduced approximations. To this end,
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we exploit the specific form of the limits g?ν,l(k
?) and g?

ν,l
(k?). In particular, Lemma

3.5 yields

(
g?ν,l
)C =

(
σ−

1
k?

) 1
1−σν+l/k? = lim

j→∞

kj/k
?∏

i=1

(
1 +

1− σ1/kj

1− σj+l/k? − 1 + σ1/kj

)
and

(
g?
ν,l

)C
=
(
σ−

1
k?

) 1
1−σν+(l+1)/k?

= lim
j→∞

kj/k
?∏

i=1

(
1 +

1− σ1/kj

1− σj+(l+1)/k? − 1 + σ1/kj

)
.

This allows for elaborating the following chain of inequalities, which resembles the
structure of (3.14). Again, we use k ∈ (kj)j∈N0 satisfying k ≥ k? in order to avoid
technical difficulties

k/k?∏
i=1

(
1+

1− σ1/k

σ1/k−σν+(l+1)/k?

)
≤
k/k?∏
i=1

(
1+

1− σ1/k

σ1/k−σν+l/k?σi/k

)
<

k/k?∏
i=1

(
1+

1− σ1/k

σ1/k−σν+l/k?

)
.

However, in contrast to (3.14), we are able to deal with the term representing the core
of this expression using an argument similar to those applied to telescoping series

k/k?∏
i=1

(
1 +

1− σ1/k

σ1/k − σν+l/k?σi/k

)
=
k/k?∏
i=1

1− σν+l/k?σi/k

σ1/k(1− σν+l/k?σ(i−1)/k)

= σ−1/k? · 1− σν+(l+1)/k?

1− σν+l/k?
.

Hence, using these prelimary considerations leads to

G(k?) ≤
N−1∏
ν=m

k?−1∏
l=0

[
σ−

1
k?

1− σν+ l+1
k?

1− σν+ l
k?

] 1
C

=
N−1∏
ν=m

[
σ−1 1− σν+1

1− σν

] 1
C

=
[
σ−(N−m) 1− σN

1− σm

] 1
C

≤ G(k?)

for each k? which, since G(k?) ≤ limk?→∞ G(k?) = limk?→∞ G(k?) ≤ G(k?) holds,
implies that the involved limits coincide with the deduced bound, i.e.,

lim
k?→∞

G(k?) =
[
σ−(N−m) 1− σN

1− σm

] 1
C

= lim
k?→∞

G(k?) .

Summarizing these computations provides[
σ−(N−m) 1− σN

1− σm

] 1
C

= lim
k?→∞

G(k?) ≤ lim
j→∞

kjN∏
i=kjm+1

γi,kj
γi,kj − 1

≤ lim
k?→∞

G(k?) =
[
σ−(N−m) 1− σN

1− σm

] 1
C

and, thus, ensures (3.12), i.e., the assertion.
Remark 3.7. The restriction to iterative refinements is not necessary in order to

prove Lemma 3.6 but allows the reader to concentrate on the essential steps without



16 K. Worthmann, M. Reble, L. Grüne, and F. Allgöwer

being distracted by technical details. Since kj →∞ for j tending to infinity, for each
index j? determining an element k? = kj? an index j̄ ≥ j? exists such that kj ≥ kj?

holds for all j ≥ j̄ for the parameter sequence (kj)j∈N0 . For each k satisfying this
condition, a switching index k̃? := k mod k? can be defined. Then, the product

k?−1∏
l=0

k/k?∏
i=1

(
1 +

1− σ 1
k

C
[
1− σν+ l

k
?

σ
i
k

]
− 1 + σ

1
k

)

from (3.13) is replaced by

k̃?−1∏
l=0

dk/k?e∏
i=1

(
1+

1− σ 1
k

C
[
1−σν+ l

k? σ
i
k

]
−1+σ

1
k

)
·
k?−1∏
l=k̃?

bk/k?c∏
i=1

(
1+

1− σ 1
k

C
[
1−σν+ l

k? σ
i
k

]
−1+σ

1
k

)
,

i.e., the involved factors are distributed such that the number of factors is either
bk/k?c or dk/k?e and the total number of factors is equal to k. The following chain of
inequalities remains unchanged, only the corresponding index range has to be adapted
to the set {1, 2, . . . , dk/k?e}. The upper index of the product in the definitions of
gν,l(k; k?) and g

ν,l
(k; k?) depends on whether or not the index l is contained in [0, k̃?−

1] for the considered argument k. However, since we are only interested in the limit
for k approaching infinity, this distinction does not play a role: looking at the proof of
Lemma 3.5 shows that the assertion also holds for a sequence (ni)i∈N0 ⊂ R+

0 satisfying
ni → ∞, if the exponent is, for each index i, randomly substituted by either bnic
or dnie. The remaining part of the proof of Lemma 3.6 does not require further
modifications.

4. Examples. In order to illustrate our results, an example of a reaction dif-
fusion equation taken from [3] is considered in Subsection 4.1. Subsection 4.2 gives
some additional remarks on the controllability conditions introduced in Section 2.

4.1. Reaction Diffusion Equation. Let Ω ⊂ R be an open interval. We
consider a reaction diffusion equation

zt(x, t) = zxx(x, t)− h(z(x, t)) + u(x, t) on Ω× R>0, (4.1)
z(x, t) = 0 on ∂ Ω× R>0 (4.2)

with homogeneous Dirichlet boundary conditions, distributed control u(·, t) : Ω→ R,
and continuously differentiable nonlinearity h : Ω→ R. The initial data are given by
z(x, 0) = z0(x), x ∈ Ω. In addition, the condition h(0) = 0 is supposed in order to
ensure that the origin is an equilibrium. This semilinear parabolic partial differential
equation (PDE) will be used in order to illustrate the derived theoretical results. We
start off with the continuous time setting introduced in Subsection 2.1

The state space Z and the set of feasible states Z are both equal to H1(Ω). Since
no control constraints are imposed, the set U of admissible control values is given by
U = L∞(Ω). Our goal is to stabilize the equilibrium z? = z?(·) ≡ 0. For existence
and regularity results we refer to [4]. The stage costs ` : Z ×U → R≥0 are defined by

`(z, u) = ‖z − z?‖2L2(Ω) + λ‖u‖2L2(Ω) = ‖z‖2L2(Ω) + λ‖u‖2L2(Ω) (4.3)

with regularization parameter λ > 0. The second term penalizes the control effort
used to steer the system in the desired direction.
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Next, we want to verify Assumption 2.2, i.e., we aim at showing Inequality (2.5) by
determining suitable parameters C, σ. Then, a prediction horizon T can be computed
for which Theorem 2.3 guarantees asymptotic stability of the corresponding MPC
closed-loop. To this end, the following theorem concerning the local stability behavior
of the uncontrolled version of this semilinear parabolic equation is presented, cf. [4].

Theorem 4.1. For each γ ∈ (0, λ1 + h′(0)) there exists a constant R = R(γ)
such that for all z0 ∈ C0(Ω) with ‖z0‖ ≤ R the solution zu(·, t) of (4.1), (4.2) with
u(·, t) ≡ 0, t ∈ R≥0, satisfies

‖zu(·, t)‖ ≤M‖z0‖e−γt for all t ≥ 0. (4.4)

Here, λ1 = λ1(Ω) denotes the smallest eigenvalue of the differential operator −∆ in
H1

0(Ω).
The constant M from (4.4) is independent of γ and the given initial state z0.

Indeed, it only depends on the used norm, e.g., M = 1 for ‖ · ‖L2(Ω). Furthermore,
the origin is unstable for λ1 < −h′(0), cf. [4] for details. An important representative
of the considered class of reaction diffusion equations is the one dimensional Chafee-
Infante equation

zt(x, t) = zxx(x, t) + ν(z(x, t)− z(x, t)3) + u(x, t), (4.5)

i.e., h(z) = −ν(z − z3). Existence results for the optimal control problem solved in
each MPC iteration can be found in [19]. For parameter ν = 11 and initial data
z(x, 0) = 0.2 sin(πx), the origin is unstable because λ1 = π2 < 11 = −h′(0) holds, cf.
[3].

Our goal is to stabilize Equation (4.5) for the specified parameters at the ori-
gin by an MPC controller. Note that the main ideas remain completely the same
as in [3]. Moreover, we point out that the following line of arguments is crucially
based on the fact that optimality of the involved control law is not required in our
controllability condition Assumption 2.2. In order to deduce Inequality (2.5) and,
thus, exponential controllability in terms of the stage costs, a linear feedback control
u(x, t) := −Kz(x, t) with a real constant K is chosen. Then, Theorem 4.1 applied
to the reaction diffusion equation given by (4.1), (4.2) with nonlinearity h(z) + Kz
yields

`?(z(·, t)) = ‖z(·, t)‖2L2(Ω) ≤M
2e−2γt`?(z0(·)) (4.6)

with γ = λ1 + h′(0) +K. Furthermore, we get

`(z(·, t), u(·, t)) = ‖z(·, t)‖2L2(Ω) + λ‖u(·, t)‖2L2(Ω)

= ‖z(·, t)‖2L2(Ω) + λK2‖z(·, t)‖2L2(Ω) = (1 + λK2)`?(z(·, t)).

Combining this equation with (4.6) implies the desired exponential controllability

`(z(·, t), u(·, t)) = (1 + λK2) `?(z(·, t)) ≤ Ce−µt`?(z0(·))

with overshoot C := (1 + λK2)M2 and decay rate µ := 2γ. We point out the
ambiguous role of the feedback gain K. Picking larger values for K leads to faster
decay but also to an increased overshoot — a trade-off. At this point, Formula (2.6)
is used in order to formulate the following optimization problem.

Problem 4.2. Let T > δ > 0, λ > 0, and M ≥ 1 be given. Then,

maximize
K∈R

αT,δ given by (2.6)
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with C = (1 + λK2)M2 = (1 + 0.01 ·K2) and µ = 2γ = 2(π2 − 11 +K) subject to

γ = λ1 + h′(0) +K = π2 − 11 +K ≥ 0.

Here, a regularization parameter λ = 0.01 and control horizon δ = 0.01 are
used. Solving this nonlinear optimization problem shows that the minimal prediction
horizon with guaranteed stability is T ≈ 0.0755, cf. Figure 4.1. Here, we restrict
ourselves to prediction horizons T which are multiple of the control horizon δ. A
prediction horizon of length T = 8δ guarantees a (strictly) positive suboptimality
index αT,δ via (2.6). Note that the choice of K only influences the resulting estimates
on the overshoot C and the decay rate σ in Assumption 2.2, but does not appear
in the MPC algorithm. In addition, since ‖z(·, t)‖2L2(Ω) = `?(z(·, t)) holds, Condition

Fig. 4.1. On the left, the maximal achievable αT,δ for a given prediction horizon T is depicted.
According to this, the minimal stabilizing horizon, i.e., the smallest T ensuring asymptotic stability,
is obtained for T ≈ 0.0755. On the right, we have illustrated the corresponding optimal choice of
the parameter K for given T .

(2.4) is satisfied for η1(r) = r2 and η2(r) =
∫ T

0
Ce−µt dt · r2 in view of (2.5). Hence,

asymptotic stability of the MPC controlled closed-loop can be ensured by applying
Theorem 2.3 with prediction horizon T = 8δ.

Remark 4.3. Incorporating the controllability condition from [28] in our setting
allows to choose the gain parameter K for each parameter γi, i ∈ N0, independently.
This results in better bounds in the linear program deduced in [9] and, thus, the corre-
sponding Formula αN,m presented in Theorem (2.6). As a consequence, tighter bounds
on the required prediction horizon are obtained, cf. [29, Section 5.4] — an approach
which can be directly transferred to the continuous time setting of Subsection 2.1.

Next, the continuous time system is discretized in order to apply Theorem 2.6.
Here, the concept of multistep feedback laws of Definition 2.4 is crucial in order
reproduce the continuous time system behavior for various discretization parameters
τ . Then, the connection of the corresponding estimates is investigated in order to
illustrate our main results Theorem 3.2, Proposition 3.3, and Corollary 3.4.

Let w(n) = ũ(t)|[0,τ) be an element of L∞([0, τ),U). Then, the solution of the
finite horizon optimal control problems used in order to generate the MPC feedback
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is contained in W (0, T ). Since W (0, T ) is continuously embedded in C([0, T ),L2(Ω))
taking snapshots of the solution is well defined. This allows to choose the following
stage costs

`τ (z(n), w(n)) = τ‖z(n)‖2L2(Ω) + λ

∫ τ

0

∫
Ω

w(n)(x, t)2 dx dt

which approximate the continuous time stage cost (4.3) on the sampling interval [0, τ),
i.e.

`τ (z(n), w(n)) ≈
∫ τ

0

‖zw(n)(t; z(n)‖2L2(Ω) dt+ λ

∫ τ

0

∫
Ω

w(n)(x, t)2 dx dt.

Repeating the line of arguments used in the continuous time setting yields `?τ (z(n)) ≤
σ`?τ (z0) with decay rate σ = e−µτ . Assuming λ1(Ω) + h′(0) + K ≥ 0 the following
calculation shows that the same overshoot bound C as for the continuous time setting
holds:

`τ (z(n), w(n)) = τ‖z(n)‖2L2(Ω) + λ

∫ τ

0

‖ w(n)(·, t)︸ ︷︷ ︸
=u(·,nT+t)=Kz(·,nT+t)

‖2L2(Ω) dt

< τ‖z(n)‖2L2(Ω) + λ

∫ τ

0

K2M2‖z(·, nT )‖2L2(Ω) dt

= (1 + λK2)τ‖z(n)‖2L2(Ω) = C`?τ (z(n)).

Using the discretization parameter τ = 0.01, which corresponds to using δ as
sampling time, Theorem 2.6 yields asymptotic stability for N = 10. Hence, a pre-
diction horizon of length Nτ = 0.1 > 0.0755 is required. On the other hand, the
discretization parameter τ = 0.005 = δ/2 already improves this estimate and ensures
asymptotic stability of the MPC closed-loop for T = 0.09. Subdividing the interval
[0, δ) into 8 parts, i.e., τ = δ/8 further enhances the deduced bounds to T = 0.08.
We point out that this corresponds to the smallest multiple of δ for which asymptotic
stability was guaranteed in the continuous time setting, cf. Figure 4.2. Summarizing,
the suboptimality estimates computed for this example confirm our results: firstly,
using a finer discretization and, thus, taking Assumption 2.5 more often into account
yields improved performance bounds. Secondly, if a sufficiently fine discretization is
employed the estimates deduced in the continuous time setting are reproduced.

4.2. Remarks on the Controllability Assumption. The most important
ingredient in the stability analysis of unconstrained MPC is the controllability as-
sumption, which is specified in Assumption 2.2 for the continuous time and in As-
sumption 2.5 for the discrete time case. Several examples were presented on how to
verify this condition, e.g., in [10] for different linear and nonlinear ODE examples, and
in [3] and Section 4.1 for PDE examples. In [8], two examples are shown for which the
calculation of a feedback control law is difficult, but open-loop inputs are significantly
simpler to obtain. Thus, the verification of the controllability assumption may be
easier than the calculation of a control Lyapunov function as required for MPC with
terminal weights.

With respect to the results presented in this work, it is particularly interesting how
the two different controllability assumptions are connected. Theorem 3.2 suggests the
following intuitive conjecture: If Assumption 2.2 is satisfied with decay rate µ > 0 and
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Fig. 4.2. On the left the suboptimality indices α resulting from Theorem 2.6 are depicted in
red (τ = δ, •), green (τ = δ/2, ?), and blue (τ = δ/8, ◦). The dashed black line represents the
performance estimates resulting from the continuous time setting. On the right, the deviation ∆α
from this continuous time reference trajectory is illustrated.

overshoot C ≥ 1, then Assumption 2.5 holds with σ := e−µτ and the same overshoot
C. For instance, consider quadratic stage costs similar to the one used in Section 4.1

`(z(t), u(t)) = ‖z(t)‖2 + λ‖u(t)‖2 , `?(z0) = ‖z0‖2 ,

and `τ (z(n), w(n)) = τ‖z(n)‖2 + λ

∫ τ

0

‖w(n)(t)‖2dt , `?τ (z0) = τ‖z0‖2 .

Using the control function from the continuous time Controllability Assumption 2.2
yields∫ (n+1)τ

nτ

`(z(t), u(t))dt =
∫ (n+1)τ

nτ

(
‖z(t)‖2 + λ‖u(t)‖2

)
dt

≤
∫ (n+1)τ

nτ

Ce−µt‖z0‖2dt < Ce−µτnτ‖z0‖2 = Cσn`?τ (z0).

Note that the integral was estimated by its maximum although the integral can easily
be solved exactly. Since the state trajectory z(·) is continuous,

∫ (n+1)τ

nτ
‖z(t)‖2dt ≈

τ‖z(nτ)‖2 holds for sufficiently for small τ . Using this approximation leads to the
estimate

`τ (z(n), w(n)) ≤ (1 +O(τ))Cσn`?τ (z0) for σ = e−µτ .

Here O(τ) denotes a quantity converging to zero for τ → 0. Hence, the discrete time
Controllability Assumption 2.5 can be approximately concluded for sufficiently small
sampling period τ . An exact recovery of the controllability assumption is, in general,
only possible in the limit of τ → 0. However, a significantly better characteriza-
tion of the controllability properties is possible when considering a particular system.
For instance, in Section 4.1 we showed for the Chafee-Infante equation that the dis-
crete time controllability assumption can indeed be deduced from the continuous time
counterpart with decay rate σ = e−µτ and the same overshoot C.
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5. Conclusions. In [9, 10] a stability condition for unconstrained MPC was
proposed. Although the approach introduced in [25, 24] extends this technique to a
continuous time setting, a gap was observed between the corresponding results. In
this paper we investigated the connection between both methodologies. We showed
that the suboptimality estimates from [24] yield upper bounds on their discrete time
counterparts. In addition, we proved that the estimates from [9, 10] are monotonically
increasing for decreasing sampling period. Indeed, convergence to the bound obtained
from the continuous time setting is rigorously shown. To this end, the concept of
multistep feedback laws is essentiell.

Furthermore, we explained the practical relevance of the elaborated results. The
continuous time result can be used in order to determine a theoretically achievable
performance bound. Then, an iterative refinement can be employed in order to ap-
proximate this bound sufficiently well. In particular, a corresponding sampling period
can be easily computed. This allows to specify a trade-off between sampling time and
performance.

6. Appendix. In order to keep our paper sufficiently self-contained, we repeat
here the result and proof of [29, Lemma 3.21] which is needed as an auxiliary result
for the proof of Proposition 3.3.

Lemma 6.1. Let m,M ∈ Z with M ≥ m − 1 and constants γi ∈ R, i = m,m +
1, . . . ,M be given. Furthermore, the conventions

∏m−1
i=m = 1 and

∑m−1
i=m = 0 are used.

Then, the following formula holds:

M∏
i=m

γi =
M∏
i=m

(γi − 1) +
M∑
i=m

(
i−1∏
k=m

γk

M∏
k=i+1

(γk − 1)

)
. (6.1)

Proof. We carry out an induction over M in order to prove (6.1). Since we have
agreed on the conventions with respect to the empty product and empty sum, the
assertion holds for M = m− 1. Hence, we proceed with the induction step:

M+1∏
i=m

(γi − 1) = (γM+1 − 1)
M∏
i=m

(γi − 1)

I.A.= (γM+1 − 1)

[
M∏
i=m

γi −
M∑
i=m

(
i−1∏
k=m

γk

M∏
k=i+1

(γk − 1)

)]

=
M+1∏
i=m

γi −
M∏
i=m

γi −
M∑
i=m

(
i−1∏
k=m

γk

M+1∏
k=i+1

(γk − 1)

)

=
M+1∏
i=m

γi −
M+1∑
i=m

(
i−1∏
k=m

γk

M+1∏
k=i+1

(γk − 1)

)
.
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[22] T. Raff, S. Huber, Z. K. Nagy, and F. Allgöwer. Nonlinear model predictive control of a four
tank system: An experimental stability study. In Proceedings of the IEEE Conference on
Control Applications, pages 237–242, Munich, Germany, 2006.

[23] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory and Design. Nob Hill
Publishing, Madison, WI, USA, 2009.
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