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Recent research has challenged the notion that word frequency is the organizing principle underlying
lexical access, pointing instead to the number of contexts that a word occurs in (Adelman, Brown, &
Quesada, 2006). Counting contexts gives a better quantitative fit to human lexical decision and naming
data than counting raw occurrences of words. However, this approach ignores the information redun-
dancy of the contexts in which the word occurs, a factor we refer to as semantic diversity. Using both
a corpus-based study and a controlled artificial language experiment, we demonstrate the importance of
contextual redundancy in lexical access, suggesting that contextual repetitions in language only increase
a word’s memory strength if the repetitions are accompanied by a modulation in semantic context. We
introduce a cognitive process mechanism to explain the pattern of behaviour by encoding the word’s
context relative to the information redundancy between the current context and the word’s current
memory representation. The model gives a better account of identification latency data than models based
on either raw frequency or document count, and also produces a better-organized space to simulate
semantic similarity.
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A consistent finding in studies of lexical access is that high-
frequency words are identified faster than low-frequency words
(Broadbent, 1967; Forster & Chambers, 1973; Krueger, 1975). The
efficiency of processing suggests that high-frequency words have
a privileged status over low-frequency words in the mental lexi-
con, as the effect is stable across different response tasks (e.g.,
word naming and 2AFC choices such as lexical, concreteness, and
category decisions). Frequency is core to classic strength accounts
of lexical access based on the assumption that each repetition
increases memory strength for a word, boosting the efficiency of
later access.1 This principle of repetition has been influential on
formal models of lexical access, leading to the development of
rank frequency models of the lexicon (Murray & Forster, 2004),
threshold activation accounts (Coltheart, Rastle, Perry, Lang-
don, & Ziegler, 2001), and connectionist models (Seidenberg &
McClelland, 1989).

However, recent research is questioning whether humans use
frequency information to organise the lexicon. Word frequency
may appear to be the organizing factor because it is confounded
with a word’s contextual diversity (CD)—the number of contexts
in which the word has been experienced. But it may be a word’s
CD and not frequency that humans use to organise lexical priority.
Unfortunately, CD is a slippery construct to define and takes on
slightly different operational definitions across the handful of

experiments that have studied it. Generally, CD is conceptualised
as the number of distinct contexts in which a word occurs. If
frequency is based on the principle of repetition, CD is based on
the principle of likely need emphasised by rational models of
memory (Anderson & Milson, 1989; Anderson & Schooler, 1991;
Dennis & Humphreys, 2001): A word that has been experienced in
many contexts during learning is more likely to be needed in
unknown future contexts, hence it is more accessible in the lexi-
con. The variable is most commonly operationalized as the number
of documents in which a word occurs across a text corpus (with no
regard for frequency within documents). Adelman and Brown
(2008) summarise the theoretical position: “As words tend to
cluster in contexts, the likely need of a word in an arbitrary new
context relates to the number of contexts the word has been seen
in before, not the number of occurrences of the word” (p. 223).
This phenomenon is heavily related to the concept of word “bursti-
ness” in information retrieval (Katz, 1996). If humans are sensitive
to word frequency information, then repeating a word should be
beneficial to later identification of that word. If humans use CD
information, however, then repeating a word is of limited use if the
repetition is not also accompanied by a modulation in context.

Schwanenflugel and Shoben (1983) originally demonstrated that
a variable they termed “context availability” influences word rec-
ognition. They define this variable as the ease with which one can
think of a particular circumstance in which a word might appear,
and have argued that this is the “real” explanatory variable under-
lying the concreteness effect (cf. Galbraith & Underwood, 1973).
In the recognition memory literature, robust evidence has been
found that CD benefits item learning and retrieval efficiency. Items

1 Alternatively, repetition may affect the number of instances of a word
in memory, increasing availability, as in popular multiple-trace models
(e.g., Hintzman, 1986).
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with a greater CD at encoding are more likely to be subsequently
recognised and tend to be recognised faster (Goldinger & Azuma,
2004; McDonald & Shillcock, 2001; Nelson & Shiffrin, 2006;
Pexman, Hargreaves, Siakaluk, Bodner, & Pope, 2008). Steyvers
and Malmberg (2003) have also demonstrated a role for CD as a
strong component of the mirror effect of “frequency” seen in
recognition memory. More recently, CD has been found to influ-
ence free recall as well (Lohnas, Polyn, & Kahana, 2011). Further,
CD has been demonstrated to benefit learning of grammatical
classes (Redington, Chater, & Finch, 1998), speech perception
(Apfelbaum & McMurray, 2011), and word-referent mappings
(Smith & Yu, 2008).

In a recent study, Adelman, Brown, and Quesada (2006) con-
ducted a corpus analysis of CD, operationalizing it as the number
of documents in which a word occurs in large English corpora.
They computed diversity and frequency counts for thousands of
words and conducted a regression analysis to explore how the two
measures predicted lexical decision and naming times for the
words taken from Balota et al.’s (2002) English Lexicon Database.
Adelman et al. found clear evidence for the superiority of CD over
word frequency in predicting word identification latency: CD
predicted all variance in latency data that frequency did, and
additional unique variance. They argue that previous theories have
been constructed based on a false assumption that humans use
frequency information to organise the lexicon, and their work
suggests that many current models need to be abandoned or
revised to adequately explain how the lexicon is organized.

However, it is difficult to determine conclusively if CD is the
organizing principle of lexical priority with the methodologies
used in existing studies. First, it is questionable whether common
operational definitions of CD are valid measures under the prin-
ciple of likely need. The most common operational definition of
CD is simply the number of documents in which a word appears in
a text corpus: A word’s frequency count is incremented each time
it occurs in the corpus, but its diversity count is only incremented
each time it occurs in a new document. This operationalization of
frequency is fair, but operationalizing diversity as a document
count is likely to be an invalid measure of the true contextual
diversity of the word. Psychological notions of context differ
greatly, and range from the list in which a word was encoded, to
changes in time, to the room in which learning took place
(Schmidt, 1991; Verkoeijen, Rikers, & Schmidt, 2004; Wickens,
1987). It is not directly obvious how counting documents corre-
sponds to classic notions of a change in context, but it seems
intuitive that if a document is repeated in the corpus, we should not
consider the two repetitions to be different semantic contexts of the
word. Further, a frequent discourse topic is likely to have many
documents dedicated to it, and so a word that describes a frequent
topic is likely to appear in more documents, even though the
documents are not truly distinct contextual uses of the word. What
is needed is a graded measure of CD by examining the information
overlap among a word’s linguistic contexts.

Second, the superiority of CD over frequency has only been
demonstrated with regression analyses: CD accounts for all of the
variance in identification latency that frequency does, and addi-
tional unique variance when frequency is partialed out (Adelman
et al., 2006). However, regression analyses alone do not provide
conclusive evidence for the causal role of CD due to confounds
with a variety of other variables in addition to frequency, any one

of which could plausibly be the causal factor influencing lexical
access. For example, access may simply be superior for words that
have been experienced more recently; words with a greater CD or
frequency are also likely to have a higher recency (but see Balota
& Spieler, 1999). Ambiguity, abstractness, imageability, and word
length are also confounded with document count and frequency,
and are difficult to tease apart. Finally, it has been suggested
(Balota; in Adelman et al., 2006) that document count from a text
corpus may actually be a better measure of real-world frequency
due to the structure of the corpus. Recent corpus-based studies
attempt to partial out the confounding variables as covariates.
However, the effect of contextual diversity has never before been
induced experimentally; to do so would require control over the
statistical structure of the language being learned.

The outline of this article is as follows: Experiment 1 addresses
the issue of how to measure CD by introducing a graded semantic
distinctiveness count and using a corpus analysis and large-scale
fits to lexical decision and naming times to demonstrate its supe-
riority over word frequency or document count. Experiment 2
demonstrates a causal effect of diversity using an artificial lan-
guage paradigm to independently manipulate document count and
semantic distinctiveness count. Finally, we introduce a computa-
tional model based on co-occurrence learning models and
expectation-congruency, which adjusts its encoding strength for a
word relative to the information redundancy between the current
memorial representation of the word and the current linguistic
context in which the word is experienced. Within the same model
framework, we are able to compare semantic diversity with nested
models considering only raw frequency or document count, and
demonstrate the superiority of a semantic diversity learning mech-
anism in accounting for human word identification latency.

Experiment 1: A Role for Semantic Diversity

Adelman et al. (2006) demonstrated the superiority of document
count over raw frequency in fitting lexical decision and naming
times. However, operationalizing CD as a document count ignores
semantic context—the information overlap between documents.
Under the principle of likely need (Anderson & Milson, 1989),
repetition of a word in distinct documents would increase its likely
need to a greater extent than an equal number of repetitions in
redundant documents. For example, if the word bank occurs in two
very similar documents discussing the government-sponsored buy-
out of mortgage assets, we would consider the two documents to
be very similar contextual uses of bank compared to the contextual
similarity between one of these financial documents and a docu-
ment discussing river banks. In addition, the government buyout
may be a very frequently discussed discourse topic (having many
documents on the topic), meaning that even though bank would
receive a large document count, these are not truly distinct con-
textual uses of the word, hence it is a poor operational definition
to be true to the principle of likely need. The example with a
homograph like bank makes the point clear, but this pattern will be
true of all words as a function of slight contextual modulations; a
measure needs to consider the graded semantic coherence of the
contexts in which words occur to estimate contextual diversity.
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Semantic Distinctiveness Count

To introduce a weighted context count, we first quantify the
dissimilarity of any pair of documents in which a word occurs as
a function of the proportion of overlapping words:

Dissimilarity �doci, docj� � 1 �
�doci � docj�

min �doci, docj�
(1)

Document similarity is the intersection of the two sets of words,
divided by the size of the smaller document. Function words (e.g.,
the, is, of, etc.) are filtered out of the calculation using the standard
LSA stoplist (Landauer & Dumais, 1997). Document dissimilarity
is then 1 � similarity. A dissimilarity value of 1 indicates that
there is no content word overlap between the two documents (i.e.,
high distinctiveness), analogous to if it were presented in two
separate lists in a standard memory experiment. A value of 0
indicates that the two documents are identical (i.e., low distinc-
tiveness), similar to if the word were repeated in the same list in a
standard memory experiment. A word’s semantic distinctiveness is
defined as the mean dissimilarity over all the documents in which
it occurs. A word with a low mean distinctiveness tends to occur
in documents that are semantically redundant, whereas a high
mean distinctiveness indicates the set of documents that contain
the word are semantically unique.

Finally, a word’s semantic distinctiveness count (SD_Count) is
computed to consider the number of documents in which it occurs
weighted by the semantic uniqueness of those contexts. For the
word set, the distribution of dissimilarity values is standardized to
quantiles. In this article, we use septiles (dividing the cumulative
distribution into seven equal bins) as previous research has pointed
to seven as the optimal number of divisions to fit identification
latencies (Johns & Jones, 2008). Document pairs that are in a
higher quantile are more distinct than those in lower quantiles. For
a given word, its SD_Count is calculated as the sum of the
quantiles in which the set of documents containing it fall:

SD_Count � �
i�1

n �
j�1

i

quantile �Dissimilarity �doci, docj�� (2)

Words that tend to appear in a greater number of unique docu-
ments will have a higher SD_Count. Note that if there were a
single quantile, this function would be equal to a document count
(incrementing the count by one each time the word appears in a
new document with no regard for information overlap). When the
distribution is split into more than one quantile, the function
produces a greater count for more unique contextual uses of the
word. Comparing two words that occur in an equal number of
documents, the one that occurs in more redundant documents will
have a lower SD_Count than the one that occurs in more distinct
documents. If a word were to hypothetically only occur once in a
document, and the document was repeated multiple times through-
out the corpus, then the frequency count, document count, and
SD_Count variables would all be equal. Using SD_Count, we have
a variable that is sensitive to the uniqueness of semantic contexts
in which words occur—more unique contexts are weighted more
heavily than less unique contexts.

Method

We computed word frequency, document count, and SD_Count
from three corpora: (a) the Touchstone Applied Science Associates
(TASA) corpus (Landauer & Dumais, 1997), (b) a Wikipedia
corpus (Recchia & Jones, 2009), and (c) a New York Times (NYT)
corpus (Jones & Mewhort, 2004). The TASA corpus was com-
posed of 10,500 documents, with each document having a mean
length of 289 words. The Wikipedia corpus was composed of
9,755 documents, with a mean document length of 391 words. The
NYT corpus is composed of 9,100 documents with a mean length
of 250 words. These are smaller versions of the full corpora, and
the reduced size was necessary due to the computational complex-
ity of this measure. Lexical decision times (LDTs) and naming
times (NTs) were obtained from the English Lexicon Project
(Balota et al., 2002). Measures were computed for 17,984, 22,673,
and 14,609 words for the TASA, WIKI, and NYT corpora, respec-
tively.

Results

Figure 1 illustrates a median split of words with high/low
semantic distinctiveness (mean document dissimilarity) by high/
low document count for the LDTs and the NYT corpus (the pattern
was consistent across all corpora and with NTs as well). A main
effect was observed for document count, with words occurring
in more documents having faster LDTs than words occurring in
fewer, F(1, 4,232) � 177.43, p � .001. Further, a main effect was
observed for semantic distinctiveness, with more semantically
distinct words having faster LDTs than less distinct words, F(1,
4,232) � 143.78, p � .001. Substituting word frequency for
document count produces the same result (frequency and docu-
ment count are highly correlated). Of particular interest is the
finding that semantic distinctiveness and document count inter-

Figure 1. Factorial combination of semantic distinctiveness by document
count on lexical decision times. Repetitions of a word in documents
produces greater latency savings if the documents are low in semantic
redundancy.
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acted, F(1, 4,232) � 74.26, p � .001. As document count in-
creases, words that occur in a greater number of semantically
distinct documents see a greater benefit on their LDTs from the
additional contextual occurrences.

However, Figure 1 only demonstrates that words that occur on
average in more unique documents have a reaction time (RT)
savings in identification. Figure 2 uses the SD_Count variable (a
count of the documents in which the word occurs weighted by their
semantic distinctiveness) to analyse the proportion of variance
explained by SD_Count over word frequency (the zero point) and
document count. The top panel shows LDT and the bottom panel
NT. As the figure indicates, counting contexts relative their se-
mantic uniqueness gives a much better account of the human data
across all corpora for both LDT and NT. Because the variables are
strongly correlated with each other, we emulate Adelman et al.’s
(2006) original regression analyses and examine variance pre-
dicted while systematically partialing out covariates. Table 1
shows the unique variance predicted by each variable for LDT and
Table 2 for NT2. As the tables indicate, the SD_Count variable
gives a significantly better prediction of both LDT and NT than
document count, p � .001 in all cases, and subsumes the effect of
frequency just as effectively as does document count.

Discussion

The corpus analysis suggests that when words with equivalent
document counts are considered, those that occur in more seman-

tically distinct contexts see a larger latency savings when com-
pared to those that occur in redundant contexts. Our SD_Count
variable follows the principle of likely need and corroborates the
findings of Adelman et al. (2006), but clearly demonstrates that the
lexical priority of a word depends on both the number and redun-
dancy of the contexts in which it has been experienced. However,
our regression analysis shares the same weaknesses with other
correlational studies criticised in the introduction. Several con-
founding factors may still be the hidden causal variables (e.g.,
recency, concreteness, etc.). We next rule out these potential
confounds by inducing the effect of diversity experimentally.

Experiment 2:
Testing Diversity in an Artificial Language

Experiment 2 was designed to test the hypothesis that repetition
of contextual occurrences produces greater latency savings for
unique contexts than redundant contexts, as well as to compare the
effect of contextual diversity on lexical decision times in a con-
trolled paradigm. The CD effects used to support the principle of
likely need have never been induced experimentally because in
natural languages CD is confounded with many other sources of
statistical information (McDonald & Shillcock, 2001). Thus, we
used an artificial language paradigm to independently vary fre-
quency/document count and semantic diversity, and to assess the
relative contribution of each on identification latency.

Method

Participants. Thirty-two undergraduate students at Indiana
University participated in the experiment for partial course credit.
All had normal or corrected-to-normal vision.

Materials. Participants were trained in an artificial “alien”
language referred to as Xaelon. The Xaelon lexicon consisted of a
set of 12 one-syllable pronounceable nonwords selected from
Balota et al.’s (2002) database, equated for number of phonemes,

2 Following Adelman et al. (2006), we use log transformations of each
predictor in the regression. The ordinal pattern summarized in Tables 1 and
2 is the same with either power or rank transformations.

Figure 2. Increase in variance predicted over word frequency for lexical
decision times (top panel) and naming times (bottom panel) for document
count and SD_Count.

Table 1
Lexical Decision Time Variance Predicted by SD_Count, Word
Frequency, and Document Count

Effect (�R2 in %)

Analysis TASA WIKI NYT

SD_Count (After WF) 5.501 6.417 6.282
DC (After WF) 2.341 1.675 0.0 ns
SD_Count (After DC) 3.87 6.807 11.557
WF (After DC) 0.0 ns 0.382 1.123
DC (After SD) 0.645 2.094 5.025
WF (After SD) 0.0 ns 0.0 ns 0.0 ns
SD_Count (After DC,WF) 4.487 7.731 11.881
WF (After SD, DC) 1.282 1.03 1.485
DC (After SD, WF) 0.641 3.108 5.445

Note. Unless otherwise specified, all values are significant. Raw data
were log transformed.
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number of letters, and orthographic neighborhood size. A set of 12
foils, to serve as negative examples during the lexical-decision
task, was selected in the same way. The nonwords comprising the
lexicon and the set of foils were selected so as to exhibit no
significant differences in bigram count averages, bigram count
sums (calculated by position as well as overall), or mean lexical
decision latencies. To account for potential unforeseen differences
in the processability of the lexicon compared with the foils, the set
of nonwords that comprised the lexicon was swapped with the set
of nonwords comprising the foils for half the participants.

For each participant, a set of 450 training slides was created.
Each training slide consisted of a three-word “sentence” in Xaelon
above an image of a scene described by that sentence. Of the
12 words in the Xaelon lexicon, four were designated as subject
words, four as object words, and four as locatives. Each subject
word corresponded to a different unfamiliar image (“Fribbles”;
Tarr, 2010). Each object word corresponded to a different geomet-
ric shape constructed from geons, and each locative corresponded
to a different position that the subject could be in relative to the
object (above, below, to the left, or to the right of the object).
Which words corresponded to which semantic designations were
randomized for each participant.

Finally, of the 12 Xaelon words, four were randomly selected
and crossed for a factorial combination of two levels of word
frequency (hi/low) and two levels of semantic distinctiveness
(hi/low). Note that in this experiment, a word’s “document count”
and its frequency are equivalent, as there are no repetitions within
a context; hence we will just refer to repetitions as the frequency
of Xaelon sentences in which the word occurs. Low-frequency
words appeared 45 times each in the training slides, while high-
frequency words appeared 180 times each. Further, whenever a
low-diversity word appeared, it always appeared in the same
semantic context (i.e., in the same sentence and with the same
image), whereas each high-diversity word appeared in eight dif-
ferent semantic contexts (i.e., it could appear in any one of eight
different sentences, each juxtaposed with its corresponding im-
age). We selected nonwords and novel images so that participants
could not simply translate the artificial language into English
words for the subjects or objects, however, we did not attempt to
create novel locatives.

Procedure. Participants were asked to imagine that they were
explorers charged with the task of learning an alien language
called Xaelon. Participants viewed 450 training trials, divided into
10 blocks of 45 images each. Training slides appeared in random
order, and each slide was displayed for four seconds, with a 1-s
intertrial interval. An example of a training trial is displayed in
Figure 3. Following the training trials, participants were con-
fronted with a surprise pseudolexical decision task (PLDT) in
which they were told that they would be presented with several
stimuli, some of which were words from the language that they had
just learned, and some which were not. They were asked to press
one key if the stimulus was part of the language they had just
learned, and another key if it was not. Instructions stressed both
speed and accuracy. Participants then completed 288 test trials,
divided into 18 blocks of 16 trials each. Each trial consisted of a
fixation cross for 500 ms, a blank screen for 200 ms, and finally
either a foil or Xaelon word, which remained on the screen until
the participant pressed one of the response keys. Exactly 12
examples of each Xaelon word and 12 examples of each foil were
presented to participants during the lexical-decision task.

Results

Participants performed quite well at the PLDT task, with a mean
accuracy of .88 (SE � .02) across all target and foil trials. We set
a stringent accuracy criterion of 85%, which trimmed seven par-
ticipants. The mean accuracy of the above-threshold participants
was .94 (SE � .01). Latencies greater than 2.5 standard deviations
from a participant’s mean were removed; this resulted in 2.7% of
latencies to be trimmed from the analysis. Response latencies did
not differ as a function of part-of-speech (subject, locative, object),
F(2, 23) � 0.11, ns.

Figure 4 plots mean response latency as a function of frequency
and semantic diversity. A repeated-measures ANOVA indicated
no significant main effects for either frequency or semantic diver-
sity, but a significant frequency-by-diversity interaction F(1,
24) � 4.37, p � .05. Post hoc analyses (Bonferroni correction)
revealed that the difference between the levels of diversity at low

Table 2
Naming Time Variance Predicted by SD_Count, Word
Frequency, and Document Count

Effect (�R2 in %)

Analysis TASA WIKI NYT

SD_Count (After WF) 8.49 9.016 7.751
DC (After WF) 3.98 2.654 0.0 ns
SD_Count (After DC) 6.511 11.718 13.235
WF (After DC) 0.217 0.0 ns 0.847
DC (After SD) 0.471 5.468 6.617
WF (After SD) 1.86 0.819 1.55
SD_Count (After DC,WF) 6.511 12.403 13.868
WF (After SD, DC) 1.86 0.775 1.459
DC (After SD, WF) 0.465 5.833 6.569

Note. Unless otherwise specified, all values are significant. Raw data
were log transformed.

Figure 3. Example of a training slide seen by participants while learning
the “alien” language Xaelon.
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frequency was nonsignificant, t(24) � �1.54, ns, however, the
difference between the levels of diversity at high frequency was
statistically reliable, t(24) � 2.11, p � .05. Further, the change in
PLDT latency across the levels of frequency for low diversity was
statistically flat, t(24) � �1.67, ns. However, the decrease in
PLDT latency over frequency for high diversity was statistically
significant, t(24) � 2.06, p � .05. These results demonstrate that
increasing the repetitions of a pseudoword from 45 to 180 pro-
duced no facilitation in PLDT if the contexts in which the word
occurred were unchanged. However, processing savings were ob-
served if the increase in frequency was accompanied by a change
in contexts across learning.

Discussion

Consistent with the principle of likely need (and Experiment 1),
Experiment 2 suggests that lexical access is facilitated for words
appearing in a large number of contexts that are high in semantic
distinctiveness. However, appearing in a large number of redun-
dant contexts produced equivalent response latencies to a much
lower number of repetitions in the redundant context. This finding
parallels the results of our corpus analysis in Experiment 1, in
which repetition of the word produced greater processing savings
if the repetition was in a more semantically distinct context rather
than if the repetition occurred in redundant contexts.

A Computational Model of Semantic Diversity

Experiments 1 and 2 demonstrate that semantic diversity is an
important source of information used by humans to organise the
lexical priority of words. Both experiments point to an encoding
operation by which the word is encoded most strongly if the
current episodic context provides novel information about the
word not already contained in memory. This conceptual frame-

work is consistent with rational models (Chater & Oaksford, 1997)
as well as Rosch’s (1978) notion of cognitive economy. It is also
consistent with expectancy-congruency effects (e.g., Hirshman,
1988; Ranganath & Rainer, 2003; Schmidt, 1991)—unexpected or
distinctive events are more memorable than expected occurrences.
All of these well-established effects seem to have overlap with our
semantic distinctiveness findings. However, we still lack a mech-
anistic explanation of how a process might give rise to the struc-
ture seen in studies of lexical access.

Contemporary computational models of lexical semantic simi-
larity are also based on frequency (e.g., Landauer & Dumais’ 1997
Latent Semantic Analysis). Rather than single-token frequency,
however, they depend on the co-occurrence frequency of words
across a linguistic corpus. For example, the word milk may fre-
quently co-occur in the same contexts as drink and cookie. As a
result, it can be inferred that these words are semantically related.
For reviews of the various models, see McRae and Jones (in press)
or Riordan and Jones (2011). Typically, these models first weight
the word inversely proportional to its document entropy across the
corpus. However, the weighting scheme is blind to the semantic
content of those documents, which Experiments 1 and 2 suggest is
an assumption incompatible with human encoding.

Co-occurrence models of lexical similarity also have the poten-
tial to account for lexical access. Typically, co-occurrence models
learn from a word-by-document frequency matrix representation
of a text corpus, and represent a word’s meaning as a vector over
semantic components. If the vectors for two words have a corre-
lated pattern over components, they are similar. However, each
word’s vector also contains information about the word’s individ-
ual frequency of occurrence as well (the magnitude of the vector),
and this information is often discarded as a nuisance (Durda &
Buchanan, 2008; Shaoul & Westbury, 2006). For example, if
Murray and Forster’s (2004) model of lexical access based on rank
frequency is correct, this information is already contained in the
vector magnitude of a co-occurrence model—it just happens to be
discarded when computing semantic similarity. Any vector con-
tains both phase (direction) and magnitude (length). If a vector
representation for a word is thought of abstractly as a “brain state”
when the word is processed, then semantic similarity is the simi-
larity of brain state phase patterns between two words, and lexical
access is determined by the magnitude (intensity) of the brain state
when the word is processed in isolation.

We build our semantic distinctiveness model on a word-by-
context matrix, in which each word is represented as a distribution
over documents (either by frequency, document count, or weighted
by semantic distinctiveness). This architecture allows a single
model to be used to simultaneously account for single-word iden-
tification latency as well as paired-word semantic similarity data.

The Semantic Distinctiveness Model

The Semantic Distinctiveness Model (SDM) is based on other
co-occurrence models of semantic memory, using a word-by-
context matrix representation of a text corpus. However, the vector
representation of a word is “grown” as the word is experienced in
contexts. Each time a word is experienced in the corpus, the model
compares the prediction of the word’s current memory represen-
tation to the information in the current context. If the information
in the current context is highly consistent with the current contents

Figure 4. Pseudo-lexical-decision latency in the Xaelon task as a function
of token repetition frequency and semantic diversity. Item repetitions
produced no detectable latency savings unless the repetitions were accom-
panied by a change in context.
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of memory, the context is encoded at a weaker magnitude. How-
ever, if the information in the context is novel compared to the
current contents of memory, it is encoded at a much stronger
magnitude. This process creates a representation consistent with
our SD_Count variable. The same model framework may be used
with a pure frequency or document count, allowing model com-
parisons from within the same formal framework.

When a word is experienced in a document, each word in the
document is retrieved from memory and its environmental context
is represented as the sum of the vectors of the other words in the
document (cf., in a list memory task, the item’s context is the other
items occurring in the list with it):

Context � �
i�1

n Ti, (3)

where n is the number of words in the document, and Ti is the
corresponding memory vector for a given word in the document
(again, with function words removed).

Next, the model assesses how similar the current contextual
representation of the word is to its current memorial representa-
tion. The cosine (normalized dot product) is computed between the
target word’s contextual representation and its memory represen-
tation. If the cosine is relatively high, the current context is
redundant with information already stored in memory; hence the
current context is encoded at a lower weight. However, if the
cosine is relatively low, the current context is more unique from
information already stored in the word’s memory vector; hence,
the current context is encoded at a greater weight. The cosine is
transferred through an inverse exponential density function (fol-
lowing Shepard’s, 1987 universal law of similarity scaling) to
reflect the current document’s semantic distinctiveness (SD):

SD � e�	cos�context, wordi�, (4)

where 	 is a fixed parameter with a positive value representing the
slope of the similarity gradient. This SD value is then added into
the memory matrix for the target word (row) in the specific context
(column) of the matrix. A document count model can be consid-
ered to be nested within this model, with a 	 fixed at 0.

When a word is first encountered its memory vector will be
empty, hence, the SD value will always be 1.0 for the first
occurrence of a word, and it will be encoded at maximal strength.
The second time a word is experienced, the similarity of this
context is compared to the word’s current lexical representation
(which only contains the first context). If this is a repetition of the
first document, the new context will be encoded at minimal
strength. If, however, it is a context that is unique from the first,
the new context will be encoded at maximal strength. In this
fashion the word-by-document matrix has columns added to it
each time a new document is learned, with the encoding strength
for a document (for a particular word) dependent on the goodness-
of-fit between what has been learned and what is being experi-
enced.

Simulation 1: SDM Simulation of Experiment 1

The SDM model was trained on the same corpora used in
Experiment 1. The lambda parameter was fixed at 5.5 to encode
SD for all following simulations, as preliminary work has sug-

gested that fit to the human identification latency reaches asymp-
tote at this value (similar to the septile in our SD_Count; see Johns
& Jones, 2008). The analogue of the regression analysis conducted
in Experiment 1 was conducted to assess the variance predicted in
LDT and NT comparing a word’s representation between versions
of the model designed to attend to word frequency, document
count, and SD.

For each vector representation, a word’s relative access was
computed as the sum of its vector elements (magnitude). As in
Experiment 1, log transforms of all variables were used, although
the pattern reported is consistent across power and rank transforms
as well. The other difference from Experiment 1 is that the models
were trained on the full versions of the corpora: 37,600 documents
from TASA, with an average length of 121 words per document,
40,000 documents from the Wikipedia corpus, with an average
document length of 279 and 17,399 documents from The New
York Times corpus, with an average document length of 250
words. LDT and NT data were again obtained from Balota et al.’s
(2002) database. In the analysis, latencies from 29,799, 35,518,
and 20,744 words were used for the TASA, WIKI, and NYT
corpora, respectively.

Tables 3 and 4 show the increase in R2 for each version of the
model for LDT and NT, respectively, while controlling for the
variance accounted for by the other versions of the model (anal-
ogous to Tables 1 and 2). Similar to the corpus counts, the SDM
model accounted for significantly more variance in both LDT and
NT than models based on either frequency or document count. As
was suggested by the corpus analysis, a mechanism that adjusts
encoding strength relative to the amount of new information in a
context not already contained in memory provides a better account
of human single-word identification latency data.

Simulation 2: SDM Simulation of Experiment 2

SDM was next used to simulate the artificial language data from
Experiment 2. Xaelon sentences were considered to be distinct
contexts, and a word-by-context matrix was constructed using
equations 3 and 4. The exact sentences presented to the subjects in
Experiment 2 were presented to the model, and predictions for

Table 3
Lexical Decision Time Variance Predicted by SDM, Word
Frequency, and Document Count Models

Effect (�R2 in %)

TASA WIKI NYT

SDM (After WF) 3.048 1.81 5.461
DC (After WF) 1.274 0.786 0.0 ns
SDM (After DC) 2.346 0.849 6.901
WF (After DC) 0.03 0.364 1.07
DC (After SDM) 0.511 0.141 0.462
WF (After SDM) 0.0 ns 0.704 0.0 ns
SDM (After DC,WF) 3.118 1.175 7.348
DC (After SDM, WF) 1.327 0.149 2.001
WF (After SDM, DC) 0.816 0.7 1.549

Note. Unless otherwise specified, all values are significant. Raw data
were log transformed.
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PLDT were computed as the magnitude of a word’s memory
vector.

The resulting behaviour of SDM is plotted in Figure 5.3 Note
that neither a frequency nor document count version of the model
could simulate this result by design of the stimuli—each would
produce parallel effects rather than an interaction. SDM naturally
produces a pattern similar to the behavioural data from Experiment
2: Words that were repeated in multiple distinct contexts produce
a greater representational intensity than words that are repeated in
redundant contexts. As with the human subjects, the simulation
indicates that contextual repetitions of the word only benefit pro-
cessing if the repetitions are accompanied by a change in semantic
context. While this pattern could not be produced by a model that
encoded frequency or contextual occurrences, it is a natural con-
sequence of a mechanism that encodes words relative to their
information overlap with what has already been stored.

Simulation 3: A Test of Semantic Similarity

Co-occurrence models of semantic similarity commonly use a
word-by-document frequency matrix to determine lexical related-
ness. However, the frequency assumption made by these co-
occurrence models may also be wrong, and a simple document
count or weighted semantic distinctiveness count may be the
correct initial matrix representation to mimic human semantic
similarities as well as lexical access. While many co-occurrence
models apply a dimensional reduction mechanism (e.g., Landauer
& Dumais, 1997), recent work suggests that raw co-occurrence
counts from the original matrix may give a better approximations
of human semantic similarity if simulated at a sufficiently large
scale (Louwerse & Connell, 2011; Bullinaria & Levy, 2007;
Recchia & Jones, 2009). Hence, we compare the cosines between
specific word vectors learned by the raw frequency, document
count, and SD versions of SDM here to explore how they map onto
semantic similarities.

For each model, predictions were made for the 45,786 word-pair
similarities from Maki, McKinley, and Thompson (2004), com-
puted from WordNet. Maki et al. have presented comparisons to
human judgments of semantic similarity suggesting that the Word-
Net JCN metric is a very close correspondence to human similarity

judgments. For each word pair, under each model representation
(frequency, document count, SD), the predicted semantic similarity
was simply the cosine of their respective vector representations.
The SD version of the model gave a significantly better prediction
of the WordNet semantic similarities (r � .172) than either fre-
quency or document count (r � .126 and r � .161, respectively),
and also outperformed Landauer and Dumais’ (1997) LSA model,
which produced r � .158.4

While semantic similarity among words is not the focus of this
article, this simulation does demonstrate that the incorrect assump-
tion of frequency in lexical access may have also been falsely
applied to co-occurrence models of semantic similarity, and se-
mantic diversity may be the correct source of information under-
lying both. Semantic diversity can be learned by a simple mech-
anism within a context co-occurrence framework and, as a
byproduct, it also seems to produce a better organized semantic
space. In this manner, we can represent both lexical access and
lexical similarity within the same model, allowing insights into
how single- and paired-word tasks are related to the same memo-
rial structure.

General Discussion

Experiments 1 and 2 provide converging evidence from both a
megastudy (the corpus analysis) and a controlled microstudy (the
experimentally induced artificial language). Both the mega and
micro seem to point to the same pattern of behavioural data:
Repetition of a word produces greater processing savings if the
repetition is accompanied by a change in semantic context. Our
findings corroborate recent evidence from others (e.g., Adelman et

3 Note that the scale on the ordinate has been changed to negative
magnitude to be consistent with Figure 4. Vector magnitude (word inten-
sity) is negatively correlated with identification latency.

4 Note that with 45,786 pairs, all numeric differences between correla-
tion coefficients are significant.

Figure 5. SDM simulation of Experiment 2 (artificial language).

Table 4
Naming Time Variance Predicted by SDM, Word Frequency,
and Document Count Models

Effect (�R2 in %)

TASA WIKI NYT

SDM (After WF) 5.811 3.323 6.568
DC (After WF) 2.904 2.01 0.0‡

SDM (After DC) 4.984 1.213 7.791
WF (After DC) 0.119 0.0 ns 0.75
DC (After SDM) 2.062 0.0 ns 0.724
WF (After SDM) 0.386 0.132 0.0 ns
SDM (After DC,WF) 5.361 1.336 8.243
DC (After SDM, WF) 2.163 0.0 ns 1.868
WF (After SDM, DC) 0.485 0.117 1.197

Note. Unless otherwise specified, all values are significant. Raw data
were log transformed.
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al., 2006; Pexman et al., 2008) suggesting that CD is potentially a
more important variable than is frequency in word recognition and
memory access. But it also makes a clear case for the importance
of semantic context. The interaction of repetition and semantic
redundancy found in both experiments is difficult to account for
with most existing models of word identification.

Our semantic distinctiveness model implements this pattern by
using an expectancy-congruency mechanism to build a word-by-
context co-occurrence matrix: The encoding strength for a word in
a given context is relative to the information overlap between the
context and the current memorial representation of the word. This
mechanism is very similar in principle to models that adjust
attention across learning to dimensions that are more diagnostic
(e.g., Kruschke, 1992). In addition, newer models of lexical access,
such as Wagenmakers et al.’s (2004) REM-LD model, are sensi-
tive to contextual variability and seem promising candidates to
explain these findings.

Finally, our SDM implementation of a word-by-context matrix
not only outperformed matrices based on frequency and document
count, but the resulting matrix seemed to produce better semantic
organisation as well, a free lunch we were not explicitly trying to
create. This pattern bolsters the importance of semantic distinc-
tiveness over frequency or document count, and points to an
important connection between models of lexical access (based on
single-word statistics) and lexical similarity (based on co-
occurrence statistics).

Résumé

Des recherché récentes ont remis en question la notion selon
laquelle la fréquence du mot est le principe organisationnel qui
sous-tend l’accès lexical, pointant plutôt vers le nombre de con-
textes dans lequel un mot apparaı̂t (Adelman, Brown & Quesada,
2006). Compter les contextes permet une meilleure adéquation
quantitative des données de décision lexicale et de dénomination
chez l’humain que compter le nombre brut d’occurrences du mot.
Cependant, cette approche ne tient pas compte de la redondance de
l’information des contextes dans lesquels les mots apparaissent, un
facteur de diversité sémantique. En utilisant une étude de corpus
ainsi qu’une expérience contrôlée de langage artificiel, nous dé-
montrons l’importance de la redondance contextuelle dans l’accès
lexical, suggérant que les répétitions du contexte dans le langage
augmentent la force du mot en mémoire seulement si les répé-
titions sont accompagnées d’une modulation dans le contexte
sémantique. Nous introduisons un mécanisme de traitement cog-
nitif pour expliquer le patron comportemental en encodant le
contexte du mot en fonction de la redondance de l’information
entre le contexte actuel et la représentation mnésique actuelle du
mot. Le modèle explique mieux les données de latence
d’identification que les modèles fondés sur la fréquence brute ou le
décompte de documents et produit aussi un espace mieux organisé
pour simuler la similarité sémantique.

Mots-clés : reconnaissance de mots, fréquence, accès lexical, sé-
mantique, modèle cognitif
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