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Abstract 

The present paper deals with the description of the interacting multiscale processes governing spray 
vaporization and combustion downstream from the near-injector atomization region in liquid-fueled burn-
ers. One of the main objectives is to emphasize the progress made in the mathematical description and 
understanding of reactive spray flows by incorporation of rationally derived simplifications based on the 
disparity of length and time scales present in the problem. In particular, we aim to show how the disparity 
of the scales that correspond - with increasing values of their orders of magnitude - to the droplet size, 
interdroplet spacing, and width of the spray jets, ensures the validity of their homogenized description. 
The two-way coupling associated with exchanges of mass, momentum, and energy between the gas and 
the liquid phases is dominated by the homogenized exchanges with the gas provided collectively by the 
droplets, and not by the direct interaction between neighboring droplets. The formulation is used as a basis 
to address nonpremixed spray diffusion flames in the Burke-Schumann limit of infinitely fast chemical reac-
tions, with the conservation equations written in terms of chemistry-free coupling functions that allow for 
general nonunity Lewis numbers of the fuel vapor. Laminar canonical problems that have been used in the 
past to shed light on different aspects of spray-combustion phenomena are also discussed, including spher-
ical spray clouds and structures of counterflow spray flames in mixing layers. The presentation ends with a 
brief account of some open problems and modeling challenges. 
© 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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1. Introduction 

The existence of length and time scales of very 
different magnitude is a complicating characteris-
tic of many problems encountered in fluid 
mechanics and combustion. The mathematical 
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description of the associated flows can be facili-
tated by accounting for the disparity of these 
scales. A renowned example of the success of this 
approach is the boundary-layer theory developed 
by Ludwig Prandtl over a century ago. Separation 
of scales has also been extensively used in connec-
tion with the description of combustion problems, 
where the disparity of time scales is often due to 
the strong temperature sensitivity of the chemical 
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reactions. For spray combustion, additional 
length and time scales originate from the two-
phase nature of the flow. 

Over the past half century combustion model-
ers have successfully exploited the separation of 
the scales present in the vaporization and combus-
tion of droplets and sprays to generate simplified 
equations for the description of reactive spray 
flows. The purpose of this topical review lecture 
is to give an overview of the progress achieved 
and to describe some recent results. The presenta-
tion will begin with a discussion of the reasons for 
the validity, and also the shortcomings, of the 
continuum description of the gas and liquid 
phases in the vaporization and combustion of 
sprays. Because of the important role of the inter-
phase exchange rates of mass, energy, and 
momentum, a summary of these rates is given, 
and then used in the conservation equations for 
the description of reacting sprays; this simplifies 
in the important extreme limiting cases of pure 
spray vaporization, without chemical reactions, 
and diffusion-controlled spray combustion. Sim-
ple laminar canonical problems, widely used in 
the past in fundamental investigations of spray 
combustion, are formulated in nondimensional 
form to identify the parameters that characterize 
the interplay of the different spray physicochemi-
cal phenomena. 

Substantial research efforts have been made in 
the past in connection with the problems of vapor-
ization and combustion of droplets and droplet 
arrays [1-9], ignition of fuel sprays [10], and 
dynamics and modeling of turbulent sprays [11-
13]. Related work on atomization of liquid jets 
[14—16] and on the dynamics of particle-laden tur-
bulent flows [17-19] is relevant for understanding 
the generation and dispersion of sprays. A refer-
ence book including an updated comprehensive 
presentation of the current level of understanding 
of fluid dynamics and transport of droplets and 
sprays is available [20]. In addition, other relevant 
literature include reference textbooks on atomiza-
tion [21] and multiphase combustion [22], as well 
as research monographs [23,24]. 

The design of liquid-fueled combustion sys-
tems is subject to a number of constraints stem-
ming from the need to vaporize the droplets, 
mix the fuel vapor with the surrounding air, and 
ignite and burn completely the resulting mixture 
in the limited available residence time, with the 
scales and parameters of these different physico-
chemical processes entering in the determination 
of the combustor performance. An important 
consideration that must be taken into account 
when describing vaporization and combustion in 
diesel engines, and also in the primary combustion 
zone of gas turbines, is the large value of the 
liquid-to-gas density ratio, on the order of a few 
hundred in many applications. Also relevant for 
combustion is the large value, of order 5 ~ 15, 

of the mass of air required to burn in stoichiome-
tric proportions the unit mass of fuel. Another 
basic consideration pertaining to the required dis-
persion of the droplets in the combustion chamber 
is that the heat needed for the vaporization of 
each droplet comes from the sensible heat of the 
gas within the spray, so that vaporization in the 
bulk of the spray can only start when sufficiently 
dilute conditions are reached; otherwise the 
amount of gas entrained by the spray is insuffi-
cient to provide the heat of vaporization. In 
assessing the coupling between the liquid and 
gas phases, one must also bear in mind that the 
heat released by burning the fuel is enough lo lead 
to flame temperatures several times larger than the 
initial liquid temperature. 

The large temperature sensitivity of the com-
bustion reactions also enters in a fundamental 
way. For instance, in continuous-combustion 
devices this temperature sensitivity explains the 
onset of ignition near the hot boundary in mixing 
layers separating the spray from the preheated air. 
An important consideration, relevant for the 
selection of the atomizer in a given application, 
is that the droplet size must be small enough to 
ensure their complete vaporization and prevent 
their impingement with the confining walls. In 
view of the above considerations, it is clear that 
spray combustion stands out as a very particular 
category within the general field of two-phase 
flows, one that cannot be understood without 
accounting for its distinctive attributes. 

The remainder of this paper is organized as fol-
lows. Some general comments concerning the spe-
cific characteristic of spray flows in combustion 
applications are given in Section 2, followed in 
Section 3 by a homogenized formulation for spray 
combustion that will serve as analytical frame-
work for the rest of the paper. A qualitative 
description of spray combustion phenomena is 
presented in Section 4. The limit of infinitely fast 
chemical reaction is considered in Section 5, which 
provides a general Burke-Schumann formulation 
for the computation of spray flames. Sections 6 
and 7 are devoted to the characterization of ele-
mentary spray structures. The final section out-
lines some of the open problems in spray 
combustion, including modeling issues. 

2. Preliminary considerations pertaining to spray 
flows in combustion systems 

2.1. Atomization in spray-combustion applications 

The reduction in spray length required by the 
limited size of the combustion chamber can only 
be accomplished when there exists a significant 
velocity difference between the liquid jet or sheet 
to be atomized and the surrounding coflowing 
gas [21]. This is the case if the liquid stream is 
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injected at high velocity, as in pressure atomizers 
of diesel engines, or by exposing the liquid to a 
high-velocity air stream, the method used in air-
assist and airblast atomizers. The hydrodynamic 
instabilities involved in the breakup process, dif-
ferent for pressure and airblast atomizers [14-
16,20,25], lead to primary atomization of the 
liquid vein to form ligaments and droplets, which 
further break up downstream as a result of the 
interactions with the surrounding turbulent gas-
eous flow in the secondary atomization region. 

To guide the following discussion, a sketch of 
the spray flow corresponding to a plain-orifice 
atomizer, used in diesel combustion engines and 
turbojet afterburners, is shown in Fig. 1. In this 
kind of pressure atomizer, the liquid is injected 
from a high-pressure chamber through small cir-
cular holes, forming high-velocity jets that disinte-
grate rapidly downstream to form a jet spray with 
a small cone angle, whose value may depend on 
the transverse velocities induced inside the injector 
by the instabilities of the cavitating flow [26]. The 
working principle of other pressure atomizers can 
be more complex. For instance, in pressure-swirl 
atomizers, considered for instance in the sche-
matic representation of a liquid-fueled combustor 
shown in Fig. 2, to be discussed later, the fuel is 
injected through tangential ports in the injector 
plenum. Because of angular-momentum conserva-
tion, the resulting swirling motion is transformed, 
near the injector orifice, into kinetic energy of the 
axial and radial motion of the liquid, generating a 
conical sheet that breaks up to give a hollow-cone 
spray [27,28]. 

The design of the injection system must satisfy 
a number of constraints. To ensure that the pene-
tration length Ls of the spray is comparable to the 
cylinder radius in diesel engines - or to the size of 
the primary combustion zone in gas turbines - the 
injection velocity Ui must be sufficiently large, 
while still giving time for the droplets to vaporize, 
thereby avoiding their collision with the walls of 
the combustor, an undesired phenomenon that 
would lead to increased unburnt hydrocarbon 
emissions. On the other hand, the orifice radius 
of the injector Rj must be small to lead, after 

spray boundary 

Fig. 1. A schematic view of a vaporizing spray gener-
ated by a plain-orifice pressure atomizer, including 
characteristic scales and regions. 

atomization of the liquid jet or of the conical sheet 
issuing from pressure-swirl atomizers, to droplets 
with sizes small enough that they vaporize and 
simultaneously penetrate a distance Ls, of the 
order of the chamber size, before reaching the 
combustor wall. 

The distribution of droplet radii is determined 
by the phenomena occurring in the atomization 
region, where the spray is still dense and its veloc-
ity and temperature do not differ substantially 
from their injection values L7 and 77. In this 
atomization region, the droplets acquire a trans-
verse velocity that, although small compared with 
Ui, is responsible for the initial transverse disper-
sion of the spray, which is further enhanced down-
stream by the turbulent motion acquired by the 
entrained air. The resulting spray jet is typically 
very slender. For instance, in plain-orifice atomiz-
ers, droplet dispersion results in small cone angles 
2is that usually lie between 5° and 15° [21]. Similar 
considerations apply also to the slender conical 
sprays produced by pressure-swirl atomizers or 
by liquid atomizers assisted by swirling air flows. 

Direct numerical simulations can be instru-
mental in revealing the highly complex interac-
tions occurring in the atomization region. 
Sample computations of the primary breakup 
region near the injection orifice are available 
[29-33]. Future improvements in computational 
capabilities will enable extended computations of 
both primary and secondary atomization regions 
in transient and stationary jet configurations to 
be performed, thereby providing quantitative 
information for the parametric dependence of 
the downstream jet-spray characteristics. 

Droplet heating and vaporization can only 
occur downstream from the atomization region, 
once droplet dispersion causes the spray to 
become sufficiently dilute to allow for the droplets 
to receive significant energy from the entrained 
gas. As a consequence, the processes of liquid-jet 
atomization, leading to spray formation, and 
those of spray vaporization and combustion occur 
in separate spatial regions, which can be investi-
gated independently. We shall focus below on 
the description of the different spray-combustion 
phenomena occurring in the dilute downstream 
region where the volume fraction occupied by 
the liquid phase is small, so that direct droplet-
droplet interactions are unimportant, while the 
associated liquid mass loading is comparable to 
that of the entrained gas, as is needed to provide 
the heat required for droplet vaporization. 

2.2. Inter-phase coupling dynamics 

A measure of the monodisperse spray droplet 
population is the local number density n, i.e., 
number of droplets per unit volume, which 
decreases rapidly along the spray. Correspond-

ingly, h -1/3 is the characteristic interdroplet 
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Fig. 2. Sketch of fundamental spray-combustion processes in typical liquid-fueled continuous-combustion systems. 

distance, to be compared with the characteristic 
droplet radius a. We shall limit our analysis of 
the spray flow to dilute regions where the liquid 
volume fraction <p — (4n/3)a

3
n, of order 

(2a/Id) , is small, such that the interdroplet dis-
tance ld is significantly larger than a, resulting in 
negligible direct interaction between neighboring 
droplets. On average, each individual droplet 
can be envisioned as being centered in a cubic vol-
ume of gas of side length ld. The ratio of the mass 
of the droplet, (47i/3)p;a

3, to the mass of the cor-
responding surrounding gas, pfid(\ — <p), defines a 
mass-loading ratio a — (4n/3)a

3
pln/[p(\ — <p)], 

where pl and p represent the liquid and gas densi-
ties, respectively. 

In most combustion systems, the gas and liquid 
densities are very different, the only exception 
being the conditions found in supercritical appli-
cations, for which p ~ p, in the vicinity of the 
droplets. For most of the other applications, the 
liquid-to-gas density ratio satisfies 

^ >10 2 
(1) 

We shall see below that a is the fundamental 
parameter characterizing the collective inter-phase 
coupling for momentum and energy in spray 

flows, with effective two-way coupling occurring 
for values of a = 0( l ) , corresponding to dilute 
sprays with small liquid volume fractions 
4> ~ pjpi <C 1. Under these conditions the expres-
sion given above for a reduces to 

= <t>Pi/p = 
(4n/3)a

3
npl 

6 p 
(2) 

The distribution of a in the spray jet is nonuni-
form. Its value decreases due to droplet dispersion 
from very large values near the atomizer to small 
values sufficiently far downstream. A simple 
order-of-magnitude analysis for the spray jet 
formed in the plain-orifice atomizer of Fig. 1 
serves to illustrate the downstream evolution of 
a in the bulk of the spray jet and its effect on 
the spray-jet development. In this case, the injec-
tion velocity Ui and the contracted injector radius 
i?7 determine the injected liquid volume flow rate 
%R

2
IUI. If, for simplicity, the spray formed upon 

atomization and breakup is considered to be 
monodisperse, with initial droplet radius a0, then 
the number of droplets injected per unit time N 
from the atomization region into the combustion 
chamber is given simply by N — (nR^U^/^nal). 
The number of droplets is conserved before 
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complete vaporization, so that the flux of droplets 
across the jet at a given downstream location must 
be equal to the number of droplets injected. In 
order of magnitude, this conservation condition 
leads to a first relationship 

nr
2
ud ~ nRJUj/ (*naA = N (3) 

linking, at an axial distance x, the characteristic 
value of n with the corresponding values of the 
spray-jet radius rs and droplet axial velocity ud. 
If the injector is discharging into air at rest, the 
momentum flux of the jet must be equal to the 
injection value nR^pjU

2
, leading to a second 

relationship 

involving the characteristic axial component of 
the gas velocity u as an additional quantity. In 
the initial region where a is still large compared 
with unity, the gas and droplet axial velocities u 
and ud maintain a value close to L7, imposed by 
the inertia of the liquid droplets. Droplet heating 
and vaporization are also negligible in this region 
because for a ;» 1 the energy balance is domi-
nated by the presence of the abundant cold liquid 
phase, with the result that the temperature of the 
entrained gas rapidly decreases to match the ini-
tial liquid temperature 77, while the droplet tem-
perature hardly increases. In the absence of 
droplet vaporization, the dispersion dynamics of 
the resulting two-phase jet can be expected to be 
in many respects identical to that observed in gas-
eous jets laden with solid particles. Due to air 
entrainment, the radius rs increases continuously 
with the downstream distance x to the atomization 
region. If we consider for simplicity that the small 
spray angle is is constant, so that rs ~ isx, then (3) 
and (4) lead to 

<t> = *p/Pl ~ {R,/rsf ~ [R,/{isx)\
2 (5) 

for the streamwise evolution of the liquid volume 
fraction. 

As indicated in (4), the injected momentum 
flux, which is initially imparted to the droplets, 
is shared by the entrained air as the jet develops. 
In the initial region a ;» 1 (although for a cubic 
array of droplets it is bounded by pa./pt < n/6), 
and thus u ~ud ~ Ui, with most of the momen-
tum flux still associated with the liquid phase. Sig-
nificant droplet and gas deceleration starts to 
occur when the momentum flux of the entrained 
gas becomes comparable to that of the liquid 
phase, which, according to (4), occurs as the jet 
mass-loading ratio a decreases to values of order 
unity. It is also in this region, a — O(l), where sig-
nificant droplet vaporization will occur in the 
combustion chamber. 

In general, the liquid is initially cold and the 
heating and vaporization of the droplets rely on 
the sensible heat of the surrounding hot gas, 
which may include hot combustion products that 
recirculate in the combustion chamber and also 
preheated air. The extent of heat exchange 
between the liquid and gas phases depends on 
the local value of a. Since the specific heat of the 
liquid fuel ci is comparable to the specific heat 
at constant pressure of the surrounding gas mix-
ture cp, significant liquid heating requires that 
the individual cold droplet be surrounded by a 
volume of hot gas of mass comparable to or larger 
than that of the droplet, corresponding to values 
of a of order unity or smaller. Likewise, droplet 
vaporization also necessitates a = 0( l ) , because 
in practical applications the specific enthalpy of 
the hot gas is comparable to the latent heat of 
vaporization Lv. As a result, significant droplet 
heating and vaporization occur only when the 
mass loading ratio decreases to values of order 
unity. 

According to (2) and (5), the mass-loading 
ratio a in the bulk of the spray decreases to values 
a = 0( l ) when the spray radius rs increases to 
large values of order 

Rs = (-) Ri > Ri, (6) 

corresponding to large distances x ~ Ls ~ Rs/is, 
where a most important role in determining Ls is 
played by the growth of rs associated with the 
gas entrainment. The design of the combustion 
system must ensure that the associated residence 
time LsjUi is comparable to the characteristic 
droplet life time, defined below in (26), and also 
comparable to the characteristic ignition time. 
Under those conditions, droplet dispersion result-
ing from turbulent gas entrainment, droplet 
vaporization, and chemical reaction collaborate 
effectively to burn the spray. 

2.3. Collective effects in spray combustion 

As indicated in (1), in most combustion sys-
tems the liquid density is much larger than the 
characteristic gas density in the combustion cham-
ber. As a consequence, in regions where a — O(l), 
which, as noted above, are the zones where spray 
heating, vaporization, and combustion start to 
occur, the characteristic interdroplet distance is 
significantly larger than the droplet diameter, 
i.e., ldj(2a) ~ [p,/(2ap)\ ' ;» 1, which corre-
sponds to large gas-to-liquid volume fractions 
t/T1

 — pl/(ap) > 102 according to (1). These 
length scales are to be compared with the relevant 
macroscopic length scale £ of the problem (e.g., 
the thickness of the spray), which in most config-
urations of interest satisfies the condition £ ;» ld. 
For instance, for the slender jet spray of Fig. 1, 
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the relevant macroscopic length £ is the character-
istic radius Rs corresponding to the region where 
the average mass loading ratio decreases to values 
of order unity, given in order of magnitude in (6). 
Using this last expression together with the condi-
tion a — 0(\) provides Rsjld ~ (RI/a)(p,/p)

1
'
6
. In 

typical plain-orifice atomizers, with values of Rt 

on the order of a fraction of a millimeter, values 
of a on the order of a a few tens of microns, 
and large values of pj p in the range indicated 
in (1), the condition Rs ;» ld clearly holds. 

In most systems, therefore, the characteristic 
scales of the problem satisfy 

£ > h > a. (7) 

Because of the condition a <C ld, each droplet 
vaporizes and moves without significant direct 
effects from neighboring droplets. The main effects 
on the vaporization of the droplets are not due to 
the direct influence of their neighbors, but are 
associated instead with their interaction with the 
mean gas-phase collective environment created 
by all the droplets. This is clearly the case in the 
important distinguished regime when the droplet 
Reynolds number Red (based on the droplet diam-
eter, 2a, and the slip velocity, |v — vd\, between the 
droplet and the local mean gas environment) is of 
order unity. Then, each droplet produces in the 
gas relatively large variations of the composition 
and temperature that are felt only in the immedi-
ate vicinity of the droplet, decaying rapidly at dis-
tances of the order of a, although more slowly in 
their wake, where the exchanges of mass, energy, 
and momentum between the droplet and gas are 
incorporated, in such a way that in most of the 
gas phase between droplets the variations of the 
gas properties are much smaller. The vaporization 
rate of and the force acting on each individual 
droplet are to be computed as those of the isolated 
droplet moving quasi-steadily, with the slip veloc-
ity, in the mean local environment. The descrip-
tion of the slow variations of the different gas-
phase variables, including the velocity, tempera-
ture, density, and relevant mass fractions, which 
occur over distances £ much larger than ld, can 
be obtained at any spatial point by space-averag-
ing over a neighborhood of that point of size d, 
with d in the range £ ;» d ;» ld. Since d

3 ;» ld, 
each averaging cell includes many droplets, so 
that the corresponding point sources can be 
homogenized, as if they were homogeneously dis-
tributed, giving source terms that are proportional 
to the number of droplets per unit volume n. A 
noteworthy result of this homogenization process 
is that the intermediate length scale ld only 
appears indirectly in the formulation, with the 
resulting value of n as a factor in the sources. 

In the distinguished regime Red ~ 1, both 
molecular transport and convective transport 
contribute to the droplet-gas exchange rates and, 
after dumping these exchanges in the wakes, to 

uniformize the local mean properties between 
the droplets. These exchanges involve a diffusion 
time a

2
/DT, where DT denotes the gas thermal dif-

fusivity, and a residence time a/\y — yd\, of the 
same order, both small compared with the charac-
teristic droplet vaporization time tv ~ (a

2
/DT) 

(pi/p), defined below in (26). Clearly, the wakes 
of the droplets randomly located upstream of each 
droplet, representing the mean convective trans-
port, and the transverse diffusion both cooperate 
to uniformize the interdroplet atmosphere. There-
fore, within the averaging cell, the gas properties 
can be taken as uniform. The pronounced gas-
property changes occurring in the vicinity of each 
individual droplet (i.e., at distances of order a) can 
be neglected in the first approximation in the 
homogenized description, because the near-drop-
let regions occupy a negligible fraction </>< 1 of 
the volume of the averaging cell. As discussed 
below in Section 3.2, the main effects of the local 
fluctuations emerging within the averaging cell 
as a result of the presence of the droplet wakes 
are included in the sources of the homogenized 
description. 

While a single macroscopic scale £ can be often 
identified for laminar flows, a range of flow scales 
emerges in connection with the turbulent flow 
conditions found in practical applications, so that 
assessing the applicability of the criterion (7) is 
not straightforward. The integral scales of the tur-
bulent flow, associated with the largest eddies, are 
comparable to, although somewhat smaller than, 
the macroscopic scales of the jet. For instance, 
in the main vaporization region a — 0{\) of the 
plain-orifice configuration of Fig. 1, the size of 
the large eddies £' is a fraction of the spray radius 
Rs and their associated velocity fluctuations v' are 
a fraction of the jet velocity Ui, giving eddy turn-
over times of order £'/v' ~ RsjUi. Clearly, the 
condition Rs ^> ld ^> a guarantees the validity of 
the multicontinua approach for the description 
of the interphase interactions occurring at these 
integral scales, including in particular the disper-
sion of the droplets, which is often dominated in 
shear flows by the large energetic eddies [34], 
because their turnover time £'/v' ~i? s /£// is of 
the order of or larger than the droplet acceleration 
time ta ~ (a

2
/DT)(p,/p). 

These large eddies coexist and interact with 
smaller vortices, of decreasing size down to the 
Kolmogorov length scale £k. Strictly speaking, 
the formulation given below applies to the direct 
numerical simulation of spray flows only when 
•4 S» Id, because for £k ~ ld the averaging cell 
would be larger than the Kolmogorov length 
scale. However, the effects of the interaction of 
the droplets with the eddies of size below £' can 
be expected to be weak, because their turnover 
time is typically much smaller than the droplet 
acceleration time, with the result that the droplets 
behave ballistically with respect to the smallest 
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eddies. In other words, the small, rapid velocity 
fluctuations of the Kolmogorov eddies, which 
modify the instantaneous slip velocity seen by 
the droplet, do not change appreciably the associ-
ated drag force, whose value is determined instead 
by the average slip velocity, with leading-order 
corrections to the motion transverse to the spray 
arising mainly from the largest eddies. In that 
sense, the multicontinua description can be 
expected to reproduce the main features of turbu-
lent reacting sprays even when £t ~ ld, a condition 
often encountered in applications. 

3. Multicontinua formulation of reactive dilute 
sprays 

The disparity of scales typically present in 
practical spray-combustion applications enables 
a simplified description of the resulting flow to 
be performed in which the gas and liquid phases 
are treated as continuum media, whose evolution 
is coupled through the inter-phase exchange of 
mass, momentum, and energy [20]. The multi-con-
tinua formulation corresponding to a reactive 
polydisperse spray with Nc different droplet clas-
ses is given below, including the separate sets of 
equations needed to describe the homogenized 
gas phase and the evolution of each droplet class. 
To complete the formulation, expressions are pro-
vided for the different droplet source terms. 

3.1. Conservation equations 

We begin by writing the homogenized gas-
phase conservation equations, which include the 
continuity, species, and momentum equations 

^ + V-(pr) = f W , (8) 

S^n'm' (if i = F) 

U , (9) 
0 (if i # F) 

d "' 

7 r ( p v ) + V - ( p w ) = V - f - V p ' + ^ n J ( m V J - P ) , (10) 

where v and x denote, respectively, the gas velocity 
and the viscous stress tensor. The gas composition 
is described in terms of the mass fraction 7, of the 
Ns chemical species present in the mixture, with w>, 
representing the mass of species i generated by 
chemical reaction per unit volume per unit time. 
Note that, since the sum of the Ns conservation 
equations (9) leads to (8), the description of the 
gas phase requires the integration of Ns — 1 of 
the conservation equations for the chemical spe-
cies, the mass fraction of the Nsth species (often 
N2) being computed from the identity 
J2i=i Yt — \. For the conditions found in most 
spray-combustion applications, the prevailing 
Mach number is small, so that the relative spatial 

pressure variations are negligible. This is taken 
into account in the formulation by using in the 
momentum equation the variable p' — p — p0{t), 
defined as the difference of the pressure from the 
value p0{t) found at a fixed arbitrary point in 
the combustor, the ratio p'/p0 being a small quan-
tity of the order of the Mach number squared. 

The summations appearing on the right-hand 
sides of the above equations are the coupling 
terms accounting for the presence of the droplets, 
which appear as distributed sources. In the formu-
lation, the expressions written for these source 
terms correspond to a continuum description of 
the liquid phase, with the superscript j used to 
indicate the properties of each one of the Nc drop-
let classes considered. Thus, the continuity equa-
tion (8) and the fuel-vapor conservation 
equation include the mass of fuel vapor produced 
per unit volume per unit time, ^j^ln

i
m

i
, with n

J 

and m> representing the number of droplets per 
unit volume and the rate of vaporization of the 
individual droplet. Similarly, momentum 
exchange between the liquid and gas phases is 
accounted for in writing (10), where v̂  is the aver-
age droplet velocity and f is the force of the gas 
on the individual droplet. Note that, if a Lagrang-
ian description is employed instead for the liquid 
phase, then the source terms in the gas-phase 
equations would be calculated by evaluating the 
separate contributions of the different droplets 
present in each computational cell. 

In the low-Mach-number limit, viscous dissipa-
tion can be neglected along with spatial pressure 
variations when writing the energy equation, 
thereby yielding 

- ( p / 0 + V-(pv/0 = - V - q 

- f y [ m > ( L „ - A > , J + 9 > ] + ^ ) (11) 
1=\ 

where h = £"',7,/*, = YtMK +
 h

T)
 i s t h e § a s 

enthalpy, expressed here for a mixture with Ns dif-
ferent chemical species, with hi, h°, hf = fcpAT, 

and cp. representing the enthalpy, enthalpy of for-
mation, thermal enthalpy, and specific heat at 
constant pressure of species i. The time variation 
of the pressure has been retained in (11), as it 
can be of importance for combustion in recipro-
cating engines. The expression for the heat-flux 
vector q — —K\7T + pX^-JA^Vi + q̂  includes 
the Fourier heat-conduction term — KVT, where 
K is the thermal conductivity and T is the gas 
temperature, along with the radiative heat flux 
q̂  and the energy transferred by diffusive trans-
port of chemical species, p J ^ j / i ^ V , , where V, 
is the diffusion velocity of species i. The droplet 
source term in (11) accounts for the heating and 
vaporization of the liquid fuel, with cfd being the 
heating rate of the individual droplet and 
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h^ — hp + J
 d

cPFdT representing the enthalpy of 
the fuel vapor at the droplet-surface temperature 
T'd. It is worth noting that the effect of the chem-
ical reactions on the energy balance is clearly 
apparent when the summation over all species of 
the enthalpy of formation h° times (9) is sub-
tracted from (11) to give 

- (pcpT) + V • {pycpT) - V • (KVr) 

= -v • «k - £>>, 
1=1 

-fy[rt(Lv-cpT
J

d)+q
l
d]+^. (12) 

]=i 

which is written explicitly in terms of the temper-
ature T by neglecting differences of specific heats 
cp. from the mean value cp. 

The above equations for the gas and liquid 
phases must be supplemented with the equation 
of state p0 = pR

0
TYJ%(Yi/Mi), where R°l is the 

universal gas constant and (XSi^V-^;) is t n e 

mean molecular mass of the gas mixture, with 
Mi representing the molecular mass of species i. 
Also, appropriate constitutive equations must be 
given for the viscous stress tensor x and for the 
diffusion velocities, the latter often expressed in 
terms of Fick's law V, — — D,V7,, with Dt repre-
senting the diffusion coefficient of the species i into 
the gas mixture. 

While a Eulerian description emerges naturally 
for the gas phase, the liquid phase is in principle 
more easily described with a Lagrangian approach 
in which each droplet is traced individually, with 
the ambient properties changing as the droplet 
moves across the flow field. The position of the 
droplet k is determined by integrating the kine-
matic equation 

Ĥ-
 (i3) 

Correspondingly, the evolution of the droplet 
velocity, vd, droplet radius a

k
, and droplet temper-

ature Td is obtained by integrating along the drop-
let trajectory the evolution equations 

4 3 d\r
k 

4-nPl(a
kf^ = f

k
, (14) 

4 d ( « * ) 3 • * , i « 

3
npl

 dt
 = ' ( } 

4 2 dTk 

3«P,(fl*)3
C ,-^ = «5. (16) 

In writing (16), the temperature is assumed to be 
uniform inside the droplet, a valid approximation 
when the heat conduction in the liquid droplet 
(possibly assisted by internal convection) is suffi-
ciently fast for the associated conduction time to 

be much smaller than the droplet heating time tq 

from the injection temperature r 7 to a value close 
to the boiling temperature. Using the expression 
tg=\(ci/cp)(p,/p)(a

2
/DT) given after (27) 

together with the estimate a
2
/[nKi/(plci)] for the 

heat conduction time through the droplet (includ-
ing in the denominator a factor % taken from the 
solution of heat conduction in the sphere [35]) 
indicates that this approximation of uniform 
droplet temperature is accurate when the thermal 
conductivity of the liquid fuel K; is much larger 
than the gas thermal conductivity K [36], a condi-
tion satisfied in most situations (e.g., for metha-
nol, Ki ~ 0.2 W/(mK) at its boiling temperature, 
whereas for air K ~ 0.03 W/(mK) at that same 
temperature). Clearly, this approximation of uni-
form droplet temperature becomes even more 
accurate in the presence of internal liquid circula-
tion. For liquid fuels of low thermal conductivity 
equation (16) must be replaced during the fairly 
short heating period by a more complicated heat-
ing description accounting for the nonuniform 
temperature distribution inside the droplets [36], 
with consideration of the presence of recirculating 
liquid flow needed for increased accuracy [37]. 

In modeling combustion systems, the droplets 
are often introduced in the flow field at different 
entry ports, as required to mimic the injection 
characteristics of the system. Integrating with 
the given initial conditions provides the instanta-
neous distributions of a

k
, y

k
d, and T

k
d along the 

droplet trajectories. In order to simplify the 
Lagrangian description, the droplets may be 
classified into classes, according to their origin 
and velocity of penetration at the entrance sur-
face to the computational domain. The compu-
tation is coupled to that of the gas phase 
through the source terms in (8)—(11), which are 
to be evaluated in the numerical integration by 
accounting for the trajectories that traverse each 
averaging cell at a given time. This kind of 
tracking techniques is commonly employed in 
the particle-source-in-cell model [38] of typical 
turbulent combustion codes. Applications of this 
combined Eulerian-Lagrangian modeling strat-
egy can be found, for instance, in computations 
of group combustion in pulverized coal furnaces 
[39-41] and of full-scale aeronautical combustors 
[42-44]. It should be noted, however, that the 
Lagrangian treatment of the liquid phase can 
lead to high computational costs and load-bal-
ancing issues in parallel computations with large 
numbers of droplets. 

An alternative to this Eulerian-Lagrangian 
description is the so-called multi-continua formu-
lation, in which the liquid phase is also treated as 
a continuum field including Nc different droplet 
classes, with the droplet population of each drop-
let class j described in terms of the number of 
droplets per unit volume n* through the conserva-
tion equation 
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— + V . ( « V , ) = 0 . (17) 

Correspondingly, in this Eulerian description the 
evolution equations along the trajectories (14)-
(16) are expressed for each droplet class with use 
made of the Eulerian differential operator 
d/dt — d()/dt + v'j • VQ. This continuum formu-
lation is often simpler than formulations involving 
tracking of individual droplets and greatly facili-
tates analyses of laminar sprays. However, the 
continuum description of the liquid phase is 
known to be inadequate for addressing inertial 
sprays with multiple crossings of droplet trajecto-
ries, as occurs, for example, in turbulent flows or 
in the presence of recirculating flow regions when 
the particle size is not small enough. Although for 
some laminar flow configurations, such as those 
considered in Sections 6 and 7, introduction of 
specific modifications to the formulation renders 
the Eulerian description valid, methods based on 
Lagrangian descriptions of the liquid phase are 
in general needed in the presence of droplet cross-
ings. A promising alternative approach for tack-
ling the crossing of droplet trajectories in inertial 
sprays, based on field formulations of the liquid 
phase, employs quadrature methods of moments 
to solve the kinetic spray equation [45]. Despite 
the significant progress made recently in the devel-
opment of these formulations [46,47], more work 
remains to be done to warrant full applicability 
to spray-combustion problems [48]. 

3.2. Droplet submodels 

To complete the formulation, expressions must 
be provided for the exchange rates m, qd, and f 
between the gas and the droplets. In the calcula-
tion, one needs to describe the flow field in the 
vicinity of the droplet, where the solution is quasi-
steady, as indicated before, because the associated 
diffusive transport time based on the droplet 
radius a

2
/DT and the local residence time 

«/|v — \d\ based on the slip velocity v — yd, which 
we can consider to be of the same order, are 
always much smaller than the characteristic drop-
let life time tv ~ (a

2
/DT)(pl/p), given below in 

(26), a result of the disparity p, ;» p [49]. Two 
main nondimensional parameters play a signifi-
cant role in determining the near-droplet distribu-
tions of temperature and fuel mass fraction. One 
is the Reynolds number, 

R ^ = £ ! I z ^ ! 2 f > ( 1 8 ) 

defined in terms of the droplet diameter 2a and 
the values of the gas density and viscosity corre-
sponding to the surrounding atmosphere, p and 
/i. The other, an eigenvalue of the problem, is 
the nondimensional vaporization rate 

which represents a Stefan-flow Peclet number 
based on the mean radial gas velocity at the drop-
let surface m/{A%a

2
p). The value of I is deter-

mined by the balance between convective 
transport and conductive and diffusive transport 
of heat and species, associated with the tempera-
ture and concentration differences between the 
gas and the droplet surface, which are represented 
by the Spalding transfer numbers cp{T — Td)/Lv 

and (7Fjs — Y?)/(\ — FF,S), where YFiS is the 
fuel-vapor mass fraction at the droplet surface. 
As seen below, for low Reynolds numbers, I is 
given by the algebraic equations (23) and (24). 

In combustion applications, the resulting val-
ues of I range, as we shall see below, from small, 
in the initial stages of droplet heating, to values at 
most of order unity during the main vaporization 
stage (note that the nondimensional vaporization 
rate I can never be much larger than unity, 
because the associated strong blowing would pre-
vent the needed transfer of heat from the atmo-
sphere surrounding the droplet). As for the 
droplet Reynolds number, in regions where most 
of the spray vaporization occurs, the typical val-
ues of Red range from small compared with unity, 
for small droplet sizes, to values only moderately 
large compared with unity. For small Red the con-
vective transport terms associated with the slip 
velocity are negligible in the gas-phase near-field 
region of the droplets, resulting in temperature 
and concentration fields with spherical symmetry. 
The convective transport due to slip flow becomes 
important in the non-spherico-symmetrical Oseen 
far-field region, scaled with a/Ked, which does not 
need to be described when evaluating the near-
field Stokes flow, because this matches directly 
with the first approximation given by the ambient 
field. 

In the relevant distinguished limit Red ~ 1, the 
molecular-transport effects on the near-droplet 
flow field, and also the vorticity, are confined to 
radial distances r ~ a from the droplet and to 
the droplet wake, where the exchanges between 
the particle and the gas are collected and trans-
ported downstream with the local mean gas slip 
velocity. At downstream distances of order ld 

the width of the wake is of order \JaTd, and the rel-
ative variations of temperature and fuel mass frac-
tion across the wake, of order unity at distances of 
order a, have been reduced by a factor a/ld. Sim-
ilarly, at these distances ~ ld the spatial variations 
of velocity in the wake are of order |v — yd\a/ld, 
whereas the azimuthal vorticity, of order 
|v — yd\/a in the vicinity of the droplet, is reduced 
by a factor (a/ld) ' in the wake. 

The vorticity in the wake determines the 
local distribution of the gas velocity relative to 
the homogenized gas, with a momentum flux 
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(towards the droplet) equal to the difference 
between the droplet drag f and the momentum 
added to the gas phase by vaporization of the 
liquid fuel at the droplet surface rmd. This is 
clearly visible in the droplet source term on the 
right-hand side of (10). Correspondingly, since 
the fuel vapor generated at the droplet surface is 
converted to the trailing wake, the flux of the 
excess of fuel vapor across the wake equals the 
droplet vaporization rate m, as seen in the homog-
enized gas-phase equations (8) and (9). Similarly, 
the flux of the defect of enthalpy in the droplet 
wake equals the rate of heat transferred to the 
droplet mLv + qd, corrected to account for the 
enthalpy of the fuel vapor added to the wake by 
vaporization mhFs, giving the contribution emerg-
ing in (11). 

We now begin by summarizing the expressions 
of the exchange rates, for values of Red small 
compared with unity, which, surprisingly, due to 
strong geometric effects remain fairly accurate as 
the Reynolds number increases to Red ~ 1, so that 
the associated description provides sufficient accu-
racy for many spray-combustion applications. 

For values of Red much smaller than unity the 
flow is dominated by molecular transport, leading 
to well-known results, including the familiar 
Stokes formula 

f — 6npia(v — vd) (20) 

for the force acting on the droplet. This expression 
neglects the presence of the Stefan flow associated 
with vaporization, which gives a uniform radial 
mass flux equal to the droplet vaporization rate 
m. Consideration of the Stefan flow due to gasifi-
cation leads to quantitative modifications to 
Stokes law (20), including a correcting factor, a 
function of I, fairly close to unity when I ~ 1 [50]. 

In the limit of small Red associated with (20) 
the distributions of temperature and fuel mass 
fraction around the droplet are spherically sym-
metrical. The temperature distribution T is 
obtained as a function of the radial coordinate 
scaled with the droplet radius f by integrating 
the steady form of the energy equation subject 
to the boundary values T and Td in the surround-
ing atmosphere and on the droplet surface, respec-
tively. The integration is simplified by 
incorporating the commonly used assumption of 
constant gas thermal conductivity, although anal-
yses are available that do not make use of this 
approximation [51-53]. The resulting problem 

dr I dr 
:0 

r= 1 : T 

r —> oo T 

Td (21) 

can be integrated to give T = T - (T - Td) 
(1 — e~A/r)/(l — e~A), which can be used to com-
pute the rate of heat transferred to the droplet 
by heat conduction^ from the gaseous atmo-
sphere qg — A%aK{dT/df)f=l, giving qg — A%Ka 

(T-Td)X/(e
x
-\), where X/(e

x
-\) is the Nusselt 

number accounting for the Stefan flow. According 
to the energy balance at the droplet surface, the 
heat transferred from the surrounding gas is 
employed to heat up the interior of the droplet 
and to vaporize the liquid fuel at the surface 
according to qg—qd+Lvm, which can be rewritten 
in the form 

AllKCl 
T-Td Lt 

e
k
 — 1 cr 

1: • qd, (22) 

providing a relationship between I and qd. Simi-
larly, the fuel-vapor distribution around the drop-
let 

rp)(i o-LeFV' 0/(i 
is obtained by integrating the corresponding con-
vection-diffusion conservation equation with 
boundary conditions YF — YF as r —> oo and 
YF — YFiS at f — 1, where YFiS is the fuel-vapor 
mass fraction at the droplet surface. Here, a bin-
ary description is adopted for the fuel-vapor diffu-
sion velocity, with DF representing the binary 
diffusion coefficient of the gaseous fuel and nitro-
gen -which is the dominant component of the gas 
mixture surrounding the droplet- and LeF — K/ 
(pCpDp) being the corresponding Lewis number. 
For a mono-component fuel droplet, for which 
the radial flux of fuel vapor is ecrual to m, we 
can use the fuel-vapor distribution YF{f) to obtain 
the relationship 

-EHI^)' <*> 
To close the problem, we use again the condition 
of thermodynamic equilibrium at the droplet sur-
face to compute the fuel surface mass fraction 
using the Clausius-Clapeyron relation for the par-
tial pressure of the fuel vapor at the droplet 
surface 

which has an Arrhenius-type dependence on Td, 
with a constant heat of vaporization Lv per unit 
mass if the pressure in the chamber is not close 
to the critical pressure. Here, RF — R°/MF is the 
fuel gas constant and TB is the boiling temperature 
of the fuel at the chamber pressure. The mean 
molecular mass of the gas at the droplet surface 

Ms = (YFiS/MF + Y,%Yi,/Miy
1 depends on 

7 F S and also on the mass fractions of the other 
chemical species at the droplet surface 7IjS. Their 
values can be obtained in terms of their corre-
sponding ambient values 7, by integrating the 
convection-diffusion balance equations for each 
species to give 7 i s — 7, exp(—2Le,-), where the 
Lewis numbers Le, are evaluated with the binary 
diffusion coefficients of the given species through 
nitrogen, whose mass fraction is determined in 
this approximation from the equation 
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Equations (23) and (24), supplemented with 
the expressions 7,-s — 7,exp(— 2Le,-) for the com-
putat ion of Ms, determine the values of I and 
7 F S in terms of Td and of the ambient mass frac-
tions. For given values of a and T, the resulting 
value of I can be used in (22) to determine qd 

and in (19) to compute the associated droplet 
vaporization rate m. The computat ion is simpli-
fied if the expression MF/MS — 7 F j S + (1 — 
Yp^Mp/M^ is employed, an approximation that 
accounts for the large differences of the molecular 
masses of the fuel vapor and N 2 , while taking the 
molecular mass of all other species equal to that of 
nitrogen. In that case, equation (24) can be used 
to determine 7 F j S as a function of Td, while (23) 
gives explicitly I in terms of 7 F S and 7 F . 

The above expressions (22)-(24) involve a 
number of physicochemical properties that are 
different for different fuels, with representative 
values given below in Table 1. For the three differ-
ent liquid fuels considered, straightforward evalu-
ations using these properties indicate that the 
latent heat of vaporization satisfies Lv ; » RpTB, 

which implies that the mass fraction of fuel vapor 
at the droplet surface, given by the Clausius-Cla-
peyron equation (24), remains exponentially small 
until the droplet temperature reaches values close 
to the boiling temperature. For those applications 
in which the injection temperature r 7 is suffi-
ciently below TB, i.e., its value is such that 
(TB - T^/TB > [Lv/{RFTB)Y

l
, there exists neces-

sarily an initial heat up period during which 
Yv\s C 1, so that 7 F S can be neglected with 
respect to unity in (23). If the atmosphere sur-
rounding the droplet contains fuel vapor, then 
during this initial period there exists condensation 
(1 < 0), as inferred by (23), while if 7 F = 0 then 
0 < I <C 1. In this last case, the thermal power 
transferred from the gas is dedicated to increasing 
the temperature of the yet non-vaporizing droplet, 
with a rate that simplifies to qd — A%KCI{T — Td), 

as follows from (22) when 1<C 1. This heat-up 
period ends when the liquid temperature reaches 
values close to the boiling temperature, i.e., 
(TB - Td)/TB ~ [Lv/(RFTB)r « 1, when vapori-
zation starts with values of the fuel-vapor mass 
fraction of order unity at the droplet surface. In 
this vaporizing period the droplet temperature 
remains approximately constant, with a value 
Td ~ TB, SO that qd ~ 0, while the vaporization 
rate reduces to the well-known Spalding 
expression 

m
 -=;i = l n ( n

c
'

( r
-

r
* 

A%KCI/CP L„ 
(25) 

derived by computing I from (22) with qd — 0. 
Clearly, the approximation Td — TB used in (25) 
is inaccurate when the gas temperature in the 
environment surrounding the droplet is close 
to the boiling temperature, i.e., (T — TB)/TB ~ 
[^/(RFTB)}-

1 < 1. 

Using the expressions given above to evaluate 
f, m, and qd in the droplet-balance equations 
(14)-(16) provides estimates for the characteristic 
times of droplet vaporization, droplet accelera-
tion, and droplet heating. For instance, using 
(19) to evaluate m in (15) yields 

1 da
3 

a
3
 At a

2
 p, tv 

(26) 

which defines a vaporization time tv —\ {a
2
 /DT) 

{pi/p), where DT — KJ{pcp) denotes the gas ther-
mal diffusivity. On the other hand, using Stokes 
law (20) for the drag force in (14) provides 

dvd 

dt 

9 v p 

2 a
2
 p, 

(v -Vd =• 
Vd 

(27) 

where ta — j(a
2
/v)(pl/p) is the droplet accelera-

tion (or accommodation) time, the so-called 
Stokes time, which can be alternatively expressed 
in the form ta — 2t„/(3Pr) in terms of the Prandtl 
number Pr — v/DT. It is worth noting that, since 
Pr ~ 0.7 for air, the times tv and ta are practically 
identical. Similarly, the characteristic droplet 
heating time tq — [ci/cp)tv involved in dTd/dt — 

(T — Td)/tq, obtained by using the simplified rate 
qd — A%KCI{T — Td) in (16), also is of order of the 
droplet vaporization time tv, because the specific-
heat ratio ci/cp is always of order unity. 

Equations (20) and (22)-(24) provide a simpli-
fied description of the exchange sources for the 
computational modeling of evaporating sprays. 
More involved expressions are needed for slip 
flow with Re d larger than unity or when increased 
accuracy is sought by incorporating physical phe-
nomena that are not considered in the above der-
ivation [20] (see also [54,55] for summaries and 
assessments of different models). For instance, 
unsteady effects resulting from droplet accelera-
tion can be accounted for, leading to corrections 
to the drag force and vaporization rate that have 
been computed by asymptotic methods [56]. 

As previously mentioned, effects of near-drop-
let convection associated with the slip velocity 

Table 1 
Values of physicochemical properties relevant for droplet heating and vaporization. 

MF [g/mol)] Pi [kg/m3 c, [kJ/kg] I„[kJ/kg] TBVQ LeF LV/(RFTB) 

:ane 100 679.5 2.250 0.34 x 103 371 2.6 11.02 
ecane 170 750 2.212 0.36 x 103 489 3.6 15.05 
tanol 32 791 2.484 1.1 x 103 337 1.2 12.56 
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v — yd introduce corrections to the exchange rates 
that, surprisingly, remain moderately small as the 
Reynolds number increases, so that (20) and (22)-
(24) provide sufficient accuracy for Red ~ 1. For 
instance, although the expression given in (20) 
tends to underpredict the drag force on the drop-
let as the Reynolds number increases, the under-
predictions are not severe, i.e., the relative errors 
are of the order of 12% for Red — 1, increasing 
to 40% for Red = 5 [57]. 

As a final comment, it should be mentioned 
that the flow around the droplet is modified for 
droplets burning individually in an oxidizing 
atmosphere with a surrounding flame. For drop-
lets moving relative to the ambient gas with a 
Reynolds number Red of order unity, the envelope 
diffusion flame around the droplet extinguishes 
when the droplet radius decreases below a critical 
value of the order of the thickness SL of the stoi-
chiometric gaseous planar deflagration. For lower 
values of the droplet radius, the fuel vapor gener-
ated by the droplet will only burn in its wake, in a 
distributed manner. Conversely, a droplet may 
burn individually with a surrounding flame when 
its radius is larger than the critical extinction 
value, that being the case observed in the spray-
deflagration experiments reported in [58], which 
consider large droplets with diameters exceeding 
300 microns. When the droplet is surrounded by 
a flame, the expressions derived above for 
Red <C 1 should be modified. For instance, in 
the Spalding vaporization rate (25) the enthalpy 
difference cp{T — TB) must incorporate an aug-
mented effective ambient temperature that 
accounts for the presence of the flame. In the limit 
of infinitely fast reaction with the reasonable 
approximation of unity Lewis number adopted 
for 0 2 , the associated enthalpy increase can be 
shown to be equal to the ambient oxygen mass 
fraction Y0l times the amount of heat released 
per unit mass of oxygen consumed in the chemical 
reaction [45,59]. The surrounding flame has been 
shown to affect also the force acting on the droplet 
[52]. Modifications would also be needed in the 
gas-phase equations, with the burning droplets 
appearing there as sources of heat and combus-
tion products and as sinks for oxygen [53]. 

4. Spray-combustion phenomenology 

The fuel vapor generated by the vaporizing 
droplets mixes with the surrounding hot air, 
enabling ignition to occur when a favorable equiv-
alence ratio is encountered. Fuel sprays can be 
ignited using external sources such as electric 
sparks, torches or plasma jets, as is needed during 
the start and relight of jet engines and in the oper-
ation of gasoline direct-injection engines [60,61]. 
Forced ignition is not needed during the nor-
mal steady operation of continuous-combustion 

systems, such as that depicted in Fig. 2, which rep-
resents the typical arrangement found in gas tur-
bines or industrial furnaces [60]. The manner in 
which combustion is stabilized downstream from 
the initial vaporization region is fundamentally 
dependent on the injection conditions. When the 
existing flow velocity is sufficiently low, combus-
tion is established through partially premixed 
fronts that propagate along mixing layers in the 
nonuniform mixture created upstream by the 
vaporizing spray [62,63]. In many systems, how-
ever, the injection velocities are much higher than 
the characteristic deflagration speed, thereby pre-
cluding upstream triple-flame propagation. In 
that case, combustion stabilization must rely 
instead on the autoignition of the fuel-air mix-
ture, which is facilitated by the high temperature 
of the surrounding gas, with ignition often occur-
ring near the edge of the spray jet, where the tem-
peratures are higher. 

The resulting ignition dynamics depends on the 
dispersion of the droplets in the presence of turbu-
lent motion [64]. Optimal droplet dispersion is 
achieved for values of the droplet Stokes time, 
defined in (27), of the order of the integral time 
scale of the large vortices in the mixing layer 
[17,34,65,66], under which conditions droplets 
may cross the mixing layer at vortex-braid regions 
to vaporize on the other side surrounded by hot 
air. On the other hand, droplets with sufficiently 
small Stokes times behave as flow tracers and 
become entrained in the large-scale turbulent 
eddies, where they come into contact with the 
high-temperature air. The lower strain rates found 
in these near-core regions facilitate ignition, 
whereas the larger strain rates found in the vor-
tex-braid regions prevent ignition from occurring 
there by limiting fuel residence times. 

As suggested earlier for purely gaseous ignition 
[67], the unsteady unstrained flamelet -and also 
the closely related problem of the laminar coflow 
mixing layer- may provide an adequate represen-
tation of the spray ignition dynamics occurring 
at the low-strain interfaces wrapped around the 
vortices. Numerical and asymptotic analyses of 
group ignition of heptane and methanol spray 
streams by coflowing hot air were attempted 
recently [64], with a simple one-step Arrhenius 
model adopted for the chemistry description. 
The two main controlling parameters were seen 
to be the liquid mass-loading ratio a of the spray 
and the ratio of the droplet vaporization time tv to 
the characteristic chemical time for ignition tch, 
evaluated at the air-side temperature, both 
assumed to be of order unity in the integrations. 
The solution was seen to depend strongly on the 
thermochemical properties of the selected fuel. 
Thus, because of its smaller latent heat of vapori-
zation Lv, heptane droplets vaporize faster than 
methanol droplets. As a result, as the mixing layer 
develops, heptane vapor becomes available for 
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reaction earlier than methanol vapor, thereby 
leading to smaller ignition distances, a result in 
agreement with the ignition trends observed in 
previous numerical computations of ignition times 
in uniform spray mixtures [68]. Besides, the igni-
tion of heptane is facilitated by its chemical heat 
release being more than twice that of methanol, 
resulting in a larger temperature increase per unit 
mass of fuel burnt that facilitates the self-accelera-
tion of the chemical reaction rate, enabling a ther-
mal runaway to take place. By way of contrast, 
the ignition of methanol proceeds gradually, in 
the form of a lean premixed flame that propagates 
slowly across the mixing layer from the hot air side. 
As shown in [64], the morphology of the ignition 
region is very sensitive to the specific values of the 
parameters selected. For instance, when air is 
employed as spray carrier, two-flame structures 
[69-73] are seen to emerge when the thermochemi-
cal properties of heptane are considered, but they 
are not observed for methanol. 

As mentioned earlier, for all liquid fuels the 
mass of air needed to burn the unit mass of fuel, 
S, is a very large quantity (i.e., S ~ 15.2 for hep-
tane). As a result, in many applications, the par-
tially premixed front originating at the ignition 
kernel burns completely the air that has been 
entrained upstream, while consuming only a lim-
ited fraction of the fuel available in the jet spray. 
The remaining gaseous fuel and accompanying 
fuel droplets burn downstream, in a diffusion 
flame that envelops the oxygen-starved spray jet. 
The resulting group-combustion configuration 
was envisioned as the predominant combustion 
regime in early theoretical analyses of droplet-
cloud combustion, to be discussed in Section 6. 
The extent to which the partially premixed region 
contributes to the overall combustion process 
depends on the specific configuration and may 
also change depending on the operating condi-
tions, as observed in direct numerical simulations 
[73], which also reinforce the qualitative descrip-
tion given above. 

Figure 2 depicts an external diffusion-flame 
configuration, often encountered in applications, 
in which the diffusion flame stands off the droplet 
cloud, burning the ambient oxygen with the fuel 
that originates from the vaporizing droplets. In 
many applications, the gas-phase chemical reac-
tions are fast, in that the characteristic time for 
fuel oxidation is much shorter than both the char-
acteristic fluid-mechanical time and the droplet-
vaporization time. Under those conditions, the 
flame appears as a sheet, S/, separating an inter-
nal oxygen-free region Q,F from an external region 
do where no gaseous fuel is present in significant 
amounts. The associated Burke-Schumann limit 
of infinitely fast combustion will be discussed in 
Section 5. 

For the high-Reynolds-number flows typically 
encountered in liquid-fueled burners, the diffusion 

flame is embedded in thin mixing layers bounding 
the spray-carrier stream. These mixing layers are 
distorted and strained by the turbulent flow. A 
canonical problem that helps to investigate effects 
of strain on spray diffusion flames is the counter-
flow configuration [74], which will be addressed 
in Section 7. Sufficiently large values of the strain 
rate may lead to flame extinction [75]. When this 
occurs, the flame surface develops an incipient hole 
with a bounding edge flame that propagates along 
the mixing layer. The dynamics of these edge 
flames under the action of the external strain deter-
mines whether the flame hole reheals, through a 
reignition triple flame, or whether the extinction 
hole continues to increase, as the edge flame fur-
ther retreats. While there exists substantial knowl-
edge of many aspects of edge flames and triple 
flames in gaseous combustion [76,77], the associ-
ated spray problem has only been considered 
recently [78] and more work is needed to both clar-
ify the structure of spray edge flames and quantify 
the dependences of their propagation velocity. 

Large droplets with sufficient inertia may cross 
the mixing layers and move into the oxidizer 
stream, where they can possibly burn or vaporize 
individually or in small groups if favorable condi-
tions are found. In principle, a closed diffusion 
flame may appear surrounding each individual 
droplet if their radius is large enough and favorable 
conditions for ignition are found as the droplet 
enters the oxidizer region [79]. The droplets in most 
practical combustion applications are however too 
small to sustain a flame in their vicinity. Therefore, 
as indicated in Fig. 2, many of the droplets that 
cross the spray diffusion flame can be expected to 
vaporize in Q0 without a surrounding flame, gener-
ating fuel vapor that reacts with the existing oxygen 
in a distributed manner. Although the contribution 
of this distributed reaction to the total amount of 
heat released in the combustor can be expected to 
be negligible, these finite-rate effects are of utmost 
importance, since partial oxidation of the fuel 
vapor generated by the crossing droplets, especially 
in the cold regions found near the combustor walls, 
results in augmented emissions of CO and unburnt 
hydrocarbons. Extensions of the Burke-Schumann 
formulation using reduced mechanisms to describe 
finite-rate effects leading to pollutant emissions will 
be presented in Section 5. 

Before closing this overview, it is worth 
describing briefly the transient combustion phe-
nomenology associated with the combustion cycle 
in diesel engines. Diesel-fuel injection into the 
cylinder begins shortly before top dead center. 
The spray starts to vaporize immediately as it 
mixes with the compressed hot air, creating a 
nonuniform mixture of fuel vapor and air, whose 
temperature continues to increase as a result of 
the homogeneous compression process that is 
occurring simultaneously, thereby enhancing the 
incipient chemical reaction. Autoignition occurs 
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simultaneously at several near-stoichiometric hot 
spots in the bulk of the spray jet, where the most 
favorable conditions are met, leading to the for-
mation of ignition fronts that sweep through the 
reactive mixture with a velocity of a few tens 
meters per second. This rapid process is accompa-
nied by a significant increase of temperature and 
pressure in the cylinder that further accelerates 
the chemical reaction. The magnitude of these 
pressure and temperature increments depends on 
the fraction of the liquid fuel that was vaporized 
prior to ignition. As they propagate through the 
spray jet, the ignition fronts deplete the oxygen 
found in fuel-rich regions and the fuel vapor 
found in fuel-lean regions, leaving a diffusion 
flame at the instantaneous stoichiometric surface. 
As a result, an internal group combustion regime 
emerges following ignition, with the diffusion 
flame located within the spray, separating an inner 
oxygen-free region from an outer region free from 
gaseous fuel. In the subsequent evolution, the 
droplets found outside may burn individually or 
may vaporize, generating fuel vapor that mixes 
and reacts with the available air. As mentioned 
in Section 6, analyses of droplet-cloud combus-
tion can be instrumental in investigating all these 
diesel-engine-combustion phenomena. 

5. The Burke-Schumann limit of infinitely-fast 
reaction in non-premixed spray flames 

In many liquid-fuel combustors the burning of 
the jet spray involves a thin nonpremixed flame sur-
rounding the droplet cloud. The rates of the gas-
phase chemical reactions, which control the igni-
tion distance and determine the structure of the par-
tially premixed region, can be considered as 
infinitely fast for the diffusion flame that develops 
downstream; because the characteristic time for 
fuel oxidation is much shorter than both the charac-
teristic fluid-mechanical time and droplet-vapori-
zation times. Under those conditions, the non-
premixed spray flame is diffusion-controlled and 
can be consequently described in the first approxi-
mation by considering the limit of infinitely fast 
chemistry, to be addressed now following [80]. 

5.1. The limit of infinitely fast reaction 

For simplicity, the presentation will consider 
that the chemical reaction between the oxygen of 
the air and the fuel vapor occurs according to 
the global irreversible step 

F + i02^*co 2 C02+*H 2 oH 2 0 + ? , (28) 

where s, sCoz, and sH2o are the mass of oxygen 
consumed and the mass of carbon dioxide and 
water vapor produced per unit mass of fuel burnt, 
so that 1 + s — sCo2 + sn2o, and q is the corre-
sponding amount of heat released. This overall 

reaction is an appropriate representation of the 
underlying chemistry when the concentrations of 
the intermediate reactive species are small com-
pared with those of the main species appearing 
in (28), as it is typically the case in many combus-
tion processes. Note that these intermediates, 
although appearing in small concentrations, deter-
mine the effective rate of the overall fuel-oxidation 
reaction (28), resulting from the interplay of ele-
mentary chemical reactions occurring at molecu-
lar level. This rate is necessary for describing 
premixed and partially premixed combustion, 
but is not essential for diffusion-controlled flames, 
as long as the strain conditions place the system 
away from extinction. 

When the simplified description (28) is used 
to represent the overall combustion process, 
the conservation equations for reactants (9) 
reduce to 

| ( p 7 F ) + V . ( p v 7 F ) - V . ( g v 7 F ) 

= -fl)F + ^ji'mf (29) 
j=i 

and 

| ( p7 0 2 ) + V • (pv70 2) - V • (pD r V7 0 2 ) 

= -SwF. (30) 

where the oxygen mass fraction has been scaled 
with its value in the air stream to give the nor-
malized variable Y0l — Yo1/Y0lA. Correspond-
ingly, S — s/Y0lA denotes the mass of air 
needed to burn the unit mass of fuel, a moder-
ately large quantity, as previously mentioned. 
In the formulation, <»F represents the mass of 
fuel consumed per unit volume per unit time, 
which is related by coF — —wF to the production 
rate used above in (9). In writing Fick's law for 
the diffusion velocities, a unity Lewis number is 
assumed for 0 2 , whereas a general non-unity 
Lewis number is used for the fuel, with represen-
tative values given in Table 1. 

To illustrate the Burke-Schumann limit of 
infinitely fast reaction rate, it is convenient to 
consider as an approximation the Arrhenius 
expression 

wF = pBYo2YFexp[-Ea/(R
0
T)} (31) 

for the reaction rate, including a frequency factor 
B and an activation energy Ea, defining a charac-
teristic temperature-dependent chemical time for 
fuel oxidation 

tch=B-
1
ex.p[Ea/{R"T)]. (32) 

Equation (31) can be used to express the reaction 
rates appearing in the conservation equations (29) 
and (30), giving for instance 
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-C(YF) = -BY02YFexV[-Ea/(R°T)]+nm/p 
P — v ' " - v — ' 

rF/t, r0lrF/teh
 l/

'° 

(33) 

for the fuel balance, where C{YF) represents the 
transport operator appearing on the left-hand 
side of (29). For the discussion, the anticipated 
orders of magnitude of the different competing 
phenomena have been indicated below each 
term, with the rates of accumulation and trans-
port evaluated by assuming that the dominant 
fluid mechanical times are of the order of the 
droplet vaporization time and the source term 
evaluated for a ~ 1. 

Because of the large activation energy present 
in combustion reactions, the value of tch given in 
(32) depends strongly on the local temperature, 
achieving its smallest value in the reaction region, 
where the temperature is of the order of the stoi-
chiometric adiabatic flame temperature Tf. The 
Burke-Schumann limit arises in reactive sprays 
when the associated fuel oxidation time is much 
smaller than the characteristic vaporization and 
transport times, of order tv, a condition often sat-
isfied in practical burners whenever complete fuel 
consumption is to be achieved in the primary 
high-temperature combustion region. According 
to the above order-of-magnitude analysis, in this 
limit tch <C U of infinitely large Damkohler num-
bers the conservation equations for chemical spe-
cies lead to the condition 

?o2YF = 0, (34) 

indicating that the fuel and the oxidizer cannot 
coexist in the first approximation, except within 
a very thin reaction layer, to be described at lead-
ing order in the limit tv/tch —> oo as an infinitesi-
mally thin sheet, denoted by T,f in Fig. 2. This 
flame sheet separates a region Q,F, where 
Y0l — 0, from a region Q,0, where YF — 0, 
whereas at the flame sheet both reactant mass 
fractions are simultaneously zero. In the solution 
that appears, the droplets lying in the oxygen-free 
region Q,F vaporize without chemical reaction, 
generating the fuel vapor that burns at the flame 
with the oxygen found in Q,0. 

5.2. Gas-phase coupling functions for reactive 

sprays 

To remove the singular character of the solu-
tion associated with the limit tv/tch —> oo, when 
the reaction terms in the conservation equations 
become Dirac delta distributions along T,f, we fol-
low the standard procedure indicated by Shvab 
and Zeldovich [81,82], consisting in eliminating 
the chemical reaction terms appearing in the con-
servation equations by appropriate linear combi-
nations. The procedure is straightforward when 

the Lewis numbers of both reactants are unity, 
but it is somewhat more complicated when prefer-
ential diffusion is considered, because the linear 
combinations may result in coupling functions 
that are different for the diffusion terms and for 
the convective and accumulation terms [83,84]. 
For instance, when a non-unity Lewis number is 
present in (29), elimination of the chemical reac-
tion by subtracting (30) from (29) times S yields 
[80] 

| ( p Z ) + V . ( p v Z ) - ^ ± l v . ( P D r V Z 

= D* (35) 
j=i 

involving 
variables 

two different mixture-fraction 

Z = 

Z = 

SYF- Y o2 
1 

and 
S+l 

SYF/LeF - YQl + 1 

S/LeF + 1 

(36) 

A similar procedure must be utilized to eliminate 
the heat-release rate by chemical reaction 
—'%2i:llh°wi = q(Dp from the energy equation. 
Since the Lewis number of oxygen is assumed to 
be unity, it is convenient to use (30) to derive 
the corresponding chemistry-free coupling func-
tion. The derivation is further facilitated by 
neglecting variations of the specific heat at con-
stant pressure. Under those approximations, an 
appropriate linear combination of (12) and (30) 
with use made of (8) provides 

- (pH) + V • (pvH) - V • (pDTS7H) 

= - V - « k 

- Yn'{m' [q/S + LV+ cp(TA - T
]
d)} + q>d} 

j=i 

dPo 

dt 

(37) 

for the excess-enthalpy variable H — cp{T — TA)+ 
(7o2 — l)l/S> where TA represents the tempera-
ture of the primary air-feed stream. 

In the description of the limit of infinitely large 
Damkohler numbers, the three conservation equa-
tions for the reactants and energy are replaced 
with the chemistry-free equations (35) and (37), 
together with the condition (34) of non coexis-
tence of the reactants. The flame is located where 
both the vapor fuel YF and the oxygen Y0l are 
simultaneously zero, corresponding to values of 
the mixture fraction Z — Zst — 1/(1 + S) and 
Z = Zst = 1/(1 +S/LeF). For Z 3s Zst we find 
Y0 = 0, so that 
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^ ^st ^ ^st 

1 - z„ 

cp{T - TA) H 

\-zsl 

1 

and 
(38) 

whereas 7 F — 0 for Z < Zst, giving 

Z Z 

Zst 
and 

(T-TA)=H +
 q

-f. 

(39) 

These relationships link the values of Z, Z, and H 
and provide the mass fractions of reactants and 
the temperature in terms of the coupling functions 
everywhere in the flow field. If needed, source-free 
conservation equations that determine the prod-
uct concentrations can be obtained from linear 
combinations accounting for non-unity Lewis 
numbers of COz and H 2 0 [80]. 

5.3. Distributed air-side fuel oxidation 

The formulation given above allows for the 
presence of droplets in Q0- These droplets may 
be initially in Q,F and cross the flame at a given 
instant as a result of dispersion by turbulent 
eddies, or they may be already in Q0 when the dif-
fusion flame forms, as occurs in diesel engines 
with the droplets located in the outer part of the 
droplet cloud at ignition. When this arises, indi-
vidual combustion of large droplets is then possi-
ble, provided that the droplets are sufficiently 
separated for the inter-droplet environment to 
host individual droplet flames and their Reynolds 
number Red does not exceed a critical extinction 
value. The Burke-Schumann formulation remains 
valid in the presence of droplets burning individu-
ally in Q,0, provided that the expression for the 
vaporization rate m is modified for the burning 
droplets, as indicated above at the end of 
Section 3.2. 

It can be expected, however, that for the condi-
tions found in many practical liquid-fueled burn-
ers, with typical droplet radii on the order of a 
few tens of microns, the droplets cannot burn 
individually with a surrounding flame because 
the fuel-oxidation time tch, although much smaller 
than the droplet vaporization time, is much larger 
than the characteristic diffusion time around the 
droplet. If tch is also much larger than the charac-
teristic interdroplet diffusion time l

2
d/DT, so that 

the inequalities l
2

d/DT <C tch <C tv hold, the fuel 
generated by droplets vaporizing in Q,0 is homoge-
neously consumed in a distributed reaction occur-
ring in the gas phase between droplets that can be 
described with the multi-continua formulation. 
According to the anticipated orders of magnitude 
displayed in (33), the fuel-vapor mass fraction in 

Clo, of order 7 F ~ tch/tv <C 1, can be determined 
with negligible transport effects. Equating the 
fuel-consumption rate by chemical reaction and 
the fuel-generation rate by droplet vaporization 
yields in the first approximation, from (25) and 
(31), 

An aDTn r , , „ . , , 
YF= — ^cxp[Ea/(R

0
T)} 

x In 
Cp(T - TB 

(40) 

as an explicit expression for the distribution of the 
fuel mass fraction, where the values of a, DT, n, 
Y0l, and T are to be evaluated from the leading-
order Burke-Schumann solution. The accuracy 
of the above prediction is subject to the condition 
that the chemistry remains sufficiently fast for the 
transport rate to be negligible in (33). Because of 
the temperature dependence of the reaction rate, 
in regions of lower temperature the chemical reac-
tion becomes slower. The associated fuel-con-
sumption time (32) becomes comparable to the 
vaporization time when the temperature decreases 
to values of the order of a critical crossover tem-
perature, Tcc, such that 

B~
l exp 

Eg 

R°TC, 
— 1 „ 

In regions away from the flame where T > 

local Damkohler number 

Uh \R°TCI 

E, 

R"T 

(41) 

Tcc, the 

(42) 

defined with use made of (32) and (41), becomes 
of order unity, so that transport effects enter to 
modify the analytic prediction (40), with larger 
corrections expected to appear at increasing dis-
tances from the flame. If the nondimensional acti-
vation energy Ea/{R°TCC) is large, then (42) 
indicates that fuel consumption freezes as soon 
as the temperature falls below Tcc (i.e., the local 
Damkohler number becomes exponentially 
small), whereas in regions where T > Tcc fuel con-
sumption is very rapid, giving the quasi-steady 
distribution (40) with exponentially small values 
of 7F . For T < Tcc, the fuel mass fraction is deter-
mined by a balance between transport and vapor-
ization. Consideration of fuel transport in these 
cold regions would be needed in particular to 
determine emissions of unburnt hydrocarbons in 
liquid-fueled combustors. The computation of 
the small fuel-mass fraction as a higher-order cor-
rection to the Burke-Schumann solution would 
require integration of (29) in the region Z < Zst. 
The resulting problem is linear in 7F , because all 
of the remaining variables appearing in (29), 
including in particular Y0l and T, are to be eval-
uated from the leading-order solution. 
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5.4. Quantification of CO emissions 

The previous finite-rate results can be extended 
to account for more realistic fuel-oxidation descrip-
tions. Although the detailed chemistry of liquid 
fuels typically involves a few thousand elementary 
reactions between a few hundred reactive species, 
flame studies have demonstrated that most of the 
chemical intermediates are in steady state, so that 
reduced chemical-kinetic descriptions with just a 
few overall steps provide sufficient accuracy 
[85,86]. For most purposes, combustion of a given 
hydrocarbon C ^ H ^ can be described by introduc-
ing steady-state approximations for all but three 
chemical intermediates, namely, CO, H2, and a rad-
ical representing the hydrogen-oxygen radical pool. 
For the lean conditions found in Q,0, hydroxyl rad-
icals are more abundant than H atoms [87], so it is 
best to develop the chemistry reduction with CO, 
H2, and OH as species out of steady state, leading 
to the four overall reactions 

C ^ I V + 1ZOH - i M CO + (K - M) H 2 0 

+ [M + {JV-1Z)/2}H2, 

H2 + 0 2 ^ 20H, 

in . 
20H + H 2 ^ H 2 0 , 

CO + H 2 0 ™ C0 2 H2 (43) 

representing fuel consumption, chain branching, 
chain recombination, and CO oxidation, with TZ 
denoting the number of radicals consumed per 
fuel molecule consumed. The value of the integer 
TZ, 1 < TZ < TV, depends on the details of the 
fuel-radical steady states. The corresponding 
overall rates (mols per unit volume per unit time) 
can be expressed as 

wi = k6fCFCcn + k7fCFCu 
w
u — kifCo2Cn — kibCoCoH 

w
m — ^4/CMCO2CH 

wiv = k5fCCoCoH - k5bCco2CH (44) 

in terms of those of elementary reactions H + 0 2 

^ O + OH, H + 0 2 +M % H 0 2 +M, CO + OH 

^ C 0 2 + H, C ^ H ^ + OH % CMRN-I + H 2 0, 

if 

and C J K H ^ + H —> CM^-u-i + H2, with kjf and 
kjb denoting the forward and backward reaction-
rate constants for each reaction j . 

The concentrations of H and O, needed in eval-
uating the overall reaction rates given in (44), can 
be obtained by assuming partial equilibrium of the 

fast shuffle reactions H2 + OH ^ H 2 0 + H and 

OH + OH ^ H 2 0 + O to give CH =K2CH2COH/ 

CH2O and C0 =K3C
2

OH/CH2p, where K2=k2f/k2b 

and K3 —k3f/k3b are equilibrium constants. For 
this reduced description, conservation equations 

can be written for the fuel and for the different 
intermediates according to 

C(Yp) — — MpW[ + ™, 

C(Yco) = McolMwt - wiv), 

C(YHl) = MHl{[M + {N- K)/2]Wl - wB - wm + ww}, 

C(Y0H) = M0H(-TZWI + 2wn - 2wm). 

As in (33), the symbol £ is used here to represent 
the transport differential operator for each chem-
ical species. 

In near-flame zones of Q,0 where the tempera-
ture is of the order of adiabatic flame temperature 
Tf, the chemical times associated with the four 
overall reactions are sufficiently small for the con-
dition tch <C tv to hold, so that the transport terms 
can be neglected in the first approximation in the 
above equations, reducing the computation of the 
concentrations of 0 ^ % , CO, H2, and OH to 
the solution of the reduced fuel conservation 
equation 

MFH>i — nth, (45) 

indicating that fuel produced by droplet vaporiza-
tion is immediately consumed by chemical 
reaction, along with the three steady-state expres-
sions for the intermediates, which can be solved to 
give 

n _ ksf CH2QCCO 

K2(y5b +AF)kvCM C, o2 

(46) 

C, OH : 
Ky 

1/2 
Kif 

1/2 

C£oQ& (47) 
\k4fCM J \Ki(y5b+AF)ku 

in terms of the reaction-rate ratio 
ysb — k5bCco2/(k4fCMCo2) and the fuel-specific 
constants 

^F — -n V7—^^ a n d 
M + Af - 21Z 

4A4+7V 
F~~ AM+N' -2TZ' 

(48) 

Note that, according to (47), this steady-
state description gives a zero OH concentration 
as the temperature decreases to a crossover value 
Tcc, defined in this case by the condition 
k\f — 5 F ^ 4 / C M - For T < Tcc, the expression (47) 

should be replaced by the condition COH — 0. 
The corresponding CO-oxidation rate, 

WIV 
(klbK3)

1/2
 Kfib+^J \kvCu 

1/2 
r l / 2 r 3 / 2 L-H20

<-CO> 

(49) 

obtained from (44) with use made of (47), also 
includes the crossover factor, and therefore van-
ishes at T = Tcc. 

The expression (49) can be used to evaluate 
explicitly the CO-oxidation rate appearing in the 
conservation equation for CO, 
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Q-t(P
Y
co) + V • (pvFco) - V • ( ^ V 7 c o j 

=—77 nm-Mcoww, (50) 

written here with use made of (45) to express wt. 
Since the activation energy of reaction If is mod-
erately large, at temperatures above crossover the 
rate ww is fast, and the associated CO-oxidation 
time is much smaller than the characteristic 
fluid-mechanical time. In these hot regions, the 
transport terms in (50) can be neglected in the first 
approximation, giving the balance Mnm — MFwIV 

for the CO concentration in this region of large 
Damkohler numbers. The equation can be solved 
for Ceo to give 

= yib+A¥f klbK3 y
/ 3 / klf V1/3 

kib \M
2

FCH 2oJ \k4fCu J 

x [(M + TV - 2TZ)nm}
2/3

. 

(51) 

This transportless expression fails however as the 
temperature approaches crossover, because the 
rate (49) decreases to zero, with the result that 
(51) incorrectly predicts an infinite CO concentra-
tion at T — Tcc. Inclusion of CO transport readily 
avoids this singularity, imposes a limit 
YCo ~ (MMconmtv) / (pMF) on Ceo in terms of 
the local value of nm (small in the region where 
freezing occurs), and enables the correct descrip-
tion of CO to be obtained for T < Tcc, where 
wrv — 0 and the CO generated by partial oxida-
tion of the vaporized fuel is transported away 
without significant oxidation to C0 2 . In integrat-
ing (50) in Q,0 one may use the concentrations of 
O2, H 2 0 , C0 2 , temperature, number of droplets 
per unit volume n, and radius a corresponding 
to the leading-order Burke-Schumann solution 
to evaluate the vaporization rate nm and the 
CO-oxidation rate from (25) and (49). Clearly, 
similar ideas could be employed to generate an 
equation for describing the generation of other 
pollutants, notably NO. 

6. Vaporization and combustion of fuel-spray 
clouds 

The description given in Section 2 illustrates 
the importance of group effects, with the mean 
gas-phase environment generated collectively by 
the droplets determining the overall vaporization 
and combustion dynamics of the spray. Elemen-
tary problems involving a limited number of 
competing phenomena serve to illustrate the 
interplay of the different physicochemical pro-
cesses. Regimes of group vaporization and com-

bustion of sprays have been defined by 
considering quasisteady solutions to uniform, 
spherically symmetric, quiescent fuel-droplet 
clouds [88-94]. Under appropriate simplifying 
assumptions, a single dimensionless parameter, 
called the group combustion number [88], has 
been reasoned to control the energy and mass 
transfer between the droplet cloud and the sur-
rounding atmosphere. Since this number is 
widely used in applications, it is of interest to 
discuss its connection with the spray parameters 
and characteristic times identified above by 
addressing the problem of transient vaporization 
of a monodisperse droplet cloud in a hot air 
environment at constant pressure. 

6.1. The continuum, homogenized description of 
droplet-cloud vaporization 

Let us consider the temporal evolution of a 
spherical cloud of radius R0 containing air and 
N0 uniformly distributed droplets of radius a0 

and initial temperature 77. An unbounded atmo-
sphere of hot air with temperature TA > 77 and 
density pA surrounds the cloud. The initial number 
of droplets per unit volume in the cloud, 
n0 — N0/[(4/3)nR

3
0], defines the interdroplet dis-

tance L — n~
x
^, which is assumed to be in the 

range R0 ;» ld ;» a0, so that the condition (7) is sat-
isfied. The droplet number density together with 
the droplet radius and the gas density defines the 
liquid mass-loading ratio, a — (4ft/3)a£n0p;/' pA; 
when a ~ 1 we can expect two-way coupling 
between the phases. The cloud evolution is mainly 
determined by the competition of droplet vapori-
zation with heat conduction across the droplet 
cloud. The rate of the former is measured by the 
characteristic droplet vaporization time tv, given 
in (26) as a function of the initial values of the 
droplet radius a0 and air density and thermal diffu-
sivity pA and DTA, whereas the heat conduction 
time based on the cloud radius tc — R

2
0/DTj charac-

terizes gas-phase heat conduction from the 
surrounding atmosphere. Another significant 
parameter is TA/TB. 

The description of the problem delineated 
above requires integration of (8), (9), and (12) 
for the gas phase together with (13)—(17) for the 
liquid phase, supplemented with the equation of 
state and with additional equations for the droplet 
source terms f, m, and qd. Since the heat needed to 
heat up and vaporize the equilibrium droplet 
cloud must come from the surrounding hot air, 
it is appropriate to use the heat conduction time 
tc to scale the problem. Introducing the dimen-
sionless variables t — t/tc, f — r/R0, v — vrj 
{DTJR0)X T = T/TA, p = p/pA, h = n/n0, a = 
a/a0, Td = Td/TA, and vd = vdJ(DTA/R0), 
reduces the conservation equations for the gas 
phase to 

file:///k4fCu
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dp 1 d ^ 2 _ , U „ ~ 

dt r
L
 dr ^ ' tv 

dpYF 1 d 1 d r
2
T" dYi 

di r
2
 dr r

2
 dr \ LeF dr 

— a — haT"!, 
tv 

dbT 1 d /„, 

dt r
2
 dr \ J r

2
 dr \ dr J 

— —a — naT 
tv 

(f-fd)-^-fdl 1 

(52) 

(53) 

(54) 

to be supplemented with pT—[l — (l—MA/ 
MF)YFy

l
, where MA/MF denotes the air-to-fuel 

molecular-mass ratio. A simple power law with 
exponent a—0.1 has been adopted for the temper-
ature dependence of the transport coefficients. 
Radiative heat transfer has been neglected in 
writing (54), along with changes in specific heat. 
The source terms in (52)-(54) are proportional 
to h, which satisfies the conservation law 

dh 

~dt 

1 9 , ~ „ \ 
(55) 

involving the droplet velocity vd. This parabolic 
system of equations must be complemented with 
the simultaneous Lagrangian description of the 
variation of the droplet properties a, Td, vd, given 
by 

da
3 *<;„£;„» 

— - = — -aT°l , 
dt tv 

a
3dT

^ = ^^af
a 

dt tv c, 

(56) 

[T -Td 

^dvd 3Prtc~ „ 
- -aT (v-vd), dt 2 t„ 

1 

cplA 
,(57) 

(58) 

along the droplet paths fd{^,i), given by the solu-
tion of drd/di — vd in terms of its initial radial 
location fd — £. The source terms in the above 
equations, which are proportional to m and qd, 
have been written using (19) and (22) in terms of 
I, which is determined using (23), i.e., 
X = LeF ' ln[(l - 7F)/(1 - 7F>S)], as a function of 
7 F and YFs. The latter is given by the Clausius-
Clapeyron relation (24) in terms of Td, with 
MF/MS = yFs + (1 - YFs)MF/MA, thereby com-
pleting the formulation. 

Different possible sets of initial conditions can 
be considered [94]. For example, one may assume 
that the droplets are suddenly placed in the unper-
turbed hot-air environment at the start of the inte-
gration, with the uniform gas temperature TA 

everywhere at t — 0. Perhaps a more realistic ini-
tial condition, especially in connection with con-
trolled experiments in which the spray is formed 
upstream from the injection section, follows from 
assuming that the spray is initially in equilibrium, 
so that 1 — 0 and T — Td in the cloud, as is 

required for the right-hand side terms of (52)-
(54), (56), and (57) to vanish. The associated 
initial conditions for (52)-(55) are p — /)/ — T— 

f, = YF - 7F/ = h - 1 = 0 for r < 1 and by 
p — 1 = r — 1 = 7 F = « = 0 for f > 1, where p/ 
is the interdroplet gas density associated with 
T — Ti and 7F / , with 7F / determined from evalu-
ating (24) at Ti = TI. Correspondingly, the inte-
gration of (56)-(58) is initiated with a — I — 

vd — Td — r 7 — 0. Boundary conditions for 
i > 0, needed to integrate (52)-(54) are given by 
v = df/dr = dYF/dr = 0 at r = 0 and f - 1 = 

YF — 0 as r —> oo. 
Many of the early numerical investigations of 

spherical droplet-cloud vaporization [88-94] 
neglected the motion of the droplets induced by 
the gas expansion along with the resulting nonuni-
formities in h, both having in general a nonnegli-
gible effect on the solution, as shown in [95,96]. 
These effects are effectively handled in the multi-
continua formulation outlined above. It is worth 
mentioning that, although the droplets in the inte-
rior of the cloud may conceivably accelerate to 
overtake those located farther outside, with the 
result that droplets originating at different £ end 
up occupying the same radial location, such over-
taking events were not observed in computations. 
If they occur, i.e., for initial conditions or para-
metric values different from those considered here, 
the associated duplicity should be taken into 
account when evaluating the droplet properties 
at a given location (e.g., by creating a new droplet 
class containing the droplets that have been over-
taken, in a similar procedure as that employed in 
Section 7 for counterfiow flames). 

For numerical studies of vaporization and 
combustion of spray clouds in constant-volume 
or variable-volume chambers [95], of interest for 
diesel-engine applications, the term dp0/dt must 
be retained in writing (54) from (12), while the 
effect of the finite size of the combustion chamber 
could be effectively incorporated by introducing a 
moving or stagnant external wall at a finite radius 
f — Re/R0. Since near stoichiometric conditions 
are of interest in diesel-engine combustion, values 
of Re/R0 ~ (aS)1'3 should be considered in inte-
grations. Such formulations could be employed 
to investigate autoignition by compression, pro-
viding the distributions of temperature and com-
position encountered immediately before ignition 
[97]. They would also be useful for studying the 
subsequent evolution of the diffusion flame gener-
ated upon ignition, which could be described in 
the limit of infinitely fast combustion. 

6.2. Parameters 

vaporization 

controlling droplet-cloud 

The solution depends on two fundamental 
independent parameters, the initial mass-loading 
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ratio a, which modulates the extent of interphase 
coupling, and the characteristic time ratio tc/tv, 
which measures the competition of heat transfer 
from the surrounding atmosphere with droplet 
vaporization. The product a.tc/tv, which measures 
the extent of spray vaporization in (52)-(54), is 
essentially the group combustion number G intro-
duced by Chiu and co-workers [88], variants of 
which were also used by other early investigators 
[90,92-94]. Although a.tc/tv can be expressed as 
atc/tv = 4nn0a0R

2
0 = 3N0a0/R0 ~ N

2
J

3
a0/ld, 

involving either the initial droplet-number density 
n0 or the total number of droplets in the cloud N0, 
the physical interpretation of the resulting expres-
sions is not transparent. Besides, accounting sepa-
rately for the two times involved in the problem 
facilitates consideration of the effect of enhanced 
heat transfer by turbulent transport, of interest 
in realistic applications. For instance, to charac-
terize approximately the rate of heat transfer 
one could employ the gas-phase effective heat-
transfer time t* — R

2
0/Dt, defined by replacing the 

molecular diffusivity with a turbulent diffusivity 
Dt. Since exchanges between the two phases are 
still controlled by molecular transport in the 
immediate vicinity of the droplet, the resulting 
effective group combustion number a.t*/tv would 
display a linear dependence on the ratio DTjDt, 
a function of the flow Reynolds number account-
ing approximately for the effect of turbulence. 

The distinguished limit tc/tv — O(l) and 
a. — 0(\) of droplet-cloud vaporization with 
two-way coupling between the liquid and gas 
phases requires numerical integration of the com-
plete problem (52)-(58). Simplifications arise 
when the initial droplet temperature Td — Ti is 
close to the boiling temperature TB, the case con-
sidered in the sample results of Fig. 3, for which 
Td~TB = TB/TA at all times, with the result that 
the evolution equation (57) is no longer needed. 
The expansion of the gas, which is initially very 
strong at the separating interface, is seen to induce 
significant droplet motion, as can be seen in the 
droplet trajectories shown in the bottom plot, 
which are extended in time until the droplet disap-
pears. The slip velocity v — vd, which is very large 
in the beginning, decays for t ~ 1. Once the ther-
mal wave reaches the center, vaporization occurs 
throughout the cloud, so that when the boundary 
droplet disappears for t ~ 5.6 the radius of the 
central droplet has decreased already to a ~ 0.19. 

The limit of sheath vaporization [93] arises for 
atc/tv ;» 1, as can be seen from (52) and (53), 
which lead in this limit to the condition al — 0, 
indicating the existence of a thin vaporization 
front located at f — rs(i) separating and outer 
region for f > fs where no droplets are found 
and an inner region for f <fs where the vaporiza-
tion rate is identically zero. Inside the cloud, 
where^ 2 = 0, the temperature must satisfy 
f = Td, as follows from (54) in this limit. The 

vaporization front bounding the shrinking cloud 
moves slowly with a characteristic time that can 
be seen to be of order atc, so that if a ;» 1 the solu-
tion evolves in a quasi-steady fashion for 
i — tjtc ;» 1. The near-equilibrium stagnant solu-
tion in the cloud and the outer droplet-free, quasi-
steady solution for f > fs must satisfy appropriate 
jump conditions at the vaporization layer, provid-
ing an equation for dfs/dt that yields a prediction 
for the cloud life time, ~ atc, upon integration (see 
the parallel analysis given in [98] for the cylindri-
cal droplet cloud). Note that the sheath solution 
is somewhat more complex in the alternative lim-
iting case tc/tv ;» 1 with a — O(l), corresponding 
also to large values of G — atc/tv ;» 1, because 
in that case the cloud life time is of order tc and 
the solution outside the vaporization layer 
remains unsteady during the vaporization process. 

7. Counterflow spray flames 

A canonical problem of interest in connection 
with the high-Reynolds-number flows typically 
encountered in burners is that of the counterflow 
mixing layer. Counterflow structures that move 

0.2 r 

£ = 4.5 

Fig. 3. The evolution of the vaporizing droplet cloud as 
obtained from integration of (52)-(58) for Tj = TB = 
0.55, Lv/(cpTA) = 0.48, LeF = 2.6, 7F/ = 0, a. = 1.0, and 
tc/tv =• 1. The lower plot shows droplet trajectories, 
extended in time until the droplet disappears. 
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with the mean velocity can be abstracted from the 
interface dynamics of shear and mixing layers [99]. 
Similarly, local counterflow configurations emerge 
in typical combustion chambers around the stag-
nation point that forms near the injector exit as a 
result of vortex breakdown of the swirling air-feed 
stream [100]. Counterflow configurations have 
been widely employed in laboratory experiments 
for studying reacting and non-reacting spray flows 
[79,101-106] as well as in numerical simulations to 
address the effects of strain on spray flames 
[75,104,107-116]. The typical experimental arrange-
ment involves two opposing nozzles of radius R 
located at a distance h. The resulting coaxial count-
erflowing jets, one of air and the other containing an 
inert gas carrying the fuel spray, produce an axisym-
metric laminar stagnation-point flow with gas veloc-
ity v — (u,v). The Reynolds number Re — UR/vs, 
based on the characteristic gas velocity U at the noz-
zle exit and gas kinematic viscosity vs of the spray-
carrier gas, is moderately large in typical applica-
tions, so that the flow of the counterflowing streams 
is nearly inviscid. Mixing between both streams 
occurs only in a thin layer located about the separat-
ing surface, whose characteristic thickness is 
5m ~ i?/Re1/2 < R. 

The computation of the inviscid flow in the 
outer streams involves in principle integration of 
the Euler equations for the gas phase coupled to 
the solution for the liquid phase, with the outer 
jet boundaries and the interface separating the 
two jets appearing as free surfaces to be obtained 
as part of the computation. This nontrivial calcu-
lation provides, in particular, the structure of the 
inviscid gas flow near the stagnation point, where 
the radial and axial velocity components on the 
spray side of the mixing layer are found to increase 
away from the stagnation point according to 

-- Asr/2 and (59) 

where r and z are the radial and axial coordinates 
measured from the apparent stagnation point and 
As is the local strain rate on the spray side of the 
mixing layer. The value of As, a quantity of order 
U/R that depends on the specific experimental 
setup (notably on the values of the inter-nozzle 
separation h/R and of the inert-to-air density ratio 
pj pA), determines the structure of the thin mixing 
layer formed around the stagnation point, which 
exhibits a self-similar solution in terms of the dis-
tance z to the stagnation plane. Note that the cor-
responding strain rate found on the air side is in 
general different, with a value AA — AS-~J'pj'pA dic-
tated by the condition of negligible pressure vari-
ation across the mixing layer. 

7.1. Droplet dynamics in counterflow mixing layers 

The dynamics of droplets in counterflow mixing 
layers is known to depend fundamentally on the 
droplet Stokes number St [74,103,117-119], given 

by the ratio of the characteristic droplet accommoda-
tion time ta, defined in (27), to the characteristic flow 
time. Using the reciprocal of the spray-side strain rate 
As as a representative value of the latter yields 

St = 4 , ( „ = ^ ^ ^ , (60) 
9 vs ps 

where a0 is the initial droplet radius. For small 
values of St, the droplets behave as flow tracers, 
and their trajectories follow closely those of the 
gas particles, while in the opposite limit, S t ;» 1, 
the droplets move in nearly ballistic trajectories 
weakly influenced by aerodynamic forces. In the 
distinguished regime corresponding to values of 
St of order unity the inertia of the droplets plays 
an important role in their trajectories. 

For the counterflow, there exists a critical value of 
the Stokes number Stc of order unity below which the 
droplets cannot cross the stagnation plane, but tend 
to accumulate there instead [74,103,118,119]. Con-
versely, droplets with Stokes numbers above the crit-
ical value cross the stagnation plane, following 
several oscillations before they vaporize completely 
[75,120,121] (see also [74] for experimental visualiza-
tions of this phenomenon). It is evident that any 
strained flamelet model for spray combustion based 
on the counterflow needs to consider these effects. 

The computation of the droplet trajectories 
xdM — (

r
d,Zd) and of the associated value of Stc 

requires integration of (13) and (14). In general, 
the calculation necessitates simultaneous determi-
nation of the evolution of the droplet radius and 
of the gas-phase velocity, needed to determine 
the force acting on the droplet. A well-known sim-
ple solution arises when droplet vaporization is 
neglected, along with changes of the gas velocity 
from the stagnation-point potential solution, 
which is given on both sides by (59) when ps — 
pA. For a droplet released at xd — (77, z/) with ini-
tial injection velocity yd — {vd,ud) — (rjA^/2, 
—ziAs), equal to the gas velocity, the problem 
reduces to that of integrating the uncoupled sec-
ond-order equations 

dr< 

At
2 

and 

-1 Usrd = 0,t = 0\
rd r

' (61) 
At 2 ' \ drd/dt = r,AJ2

 y
 ' 

dzd 

At 
+ -^ + Aszd = 0, t = 0 

Zd = Zl 

dzd/dt -- -ziAs 

(62) 

obtained from (13) and (14) with Stokes law (20) 
assumed for the droplet drag. Straightforward 
integration of (61) provides the evolution of the 
droplet radial location in terms of the dimension-
less time T =Ast/(2'&t) = t/(2ta), 

1 +St rj 

— — e 
ri 

cosh(-iV2St + 1) + 
V4St - 1 

sinh(TV2St+ I] 

(63) 
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which increases continuously regardless of the 
value of St. On the other hand, the character of 
the axial mot ion is fundamentally dependent on 
the value of St. For values of St < 1/4, the drop-
lets approach the dividing streamsurface z — 0 but 
never cross it, as can be seen by integrating (62) to 
give 

Zd 

— — e 
Zl 

coshfrVl - 4St) + 
1 - 2St 

Vl - 4St ' 
nh tV l - 4St) 

(64) 

By way of contrast, oscillatory droplet motion of 
decreasing amplitude about the stagnation plane 
is observed for St > 1/4, with the droplets pene-
trating a distance of order z7 into the opposing 
flow stream as described by 

Z<i 

— = e 
Zj 

cos(-iV4St- l ) + - 7 
-2St 

V4St - 1 
i ( T \ / 4 S t - l ) 

(65) 

This last expression indicates in particular that the 
period of the oscillations, A%ta/\/ASt — 1, becomes 
large for near critical conditions corresponding to 
0 < St — 1/4 <C 1, whereas the damping of the 
oscillatory motion is always associated with the 
accommodation time ta. 

The oscillatory and nonoscillatory droplet tra-
jectories evaluated with (63) and (64) for St — 0.15 
and with (63) and (65) for St — 1.0 are shown in 
Fig. 4. The figure also includes the flow stream-
lines originating at the injection points, which dif-
fer from the associated droplet trajectories. The 
existence of droplet-gas slip is responsible for the 
accumulation of droplets as the stagnation plane 
is approached, with the droplet-number density 
becoming infinity as z —> 0 for St < 1/4. This sin-
gularity in n, identified in early studies of particle-
laden flows [117], is however of limited relevance 
for spray counterflow flames because nonoscilla-
tory droplets vaporize after spending a finite time 
inside the hot mixing layer, with the result that 
they disappear at a finite distance from the stagna-
tion plane. As seen below, vaporization also has a 
significant effect on the droplets traversing into 
the air side, which can only cross the stagnation 
plane a limited number of times, because during 
part of their oscillatory cycle they are surrounded 
by hot gas, resulting in droplet vaporization. 

The simple droplet-trajectory problem (61) and 
(62), leading to the critical value Stc = 1/4 for 
oscillatory droplet motion, assumes a potential 
gas-velocity field and neglects variations of droplet 
radius and of gas viscosity. Effects of droplet 
vaporization, of gas-viscosity variation with tem-
perature, and of departures of the gas velocity 
from the potential solution modify the droplet tra-
jectory in a significant manner. As a result, it is not 
possible to know with certainty at the start of the 
computat ion whether a given droplet class will 
undergo reverse motion. In that sense, the critical 

value Stc — 1/4, which becomes Stc = 1/8 for the 
planar counterflow [122], cannot be expected to 
be accurate in reacting flows. 

When reverse droplet mot ion appears for 
supercritical values of St, the trajectories of drop-
lets of a given class that have been introduced at 
different radial locations 77 at the same meridional 
plane end up crossing each other, as seen in Fig. 4. 
The existence of crossing trajectories implies that, 
for a given class of droplets injected at z — z / ; the 
properties achieved at a given height z (notably, 
the droplet velocity, as shown in the figure, but 
also their temperature and local radius) may take 
different values, depending on what stretch of the 
oscillatory cycle is considered. As shown by Guth-
eil and Sirignano [75], one way of resolving this 
multiplicity, maintaining the selfsimilar character 
of the counterflow solution, is to consider in the 
integration the existence of different "sheets of 
solutions". Alternatively, this idea can be formu-
lated in the framework of the multicontinua 
description by considering, as done below, that 
the outgoing and the returning droplets belong 
to different classes, so that an additional indepen-
dent droplet class is added to the description every 
time the droplets reverse their motion. Since the 
number of traveling cycles is finite in the presence 
of vaporization, the number of additional droplet 
classes to be considered is always limited, and their 
inclusion does not tax excessively the numerical 
computation. 

7.2. Multicontinua formulation of counterflow 

spray flames 

We give below the multicontinua formulation 
for the self-similar solution of the steady counter-
flow spray flame near the stagnation plane. The 
formulation is equivalent to that developed by 
Sirignano and coworkers [75,107-109], including 
the modifications needed to accommodate the 

Fig. 4. Droplet trajectories obtained for St = 0.15 and 
St = 1.0 from evaluation of (63)-(65) for r,/z, = 0.25 
and rj/zj = 0.5. The dashed curves represent the flow 
streamlines rjrj = {z/zif

1
'
2
. 
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presence of droplets with reverse motion. The gas 
phase is described in terms of the radial and axial 
velocity components v — A(z)r/2 and u(z), temper-
ature and density T(z) and p(z), and mass fractions 
Yi{z). The fuel is injected into the inert stream at a 
given distance z — z7 ^ Sm from the stagnation 
point, forming a polydisperse spray with a Nc dif-
ferent droplet classes. For each droplet class j , the 
solution at a given distance z < z/ is given in terms 
of the droplet radius a'(z), temperature T'd(z), 
radial and axial velocity components vfd — 

z)r/2 and Uj(z), and droplet number density A
1 

Ad 

The problem is formulated in a nondimen-
sional form that exhibits explicitly the dependenc-
es on the main relevant controlling parameters, 
including the Stokes number St and the liquid 
mass-loading ratio at the injection plane a. The 
spray-side values of the strain rate As, thermal 
diffusivity DTs — Ks/(pscp), gas density ps, and 
gas temperature Ts are used as scales in defining 
the dimensionless variables z — zj(DT jAs)

1
' , 

A = A/A u = u/(DTJsf\ Ai = A
j
d/As, hfd = i£J 

{DTAsf\ p = p/ps, T = T/Ts, and T'd = T
J
JT,. 

Similarly, the spray properties at the injection 
location are used to define W — n/n

J
0, and 

a' — aja'0. In terms of this set of variables, 
the gas-phase problem reduces to that of 
integrating 

a
J d - 2 Nc

 -
— (pu) + pA = ^P — n'a'TX

1
, 

dz '
 F 3 P r ^ S f 

(66) 

pA dA 1 d f^.AA\ 

2 + ^ d F = 2 + P r d i r d f 

+ E ^ r ( 4 - ^ ) h + ^ a (67) 

d r d (-AT 
pu— = — [T

a 

dz dz 

3Pr 

dz J cpTspsAs 

J ~ 

sv 
j=l 

1 - e-» 
(68) 

pu 
-dY, 1 d( m 

dz Le, dz \ dz 

{\-Yv)^ij-n>a>Di{\U^) {69) 

+ { 
j=i 

j=l 

with boundary conditions u + z — A — \ — 

T-\ = Yi-Yis=0 as z ^ + o o and A- \JpJpA = 

T —TA — Yi — YiA—0 as z^—oo. Correspond-
ingly, the evolution of each droplet class j requires 
integration of 

d(arf 
ud~ 

2 _ r a 

(4 

dz 
2 

^ d z 

A A
1 

"
d
 dz 

1 1 

WrSf 

1 

a>T°k
J
, 

St-' (ai 
-2{A-A

]
d) 

St-' 
(u - l/j) 

aJ 

_,. dT^ = 2cp/c, T°X> 
d
 dz 3PrSf (aJ)

2 

-&*'„) +n>4 = 0 

T-T> 

c T 

(70) 

(71) 

(72) 

(73) 

(74) 

with initial conditions a
1
' — 1 — u!d — «j — 

'A
i
d-l

i
I = T'd-T'I = n> - \ = 0 at z = Z!. The 

above equations must be supplemented with the 
equation of state written in nondimensional form 
and with the expressions (23) and (24), needed to 
compute the dimensionless vaporization rate I

1
. 

Each droplet class is characterized by its mass-
loading ratio a

] and Stokes number St7', obtained 
from evaluating (2) and (60) with the properties 
of the droplet class at the injection plane. Note 
that an arbitrary zero displacement of the spray 
stream is assumed in writing the boundary condi-
tion w + z = 0 a s z ^ +oo. The location z — z0 of 
the stagnation plane, where u — 0, is obtained as 
part of the integration. 

The numerical computation with the multicon-
tinua formulation requires the coupled solution of 
the gas and liquid phases in an iterative scheme 
that may start by solving the elliptic gas-phase 
problem Eqs. (66)-(69) incorporating an adequate 
guess for the distributions of the droplet proper-
ties. The resulting profiles T(z), u(z), and A(z) 
are next used in computing for each droplet class 
the distributions of a, Ad, ud, and Td by integrating 
the characteristic equations (70)-(73) for decreas-
ing z from z — z/, while the associated number 
density n is obtained from (74). If the Stokes num-
ber is sufficiently small, then the value of a is seen 
to decay to zero at a given location, where the 
axial velocity ud is still negative. The integration 
of non-reversing droplets ends at that location. 
By way of contrast, for droplets with sufficiently 
large Stokes number the value of ud approaches 
zero before complete droplet vaporization occurs. 
At the turning plane z — zt, where ud — 0, the inte-
gration provides nonzero finite values of a — a,, 
Ad —Adt, and Td — Tdt. On the other hand, the 
local axial-velocity distribution 

ud 

2T°ut 

1/2 

\ l / 2 (75) 

obtained from (72) in terms of the local values of 
the gas temperature T, and gas velocity u, (with 
the minus and plus signs corresponding to outgo-
ing and returning droplets, respectively), can be 
used in (74) to show that the droplet number den-
sity diverges at the turning plane according to 
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n — C(z — zt)~ , where the constant C is deter-
mined numerically. As can be seen, although n 
becomes infinity alz — zt, the resulting singularity 
remains integrable, a characteristic of the solution 
noted in early work [75]. To avoid the existence of 
multivalued functions within a given droplet class, 
the droplets that have turned are assigned to a 
newly created droplet class, whose radius, velocity 
and temperature are determined by integrating 
(70)-(73) for increasing z with initial conditions 
a = a„ Ad = Adt, ud = 0, and Td = Tdt at z = z„ 
while the associated number of droplets is 
obtained from (74) with a boundary value 
n — C(z — zty

1
'
2 evaluated near z — zt. 

The droplet integration procedure, including 
addition of a new droplet class every time the 
droplets turn, continues until complete vaporiza-
tion is achieved (typically, after one or two turn-
ing events). The distributions of radius, velocity, 
temperature, and number density of all the drop-
let classes, i.e., those injected initially and those 
originated at the turning points, can be used to 
evaluate the droplet source terms in the gas-phase 
equations (66)-(69), providing upon integration 
updated profiles for the different gas properties, 
which are in turn employed to continue the calcu-
lation by recomputing the droplet evolution. The 
procedure is followed iteratively until convergence 
is achieved. 

7.3. Effects of droplet inertia on counterflow spray 

flames 

The formulation given above can be used to 
investigate different aspects of spray vaporization 
and combustion, including dependences on spray 
dilution, droplet inertia, and fuel preferential dif-
fusion, which can be addressed by considering dif-
ferent values of aJ, St7', and LeF, respectively. 
Although the formulation can be employed in cal-
culations of polydisperse sprays by considering 
different droplet classes at the injection location, 
only monodisperse sprays will be considered in 
the sample computations given below. 

Because of the large value of the stoichiometric 
air-to-fuel mass ratio S, relatively small values of 
the spray mass-loading ratio a ~ S^

1 suffice to 
provide the fuel needed to establish a robust coun-
terflow spray flame. Although for these relatively 
small values of a only one-way coupling exists in 
the spray feed stream, in that the gas flow is not 
significantly affected by the vaporization and 
acceleration of the droplets, there still exists a sub-
stantial coupling between phases associated with 
the strong exothermicity of the reaction. 

The two extreme solutions corresponding to 
chemically frozen flow and infinitely fast chemical 
reactions are shown in Fig. 5 for a monodisperse 
heptane spray counterflowing against hot air, with 
all parametric values being identical in both com-
putations. As can be seen, thermal expansion 

modifies considerably the velocity field in the pres-
ence of combustion, including the location of the 
associated stagnation plane (z0 — —0.55 with 
chemically frozen flow and z0 — —3.14 for infi-
nitely fast combustion). Although the droplets 
are released at the injection point z7 — 22 with 
the local gas velocity, as a result of their inertia 
they are seen to approach the stagnation plane 
with a velocity whose magnitude is considerably 
larger than that of the gas. For the value of the 
Stokes number St — 0.45 used in the integrations, 
the incoming droplets in the upper plot, corre-
sponding to a vaporizing spray with no chemical 
reaction, are seen to cross the stagnation plane, 
to encounter the counterflowing air stream. At 
their turning point, located at z, — z0 ~ —0.505, 
the axial velocity reverses sign following the local 
solution (75), while the droplets accumulate, as 
can be seen in the profiles of droplet number den-
sity. The subscripts 1 and 2 are used in the plot to 
indicate the properties of the outgoing and return-
ing droplets, respectively. The large residence time 
in the reversing region facilitates droplet vaporiza-
tion, so that the radius a2 is seen to decrease rap-
idly after the droplets turn around. Vaporization 
is completed before the droplets cross again the 
stagnation plane. The resulting fuel vapor, whose 
profile peaks at the turning point as a result of the 

j 
i 

2 - ZQ 

Fig. 5. Structure of a monodisperse heptane spray in a 
counterflow for TA = 700 K, T, = 300 K, a = 0.1, and 
St = 0.45. Droplets are injected at zj = 22 with the 
velocity and temperature of the carrier gas. The upper 
plot represents inert (non-reacting) vaporization while 
the lower plot corresponds to infinitely fast combustion, 
which is computed with use made of the coupling-
function formulation introduced in Section 5. 
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local accumulation of droplets, diffuses to both 
sides of the mixing layer, mixing with the oxygen 
of the air. 

The droplet behavior is different when a spray 
diffusion flame is present, as seen in the lower plot 
of Fig. 5, because the temperature increase associ-
ated with the chemical heat release enhances droplet 
vaporization. As a result, the droplets disappear far 
from the stagnation plane, at a relatively thin vapor-
ization layer where the fuel vapor is seen to accumu-
late. Due to the relatively large value S — 15.2 
corresponding to heptane-air combustion, the diffu-
sion flame, where the fuel vapor and the oxygen of 
the air react in stoichiometric proportions, stands 
away from the spray. This external sheath combus-
tion regime is the configuration encountered in most 
spray counterflow diffusion flames, as was verified 
in numerical integrations by varying the different 
controlling parameters. 

Computation of finite-rate effects, including 
critical extinction conditions, can be investigated 
on the basis of the Burke-Schumann computa-
tions for overall reactions strongly dependent on 
the temperature. Since in the extinction regime 
the reaction layer is thin compared with the mix-
ing layer, its inner structure is not affected directly 
by the presence of the droplets; rather, as in the 
case of gaseous diffusion flames, it is determined 
at leading order by a diffusion-reaction balance. 
As a result, the structure of the reacting layer 
can be computed a posteriori, once the Burke-
Schumann formulation is employed to determine 
the outer flame structure, including in particular 
the values of the peak temperature and scalar dis-
sipation rate DT(dZ/dz) at the flame. Thus, by 
combining the analytic results derived for gaseous 
diffusion flames on the basis of a one-step Arrhe-
nius chemistry model [123] with the Burke-Schu-
mann computations presented here one could 
easily evaluate critical extinction conditions for 
spray diffusion flames, including influences of 
spray dilution and droplet inertia. 

Effects of preferential concentration of drop-
lets associated with droplet-gas slip motion are 
investigated in Fig. 6, which represents results 
obtained for three different values of the Stokes 
number. For all three computations, the gas 
velocity profile shows a local minimum near the 
vaporization layer, that being the direct effect of 
the localized mass addition by droplet vaporiza-
tion. The calculations employ the properties of 
heptane given in Table 1, with the exception of 
the fuel Lewis number, which is taken in this fig-
ure to be unity to focus more directly on effects 
of droplet inertia on flame temperature. In gas-
eous combustion with unity Lewis numbers of 
the reactants, the peak temperature is known to 
be the adiabatic flame temperature of the fuel-
air stoichiometric mixture. The adiabatic temper-
ature resulting from burning the spray and the 
air in stoichiometric proportions is given by 

(q - Lv)/cp + S(TA - Ts) - {c,/cp - 1 ) (^ - Ts) 

S+l + l/a. 

(76) 

with the spray properties taken at the injection 
plane, where the droplet are assumed to be in ther-
mal equilibrium with the carrier gas. The value 
corresponding to a — 0.05, the local spray dilution 
at the injection plane, is indicated in Fig. 6 by a 
horizontal dashed line. As can be seen, the peak 
value of the different temperature profiles lies con-
sistently above the adiabatic flame temperature, 
with increasing departures for increasing values 
of St. This is a result of the droplet-gas slip 
motion in the approaching spray stream. As can 
be seen in the velocity profiles on the right-hand 
side of the figure, the differences u — ud are more 
pronounced for larger values of St, enhancing 
the droplet accumulation rate, an effect observed 
in the corresponding profiles of n. As a result, 
for larger values of St, the spray that reaches the 
vaporization layer has a higher liquid mass load-
ing, which in turn increases the amount of fuel 
generated upon vaporization. The stoichiometric 
mixture that is burnt in the diffusion flame is 
therefore richer than that formed with the spray 
dilution corresponding to the injection conditions, 
leading to a higher peak temperature. 

8. Concluding remarks and open challenges 

As explained above, remarkable progress has 
been made over the past fifty years regarding the 
mathematical description of reactive spray flows 
by exploiting judiciously the disparity of length 

Fig. 6. Structures of counterflow Burke-Schumann 
flames as obtained for a monodisperse spray with 
St = (0.05,0.15,0.25) for a. = 0.05, TA = 750 K, and 
Ts = 300 K. The droplets are released at zj = 15.4 with 
the velocity and temperature of the carrier gas. All fuel 
properties are those of heptane, except for the fuel-vapor 
Lewis number, which is taken in these integrations to be 
LeF = 1. 
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and time scales present in the problem. Reasons 
for the validity and limitations of the continuum 
description of the gas and liquid phases in the 
vaporization and combustion of sprays in diesel 
engines and liquid-fueled gas turbines have been 
indicated. The homogenized description can be 
used for the direct numerical simulation of turbu-
lent reacting sprays and also as starting point for 
Reynolds-averaged representations of these flows. 
We have aimed to show in this paper how consid-
eration of canonical model problems has been 
instrumental for the analysis of spray-combustion 
phenomena. In particular, we have tried to illus-
trate, with the examples of the evolving spray 
cloud and the counterflow configuration, how by 
the careful nondimensional formulation of the 
problems they can become a tool to gain under-
standing of the dynamics of sprays. Thus, collec-
tive effects of cloud vaporization have been 
investigated in a spherically symmetrical configu-
ration, accounting for the significant separate 
effects of the initial liquid mass loading and the 
ratio of the heat-conduction time across the cloud 
and the time of droplet vaporization. Effects of 
droplet inertia on spray diffusion flames have been 
investigated in connection with the counterflow 
configuration. 

Finite-rate effects, controlling the transition 
from the non-reacting mode to the diffusion-con-
trolled mode, have been limited here to an Arrhe-
nius reaction for the computation of ignition in 
mixing-layer configurations. The mixing-layer 
ignition results should be extended in future work 
to more realistic chemical schemes, needed for 
reliable predictions of finite-rate chemical effects 
in spray flames, including also critical conditions 
for strain-induced extinction, considered earlier 
[75]. The associated chemistry involves typically 
hundreds of intermediate species and a few thou-
sand elementary reactions [124]. Chemical preta-
bulation in turbulent-combustion models benefits 
from investigations of surrogates of these complex 
fuels, whose chemical mechanisms are starting to 
require thorough uncertainty-quantification anal-
yses as the number of kinetic parameters becomes 
larger [125,126]. Systematic chemical-kinetic 
reduced mechanisms based on steady-state 
approximations for intermediates [85] can be use-
ful in numerical and asymptotic investigations of 
spray flames, including computations of pollutant 
emissions (see, e.g., the discussion in Section 5.4). 

Despite the significant progress made in recent 
years, our understanding of spray-combustion 
phenomena is far from complete. Improved 
descriptions of the hydrodynamic instabilities 
leading to liquid-jet atomization and of droplet 
breakup and coalescence processes occurring in 
the secondary atomization region are needed. 
Although investigations focused on the dynamics 
of momentum transfer in particle-laden turbulent 
flows have contributed valuable understanding of 

the essential mechanisms leading to droplet dis-
persion in spray jets, including effects associated 
with turbulent kinetic-energy modulation by the 
solid phase as well preferential concentration 
[18] (both having important implications for sub-
grid-scale modeling [127-130]), the needed exten-
sion to spray turbulent combustion necessitates 
the additional consideration of two-way mass 
and thermal-energy transfer processes. More work 
on the effects of convection at interdroplet and 
droplet scales is also needed, to address influences 
of turbulence on homogenized descriptions and 
on droplet-source submodels. 

The current trends that gear designs of diesel 
engines towards higher compression ratios pro-
mote increasing interest in spray combustion 
under supercritical conditions [131]. Since the 
liquid fuel is seldom preheated before injection, 
the presence of both subcritical and supercritical 
conditions in the combustion chamber is war-
ranted. This requires simultaneous consideration 
of the liquid phase, which may contain droplets 
and ligaments, in addition to the gas phase and 
the supercritical mixture, with the spatial location 
of the transcritical conditions being determined by 
the capabilities of the hot environment to heat up 
the liquid fuel to its critical temperature. Clearly, 
the different simplifications stemming from the 
condition pjp ;» 1 do not apply to the descrip-
tion of the supercritical fluid. Although analyses 
of droplet vaporization and combustion have 
addressed supercritical conditions [132], including 
transient effects associated with shorter life times 
[20,133], more work is needed to provide reliable 
droplet submodels. 

Considerable advances have been made in 
recent years in understanding the onset and devel-
opment of thermoacoustic instabilities in gaseous 
combustion [134-136]. Extension to spray com-
bustion of predictive capabilities developed for 
gaseous combustion instabilities requires the con-
sideration of finite inertia of the liquid phase, 
which responds to pressure oscillations with a 
characteristic delay that depends on the Stokes 
number [137,138]. In this regard, recent investiga-
tions have been carried out to model spray-flame 
transfer functions using numerical simulations 
[139] and experiments [140-142], of interest for 
the development of reduced-order models. 

A number of modeling issues remain to be 
resolved. For example, the direct extension to 
spray combustion of flamelet approaches for the 
modeling of turbulent reacting flows appears to 
be nontrivial. Since both premixed and non-pre-
mixed flames can coexist in liquid-fueled burners 
[64,69-73,143], the accuracy of modeling strate-
gies based on either premixed or non-premixed 
flamelets is necessarily limited, so that the use of 
hybrid models must be considered in spray-com-
bustion applications. In contrast to gaseous flam-
elets, in which the local strain rate is often 
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sufficient to parametrize the entire manifold of 
solutions, spray flamelets display a richer para-
metric dependence, as can be inferred from the 
counterflow formulation of Section 7. On the 
other hand, the gas mixture fraction, which pro-
vides a one-to-one mapping between physical 
and mixture-composition spaces in gaseous com-
bustion, becomes non-monotonic in spray flames 
because of droplet vaporization [144,145]. This, 
in turn, prevents straightforward tabulation of 
the flamelet variables, and introduces additional 
difficulties for modeling the scalar dissipation rate, 
which strongly departs from its gaseous counter-
part [64]. To palliate this lack of monotonicity, a 
mixture fraction incorporating also the local 
liquid mass fraction may be derived, in which 
the vaporization source term does not appear 
explicitly. Nevertheless, the presence of the fuel 
in liquid phase in the mixture fraction requires 
modeling of additional terms related to the drop-
let-gas slip velocity and to the non-diffusive char-
acter of droplet t ransport [146,147]. Alternative 
definitions of mixture-fraction variables incorpo-
rating the liquid fuel have been proposed [148], 
but those appear to become more effective for 
numerical simulations that resolve the spray down 
to droplet scales including the liquid-gas inter-
face. A different approach that parallels the treat-
ment of gaseous combustion involves the use of a 
mixture fraction that satisfies a source-free trans-
port equation [67], thereby simplifying greatly 
the numerical integration. Such a mixture fraction 
cannot be derived, however, from the original 
conservation equations, a shortfall of the formula-
tion that necessarily limits its descriptive capabil-
ity (e.g., the location of the stoichiometric 
mixture fraction in physical space is not related 
in any way to the flame position). Clearly, many 
of these modeling difficulties are not present when 
the droplets are so small that they heat up and 
vaporize very fast while following closely the gas-
eous streamlines, under which conditions a quasi-
gaseous flamelet formulation based on the coun-
terflow configuration may be used, including 
modified boundary conditions on the fuel side 
that account for the enthalpy loss required for 
droplet vaporization [149]. 
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