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Abstract 

A modelling of the thermal conductivity of nanofluids based on extended irreversible 

thermodynamics is proposed with emphasis on the role of several coupled heat transfer 

mechanisms: liquid interfacial layering between nanoparticles and base fluid, particles 

agglomeration and Brownian motion. The relative importance of each specific mechanism on 

the enhancement of the effective thermal conductivity is examined. It is shown that sizes of the 

nanoparticles and the liquid boundary layer around the particles play a determining role. For 

nanoparticles close to molecular range, the Brownian effect is important. At nanoparticles of 

the order of 1-100 nm, both agglomeration and liquid layering are influent. Agglomeration 

becomes the most important mechanism at nanoparticle sizes of the order of 100 nm and higher. 

The theoretical considerations are illustrated by three case-studies: suspensions of alumina rigid 

spherical nanoparticles in water, ethylene glycol and a 50/50 w% water/ethylene-glycol 

mixture, respectively, good agreement with experimental data is observed. 
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1. Introduction 

It has been shown that thermo-physical properties and in particular heat transfer coefficients of 

base fluids can be modified significantly by introducing nanoparticles [1, 2]. It is well-known 

that thermal conductivity of some nanofluids and nanocomposites is considerably enhanced by 

adding nanoparticles. A huge amount of theoretical work (e.g. [3, 4]), and experimental [5] 

works have been devoted to the subject. Most theoretical models are based on Maxwell’s 

homogenization method [6, 7]. However, this approach does not take into account the particles 

size effect. This has led some people to formulate renovated Maxwell’s models by introducing 

explicitly the particle’s dimensions [8-12]. 

 There has been recently much attention paid to some particular heat transfer 

mechanisms in nanofluids, such as formation of a nano-liquid-layer around the nanoparticles 

(liquid layering) [13-16], particles clustering [17-20] and Brownian motion of particles [21-23]. 

Contradictory conclusions have been formulated about the relative importance of the 

aforementioned mechanisms [1]. It is therefore the purpose of this work to shed more light on 

this matter. Several ways have been explored to study the change of thermal conductivity in 

nanofluids and nanocomposites like solving directly Boltzmann’s transport equation for 

phonons [24], or constructing phenomenological models like those rooted on Maxwell’s model 

[25] or mixing both macroscopic and microscopic considerations [11,12,26].  

Because the size of the nano materials is comparable or somewhat larger than the mean 

free path of the heat carriers, heat transport is mainly of ballistic rather than diffusive nature; 

therefore Fourier’s law is no longer valid and more sophisticated formulations are expected [27-

29]. Here, we follow the line of thought of extended irreversible thermodynamics (EIT) [30-
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33], which is a non-equilibrium thermodynamics theory especially suited to treat small-scale 

effects. The main idea underlying EIT is to upgrade the thermodynamic fluxes, like the heat 

flux to the status of independent variable at the same level as the classical variable, the 

temperature. The consequence is that Fourier’s law will be substituted by more complex 

expressions allowing to deal with high frequency processes and small-scale systems. EIT has 

been applied in previous papers [12, 34] on heat transport in nanocomposites formed by 

spherical nanoparticles distributed randomly in diverse host matrices. The results were shown 

to be in good agreement with Monte Carlo simulations and other models using different 

schemes. In the following, we extend the previous developments about nanocomposites to 

nanofluids, which call for consideration of other heat transfer mechanisms, negligible in 

nanocomposites.  

More specifically, we propose a mixt between Nan’s renovated Maxwell model [8] 

known as the effective medium approximation (EMA) and Extended Irreversible 

Thermodynamics. Furthermore, the discussion is not limited to the description of the particular 

mechanisms of liquid layering, agglomeration and Brownian motion per se but emphasis is put 

on their coupling. This investigation is backed up by comparing the theoretical predictions with 

experimental data.  

The paper is organized as follows. The mathematical model is set up in Section 2. It 

consists in a mixing of EMA and EIT. The main original part of the present work is Section 3 

wherein is treated the interactive and combined influence of the heat transport mechanisms 

under study. In Section 4, the general analysis is particularized to the cases of alumina particles 

dispersed in water, ethylene-glycol and a 50/50 w% water and ethylene-glycol mixture, 

respectively. It is shown that the relative importance of each individual effect is mainly 

determined by the size of the nanoparticles and the thickness of the interfacial boundary layer. 

Supplementary comments are developed in Section 5 and conclusions are drawn in Section 6.  
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2. Mathematical model 

Our objective is to derive a closed-form expression for the effective thermal 

conductivity of nanofluids in presence of various transport mechanisms. Thermal conductivity 

depends on several factors as the nanoparticles volume fraction, the thermal boundary 

resistance between fluid and particles and their shape and size. Here, for simplicity, the analysis 

is restricted to spherical rigid nanoparticles of the same dimension dispersed in a homogeneous 

fluid. The other working hypotheses are the following: 

 particles are homogeneously dispersed, 

 temperature is fixed equal to the room temperature,   

 there is no electric surface charge,  

 surfactants are absent.  

 

Let us briefly comment about these hypotheses. The distribution of the dispersed 

particles is assumed to be uniform, i.e. independent of the spatial coordinates. Although it is 

true that concentration of particles is able to modify the heat conductivity, other factors like the 

ones investigated in this work play a more important role. At low volume fraction of particles 

and weak concentration gradients, the influence of the spatial distribution of particles on heat 

transfer is negligible due to the smallness of the coupling coefficients of the Soret and Dufour 

effects.  

Modifying the temperature will of course influence the heat conductivity. It has been 

observed that increasing the temperature enhances generally the heat conductivity of nanofluids 

(e.g. [35, 36]). The assumption of a fixed temperature is motivated by the fact that most 

experimental data, to which we compare our theoretical results, are given at a fixed temperature. 

Concomitantly, we neglect the convection induced by a thermal gradient (as in Bénard’s 
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thermo-convection). This is justified as there are very few experiments on natural convection 

involving nanoparticles and the results are not conclusive [25]. The effect of electric surface 

charge is to modify the structure of the solid particles; however, the study of its consequence is 

outside the scope of this work as well as the role of surfactants which is of more importance in 

the methods of preparation of the nanofluids. 

The process of homogenization of the heterogeneous medium, formed by the 

nanoparticles and the host fluid, is based on the EMA formalism. The latter finds its origin in a 

work by Maxwell [7] (in the framework of electric conductivity) and has been revisited later 

on by Nan et al [8] (in a different context). These authors propose a methodology for 

determining the effective heat conductivity of nanocomposites taking into account the 

interfacial thermal resistance, size, shape and orientation of the particles. Their approach has 

been applied to a large variety of geometries and is based on a multiple-scattering technique 

[8]. The EMA equation for the effective thermal conductivity coefficient, 𝑘௘௙௙ as derived by 

Nan et al. is given by 

 

𝑘௘௙௙ = 𝑘௙ ଶ௞೑ା(ଵାଶఈ)௞೛ାଶఝൣ(ଵିఈ)௞೛ି௞೑൧ଶ௞೑ା(ଵାଶఈ)௞೛ିఝൣ(ଵିఈ)௞೛ି௞೑൧ .                (1) 

 

In this expression, 𝑘௙ and 𝑘௣ designate the thermal conductivities of the fluid and the suspended 

particles respectively, 𝜑 is the volume fraction of the particles and 𝛼 is a dimensionless 

parameter describing the particle-fluid interaction expressed by 

 𝛼 = 𝑅𝑘௙/𝑟௣.              (2) 

 

with 𝑟௣ the radius of the nanoparticle, and 𝑅 the thermal boundary resistance coefficient whose 

magnitude is 0.77*10-8, 1.2*10-8 and 0.92 *10-8 Km²/W for water, ethylene glycol and the 50/50 
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w% water/ethylene-glycol mixture, respectively [37]. The values of 𝑘௙ are obtained from the 

literature [38], while 𝑘௣ is derived hereafter on the bases of EIT [12, 34], leading to  

 𝑘௣ = 𝑘௣଴ 𝑓(𝐾𝑛),          (3) 

 

with 𝑓(𝐾𝑛)  the correcting factor allowing for the size dependence of the nanoparticles, the 

quantity 𝑘௣଴ is the value of  the thermal conductivity for the bulk material of which the particle 

is composed of and is given by the classical relation  

 𝑘௣଴ = ଵଷ (𝐶௣𝑣௣Λ௣)         (4) 

 

wherein 𝐶௣, 𝑣௣ and Λ௣  stand for the specific heat capacity, the group velocity and the mean 

free path of phonons respectively. The correction factor 𝑓(𝐾𝑛), expresses the  dependence with 

respect to the particle’s size through 𝐾𝑛, the Knudsen number, defined as the ratio of the mean 

free path Λ௣ of the phonons inside the particle and the radius 𝑟௣ of the particle: 

 𝐾𝑛 = Λ௣/𝑟௣.             (5) 

 

The function 𝑓(𝐾𝑛) in (3) is determined by referring to EIT. According to EIT, the space 𝑽 

of state variables describing a rigid heat conductor is constituted by the internal energy, the only 

relevant conserved variable, 𝑒 (or the temperature 𝑇) and the non-conserved heat flux vector 𝒒  

so that 𝑽 = (𝑒, 𝒒). Nanomaterials require the introduction of higher order heat fluxes, like 𝑸(ଶ) 
(a tensor of order two), the flux of 𝒒, 𝑸(ଷ) (a tensor of order three), the flux of 𝑸(ଶ)  and so on. 

An important problem is to derive their time evolution equations. This task is easily achieved 
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by determining the expression of the rate of entropy production. The latter is obtained by 

starting from the expression of the entropy function 𝑠(𝑽), assumed to depend on the whole set 𝑽 of variables. Here 𝑠 = 𝑠(𝑒, 𝒒, 𝑸(ଶ), … , 𝑸(ே)) or in terms of time derivatives, 

 𝑑௧𝑠(𝑒, 𝒒) = డ௦డ௘ 𝑑௧𝑒 + డ௦డ𝒒 . 𝑑௧𝒒 + ∑ డ௦డ𝑸(೙) ⨂𝑑௧𝑸(௡)𝑵𝒏ୀ𝟐 ,                       (6)  

 

wherein 𝑒 and 𝑠 are measured per unit volume, a dot stands for the scalar product, the symbol ⨂ for the inner  product of the corresponding  tensors and 𝑑௧  for the material time derivative. 

Expression (6) is referred to as the generalized Gibbs equation. It is assumed that 𝑠 is a concave 

function of the variables to guarantee stability of the equilibrium state. Moreover, it obeys a 

general balance equation of the form 

 𝑑௧𝑠 = −∇ ∙ 𝑱௦ + 𝜎௦  (𝜎௦ ≥ 0),      (7)  

  

whose rate of production per unit volume 𝜎௦ (in short, the entropy production) is positive 

definite to satisfy the second principle of thermodynamics,  𝑱௦ is the entropy flux vector. Now, 

define the non-equilibrium temperature by 𝜕𝑠/𝜕𝑒 = 𝑇ିଵ(𝑒), wherein the fluxes have been 

neglected [39], and select the constitutive equations for 𝜕𝑠/𝜕𝒒,  𝜕𝑠/𝜕𝑸(௡) as given by 𝜕𝑠/𝜕𝒒 =−𝛼ଵ(𝑇)𝒒 and 𝜕𝑠/𝜕𝑸(௡) = −𝛼௡(𝑇)𝑸(௡), respectively. 𝛼௡(𝑇) (𝑛 = 2, … 𝑁) are positive definite 

coefficients to meet the property that 𝑠 is maximum at equilibrium. They depend generally on 

the temperature, the minus sign in front of 𝛼௡(𝑇) having been introduced for convenience. 

Under these conditions, expression (6) can be written as  

 𝑑௧𝑠൫𝑒, 𝒒, 𝑸(𝟐), … , 𝑸(ே)൯ = 𝑇ିଵ𝑑௧𝑒 − 𝛼ଵ𝒒 ∙ 𝑑௧𝒒 − 𝛼ଶ𝑸(ଶ)⨂𝑑௧𝑸(ଶ) − ⋯ − 𝛼ே𝑸(ே)⨂𝑑௧𝑸(ே).         
            (8) 



8 

 

The next step is the formulation of the entropy flux 𝑱𝒔, which is not simply given by the classical 

expression 𝑇ିଵ 𝒒 like in classical irreversible thermodynamics [39], but in EIT, it also depends 

generally on the  higher order fluxes. According to the theory of representation of isotropic 

tensors [40] a general expression of the vector 𝑱𝒔  depending on the variables 𝒒, 𝑸(ଶ), …𝑸(ଶ) is 

 𝑱௦ = 𝑇ିଵ𝒒 + 𝛽ଵ𝑸(ଶ) ∙ 𝒒 + ⋯ + 𝛽ேିଵ𝑸(ே)⨂𝑸(ேିଵ),     (9) 

 

with 𝛽௡ designating material quantities, whose physical meaning will be specified in the 

forthcoming. Substituting (8) and (9) in (7), and eliminating 𝑑௧𝑒 via the energy conservation 

law (𝑑௧𝑒 = −∇ ∙ 𝒒) leads to  

 𝜎௦ = −൫−∇𝑇ିଵ + 𝛼ଵ𝑑௧𝒒 − 𝛽ଵ∇ ∙ 𝑸(ଶ)൯ ∙ 𝒒 − ∑ 𝑸(௡)ே௡ୀଶ ⨂൫𝛼௡𝑑௧𝑸(௡) − 𝛽௡∇ ∙ 𝑸(௡ାଵ) −𝛽௡ିଵ∇𝑸(௡ିଵ)൯ ≥ 0,          (10)  

 

where, for 𝑛 = 2, 𝑸(ଵ) is to be identified as 𝒒. The expression for 𝜎௦ is a bilinear relationship 

in the flux 𝒒 and the subsequent higher order of fluxes 𝑸(𝒏). The terms between the parentheses 

are usually called the thermodynamic force 𝑿. In order to guarantee the positiveness of the 

entropy production 𝜎௦, the simplest way is to assume a linear flux-force relation of the form 𝑿(௡) = 𝜇௡𝑸(௡) (𝜇௡ > 0 & 𝑛 = 1,2,3, …), where 𝜇௡ are phenomenological coefficients. In doing 

so, we obtain the set  

 ∇𝑇ିଵ − 𝛼ଵ𝜕௧𝒒 + 𝛽ଵ∇ ∙ 𝑸(ଶ) = 𝜇ଵ𝒒,                      (11) 
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𝛽௡ିଵ∇𝑸(௡ିଵ) − 𝛼௡𝜕௧𝑸(௡) + 𝛽௡∇ ∙ 𝑸(௡ାଵ) = 𝜇௡𝑸(௡), (𝑛 = 2,3, … , 𝑁),   (12)

        

which is compatible with positive entropy production at the condition that 𝜇௡ > 0. In (11) and 

(12), we have replaced the material by the partial time derivative as the heat conductor is 

assumed at rest, while 𝛼௡, 𝛽௡ and 𝜇௡ are phenomenological coefficients related to the relaxation 

times, correlation lengths and transport coefficients, respectively. For instance, by setting in 

Equation (11), 𝛼ଵ = 𝜏/𝑘𝑇ଶ and 𝜇ଵ = 1/𝑘𝑇ଶ, with 𝜏 designating the relaxation time of the heat 

flux, expression (11) reduces to the well-known law of Cattaneo when the term ∇ ∙ 𝑸(ଶ) is 

omitted. The other coefficients 𝛼௡ and 𝜇௡ (𝑛 = 2, … , 𝑁) associated to the higher order fluxes, 

can be given a similar meaning. Consider now an infinite number of flux variables (𝑁 → ∞) 

and apply the spatial Fourier transform 𝒒ෝ(𝒌, 𝑡) = ∫ 𝒒(𝒓, 𝑡)𝑒ି௜𝒌⋅𝒓ାஶିஶ 𝑑𝒓 to Eqs. (11) and (12), 

with 𝒒ෝ the Fourier transform of 𝒒, 𝒓 the spatial variable, 𝑡 the time and 𝒌 the wavenumber 

vector. This procedure yields the following time-evolution equation for the heat flux 

 𝜏̅(𝒌)𝜕௧𝒒ෝ(𝒌, 𝑡) + 𝒒ෝ(𝒌, 𝑡) = −𝑖𝒌𝑘௣(𝒌)𝑇෠(𝒌, 𝑡)        (13) 

 

where 𝜏̅(𝒌) = 𝛼ଵ/𝜇ଵ designates a renormalized relaxation time depending generally on 𝒌, 

while the thermal conductivity 𝑘௣(𝒌) is given by the continued-fraction  

 

𝑘௣(𝒌) = ௞೛బଵା 𝒌𝟐೗భమభశ 𝒌𝟐೗మమ𝟏శ𝒌𝟐೗యమ𝟏శ⋯
,            (14) 

 

with 𝑘௣଴ the classical bulk thermal conductivity, given by Eq. (4), independent of the dimension 

of the system, 𝑙௡ is the correlation length of order n defined by 𝑙௡ଶ = 𝛽௡ଶ/(𝜇௡𝜇௡ାଵ). Here, it is 
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assumed that the relaxation times 𝜏௡ (𝑛 > 1) corresponding to higher order fluxes are negligible 

with respect to 𝜏ଵ, which is a hypothesis generally admitted in kinetic theories. In the present 

problem, there is only one characteristic dimension (the nanoparticle radius), so that it is natural 

to select 𝑘 ≡ 2𝜋/𝑟௣. The correlation lengths are selected as [30,41,42] 

 𝑙௡ଶ = 𝑎௡ାଵ𝑙ଶ,            (15) 

 

with 𝑎௡ = 𝑛ଶ/(4𝑛ଶ − 1) and 𝑙 identified as a reference length independently of the order of 

approximation. With these results in mind, it was shown (e.g. [30,41]) that within the 

asymptotic limit 𝑛 → ∞ [43], the continued fraction (14) may be given the form  

 

𝑘௣ =  ଷ௞೛బସగమ௄௡మ ቂ ଶగ௄௡௔௥௖௧௔௡(ଶగ௄௡) − 1ቃ.          (16) 

 

Substitution of relation (16) in (1) closes the problem of determining the effective thermal 

conductivity of the nanofluid. 

 

3. Influence of several heat transfer mechanisms 

In this section, the influence of several heat transfer mechanisms, with the aim to 

determine their relative importance, is investigated. The effects considered in the forthcoming 

are successively those caused by the presence of a liquid layer around the nanoparticles (liquid-

layering), particles agglomeration and Brownian motion of particles. 

 

3.1. Liquid layering 

Because of the strong interatomic forces at the interface particles-fluid, some of the fluid 

molecules will attach themselves to the surface of the nanoparticle, forming an interfacial layer 
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of thickness 𝛿 with a higher density than the fluid and having the property approaching that of 

the solid phase of the fluid [25]. As this “solid” surrounding layer has its own thermal 

conductivity, it is expected that it will influence the heat transfer mechanism. A possible way 

to take into account the liquid-layer effect is to modify relation (1), so that we are led to [13-

16] 

𝑘௟௟௘௙௙ = 𝑘௙ ଶ௞೑ା(ଵାଶఈ೗)௞೛೗ାଶఝ(ଵାఉ)యൣ(ଵିఈ೗)௞೛೗ି௞೑൧ଶ௞೑ା(ଵାଶఈ೗)௞೛೗ିఝ(ଵାఉ)యൣ(ଵିఈ೗)௞೛೗ି௞೑൧ ,         (17) 

 

where index “𝑙𝑙” stands for “liquid layer” and 𝑘௣௟ for the thermal conductivity of the 

nanoparticle with the surrounding layer. The presence of the liquid layer of thickness 𝛿 will 

modify the radius of the particle from 𝑟௣ to 𝑟௣ + 𝛿 and the volume fraction from 𝜑 to 𝜑(1 + 𝛽)ଷ 

with 𝛽 = ఋ௥೛, the ratio of the liquid layer thickness and the nanoparticle radius [13] (𝛽 → 0 

means that the liquid-layer effect is not taken into account). Finally, in analogy with expression 

(1), the equivalent thermal conductivity of the heterogeneous system formed by the nanoparticle 

and the liquid layer is given by:  

 

𝑘௣௟ = 𝑘௣ ఊቀଶ(ଵିఊ)ା(ଵାఉ)య(ଵାଶఊ)ቁ(ఊିଵ)ା(ଵାఉ)య(ଵାଶఊ) ,               (18) 

 

where 𝛾 = ௞೗௞೛, is the ratio of the thermal conductivities of the liquid layer (𝑘௟) and the 

nanoparticle 𝑘௣ (given by Eq. (16)). It is expected that the solid-like liquid layer has a thermal 

conductivity intermediate between that of the bulk liquid and that of the nanoparticle. Xie et al. 

[13] propose 

 

𝑘௟ = ௞೑ெమ(ெିఉ) ୪୬(ଵାெ)ାఉெ,           (19) 
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with  𝑀 = (𝑘௣/𝑘௙)(1 + 𝛽) − 1. It remains to determine the liquid layer thickness 𝛿 around the 

nanoparticle. Based on the electron density profile at the interface, Hashimoto et al. [44] derived 

the interfacial layer thickness at the surface of a spherical micro-domain. Later, Li et al. [45] 

introduced the same model for determining the interfacial layer thickness of a pseudo solid–

liquid system. In both works, 𝛿 = √2𝜋𝜎, where 𝜎 is a characteristic length related to the 

diffuseness of the interfacial boundary, with a typical value that falls in the range 0.4-0.6 nm, 

from which  follows that δ is of the order of 1-1.5 nm. In addition, experimental results [46] 

and molecular dynamics simulations [47] showed that the typical interfacial layer thickness 

between the solid (nanoparticles) and liquid phase is of the order of a few atomic distances, 

namely, 1-2 nm. Murshed et al. [48] also reported that the variation of the interfacial layer 

thickness (they considered 1-3 nm) does not significantly affect the thermal conductivity 

enhancement. Accordingly, we expect that there is not much difference between 1 and 1.5 nm 

for the interfacial layer (this has been also confirmed by a posteriori calculations). For the sake 

of completeness, we have studied the impact of choosing a higher value, say 𝛿 = 3 nm (the 

maximum value being generally considered [48]). As commented in Section 4.3, a modification 

of the value of 𝛿 has little influence so that it is reasonable to use 𝛿 = 1 nm in the calculations 

as widely accepted in the literature [44, 45, 48]. 

 

3.2. Agglomeration of particles 

We now allow some of the particles to form clusters supposed to be uniformly dispersed 

within the fluid with their distributions independent of the space coordinates. To account for 

the agglomeration of nanoparticles [49-52], we will change the radius 𝑟௣ of the particles into 𝑟௣,௔ (radius of the agglomerate) in the expressions of 𝛼௔ and 𝛽௔, which reads respectively, 𝛼௔ =
ோ௞೑௥೛,ೌାఋ and  𝛽௔ = ఋ௥೛,ೌ. In these expressions, we have introduced the thickness 𝛿 of the liquid layer 



13 

because agglomeration and liquid-layering are linked to one another, indeed liquid layers may 

also be found around agglomerates. The quantity 𝜑௔ = 𝜑 ൬௥೛,ೌ௥೛ ൰ଷି஽
is the volume fraction of the 

agglomerates, with 𝐷 the fractal index, whose typical value lies between 1.6 and 2.5 for 

aggregates of spherical nanoparticles [51]. The value for 𝐷 is often taken as 1.8 and since the 

thermal conductivity appears to be rather insensitive to the value of 𝐷 [50-52], we will here 

work with 𝐷 = 1.8. This leads finally to the following expression for the effective thermal 

conductivity 𝑘௟௟,௔௘௙௙taking into account the agglomeration and the liquid-layer effects: 

  

𝑘௟௟,௔௘௙௙ = 𝑘௙ ଶ௞೑ା(ଵାଶఈೌ)௞ೌ,೗ାଶఝೌ(ଵାఉೌ)యൣ(ଵିఈೌ)௞ೌ,೗ି௞೑൧ଶ௞೑ା(ଵାଶఈೌ)௞ೌ,೗ିఝೌ(ଵାఉೌ)యൣ(ଵିఈೌ)௞ೌ,೗ି௞೑൧ .     (20) 

 

In Eq. (20), we have introduced the quantity 𝑘௔,௟, which is the thermal conductivity of an  

agglomerate formed by the cluster of particles surrounded by a liquid layer. We use for 𝑘௔,௟ the 

expression established by Hui et al. [53] and adapt it by introducing the liquid-layer effect in 

the same way as done in the previous subsection, resulting into 

 

𝑘௔,௟ = ଵସ ቈ3𝜑௦൫𝑘௣ − 𝑘௙൯ + ൫2𝑘௙ − 𝑘௣൯ + ට8𝑘௙𝑘௣ + ቀ3𝜑௦൫𝑘௙ − 𝑘௣൯ + ൫𝑘௣ − 2𝑘௙൯ቁଶ቉,  (21) 

 

where 𝜑௦ = ఝఝೌ is the ratio of the volumes occupied by the particles and the aggregates. By 

letting 𝛿 tend to zero, one obtains the effective thermal conductivity accounting for 

agglomeration only, as 𝑘௟௟,௔௘௙௙|ఋ → ଴ ≡ 𝑘௔௘௙௙. With 𝑘௟௟,௔௘௙௙|௥೛,ೌ → ௥೛ ≡ 𝑘௟௟௘௙௙, one finds back the 

expression of the effective thermal conductivity accounting only for the liquid layer effect. 

Finally, we recover Eq. (1) by noticing that 𝑘௟௟,௔௘௙௙|௥೛,ೌ → ௥೛ & ఋ → ଴ ≡ 𝑘௘௙௙. 
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3.3. Brownian motion 

In this subsection, we consider another mechanism, namely the Brownian motion of 

nanoparticles, this effect finds its origin in the stochastic bombardment of the liquid host 

molecules and results in micro convections at the nano scale and whence, enhancement of 

thermal interactions between the nanoparticles and the ambient fluid [21-23, 37]. The 

contribution to the effective heat conductivity may be expressed as an additional term 𝑘஻௥ given 

by Jang and Choi [23]: 

 𝑘஻௥ = ௛ఋಹఝ௉௥೑ ,           (22) 

 

where 𝑃𝑟௙ stands for the Prandtl number of the base fluid  

 𝑃𝑟௙ = ఓ೑௖೑௞೑           (23) 

 

with 𝜇௙ and 𝑐௙ being the kinematic viscosity and the specific heat capacity of the fluid, 

respectively, while 𝛿ு is the so-called hydrodynamic boundary layer thickness. Several options 

have been proposed for 𝛿ு, for instance, Jang and Choi [23] argued that 𝛿ு is of the order of 

three times the diameter of the fluid molecules. In a later publication [38], the same authors 

assume that it is comparable to the size of the fluid molecules. Nonetheless, Yu et al. [46] and 

Prasher et al. [54] take 𝛿ு equal to three times the molecule diameters as well. We adopt here 

the same position, meaning that 𝛿ு ≡ 0.9 nm for water, 𝛿ு ≡ 1.2 nm for ethylene glycol and 𝛿ு ≡ 1 nm obtained by taking the molar average value for a 50/50 w% water/ethylene-glycol 

mixture.  
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Furthermore, the factor ℎ in relation (22) is an overall heat transfer coefficient at the 

surface of the particles given by Jang and Choi [23] 

 ℎ = ே௨೑ ௞೑ଶ൫௥೛ାఋ൯,           (24)  

 

with 𝑁𝑢௙ designating the Nusselt number, which for a flow past a sphere is [6, 23, 38] 

 𝑁𝑢௙ = 2 + ଵଶ 𝑅𝑒௙𝑃𝑟௙,         (25) 

 𝑅𝑒௙ is the Reynolds number, given by 

 𝑅𝑒௙ = ௞ಳ்ఘ೑ଷగఓ೑మఋಹ,          (26) 

 

where 𝜌௙ is the base fluid density, 𝑘஻  the Boltzmann constant and 𝑇 the temperature. 

When liquid layering and agglomeration are negligible, the effective thermal 

conductivity 𝑘஻௥௘௙௙ of the nanofluid may be written as 

 𝑘஻௥௘௙௙ = 𝑘௘௙௙ + 𝑘஻௥,          (27) 

 

with 𝑘௘௙௙ expressed by relation (1).                     

    

When all the mechanisms considered in this work are taken into account, namely, liquid-

layering, agglomeration and Brownian motion, the total effective thermal conductivity (𝑘௧௢௧௘௙௙) 

writes as  
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 𝑘௧௢௧௘௙௙ = 𝑘௟௟,௔௘௙௙ + 𝑘஻௥,         (28) 

 

with 𝑘௟௟,௔௘௙௙ given by (11). Note that 𝑘௧௢௧௘௙௙ is not just simply the sum of the various mechanisms, 

taken individually, but rather includes all the interacting couplings. 

 

4. Numerical results and discussion  

4.1. Thermal conductivities of alumina-water, alumina-ethylene glycol and alumina-50/50 w% 

water/ethylene-glycol mixture nanofluids 

In this section are discussed the various contributions to the effective thermal 

conductivity 𝑘௧௢௧௘௙௙as a function of the volume fraction of nanoparticles and their size in the 

following situations, respectively: 

 𝑘௘௙௙: without the considered heat transfer mechanisms (Eq. (1)), 

 𝑘௟௟௘௙௙: liquid-layering alone (Eq. (17)), 

 𝑘௔௘௙௙: agglomeration alone (Eq. (20) wherein  𝛿 = 0), 

 𝑘஻௥௘௙௙: Brownian motion alone (Eq. (27)), 

 𝑘௧௢௧௘௙௙: incorporating all the considered heat transfer mechanisms (Eq. (28)). 

 

Note that the maximum volume fraction value may not be extended to 𝜑 = 1 but is 

limited by the maximum packing of spheres, namely 𝜑௠௔௫ = 𝜋/√18. The calculations are 

performed for suspensions of alumina spherical nanoparticles in water, ethylene glycol and a 

50/50 w% water/ethylene-glycol mixture, respectively. The theory is of course by no means 

limited to these fluids which have been selected because they allow a direct comparison with 
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experimental data [19, 56-61]. The material properties of alumina used for the calculations are 

given in Table 1 and refer to the room temperature (taken here to be 300 K).  

 

Table 1. Room temperature material properties for alumina (Al2O3) particles [55]. 

Material Heat capacity  

[MJ/(m3K)] 

Group velocity  

[m/s] 

Mean free path  

[nm] 

Al2O3 3.04 7009 5.08 

 

The thermal conductivities 𝑘௙ of the base fluids are 0.613, 0.252 and 0.4 Wm-1K-1 for 

water, ethylene glycol and the 50/50 w% water/ethylene-glycol mixture, respectively [38, 62]. 

Water and ethylene glycol are common heat transfer fluids, but they present the characteristic 

to have limited heat transfer capabilities [56]. This explains the interest in enhancing their heat 

transfer properties by adding nanoparticles. The results are presented in Figs. 1-3, with the 

thickness of the liquid boundary layer given by 𝛿 = 1 nm. The experimental values are taken 

from [19, 56-61].  
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Fig. 1 Effective thermal conductivities (𝑘௟௟௘௙௙,  𝑘௔௘௙௙, 𝑘௘௙௙ and 𝑘௧௢௧௘௙௙) of alumina-water 

nanofluids as a function of the volume fraction for different nanoparticle radii (𝑟௣): (a) 6 nm, 

(b) 8 nm, (c) 23.5 nm, (d) 30 nm, (e) 122.5 nm and (f) 141 nm. Experimental values are drawn 

from [19] ■, [56] ♦, [57] ▲, [59] ● and [60] ▼.    
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Fig. 2 The same as in Fig. 1 for alumina-ethylene glycol nanofluids with nanoparticle radii 

(𝑟௣): (a) 6 nm, (b) 8 nm, (c) 19 nm, (d) nm, (e) 122.5 nm and (f) 141 nm. Experimental values 

are drawn from [19] ●, [58] ◊, [59] ● and [61] □.    
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Fig. 3 The same as in Fig. 1 for alumina-50/50 w% water/ethylene-glycol nanofluids with 

nanoparticle radii (𝑟௣): (a) 5 nm, (b) 25 nm. Experimental values ● are drawn from [62].    

 

The general trend is that the thermal conductivity is enhanced by more than 20% for an 

increase of 10% of the volume fraction. Experimental data are not available for any particle size 

and volume fraction and, therefore, the theoretical predictions are compared with several 

different experimental sources. A satisfactory agreement with the available experimental data 

is observed. The full model 𝑘௧௢௧௘௙௙  fits reasonably well the experiments except at one point for 
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The crucial role played by the particle size justifies that it be further investigated. Beforehand, 

let us comment about the controversial role of Brownian motion on heat transfer in nanofluids. 

 

4.2. Note on the Brownian motion 

The behavior of the effective thermal conductivity of Al2O3-ethylene glycol and Al2O3-

water nanofluids versus the particle size is analyzed. Two different volume fractions (1% and 

5%) are considered.   

In Fig. 4 are compared the values of the effective thermal conductivity (in absence of 

agglomeration and liquid layering effects) with and without Brownian motion for alumina 

particles dispersed in water and ethylene-glycol, respectively.  

 

 

 

  

Fig. 4 Effective thermal conductivity 𝑘஻௥௘௙௙, compared to 𝑘௘௙௙ versus the nanoparticle radius at 

volume fractions of 1% (lower curves) and 5% (upper curves), for alumina nanoparticles in (a) 

water (solid lines) and (b) ethylene glycol (dashed lines). 
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Brownian motion is of no great influence, at least for the considered nanofluids. The influence 

of Brownian motion on heat transfer in nanofluids was investigated in several papers [21-23, 

63-70] but most of these studies disagree about its importance. For instance, on the basis of the 

kinetic theory, Jang and Choi [23] claimed that the Brownian motion is one of the key 

mechanisms in the enhancement of the thermal conductivity. However, for others, like Gupta 

and Kumar [65], Nie et al. [67] and Evans et al. [70], the Brownian motion does not play a 

significant role in agreement with the results of the present work. Nonetheless, it is true that for 

nanofluids with a low viscous base fluid or aerosols, the Brownian effect may become relevant.  

 

4.3. Thermal conductivity as a function of the particle size  

The above considerations allow us to omit the Brownian motion and to focus on the 

agglomeration and liquid layering effects. In Fig. 5 are shown as a function of the particle 

radius, the separate influences of agglomeration (𝑘௔௘௙௙), nano-layering (𝑘௟௟௘௙௙) and the coupling 

agglomeration-nano-layering (𝑘௟௟,௔௘௙௙) for water and ethylene glycol; two values of the particles 

volume fraction and two values of the liquid boundary layer thickness are considered.  
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Fig. 5 Effective thermal conductivity 𝑘௟௟,௔௘௙௙ (solid lines) compared to 𝑘௟௟௘௙௙ (dashed lines) and 𝑘௔௘௙௙ (dotted lines) versus the nanoparticle radius at volume fractions of 1% (lower curves) and 

5% (upper curves), for (a) 𝛿 = 1 nm and (b) 𝛿 = 3 nm. The nanofluids consist of alumina 

nanoparticles in water (W) and ethylene glycol (EG).  

 

The general tendency is the increase of the thermal conductivity with, from one side, 

the volume fraction, and, from the other side, with the particle size. The presence of an 

asymptotic value is confirmed for 𝑟௣ > 100 nm. This is understandable because for relatively 

large particles with respect to the mean free paths, the size will no longer influence the value of 

the thermal conductivity. Indeed, at large sizes the Knudsen number becomes very small (𝑘௣ →𝑘௣଴ in Eq. (16)), indicating that heat transport is no longer of ballistic but rather of diffusive 

nature, governed by Fourier’s law. The results in Fig. 5 show that the behavior of the thermal 

conductivity, especially at 𝑟௣ ≈ O(1-10) nm, is strongly dependent on the thickness of the 

interfacial layer and the rate of agglomeration. For particles in the range of molecular scale, it 

is observed experimentally [59] and computationally [71] that the thermal conductivity 

increases with increasing size, as seen in Figs. 5 (W-a) and 5 (EG-a). This behavior was 

confirmed by several experimental works [19, 61, 72]. However, it was mentioned by Keblinski 

et al. [2] that the thermal conductivity may rather decrease for increasing particle sizes in 

presence of highly conducting liquid layers around the nanoparticles, such a conclusion is 
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supported by our developments (in absence of agglomeration) as shown by the dashed curves 

of Fig. 5 (EG-b). At larger particle dimensions (𝑟௣ ≥ 10 nm), the thickness 𝛿 of the interfacial 

liquid hardly influences the value of the effective thermal conductivity, from which can be 

deduced that, at relatively large sizes, agglomeration appears to be the dominant effect, as 

confirmed by experiments [2]. 

 

5. Complementary comments 

To shed a different light on the above developments, we have calculated the so-called 

enhancement factor 𝐸𝐹 (in %), defined as the ratio of the thermal conductivity enhancement, 𝑘௜௘௙௙ − 𝑘௘௙௙ (with the subscript 𝑖 designating the mechanism under study: either Brownian 

motion, liquid layering or particles agglomeration) to the overall enhancement defined as ൫𝑘௟௟௘௙௙ − 𝑘௘௙௙൯ + ൫𝑘௔௘௙௙ − 𝑘௘௙௙൯ + ൫𝑘஻௥௘௙௙ − 𝑘௘௙௙൯. 

 

   

Fig. 6 Enhancement factor 𝐸𝐹 for alumina nanoparticles in water calculated for the different 

heat transfer mechanisms as a function of the nanoparticle radius for (a) 𝛿 = 1 nm and (b) 𝛿 =3 nm. The volume fraction is 1%. 
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Fig. 7 The same as in Fig. 6 for alumina nanoparticles in ethylene glycol. 

 

The results of the previous figures are confirmed for alumina in water (Fig. 6) and 

ethylene glycol (Fig. 7). It is observed that the role of Brownian motion is minute and that both 

liquid-layering and agglomeration are the leading heat transfer mechanisms, depending on 

specific conditions: the thickness of the liquid-layering and the nano-particle size. Similar 

conclusions can be drawn for the 50/50 w% water/ethylene-glycol mixture.  

 

6. Conclusions 

The aim of this paper is to examine the relative importance of various mechanisms 

responsible for the enhancement of the effective thermal conductivity of nanofluids. The 

novelty of the present approach is that the several mechanisms are not studied separately, as in 

most previous papers, but are examined all together. An original model is proposed, mixing the 

effective medium approach (EMA) and Extended Irreversible Thermodynamics (EIT), 

resulting into fully analytical expressions of the effective thermal conductivity (see formulae 

(17), (20), and (28)).  

At small-length scales, heat transport in the particles is no longer governed by diffusive 

collisions of the heat carriers but rather by ballistic conduction. As a consequence, Fourier’s 

law is no longer valid and must be replaced by more sophisticated relations as accounted for by 

expression (16) of the thermal conductivity of the nanoparticles. 
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 A huge variety of mechanisms are able to influence the heat conductivity of nanofluids 

and it is illusory to include all of them into one single model. In the present analysis, we have 

focused on some specific mechanisms which in our opinion play a relevant role. Accordingly, 

we have successively examined the influence of formation of “solid-like” liquid layers at the 

liquid-particle interface, agglomeration of particles and Brownian motion. Other factors, like 

porosity, the presence of electric charges and/or surfactants are not investigated and the 

modelling is restricted to spherical particles of the same dimension. 

 Our main contributions are to show 

1. that the particle size and the thickness of the liquid boundary layer are the relevant 

parameters in determining which mechanism is the main responsible for heat transfer.  

2. that  agglomeration of particles and nano-layer effects are dominant  

3. the role of Brownian effect in heat transfer, a controversial subject, is of importance for 

nanoparticles with dimensions of the order of those of molecules (𝑟௣ < O(1) nm).  

Summing up,  it results from our study that clustering of particles turns out to have the 

upper hand with respect to the presence of a liquid nano-layer for large particle sizes 𝑟௣ > O(10) 

nm. This is quite understandable, since the agglomeration radius becomes larger as the particle 

size increases, whilst for large particles the nanolayer thickness becomes negligible with respect 

to the agglomeration radius. In the intermediate region (1 nm < 𝑟௣ < 10 nm), the nano-layer 

effect may be of more importance depending on the thickness of the layer.  

Comparison with experimental data have concerned three particular situations, namely 

alumina particles dispersed in water, ethylene glycol and a 50/50 w% water/ethylene-glycol 

mixture, respectively, for which experimental data were available. It is our meaning that our 

approach, which is based on the recent developments of non-equilibrium thermodynamics, is 

sufficiently general to be applicable to a wider class of nanofluids.  
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In contrast with most papers wherein the various heat transfer mechanisms are treated 

separately, the general overview proposed in this work allows to compare between their relative 

importance, to distinguish which of them is dominating under given circumstances, and to 

conciliate the contradictory results in the literature. Our main contribution is to provide a 

coherent modelling of a series of mechanisms governing heat transfer in nanofluids in 

agreement with experimental observations. 
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