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A substantial body of evidence supports that the gut microbiota plays a pivotal role in

the regulation of metabolic, endocrine and immune functions. In recent years, there has

been growing recognition of the involvement of the gut microbiota in the modulation

of multiple neurochemical pathways through the highly interconnected gut-brain axis.

Although amazing scientific breakthroughs over the last few years have expanded our

knowledge on the communication between microbes and their hosts, the underpinnings

of microbiota-gut-brain crosstalk remain to be determined. Short-chain fatty acids

(SCFAs), the main metabolites produced in the colon by bacterial fermentation of dietary

fibers and resistant starch, are speculated to play a key role in neuro-immunoendocrine

regulation. However, the underlying mechanisms through which SCFAs might influence

brain physiology and behavior have not been fully elucidated. In this review, we outline the

current knowledge about the involvement of SCFAs in microbiota-gut-brain interactions.

We also highlight how the development of future treatments for central nervous system

(CNS) disorders can take advantage of the intimate and mutual interactions of the

gut microbiota with the brain by exploring the role of SCFAs in the regulation of

neuro-immunoendocrine function.
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INTRODUCTION

The human body is inhabited by a wide variety of commensal microorganisms collectively called
the microbiota. This host microbiota colonizes the skin and several mucosal cavities (nasal, oral,
pulmonary, and vaginal); however, it is in the gastrointestinal (GI) tract that these organisms reach
extraordinary densities since trillions of bacteria, fungi, and viruses coexist in symbiosis with the
host for potential mutual benefit (1–3). Despite its significant influence on the state of human
health and the development or progression of diseases, it is only in the last 20 years that our
gut microbiota has become the focus of intense studies. Therefore, its pivotal roles in protecting
against pathogens, regulating metabolic, endocrine, and immune functions and in influencing drug
metabolism and absorption have started to be elucidated (4, 5). Further, it was recently unveiled
that the influence of the microbiota is not restricted to the GI tract; it plays a major role in the
bidirectional communication between the GI tract and the central nervous system (CNS). The
growing body of evidence indicating that the gut microbiota exerts a profound influence on key
brain processes has led to the development of the microbiota-gut-brain axis concept, which has
attracted the interest of researchers worldwide (6–11).
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Although the precise mechanisms involved in the crosstalk
between the gut microbiota and brain remain to be fully
determined, there are a number of potential pathways through
which the gut microbiota can influence brain function (9).
Microorganisms can influence CNS processes bidirectionally via
the vagus nerve (12) and through modulation of the immune
system (6), the hypothalamic-pituitary-adrenal (HPA) axis (13,
14), and tryptophan metabolism (15), along with their ability to
synthetize a number of neurotransmitters (16–18) and produce
metabolites, such as short-chain fatty acids (SCFAs), that possess
neuroactive properties (17, 19–21).

The SCFAs acetate, propionate, and butyrate are the main
metabolites produced in the colon by bacterial fermentation of
dietary fibers and resistant starch (22). In addition to the long-
known role of the colon in energy supply and trophic factors
(22), as well as the regulation of T regulatory (Treg) cell colonies
(23, 24), growing evidence supports the idea that SCFAs also
exert crucial physiological effects on several organs, including
the brain (17, 20, 21). This hypothesis is supported by studies in
animals and humans showing that gut microbiota dysbiosis has
been implicated in behavioral and neurologic pathologies, such as
depression, Alzheimer’s (AD) and Parkinson’s (PD) diseases and
autism spectrum disorder (ASD) (9, 21, 25–27). Furthermore,
microbiota manipulation and SCFA administration have been
proposed as treatment targets for such diseases (28).

In this review, we outline the current knowledge about the
involvement of acetate, propionate, and butyrate in microbiota-
gut-brain interactions. We also highlight how the development
of future treatments for CNS disorders can take advantage of
the intimate and mutual interactions of the gut microbiota with
the brain by exploring the role of SCFAs in the regulation of
neuro-immunoendocrine function.

THE MICROBIOTA-GUT-BRAIN AXIS

The modulation of gut physiology by the CNS and its effects on
gut function such as motility, secretion, blood flow, nociception,
and immune function during neurological stressors are well-
documented (17, 29, 30). Further, brain to gut signaling can
directly affect the microbiota, either via immune system or
gut functions such as motility, release of neurotransmitters and
intestinal immune tone (12, 17, 21, 31). Comparatively, gut
to CNS signaling has been studied for a short period, and

Abbreviations: Aβ, amyloid-β peptide; AD, Alzheimer’s disease; ASD, autism
spectrum disorder; αSyn, α-synuclein; BBB, blood-brain barrier; BDNF, brain-
derived neurotrophic factor; BHB, β-hydroxybutyrate; CNS, central nervous
system; DA, dopamine; EAE, experimental autoimmune encephalopathy; FFAR,
free fatty acid receptor; FMT, fecal microbiota transplantation; GABA, γ-
aminobutyric acid; GDNF, glial cell line-derived neurotrophic factor; GF, germ
free; GH, growth hormone; GI, gastrointestinal (tract); GLP-1, glucagon-like
peptide 1; GOS, galacto-oligosaccharides; GPCR, G protein-coupled receptors;
HCAR2, hydrocarboxylic acid receptor; HDACs, histone deacetylases; HDACi,
HDAC inhibitor; HPA, hypothalamus-pituitary-adrenal; LPS, lipopolysaccharide;
MCT, H+-coupled monocarboxylate transporter; MS, multiple sclerosis; NA,
noradrenaline; NGF, nerve growth factor; PD, Parkinson’s disease; PKCδ, protein
kinase Cδ; PYY, peptide YY; 5-HT, serotonin; SCFAs, short-chain fatty acids;
SMCTs, sodium-coupled monocarboxylate transporters; SPF, specific pathogen-
free; Tregs, T-regulatory lymphocytes.

the mechanisms underlying this crosstalk are starting to be
understood (13, 32). It is noteworthy that several brain disorders
have been linked to imbalances in the microbial composition of
the gut (17, 19, 29, 33–37); however, whether these alterations in
the microbiota are induced by brain signaling or whether brain
dysfunction is driven by changes in the gut microbiota remains
to be fully determined.

Although a more compelling causal relationship between
altered gut microbial composition and brain dysfunction
is still needed, it has been shown that disruption in the
neuronal and microbial organization in prenatal and postnatal
periods of mammalian development may lead to the onset of
neurodevelopmental and other brain disorders later in life (9,
38–40). In a similar way, growing evidence has shown that
alterations in maternal microbiome during pregnancy, such as
use of antibiotics or probiotics (41, 42), variations in diet (43),
immune activation (44, 45), and exposure to stress (46) can
modulate the microbiome, neurodevelopment, and behavior of
offspring in both rodents and humans (9, 29). Furthermore,
delivery mode (47) and early-life occurrences such as feeding
changes, infection, and antibiotics treatment (48, 49) have a huge
effect on the gutmicrobiota composition with a long-term impact
on brain and behavior (9, 29).

Under physiological conditions, activation of immune cells
and production of cytokines can have a minor impact in the
CNS. However, chronic systemic inflammation, mostly in the
form of infections, has long been associated with behavioral
alterations and cognitive dysfunction (50, 51). It is now widely
known that peripheral insults that cause a systemic inflammatory
response might affect ongoing inflammation in the CNS mainly
by microglial activation, production of inflammatory molecules,
as well as recruitment of peripheral immune cells into the
brain, thus shaping a cerebral inflammatory milieu that may
seriously affect neuronal function (50, 52, 53). Noteworthy,
during gut pathologies with increased permeability of the
intestinal barrier, the translocation of bacterial products can
increase the production of cytokines and impact the blood-
brain barrier (BBB), leading to more intense harmful effects
(37). Further, it has already been shown that several bacterial
strains can modify levels of neurotransmitter precursors in the
gut lumen and even independently synthesize (or modulate
the synthesis of) a number of neurotransmitters, including
γ-aminobutyric acid (GABA), serotonin (5-HT), dopamine
(DA), and noradrenaline (NA) (16–18). These neurotransmitters
can potentially influence microglial activation and several
cerebral functions (54). Additionally, the sympathetic branch
of the autonomic nervous system is also involved in intestinal
homeostasis and immune regulation (30). Conversely, the gut
microbiota can interact with the CNS via gut modulation or
directly via metabolites and endotoxin translocation from the
lumen to the circulation (9, 17, 21). Possible signal transducers
involved in the communication of the microbiota with the
CNS include enterochromaffin cells, which can bind several
microbial products and secrete serotonin into the lamina propria,
increasing colonic and blood concentrations of 5-HT (55, 56).
Gut-brain communication can also be achieved through vagus
nerve signaling (57). Changes in enteric neuron activity perceived
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by the vagus nerve are essential for mediating satiety, stress,
and mood (12, 58, 59). Given the close physical proximity,
gut bacteria can interact with and activate the vagus nerve,
thereby exerting effects upstream to the CNS. This notion is in
full accordance with early studies showing that oral inoculation
with pathogens or probiotics induces activation of the vagal
sensory neurons that innervate the GI affecting the regulation
of CNS functions, and this effect is absent in vagotomized mice
(32, 58, 60). However, whether the vagus nerve is activated by
physical interaction with bacteria or through soluble microbial
components remain to be determined.

Finally, bacterial metabolic byproducts including SCFAs
are often considered key candidate mediators of gut-brain
communication, and altered SCFA production has been
demonstrated in a variety of neuropathologies (19, 21, 33–35).

METABOLISM AND PERIPHERAL
EFFECTS OF SCFAS

SCFAs are small organic monocarboxylic acids with a chain
length of up to six carbons atoms and are the main products of
the anaerobic fermentation of indigestible polysaccharides such
as dietary fiber and resistant starch produced by the microbiota
in the large intestine (61, 62). Comprised mostly of acetate (C2),
propionate (C3), and butyrate (C4) (63, 64) in an approximate
molar rate of 60:20:20, respectively (65), approximately 500–600
mmol of SCFAs are produced in the gut per day depending
on the fiber content in the diet, microbiota composition, and
gut transit time (66, 67). Although anaerobic fermentation of
fibers is the largest source of SCFAs, acetate, propionate, and
butyrate can also be produced from amino acid metabolism (68).
However, less than 1% of the large intestine microbiota uses
these metabolic pathways to produce SCFAs (69, 70). Protein
fermentation usually takes place in the distal large intestine
where carbohydrates are already depleted and also leads to the
production of potentially toxic metabolites, such as ammonia,
phenols, and sulfides, as well as unique branched-chain fatty acids
(BCFA) (69, 71). Further, acetate produced from acetyl-CoA
derived from glycolysis can also be transformed into butyrate
by the enzyme butyryl-CoA:acetyl-CoA transferase (72, 73), and
bovine milk fats also provide a source of butyrate (74).

Following their production, SCFAs are absorbed by
colonocytes, mainly via H+-dependent or sodium-dependent
monocarboxylate transporters (MCTs and SMCTs, respectively)
(75). MCTs show different subtypes and expression patterns
in different tissues. SCFAs that are not metabolized in the
colonocytes are transported into the portal circulation and are
used as an energy substrate for hepatocytes (76), except for
acetate that is not oxidized in the liver (76). Therefore, only
a minor fraction of colon-derived acetate, propionate, and
butyrate reaches the systemic circulation and other tissues (65).
In this context, it is important to note that most of the recent
works regarding microbial-derived SCFA, mainly in human
studies, use fecal concentrations as a proxy of the production
in the colon (17, 19, 29, 33–37). Although it represents a valid
approach, there are many potential sources of bias, such as

intestinal transit and permeability, metabolite transportation,
and sample handling (77). Thus, these drawbacks must be
taken into account when concluding the effects of administered
SCFAs, given that some experiments might be conducted under
non-physiological conditions.

SCFAs improve the gut health through a number of local
effects, ranging from maintenance of intestinal barrier integrity,
mucus production, and protection against inflammation to
reduction of the risk of colorectal cancer (78–81). Although a
thorough comprehension of signaling triggered by SCFAs is still
lacking, it is already known that SCFAs bind to G protein-coupled
receptors (GPCRs). The best-studied SCFA receptors are GPR43
and GPR41, later renamed free fatty acid receptor (FFAR2)
and FFAR3, as well as GPR109a/HCAR2 (hydrocarboxylic acid
receptor) andGPR164, which are expressed in a vast array of cells,
from the gastrointestinal mucosa to the immune and nervous
systems (82, 83). The effects of activation of these receptors differ
greatly depending on the cell on which they are expressed. For
instance, binding of SCFAs to their receptors on enteroendocrine
cells results in stimulated secretion of glucagon-like peptide
1 (GLP-1) and peptide YY (PYY) (84), while signaling in β-
pancreatic cells leads to increased insulin secretion (85).

Another mechanism by which SCFAs regulate systemic
functions is through the inhibition of histone deacetylase
(HDAC) activity, thus promoting the acetylation of lysine
residues present in nucleosomal histones throughout various
cell populations (20). This intracellular signaling mechanism has
been found in both the gut and associated immune tissue (86), as
well as in the peripheral nervous system and CNS (20).

Although only a minor fraction of colon-derived SCFAs
reaches the systemic circulation and other tissues, their effects on
different organ and systems have recently been widely outlined.
One of the best-documented effects of SCFAs is on the immune
system since butyrate is capable of inducing Treg differentiation
and controlling inflammation (17, 23, 24, 87). Although fine-
tuning of the gut immune response to the microbiota is still
a matter of debate, microbiota metabolites are capable of
alleviating or worsening gut conditions such as inflammatory
bowel disease (88). Effects on brown adipose tissue activation
(89), regulation of liver mitochondrial function (90), whole-body
energy homeostasis (91), and control of appetite (89) and sleep
(10) have been attributed to all SCFAs. Further, the influence of
the microbiota and the effects of SCFAs on the CNS have been a
matter of intense debate in the last few years.

SCFAS AND THE BRAIN

In addition to exerting local effects in the colon and in the
peripheral tissues, SCFAs are speculated to play a pivotal
role in microbiota-gut-brain crosstalk (Figure 1). The abundant
expression of MCTs in endothelial cells (75, 92) might facilitate
crossing of the BBB by SCFAs since brain uptake of SCFAs
has previously been demonstrated in rats following injection
of 14C-SCFAs into the carotid artery (93). Although studies on
physiological concentrations of SCFAs in the brain are scarce,
all three metabolites are detectable in the human cerebrospinal
fluid (CSF), typically in the range of 0–171µM for acetate,
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FIGURE 1 | Potential pathways through which SCFAs influence gut-brain communication. Short-chain fatty acids (SCFAs) are the main metabolites produced by the

microbiota in the large intestine through the anaerobic fermentation of indigestible polysaccharides such as dietary fiber and resistant starch. SCFAs might influence

gut-brain communication and brain function directly or indirectly. Following their production, SCFAs are absorbed by colonocytes, mainly via H+-dependent

monocarboxylate transporters (MCTs) or sodium-dependent monocarboxylate transporters (SMCTs). Through binding to G protein-coupled receptors (GPCRs) such

as free fatty acid receptor 2 and 3 (FFAR2 and FFAR3), as well as GPR109a/HCAR2 (hydrocarboxylic acid receptor) and GPR164 or by inhibiting histone

deacetylases, SCFAs influence intestinal mucosal immunity, and barrier integrity and function. SCFA interaction with their receptors on enteroendocrine cells promotes

indirect signaling to the brain via the systemic circulation or vagal pathways by inducing the secretion of gut hormones such as glucagon-like peptide 1 (GLP1) and

peptide YY (PYY), as well as γ-aminobutyric acid (GABA), and serotonin (5-HT). Colon-derived SCFAs reaches the systemic circulation and other tissues, leading to

brown adipose tissue activation, regulation of liver mitochondrial function, increased insulin secretion by β-pancreatic cells, and whole-body energy homeostasis.

Peripherally, SCFAs influence systemic inflammation mainly by inducing T regulatory cells (Treg) differentiation and by regulating the secretion of interleukins. SCFAs

can cross the blood-brain barrier (BBB) via monocarboxylate transporters located on endothelial cells and influence BBB integrity by upregulating the expression of

tight junction proteins. Finally, in the central nervous system (CNS) SCFAs also influence neuroinflammation by affecting glial cell morphology and function as well as by

modulating the levels of neurotrophic factors, increasing neurogenesis, contributing to the biosynthesis of serotonin, and improving neuronal homeostasis and

function. Together, the interaction of SCFAs with these gut-brain pathways can directly or indirectly affect emotion, cognition, and pathophysiology of brain disorders.

Figure of this review was created with BioRender (https://biorender.com/).

0–6µM for propionate, and 0–2.8µM for butyrate (94). An
average concentration of 17.0 pmol/mg of tissue for butyrate
and 18.8 pmol/mg of tissue for propionate in the human brain

was reported (95). Furthermore, the levels of butyrate in the
brain of mice supplemented with live Clostridium butyricum
reached a range from 0.4 to 0.7 µmol/g, which was about
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an order of magnitude higher than concentrations reported in
peripheral blood (96, 97). In addition to crossing BBB, SCFAs
seem to play an important role in maintaining its integrity,
which is tightly associated with controlled passage of molecules
and nutrients from the circulation to the brain, playing a
central role in brain development and the preservation of CNS
homeostasis. Supporting the notion that SCFAs regulate the
BBB function, germ-free (GF) mice show reduced expression
of tight junction proteins such as claudin and occludin,
leading to increased permeability of the BBB from intrauterine
life to adulthood (98). Furthermore, recolonization of these
adult mice with a complex microbiota or monocolonization
with SCFA-producing bacterial strains recovers the integrity
of the BBB (98). Similarly, treatment of an in vitro model
of cerebrovascular endothelial cells with propionate attenuates
the permeabilizing effects of exposure to lipopolysaccharide
(LPS) (99).

Accumulating evidence suggests that SCFAs that cross into
the CNS have neuroactive properties. Although the precise
mechanisms involved in the action of SCFAs on the CNS remain
largely unknown, a multitude of animal studies have shown
that they exert widespread influence on key neurological and
behavioral processes and may be involved in critical phases of
neurodevelopmental and neurodegenerative disorders (17, 21,
29, 36, 100).

SCFAs and Microglia
The development of the nervous system is marked by the
sculpting of the neuronal networks shaping the functional neural
circuitry that is critical for normal cognitive, emotional, and
social domains. In this context, glial cells, especially microglial
cells, have been increasingly recognized to play a critical role in
the elimination of excess or unnecessary synaptic connections,
which is necessary for the maturation and refinement of circuits
and connections in the nervous system (101, 102). Therefore,
control of innate immune function in the CNS is critical
for brain development, and the gut microbiota seems to play
a pivotal role in the development and functionality of the
immune system in the CNS. The results reported by Erny and
collaborators shed light on how the microbiota might influence
microglial maturation and function (6). While microglia from
specific pathogen-free (SPF) mice shows normal maturation
and function, non-colonized young GF mice exhibit stunted
microglia under homeostatic conditions. It is noteworthy that the
oral application of a mixture of the three major SCFAs acetate,
propionate, and butyrate was sufficient to drive maturation of
microglia in GF mice (6). Although the mechanisms involved
in the control of maturation and function of microglia by
SCFAs remain to be determined, the activation of FFAR2 could
be conceivable since FFAR2-deficient mice displayed microglia
reminiscent of those found in GF mice (103).

Neuroinflammation is also an important process shaping
brain function. Similar to observations in GFmice, perturbations
of the gut microbiota by antibiotics systemically produce altered
immune responses in experimental models, notably toward a
pro-inflammatory profile (6). This is also true in the CNS,
which becomes more prone to extreme inflammatory responses

when the microbiota is depleted by antibiotics early in life
(104). It was shown that antibiotic-induced perturbations in
gut microbial diversity influence neuroinflammation with altered
microglial morphology (105–107). On the other hand, several
studies have reported that sodium butyrate is capable of
decreasing microglial activation and pro-inflammatory cytokines
secretion (108–110). Also, butyrate treatment in vitro and in vivo
induces morphological and functional changes in the microglia
toward a homeostatic profile and inhibits LPS-induced pro-
inflammatory modifications (109) and depression-like behavior
(110). Likewise, acetate treatment of microglia primary culture
has been shown to reduce inflammatory signaling through
reduced IL-1β, IL-6, and TNF-α expression and p38 MAPK,
JNK, and NF-κB phosphorylation (111). Similarly, acetate was
also able to modulate inflammatory cytokines and signaling
pathways in astrocyte primary culture (112). Although the precise
signaling involved in the effects of SCFAs on microglia remain
unveiled, inhibition of HDACs, which results in epigenetically
regulated gene expression, has been considered the main effector
mechanism triggered by SCFAs (113). In this way, histone
acetylation seems to modulate glial cells in an anti-inflammatory
and neuroprotective manner. Therefore, taking into account the
role of microglia in shaping neuronal networks and the influence
of the microbiota on this process, SCFAs might provide new
methods to modulate the brain immunity disruption underlying
neurodevelopmental and neurodegenerative disorders.

SCFAs and Neurons
Apart from providing the cells with energy and affecting
microglia maturation, these microbial metabolites also seem
to influence neuronal function. It was described that SCFAs
may modulate the levels of neurotransmitters and neurotrophic
factors. Acetate has previously been shown to alter the levels
of the neurotransmitters glutamate, glutamine and GABA
in the hypothalamus and increase anorexigenic neuropeptide
expression (114). Propionate and butyrate exert an influence on
the intracellular potassium level, which implies the involvement
of SCFAs in the operation of cell signaling systems (115).
In particular, these SCFAs regulate the expression levels of
tryptophan 5-hydroxylase 1, the enzyme involved in synthesis
of serotonin, and tyrosine hydroxylase, which is involved
in a rate-limiting step in the biosynthesis of dopamine,
noradrenaline and adrenaline; therefore, producing an effect
on brain neurochemistry (21, 55, 56, 116, 117). Antibiotic
depletion of the microbiota also results in hippocampal
neurogenesis and memory impairments, which can be partially
recovered by the reconstitution of specific SPF microbiota
and completely recovered by probiotic treatment or exercise
(118). This cognitive deficit might be associated with changes
in the expression of cognition-relevant signaling molecules
such as brain-derived neurotrophic factor (BDNF), N-methyl-
D-aspartate receptor subunit 2B, serotonin transporter and
neuropeptide Y system (119).

Neurotrophic factors, such as nerve growth factor (NGF),
glial cell line-derived neurotrophic factor (GDNF), and BDNF
that regulate the growth, survival and differentiation of neurons
and synapses in the CNS also play important parts in learning

Frontiers in Endocrinology | www.frontiersin.org 5 January 2020 | Volume 11 | Article 25

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Silva et al. Short-Chain Fatty Acids and Gut-Brain Communication

and memory and in a range of brain disorders have been also
shown to be modulated by SCFAs (120–123). BDNF expression,
neurogenesis, and neural proliferation in rodents (124–126), as
well as facilitation of long-term memory consolidation, were
stimulated by sodium butyrate (127). Further, physiological levels
of all three SCFAs were shown to increase the growth rate
of human neural progenitor cells and induce more cells to
undergo mitosis (128), affording some hints of how SCFAs could
regulate early neural system development. Further, SCFAs show
effects on several neural functions, such as enhancing sleep
(10), suppressing the activity of orexigenic neurons that express
neuropeptide Y in the hypothalamus (89), and modulating the
signaling triggered by the ghrelin receptor (129), contributing
to circadian rhythm and appetite control. The seeking for
mechanism involved in the modulation of neuronal function by
SCFAs has unveiled that some of these effects are likely mediated
by the activation of GPR41/GPR43 receptors. Other SCFA effects,
especially of propionate and butyrate, are mediated through their
HDAC inhibitory activity (108, 116).

Because of the similarity of SCFAs with the ketone bodies
aceto-acetate and β-hydroxybutyrate (BHB), studies have been
conducted to elucidate their role during fasting. Accordingly,
fasting has been shown to sharply influence the gene regulation
and protein expression of several MCTs, which alters the uptake
of SCFAs in the gut and their transport to the brain (130). The
regulation of the transporter is likely related to the direction
of energy supplies to tissues during fasting. Moreover, Miletta
and colleagues found that butyrate enhances growth hormone
(GH) secretion in pituitary cells via GPR41/43 activation and
intracellular accumulation of Ca2+ (131). This leads to the
hypothesis that butyrate acts as a secondary mediator of
metabolic adaptations of GH during fasting, which mainly
include increased lipolysis and protein retention.

In summary, SCFAs might directly influence the brain
by reinforcing BBB integrity, modulating neurotransmission,
influencing levels of neurotrophic factors and promoting
memory consolidation. However, further studies are needed
to understand the precise mechanisms involved in these
neuroactive effects.

SCFAS AND BRAIN DISORDERS

The synthesis of new proteins is necessary for long-term
changes in synaptic plasticity and learning (132–134). In
this context, learning and long-term memory formation are
improved by enhanced histone acetylation (135), which could
be improved by HDAC inhibitors (HDACi). Given the HDAC
inhibition property of SCFAs, several animal studies have focused
mainly on the use of butyrate to elevate histone acetylation
in the brain during a critical phase of memory formation.
These studies have reported an enhancement of long-term
potentiation (LTP) and contextual fear memory induced by
HDAC inhibition (124, 127, 136, 137), pointing out enteric SCFAs
as a promising learning and memory modulators. Therefore, the
discovery that the microbiota can influence brain physiology
has led to a plethora of experiments involving neurological
disorders. The central hypothesis is supported by experimental
and clinical evidence that the microbiota is altered in such

diseases, which aggravates the condition, and/or its modulation
might prevent or improve the development and progression
of CNS pathologies (17, 19, 29, 33–37). Interestingly, several
studies have found that the gut microbiome composition and,
consequently, metabolome are altered in many brain disorders
(138–142). Despite the knowledge that microbiota-gut-brain
communication can theoretically occur throughmultiple systems
(including the autonomic nervous system, enteric nervous
system, neuroendocrine system, and immune system), increased
evidence supports a potential key role of SCFAs in gut-brain
axis signaling, and alterations in this signaling might underpin
CNS disturbances ranging from neurodevelopmental disorders
to neurodegenerative diseases.

SCFAs and Autism Spectrum Disorder
Characterized by behavioral symptoms including
communication deficits, repetitive behaviors, and sensitivity
to environmental changes, ASD comprises an array of
neurodevelopmental disorders (143). Imbalances in the
microbial composition of the gut are present in ASD. Support for
this notion originates from animal studies and clinical evidence.
However, the role of SCFAs in ASD is still controversial.
Recently, Sharon and collaborators showed that microbiota
transplantation from human ASD donors into mice could
transfer ASD-relevant behavioral deficits (27). Although Sharon
and coworkers did not evaluate the alteration in SCFAs, children
with ASD have been previously reported to have both lower (144)
and higher (33) fecal SCFA levels than controls. Interestingly,
Wang and coworkers found similar proportions of specific SCFA
and protein fermentation metabolites when comparing children
with ASD with controls, even though the groups were controlled
for gastrointestinal abnormalities, macronutrients intake and
usage of probiotics, prebiotics, and antibiotics (33). However,
neither of the previous studies performed a comprehensive
evaluation of microbiota ecology.

In line with these findings, the microbiota has been suggested
to affect the occurrence and severity of the disease through
an increase in propionate-producing bacteria and a decrease in
butyrate-producing bacteria (145, 146). The study conducted by
Finegold and coworkers also found several pathobionts increased
in the stool of ASD affected children such as Proteobacteria
and hydrogen sulfide producing Desulfovibrio, raising a question
for the causality of microbial metabolites unbalance (145, 146).
Further, propionate-induced autism has become a validated
animal model to study the disease. Administering high
amounts of propionate through subcutaneous, intragastric,
intraperitoneal, or intracerebroventricular routes to rodents has
been suggested to induce high levels of microglia activation,
neurotoxic cytokine production, genetic expression alterations,
abnormal hippocampal histology, and abnormal neurobehaviors,
such as repetitive actions and impaired social interaction (147).
On the other hand, butyrate appears to have a beneficial effect
on social and repetitive behavior in the BTBR mouse model, a
strain-based ASD-like model (148). Epigenetic changes led to
enhanced transcription of inhibitory neurotransmitter pathways
in the frontal cortex, especially through HDAC inhibition (148).
As described above, improvement of BBB impermeability by
butyrate may be another mechanism through which butyrate
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can revert abnormalities in propionic acid-induced autism-like
disorder (143). This evidence points to the importance of balance
of a microbiota but also highlights the difficulty in drawing
conclusions on the role of SCFAs in ASD and the need for more
research in patients with ASD.

SCFAs and Mood Disorders
Despite the complex pathophysiology of mood disorders,
several studies have indicated the participation of the gut
microbiota in the severity of these diseases. Major depression
is one of the most common mood disorders, seriously
impairing the quality of life of patients and is one of the
leading causes of social disability. Untreated depression is
associated with an increased risk of morbidity and mortality,
including suicide. Monoamine deficiency (149) and neurogenesis
disruption (150) are two predominant theories underpinning
depression. Furthermore, it has been shown that inflammation
biomarkers are increased among patients with depression, and
pro-inflammatory cytokines play an important role in the
physiopathology of the disease (150). The importance of the
microbiota in depression is supported by findings that the levels
of SCFAs are decreased in a naturally occurring non-human
primate model of depression (26). In line with these findings,
clinical evidence has shown that fecal SCFA concentrations are
lower in patients with depression than in controls (35, 151).
Moreover, current knowledge shows that butyrate possesses an
antidepressant-like effect that reverses behavioral alterations in
mouse models, such as low energy (126, 152), anhedonia (153),
and cognitive and sociability impairments (154). Therefore,
taking into account the anti-inflammatory property of SCFAs,
dysbiosis followed by decreased levels of these metabolites
could play a role in the inflammation process related to the
development of depression.

Studies on chronic psychosocial stress have also shown a
possible application for prebiotics (154) and SCFAs (8) in
reverting sociability impairment while also reducing stress-
induced corticosterone release. Sodium butyrate has been shown
to be capable of reversing behavioral hyperactivity (155) and
depressive-like and manic-like behaviors in rats (156). There
is also evidence for butyrate’s antimanic effect on a rat
model of bipolar disorder induced by intracerebroventricular
administration of ouabain (157). Contrarily, a microbiome study
in schizophrenic patients at risk of developing psychosis reported
enriched Clostridiales, Prevotella, and Lactobacillus ruminis and
predicted increased SCFA production (141). However, the study
did not perform direct measurement of the metabolites and
further research to confirm whether it is a case of SCFA
overproduction or a specific metabolite unbalance is needed.

SCFAs and Alzheimer’s Disease
Accumulating evidence has demonstrated that key
neuropathological processes underlying AD might also be
modulated by SCFAs (25, 34, 158, 159). Characterized by
progressive cognitive impairment, AD is the most common
form of dementia (160). Given that AD has a complex pathology
and that therapies that effectively halt the disease progression
are still lacking, recent studies have focused on environmental

components and diet-based possible prevention strategies by
using transgenic animal models (161, 162). In this context,
several studies have established the benefits of a healthy
microbiome on slowing AD and the correlation of dysbiosis with
disease progression (7, 138, 163). Consistent with this notion,
a study by Zhang and coworkers showed that the microbiota
composition and diversity were perturbed and the level of SCFAs
was reduced in AD mice, predicting alterations in more than
30 metabolic pathways, which may be associated with amyloid
deposition and ultrastructural abnormalities in the APP/PS1
mouse model (25).

It is worth noting that SCFAs interfere with protein-
protein interactions between amyloid-β peptides (Aβ), thereby
disrupting their assembly into neurotoxic oligomers (34), the
main toxins responsible for synapse dysfunction and cognitive
deficits in AD (164). Given the close relation between gut
dysbiosis and brain dysfunction, fecal microbiota transplantation
(FMT) has been considered a promising therapeutic approach
for the reestablishment of a healthy gut microbial community
and has been shown to have beneficial effects on a plethora
of diseases, including AD. Supporting this hypothesis, APP/PS1
mice exhibited significantly relieved cognitive deficits, Aβ

accumulation, synaptic dysfunction, and neuroinflammation,
mainly by the microglia, after FMT from healthy wild-type mice
(165). These protective effects may be related to reversal of
changes in the gut microbiota and SCFAs.

Oral bacteriotherapy through probiotic administration has
become a potential treatment option for neurodegenerative
diseases such as AD. Accordingly, the 3xTg mouse model of AD
treated with probiotics in the early stage showed a promising
reduction of inflammatory cytokines and decreased cognitive
decline associated with reduced brain damage and Aβ aggregate
accumulation (166). Moreover, other studies have shown
beneficial effects of butyrate and probiotic treatment on cognition
and memory in a D-galactose model of aging, a condition
known to correlate with AD occurrence and progression (137,
167). The model consists of a long term administration of D-
galactose, which can readily be metabolized but eventually leads
to an overproduction of reactive oxygen species, thus causing
genetic and cell damage impairing cognition (137, 168). Finally,
through HDAC inhibition, butyrate administration recovered
memory function and increased expression of genes implicated
in associative learning in the APP/PS1 mouse model of AD (158).

SCFAs and Parkinson’s Disease
SCFAs play a controversial role in Parkinson’s disease (PD),
a synucleinopathy and a multifactorial disorder with strong
environmental influence characterized by tremors, muscle
rigidity, bradykinesia, and impaired gait (169). Aggregation
of the protein α-synuclein (αSyn) is thought to be the main
pathogenic event in PD, which primarily affects dopaminergic
neurons (169). Most PD patients also present gastrointestinal
manifestations due to disturbances of the enteric nervous
system. Hence, there has been great interest in the relationship
between the gut microbiota and the development of the disease.
Accordingly, sequencing of the microbiota of fecal samples
from PD patients revealed reduced populations of Bacteroidetes
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and Prevotellaceae in contrast to increased Enterobacteriaceae
and reduced production of SCFAs when compared to matched
controls (139). However, the presence of gut microbes is
necessary to elicit pathophysiological alterations in a mouse
model of αSyn overexpression, because elimination of the
gut microbiota with antibiotics ameliorated the condition
(169). In contrast, FMT from PD patient donors worsens
disease progression suggesting the presence of specific disease-
promoting microbes (169). Accordingly, Li and colleagues
confirmed that PD patients suffer alterations in the microbiota
that correlate with disease progression, as there is a continuous
decrease in fiber-degrading bacterial strains and an increase in
pathobionts (170). This conversion probably leads to a decrease
in SCFA production and an increase in endotoxin and neurotoxin
production (170). Supporting this hypothesis, growing evidence
has shown that FMT from healthy donors (171) as well as
butyrate administration in animal models of PD improves motor
impairment and dopamine deficiency (172–175).

SCFAs and Sclerosis
Multiple sclerosis (MS) is a neurodegenerative T-cell-mediated
autoimmune disease of the CNS that mainly affects the
myelin sheath around motor neurons. Among its etiological
factors, the imbalance between pro and anti-inflammatory
cells in the immune system seems to play an important role,
which is highly affected by the gut microbiota composition
and can be aggravated by dysbiosis (104, 176, 177). Given
that SCFAs, mainly butyrate, are capable of inducing Treg
polarization, modulation of the gut microbiota toward increased
production of these metabolites could be an interesting
therapeutic approach to MS. In fact, it is noteworthy that oral
administration of SCFAs ameliorated the disease severity of
experimental autoimmune encephalomyelitis (EAE), an animal
model of MS (87, 178). Specifically, acetate supplementation
is able to induce increased acetyl-CoA metabolism, which
increases histone acetylation, resulting in preserved spinal cord
lipid content and essentially preventing the onset of clinical
symptoms of EAE (179). Furthermore, treatment with butyrate
suppresses demyelination and enhances remyelination through
oligodendrocyte maturation and differentiation (180).

Efforts to modify the course of amyotrophic lateral sclerosis
(ALS) a disease that affects motor neurons but also involves
a stronger genetic basis that leads to the premature death of
those cells, has focused on the gut microbiota composition
and its circulating metabolites (181). A comparative study
conducted in human patients showed an elevated relative
abundance of pathobionts compared to bacterial strains related
to beneficial metabolism function (142). Another study found
that transgenic ALS model mice had worse disease progression
when raised under antibiotic treatment or GF conditions and
identified several bacterial strains correlated with ameliorated or
aggravated disease progression. A small assessment of the human
microbiome/metabolite configuration was also conducted for
comparison (181).

SCFAs and Metabolic Disorders
Much speculation currently surrounds the possible involvement
of the gut microbiota in metabolic disorders such as type 2

diabetes and obesity. Compelling evidence have shown that the
composition of the gut microbiota is altered in animal models of
obesity and subjects with prediabetes or type 2 diabetes compared
with controls (182–186). Despite differences in the identification
of specific microbiome features responsible for these effects, a
shift in the microbiome composition away from species able to
produce butyrate was one consistent finding in type 2 diabetes
subjects (187). Further, epidemiological and experimental studies
have demonstrated that increased intake of dietary fiber reduces
the risk for developing metabolic diseases (188–190), possibly
by changing gut microbiome composition and diversity with
increased production of SCFAs (187–189).

Animal studies suggest that SCFAs have an important
role in the prevention and treatment of obesity-associated
insulin resistance (89, 114, 191, 192). Mechanisms involved
in the effects of SCFAs, mainly propionate and butyrate, in
the brain responsible for controlling metabolic disorders
include the activation of FFAR2 and FFAR3 receptors
(91). It was shown that activation of these receptors leads
to suppression of the activity of orexigenic neurons that
express neuropeptide Y in the hypothalamus (89), and
the modulation of the signaling mediate by the ghrelin
receptor (129), contributing to circadian rhythm and appetite
control. Studies in rodents show that the administration
of prebiotics that influences a shift in the gut microbiome
toward increased production of butyrate has beneficial
effects associated with higher levels of GLP-1 (193–195), as
well as hypothalamic expression of pro-opiomelanocortin
(196), thereby influencing the hunger-satiety cycle.
Although limited, some of these results were confirmed
in human in vivo studies, as showed that acute rectal
infusions of sodium acetate and SCFA mixtures increased
circulating concentrations of PYY in individuals who were
overweight (197–199).

CONCLUDING REMARKS

The gut microbiota has attracted considerable attention in recent
years, putting it in the spotlight of biomedical research. Recent
studies have suggested that an intestinal bacteria imbalance
plays a role in the development of several disorders. The
bidirectional communication that occurs between the microbiota
and its mammalian host can be mediated through a variety of
mechanisms, and it is clear that the biochemical messengers
produced by the microbiota are an important facet of this
crosstalk. Convincing evidence exists that SCFAs produced by the
intestinal microbiota are involved in gastrointestinal physiology,
immune function, host metabolism, and even in development
and homeostasis of the CNS.

Although our understanding of microbiota-host interactions
has considerably increased over recent years, there is still
an unmet requirement for a deeper understanding of the
complex microbiota-gut-brain communication. Furthermore,
since most studies have been conducted in rodents, one
must be cautious when translating the effects of SCFAs on
humans. Given that SCFAs can regulate CNS processes through
direct and indirect means and ultimately shape behavior and
cognitive function, a thorough comprehension of how these
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metabolites participate in these complex gut-brain interactions
may aid in developing novel therapeutic targets for treating CNS
disorders. Further, through their effects on the development and
maintenance of healthy brain function, these metabolites hold
the potential for use as dietary interventions with a range of
psychological functions.
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