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ABSTRACT 

Higher education in Australia is being transformed to focus more on student 

experience, but within the academic community debate continues as to the suitability 

and reliability of allowing student opinion to dictate quality systems. Research to 

date has been inconclusive in providing evidence to justify either side of the debate. 

Similarly, the focus on understanding if and how student opinion can define and 

improve quality in the engineering teaching laboratory is limited. This is important 

within engineering, because as a practicing profession the teaching laboratory is 

generally regarded as playing an important role in preparing graduates for their 

future careers. The purpose of this study is to create a more complete understanding 

of what contributes to a quality learning experience in the engineering laboratory.  

 

The research examined laboratory and student evaluation data between 2007 and 

2015 for twenty-five courses in the School of Electrical, Computer and 

Telecommunications Engineering at the University of Wollongong, Australia. Most 

laboratory studies typically focus on one or two courses at a time for one or two 

years, which means this is one of the first of these types of studies to be conducted 

over an extended period of time.  

 

A variety of research methods are used, underpinned by an iterative refinement 

process to understand the quality relationship between the laboratory demonstrators, 

training, laboratory experiments, facilities, resources and perceived learning. For the 

first time, various lines of investigation are used to develop a process map which 

indicates the interconnections between the laboratory variables. 

 

This mapping found that student evaluation scores associated with laboratory 

experiments are linked to students’ perceived learning achieved in the cognitive and 

psychomotor domains, but they are also matched to assessment performance in the 

cognitive domain when measured by a laboratory exam. While laboratory 

demonstrators and questions to evaluate the facilities are not directly linked to 

learning, the mapping shows a complex series of interconnections that tend to 

influence student opinion on the experiment questions. The key to a quality 

laboratory experience are demonstrators that are well trained and mentored; 
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laboratory activities that are engaging, with clear instructions, and teach fundamental 

skills like troubleshooting; the inclusion of additional resources that support learning 

in the laboratory, especially for students who do not follow the standard learning 

pathway; ensuring there is quality hardware and software;  and ensuring an effective 

management structure is in place to ensure quality practices and promote continuous 

improvement. 

 

The findings from this study advance knowledge by providing evidence that student 

evaluation data can be used to guide improvements in the quality of laboratory 

experiences. The mapping also provides engineering departments with a tool to 

design holistic laboratory experiences that provide positive student experiences and 

improved perceived learning in multiple domains. It also proves to Deans and Heads 

of School the importance of effective management structures to ensure quality and 

implement continuous improvement practices in the laboratory. 
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TERMINOLOGY 

 

Course A series of lectures/tutorials/laboratories/workshops/seminars or 

other related activities in a particular subject which lead to an 

examination or qualification 

Degree A program of study consisting of a combination of courses and other 

requirements which lead to a specific higher education award 

Degree Structure Refers to a specific program of courses which a student undertakes to 

meet the requirements of a degree 

Discipline A branch of knowledge based on a degree major, such as in electrical or 

mechanical engineering 

Laboratory 

Demonstrator 

A sessional teaching assistant practicing teaching in the laboratory 

Session A period in which courses may be offered. Classed as Autumn 

(February – June) and Spring (July – November) 

SET Student Evaluation of Teaching 

Team Based 

Teaching (TBT) Multiple teaching staff in the classroom working cooperatively 

Teaching 

Laboratory 

A room or building equipped for scientific experiments (physical or 

simulated) that is used for teaching purposes 
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1. CHAPTER 1: INTRODUCTION 

 

1.1. Background 

The teaching laboratory plays an important role in engineering education because in 

an ideal curriculum, students develop laboratory skills in instrumentation, modelling, 

experimentation, data analysis, design, learning from failure, creativity, 

psychomotor, safety, communication, teamwork, ethics, and sensory awareness 

(Feisel and Rosa, 2005). This has resulted in a lot of research directed towards how 

best to conduct laboratory classes; it includes research on experimental design, 

learning objectives, learning tools, teaching staff, facilities, and quality measures. 

The common aims of these research studies are to improve laboratory use in order to 

facilitate learning and improve student experience. 

 

Historically, practice based learning (now mostly conducted within the teaching 

laboratory) has always played an important role in engineering education (Feisel and 

Rosa, 2005). A recent Australia wide study confirmed how important a laboratory 

can be for developing future engineers (Kostulski and Murray, 2010). However, 

some Australian reports have highlighted a number of quality risks associated with 

learning in the laboratory. A report commissioned for the Australian Council of 

Deans of Science (O'Toole et al., 2012) found that most teaching in Australian 

laboratories is carried out by sessional teaching assistants, also known as laboratory 

demonstrators; mainly postgraduate research and undergraduate honours students 

who are untrained and lack experience. This finding was in addition to a number of 

earlier Australian government reviews highlighting that quality assurance standards 

for all sessional teaching assistants are generally inadequate (AUTC, 2003, ALTC, 

2008), which means the quality of these demonstrators is an important issue that 

must be addressed. 

 

While problems with quality have been identified in these Australian reports, other 

risks have also been acknowledged through academic research. Studies have 

identified that simply having a laboratory does not ensure that productive learning is 

taking place, or that it is enjoyable (Casas and del Hoyo, 2009); that the laboratory 
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learning objectives and the type of learning can be unclear and misunderstood 

(Hofstein and Lunetta, 1982, Feisel et al., 2002, Salim et al., 2013); and that a 

balance between traditional and new laboratory approaches such as remote access to 

physical equipment and experiments is beneficial (Feisel et al., 2002). It is also 

important to acknowledge that a holistic laboratory experience which covers learning 

across the cognitive, psychomotor and affective domains is also needed (Salim et al., 

2013). However, most of these investigations only occur across one or two courses 

and generally for a short period of time, such as one or two years. A better 

contribution to laboratory quality could be made if a study occurred over many 

courses and for a longer duration. 

 

In order to improve the quality, it must be measurable, but measuring the quality of 

education is complex due to questions such as who can actually measure quality, and 

what attributes should be measured? Governments, such as in Australia and the UK, 

have been raising the cost to students of higher education and promoting the 

importance of data gathered by student experience questionnaires. These changes are 

having the effect of transforming the student into a customer whose  experience is 

now front and centre (Bunce et al., 2016). Through the Australian QILT website 

(Australian Government, 2016) prospective students have access to data from 

surveys such as the Student Experience Survey (SES) and the Course Experience 

Questionnaire (CEQ), while similar surveys such as the National Student Survey 

Questionnaire (NSS) are used in the UK and the National Survey of Student 

Engagement is used in the USA (Calvo et al., 2010). These surveys are used to 

understand the quality of education as perceived by current and recently graduated 

students. They are also associated with attracting new students, building a 

university’s reputation,  and to attract funding (Ling et al., 2012). This therefore 

raises the question of whether students are capable of judging quality in education.  

 

Many academics have questioned the suitability of students becoming de facto 

customers, believing they are incapable of judging the quality of education or 

learning outcomes.  They argue that students have nothing to learn if they already 

know everything in order to demand it (Lesnik-Oberstein, 2015). A number of 

possible risks might include students seeking to ‘have a degree’ rather than ‘be 
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learners’; possible pressure to ‘dumb down’ the contents in order to receive higher 

ratings; and a greater sense of entitlement (Bunce et al., 2016). However, other 

academics argue that student opinions should be heard and that on average they are 

capable of judging the quality of their education (Marsh, 1987, Logothetis, 1995, 

Stehle et al., 2012). There is no conclusive research with which to determine which 

argument is correct. This provided an opportunity to undertake further research to 

help provide clarification and determine whether student opinions can be measured 

and used to improve the laboratory learning experience. 

1.2. Purpose Statement and Research Question 

 

The purpose of this study is to gain a better understanding of what contributes to a 

quality engineering laboratory learning experience. Student evaluations were 

examined to see whether they could be used as an accurate measure of quality.  

These evaluations, carried out via research, laboratory demonstrators, training, 

experiments, equipment, facilities, resources and biases led to the construction of a 

process map which clearly showed how acting upon student evaluation data would 

lead to a higher quality laboratory experience. This is one of the first studies of this 

type to be conducted across a large number of courses, and over an extended period 

of time.  

 

Two methods were considered to determine what a quality laboratory experience is, 

or should be: first by considering student experience, and second, by studying the 

impact it has on perceived student learning. To achieve this, a mixture of quantitative 

and qualitative research methods, and statistical analysis were incorporated into an 

iterative research design. This research approach aimed to identify if, how, and why 

student evaluations changed teaching skills, laboratory experiments, facilities and 

resources, and whether or not these improvements impacted on perceived learning.  

 

The overarching research question that this thesis sought to answer was: 

 

Can student evaluations provide data that can be used to guide improvements in the 

quality of laboratory experiences? 

 



 

4 

 

1.3. Thesis Overview 

 

A number of investigative paths were undertaken to try and answer the overarching 

research question. The research strategy for this thesis is described visually in Figure 

1-1. 

 

Figure 1-1: Diagrammatic representation of the research sub-questions used to 
formatively answer the research question 
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The lines of investigation in this study were guided by a number of research sub-

questions which set the focus for each chapter and research approach. These sub-

questions and chapters are: 

 

Chapter Two: Does previous research answer the question: What is a quality 

laboratory experience and how is quality measured? 

Chapter two presents an exploration of current literature to identify the reasons, 

including the learning objectives, used to explain why learning in the laboratory is 

important to engineering. An overview of why a quality education is important, and 

how it is assured and measured was also investigated. It also identifies the gaps in 

research that this study will try to address.  

 

Chapter Three: Does training lead to an improvement in student evaluations? 

It is generally assumed that training plays an important role in teaching. Chapter 

three uses an iterative refinement process to investigate the impact training and 

mentoring have on improving teaching effectiveness of laboratory demonstrators. 

The relationship between demonstrator training and student evaluation results is also 

explored. 

 

Chapter Four: What changes lead to improvements in student evaluations of the 

laboratory experience? 

Chapter four uses an iterative refinement process to explore changes to laboratory 

experiments, facilities, and resources, and their effect on student evaluations. An 

understanding of what students consider to be important to a quality laboratory 

experience is developed in this chapter. 

 

Chapter Five: Investigates two sub-questions: 

1) What forms of influence can be found in the survey instrument  

2) What is the relationship between student evaluations of teaching and the 

laboratory experience? 
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A statistical analysis was undertaken to determine unwanted influences in the student 

evaluations, especially when using a team based teaching format. An investigation 

was then conducted to understand the relationship between student evaluations of 

laboratory demonstrators and to understand how much influence demonstrators have 

on their laboratory experience. 

 

Chapter Six: Do students use and appreciate laboratory resources? 

Chapter six extends the investigation into laboratory experience from chapter four to 

focus on the way students use laboratory resources. Using an iterative refinement 

process, learning resources were implemented with changes to student 

experimentation being observed and measured. 

 

Chapter Seven: Do additional laboratory resources improve learning? 

Chapter seven commences an investigation into understand whether positive changes 

in student evaluations are correlated with an improvement in learning. This is 

analysed through an iterative refinement process case study of a revised laboratory, 

improved through additional laboratory resources aimed at improving our 

understanding of the experiment and the facilities. 

 

Chapter Eight: Is there a relationship between student evaluations and perceived 

learning in the laboratory? 

An instrument based on laboratory learning objectives across the cognitive, 

psychomotor, and affective domains was used to measure perceived learning and 

laboratory examination performance and explore its relationship with student 

evaluations. In this respect, quality is considered as an improvement in student 

experience scores, perceived learning and performance in a laboratory exam. 

 

Chapter Nine: 

A discussion was carried out to determine how the findings from each sub-question 

can be linked via a process map. A comprehensive map of the relationships between 

teaching, experiments, facilities, resources and learning was devised. The outcome 

here is a greater understanding of how student evaluations can be used to improve 

the laboratory learning experience. 
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1.4. Scope and Limitations 

This study conducted research on 25 courses with a laboratory component in an 

electrical, computer, and telecommunications engineering department at the 

University of Wollongong; this research only examined the laboratory component of 

the 25 courses. The list of courses is outlined in Table 1-I. Courses were surveyed 

over many instances, depending on the specific investigation. These details are 

provided in the research design section of each chapter. The first digit after ‘ECTE’ 

represents the course level; for example ECTE222 is a course in the second year of 

study. Since this study is concentrated at one institution the outcomes may differ at 

other institutions. Similarly, other disciplines (including other disciplines of 

engineering) may run laboratories using a different approach. However, this study 

provides a framework of knowledge that can be replicated and investigated at other 

institutions. 

Table 1-I: Courses evaluated in this study 
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The twenty five courses researched were undertaken by students from the computer, 

electrical, mechatronics, and telecommunications engineering disciplines, and one 

course was undertaken by students studying civil, environmental, materials, 

mechanical, and mining engineering. The laboratories consisted of physical, 

simulated or mixed experiments, and ranged from connecting or simulating electrical 

or digital circuits, controlling motors, programming microcontrollers, simulating 

network traffic, and programming in MATLAB. The types of experiment undertaken 

were based on meeting the course learning objectives dependant on available 

resources. Some examples of the laboratories and equipment used are as follows:  

 

1) An electronics laboratory is shown in Figure 1-2; here the students design and 

construct electronic and digital circuits to reinforce theoretical concepts or to 

develop design skills. They use a variety of power sources and measuring 

instruments. Students also undertake simulation activities. 

2) A power laboratory is shown in Figure 1-3; here students learn how a motor 

operates and how to use interchangeable LabVolt (LabVolt, 2015) modules to 

learn about power systems 

3) A simulation from a computer laboratory is shown in Figure 1-4. MATLAB 

is used to teach students how to program and run simulations  

 

 

Figure 1-2: Equipment used in the electronics laboratory 
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Figure 1-3: Equipment used in the power laboratory 
 

 

Figure 1-4: An example of a computer simulation using MATLAB 
 

The laboratories examined and the student evaluations used only apply to 

laboratories where sessional laboratory demonstrators teach. This is associated with 

the overwhelming numbers of non-permanent staff teaching in the laboratory, as will 

be evidenced in the literature review. Therefore, the findings in this thesis would 

possibly differ if analysed on permanent academic staff. 
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Most laboratory demonstrators are higher degree research students, and most are 

international. These results could differ if other demonstrator’s such as 

undergraduate students, people employed in industry, or a different make up of 

domestic and international students are used. 

 

The university has a large cohort of international undergraduate and postgraduate 

students, in fact the city in which this university is located is known for its 

multicultural history. Different exposure to international persons may produce 

different results. While differences in the application of teaching staff or the profile 

of student cohorts can change between universities, the teaching and laboratory 

structures can be applied elsewhere leading to studies that confirm or disprove the 

thesis findings. 

 

Data collection commenced in 2007 and concluded in 2015. During this time some 

courses were discontinued, some commenced, changed structure, or were upgraded 

as a result of this research. The author of this thesis was employed as a Laboratory 

Manager responsible for the quality of laboratory experience. As Laboratory 

Manager the author was responsible for working with the academic staff that 

coordinated the courses, to ensure that the experiments, facilities, and teaching staff 

were organised to a high standard. Therefore, as benefits were identified, changes 

were made and their impact was observed. This method of repetitively enacting 

change and learning about the impact is known as action research but applied as an 

iterative refinement process and underpins the importance of the methodology used 

in this thesis.  

 

1.5. Action Research 

 

The term “Action Research” was first used in the 1940’s by Kurt Lewin from MIT. It 

is a research design that combines action (implementing a plan) with research 

(evaluating the changes that occurred from the implementation), that is under-utilised 

in engineering education (Case and Light, 2011). Action research is cyclic (as shown 
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in Figure 1-5), and consists of five processes (NSW Department of Education and 

Training, 2010): 

1. Planning – identifying the issue to be changed, developing the questions and 

research methods, and developing a plan of implementation 

2. Acting – implementing the change according to plan, collecting and compiling 

evidence, and questioning the process 

3. Observing – analysing and documenting the evidence and findings 

4. Reflecting – evaluating the process and implementing findings 

5. Identify action – the reflection process should identify new actions that can be 

implemented 

 

Figure 1-5: The Action Research Design Cycle 
 

 

The benefits of action research were demonstrated for engineering education by Case 

and Light (2011) who found that the design is flexible and open to change. This 

design is best suited to educators (pg. 197) “who are not only interested in 

systematically researching their own educational practices but also in implementing 

substantial personal and social change in their practice”. In support of this, Dick 

and Swepson (2013) outlined that action research should be used when , “you wish to 

involve the people in the system being researched… [and] you wish to bring about 
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change at the same time”. A valid action research study involves dialogic, process, 

outcome, catalytic, democratic, and process validity. A validation criteria of using 

action research has been developed and is summarised in Table 1-II (Rahman et al., 

2012). This table outlines how the goals of action research can be linked to dialogic, 

process, outcome, catalytic and democratic validity. 

 

Table 1-II: Validity Criteria in Action Research 
 

 

 

An example of action research being used in engineering is a study by Mejía et al. 

(2007) who used multiple action research cycles to develop a methodology for 

collaborative engineering environments. This led the researchers and users to 

improve technologies for the support and collaboration of engineering activities. 

Action research was also used to determine how mathematics educators could 

improve their teaching and student learning in engineering mathematics (Rahman et 

al., 2012). This study was carried out over nine years, in three different phases. The 

actions associated with phase two are based on the findings of phase one, while the 

actions of phase three are based on outcomes of phase two.  

 

Virkki-Hatakka et al. (2013) used action research to improve the quality of teaching 

in two chemical engineering courses. Two action plans were carried out each year 

based on student feedback and teacher reflection from the previous year. The action 

research cycle lasted for six years and resulted in better learning outcomes (student 

achievement) and a more positive student experience. These studies highlight that 

action research designs are usually long term studies that involve many iterations in 

order to gain a better understanding, and there is always room for further 

improvements. 
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The cyclic nature of action research has its roots deeply embedded in the process of 

continuous improvement. This is highlighted in work carried out by Jørgensen and 

Busk Kofoed (2007) where action research was used to teach students who were 

actively involved in the research in order to understand the basic principles of 

continuous improvement and innovation. In this learning by doing approach the 

students were required to design and implement solutions for the subject they 

deemed relevant and important. At the end of the subject the students had developed 

some first-hand experience in continuous improvement processes. 

 

As continuous improvement is the basic philosophy behind active research, many 

research studies based on continuous improvement could be classified as an action 

research study. The basic premise of continuous improvement is based on three basic 

steps: 1) study the current situation, 2) identify problems and solutions, and 3) 

implement these solutions. This process is repeated continuously, as shown in Figure 

1-6, and follows the same premise as the action research shown in Figure 1-5. The 

main difference is that action research is used to improve quality and gain an 

understanding of teaching and learning. However, within this study theoretical 

models did not drive the research; instead the evaluation data was used to guide the 

research. The evaluation data provided clues to possible improvement that were 

researched and enacted upon in an iterative process. As this approach did not directly 

align with the traditional action research methodology, the research method used is 

described as iterative refinement process. 
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Figure 1-6: The Continuous Improvement Cycle 
 

 
 

Since this thesis will examine improvements to the sessional teachers used in the 

laboratory and the experiments and facilities, two separate but linked research cycles 

were undertaken. The iterative refinement process was best suited to this thesis 

because of the need to examine changes across multiple instances of each course 

with immediate impact desired. Improvements to teaching and changes to laboratory 

experiments and facilities were phased across multiple years allowing impact to be 

measured. In order to determine if student evaluation data can be used to improve the 

laboratory experience the data needed to be analysed, changes within the laboratory 

implemented, observed and revaluated with further changes enacted as required. The 

changes to the student evaluation data guided the findings of the research questions. 

 

A visual representation of the iterative refinement process for chapters four and five 

can be seen in Figure 1-7 where the cyclic process is the same but the changes and 

improvements being researched are different. This means that investigation one 

focuses on improvements to teaching covered in chapter three and investigation two 

focuses on improvements to the laboratory experience covered in chapter four. 

Before the research cycles can commence, a detailed study of the literature is needed 

to understand what is important about the laboratory? What is quality in the 

laboratory and who can define and judge, and how are student evaluations conducted 

and used? This forms the basis of the literature review in chapter two. 



 

15 

 

 

 

 

Figure 1-7: Iterative Refinement Process for Improving Teaching & the Laboratory 
Experience as Outlined in Chapters 3 and 4 

 

1.6. Chapter Summary 

This chapter outlines how important the laboratory is to engineering education, and 

the major gaps associated with understanding the validity and reliability of student 

evaluations, especially in terms of the teaching laboratory.  It also shows that the 

desire to simultaneously increase quality and knowledge resulted in an action 

research styled approach labelled as an iterative refinement process. By 

implementing quality processes, changes to student evaluations can be linked to a 

process map leading to new knowledge that will improve teaching and learning in an 

engineering laboratory. To start the process and develop our understanding, a 

literature review was undertaken.  
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2. CHAPTER 2: LITERATURE REVIEW  

The need for engineering education to incorporate learning in the laboratory is 

traditional and still highly valued in the engineering academic community (Feisel and 

Rosa, 2005, Kostulski and Murray, 2010). However, the teaching laboratory of today 

may be very different to what was taught ten, twenty, or fifty years ago.  This chapter 

presents the outcomes of a review of literature on three main topics: learning in the 

laboratory, quality in education, and student evaluations. 

 

The first topic is about understanding what is currently taught, how it is taught and 

measured, and what are the learning objectives in the laboratory from the literature. 

The second topic is used to define quality and appreciate why and to whom a quality 

education is important, and to consider the quality processes that are used in higher 

education. The final topic explores the ability of students to evaluate their 

experiences, their teachers, and their learning. 

 

The goal of exploring literature related to these three topics is to establish what has 

been investigated and reported previously, in order to understand why learning in the 

laboratory is important and if student evaluations can improve quality in the 

laboratory? The sub-question for this chapter is therefore: 

 

Does previous research answer the question: What is a quality laboratory experience 

and how is quality measured? 

 

2.1. Learning in the Laboratory 

This section looks at the history of the laboratory to determine why laboratory 

learning is important to engineering education. It investigates what type of learning is 

conducted in the laboratory, and how this learning benefits students. 

2.1.1. The Laboratory – Past and Present 

In engineering, practice based learning has always played a role in developing skills 

and knowledge. Up until the 18th century engineering could be classified into two 

types: Military, for building fortifications, catapults, canons, and other weapons; and 

Civil for building bridges, buildings, harbours, roads, and other structures (Futures in 
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Engineering, 2016). Before the first engineering schools were established, 

engineering was taught in apprentice style programs (Feisel and Rosa, 2005). The 

first schools of engineering were founded in France to support state consolidation 

and expansion, they were associated with the military and included mathematical 

rigor (Mrázek, 2002, Feisel and Rosa, 2005). Similarly, the first engineering school 

in the United States was associated with the Military Academy at West Point in 

1802, and served primarily to educate engineers for military and civil service (Pérez, 

2014). Maths was integrated into the curriculum following the French model, where 

the practical component of ‘learning by doing’ was acknowledged as being an 

important part of the learning process (Feisel and Rosa, 2005).  The apprenticeship 

model of learning in which novice students learn a technique in which they could not 

only see but do from expert students within the laboratory was also used in other 

scientific disciplines such as Chemistry (Elliott, 2006); a process that continues to be 

taught. 

 

The Industrial revolution in the mid-19th century led to a number of engineering 

universities commencing around the world, including the first engineering course at 

an Australian university in Melbourne in 1861 (Feisel and Rosa, 2005, University of 

Melbourne, 2016). Universities with engineering courses and societies continued to 

grow in Australia and in 1919 Engineers Australia (now responsible for 

accreditation) was formed as a result of the amalgamation of 12 existing engineering 

societies in Australia (National Library of Australia, 2016). The use of textbooks and 

laboratory manuals increased across disciplines and different approaches to 

laboratory learning, such as demonstrating laboratory concepts in a lecture for 

confirming and illustrating information were introduced, leading to the emergence of 

laboratory education research (Hofstein and Lunetta, 1982, Oliver, 1975). 

 

In a historical overview of the laboratory, Feisel and Rosa (2005) outlined that in the 

1970’s institutions increased the importance of maths and science in the curriculum. 

To cope with this extra material, the amount of time learning in the laboratory was 

reduced, which reduced the practical skills. In the 1980’s students were graduating 

without being adequately prepared in laboratory techniques, with the result that 

accrediting bodies such as Engineers Australia and ABET (previously the 
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Accreditation Board for Engineering and Technology) in the USA, put standards in 

place that forced institutions to improve their practical learning. This was done to 

highlight the importance of learning in the laboratory for engineering education. 

 

Accrediting engineering degrees is important because it ensures that institutions meet 

quality standards established by the profession and will produce graduates capable of 

starting their careers. Indeed the stamp of approval provided by accreditation 

provides students, parents, employers, other institutions, and the public confidence in 

the degree. In Australia, engineering degrees are accredited by Engineers Australia, 

and like ABET and other accreditation bodies around the world, Engineers Australia 

has sound criteria in regards to practical learning. Each institution must ensure they 

have modern experimental facilities that will provide students with a holistic range of 

practical skills and learning ensuring that their curriculum meets the accreditation 

criteria. Relevant extracts of the current accreditation criteria applicable in 2016 

(Engineers Australia, 2008) include: 

“Appropriate experimental facilities must be available for students to 

gain substantial experience in understanding and operating engineering 

equipment, of designing and conducting experiments and undertaking 

engineering project work. The equipment must be reasonably 

representative of modern engineering practice and facilitate sound 

learning design. Facilities need to support structured laboratory 

activities, experiments of an investigatory nature and more open ended 

project based learning. Access to modern analysis, synthesis, 

visualisation, simulation, planning, organisational and measuring tools 

in the engineering, sciences, business, communication, and management 

domains is expected.” 

 

In 2010 a report titled “The National Engineering Laboratory Survey” (Kostulski and 

Murray, 2010), data was reported on engineering laboratories across all 34 

universities in Australia that provide an engineering degree at that time. The report 

investigated how important the teaching laboratory was currently viewed within 

Australia. It found that the executive staff from all thirty four universities agreed or 

mostly agreed that practical, experimental laboratory experiments are an integral and 
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very important part of engineering education. It also found that sixty two per cent of 

academics ranked the laboratory component as the most important part of their 

subjects. The study also investigated how laboratories are run, and found that:   

- 79.5% of laboratory sessions are between 2 to 3 hours in duration 

- 74.4% of academics stated that all experiments are performed in groups 

- Around 66% of subjects had at least one postgraduate or senior undergraduate 

student involved in running scheduled laboratory sessions 

 

A laboratory does not simply need to be a room full of equipment and measuring 

devices. As computers and software have become more powerful, there has been a 

gradual shift towards conducting experiments in a simulated environment. While 

simulations are cheaper, safer, faster, and take less floor space (Hardy, 2008), they 

enable students to easily adjust and replay models to observe how the simulations 

affect the system. The biggest problem educators find with simulations is that the 

data are not real, simply a model of a physical process, whereas the data in hands-on 

laboratories are real (Corter et al., 2007). 

 

A trend has recently emerged towards having a ‘remote laboratory’ which 

supplements traditional laboratories by allowing users to perform experiments on 

real systems via remote access (Fabregas et al., 2011). The experiment actually takes 

place and real data is obtained, but as with simulations, a student does not need to be 

close to the physical equipment and can conduct experiments any time of the day 

(Corter et al., 2007). The other advantage of remote laboratories is that they can be 

shared between institutions and require less maintenance due to less wear and tear, 

resulting in substantial cost saving to universities (Lowe et al., 2009). While 

providing real data, remote laboratories do not provide hands-on experience (Corter 

et al., 2007), and if all experiments are simulated or remote, students are deprived of 

the many important learning experiences found in a traditional laboratory;  therefore, 

a balance is needed. Simulations and remote laboratories will probably predominate 

in the future with the arrival of MOOCs (Massive Open Online Courses) and other 

forms of online education because these learning formats encourage new ways of 

teaching engineering in higher education using an online/remote environment 

(Buchanan, 2013).  
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To validate the notion that remote laboratories can assist learning, Wolf (2010) 

undertook a small scale study on a computer networks course. Twenty nine students 

participated in a study that involved numerous assessments of learning in lectures 

and remote laboratories. The remote laboratory took place after the lecture. Students 

participated in a quiz before the lecture, between the lecture and lab, and after the 

lab, to provide a timeline on how learning was taking place. The study found that 

54.1% of learning could be attributed to the lectures and 45.9% to the laboratory. 

While this was a small study, it did provide some evidence for the usefulness of a 

laboratory for learning, but it failed to address what type of learning took place, or 

whether the learning objectives of traditional hands-on laboratories are the same as 

simulated or remote experiments. 

 

The complexities associated with learning was investigated by Lindsay and Good 

(2005) exploring the impact of different access modes. Conducted in a third year 

Mechanical Engineering course at an Australian university, the study explored the 

differences between cohorts of students undertaking the same experiment in three 

different modes (proximal, remote and simulation) based on constructivist theory that 

different types of laboratories should lead to different learning outcomes. The 

courses eight learning outcomes was used as a measure: appreciation of the hardware 

involved; reasons for calibration; the complexity of signals; identification of 

assumptions; exception handling; processing of data; limitations of accuracy; and 

comparison of data. Additionally, students were required to undertake a post-test 

survey that gauged student perceptions. Findings from the study indicated that 

alternative access modes may improve some learning outcomes at the expense of 

degradation in others. Moreover, differences in the perceived objectives by the 

students were discovered between the three modes. The study reinforces the need for 

a balanced approach to different laboratory delivery modes. Also of importance was 

that the course learning outcomes were all associated with cognitive learning. The 

findings could have been different if the learning outcomes were different; for 

example, if the learning outcomes were associated with greater manipulation of the 

technology used. If all course learning objectives are cognitive based it could be 

possible that learning objectives based on the laboratory experience could be 
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overlooked. In order to balance the historical apprenticed trained engineer with the 

modern theory based engineer, it may be appropriate to consider learning objectives 

beyond the course and discover the learning objectives that could be associated with 

the laboratory.  

 

2.1.2. Laboratory Learning Objectives 

To comprehend the learning effectiveness of a laboratory, a general understanding of 

the different learning domains is needed. A holistic instrument to help measure 

student development, which has been revised over the years, is Blooms Taxonomy 

(Krathwohl, 2002). This taxonomy is named after psychologist Benjamin Bloom, 

who originated this concept with measurement specialists in the USA; Max 

Englehart, Edward Furst, Walter Hill, and David Krathwohl formed the committee of 

educators and published their first work in 1956 (Armstrong, 2015). The purpose of 

the framework was “for classifying statements of what we expect or intend students 

to learn as a result of instruction” (Krathwohl, 2002, pg. 212). The committee 

identified three domains of educational activities or learning. Blooms Taxonomy can 

be generally applied to all learning and is used as a measure of student development 

over the cognitive (knowledge), psychomotor (skills), and affective (attitude/self) 

learning domains. The idea of having three domains is to encourage educators to 

provide a more holistic approach to learning where each domain consists of a number 

of levels, with higher levels of learning depending on lower levels of learning 

(Anderson et al., 2001). While the levels within each domain are generally important 

(and the level descriptors and dependence are revised over time), it is the fact that the 

three domains exist that is important to learning in the laboratory. 

 

Uncertainty of the laboratory learning objectives became increasingly apparent in the 

1980’s creating the need to consider three domains of learning. A paper by Graham 

(1983) raised the need to undertake more research on laboratory learning because the 

focus had been mainly on what and how experiments are carried out, rather than 

why; this means that engineering educators needed to develop a better understanding 

of how the learning process occurs in a laboratory environment. In part, this was a 

response to research which questioned the benefits of the laboratory (Bates, 1978, 
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Saunders and Dickinson, 1979). These studies began to question whether student 

learning was improved by the laboratory, and hence justified the cost of running and 

maintaining laboratories in an environment of budget cuts. At this time the 

alternative to running laboratory classes was a lecture with a laboratory 

demonstration. During this period many studies investigated how effective 

laboratories were compared to the laboratory and laboratory demonstration methods. 

 

Once such study by Oliver (1975) investigated the difference between a lecture-

discussion with demonstrations, and a lecture-discussion and demonstrations with 

laboratories in biology. The study concentrated on the cognitive domain and found 

no significant difference in learning. A similar study by Coulter (1966), also found 

no significant difference in cognitive learning, but Coulter looked beyond the 

cognitive domain and found those students who had completed the experiments, 

appreciated the laboratory experience and had gained psychomotor skills. The 

problem with implementing these studies was first alluded to in an analysis of thirty 

seven studies by Cunningham (1946). The issue here was that any comparison 

between the learning styles would be affected by the learning objectives being 

measured. That is, learning in a laboratory is more than just developing cognitive 

skills. A more recent review of such studies by Hofstein and Lunetta (1982) reached 

a similar conclusion; they found that the research design in terms of the learning 

being measured is a major issue, and therefore more attention is needed to 

understand the learning goals of undertaking an experiment in order to better 

compare teaching methods. The underlying tone in this literature is that more 

research is needed to determine the effectiveness and the role the laboratory plays in 

learning outside of the courses defined learning outcomes (Cunningham, 1946, 

Hofstein and Lunetta, 1982, Majerich, 2004). As a consequence, researchers began to 

explore learning in the laboratory outside the cognitive domain. 

 

To explore learning in the laboratory means that a consensus of the goals of 

laboratory learning is needed. In the late 1990’s the possibilities of simulated 

learning and distant education, along with advances in computer and networking 

technology, continued to raise questions about the learning objectives associated with 

the laboratory (Feisel and Rosa, 2005). Without a consensus of the learning 
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objectives it was difficult to assess the impact that new technology would have on 

laboratory learning. In response, ABET and the Sloan Foundation (an American not-

for-profit grant making institution that supports original research and broad-based 

education related to science, technology, and economic institutions (Sloan 

Foundation, 2016)), organised a three day American colloquy in January 2002. This 

colloquy featured prominent engineering educators from the Unites States and some 

guest academics from Hong Kong and China. The goal was to develop a set of 

learning objectives for the learning laboratory that could be further discussed by the 

engineering education community (Feisel et al., 2002, Peterson and Feisel, 2002). 

 

A detailed summary of this colloquy was provided by Peterson and Feisel (2002). At 

the colloquy a broad statement was defined to answer the question, “What are the 

fundamental objectives of engineering education laboratories?” After significant 

discussion the following statement was decided upon (pg. 167): 

“The instructional laboratory experience is personal interaction with 

equipment and tools leading to the accumulation of knowledge and skills 

required in a practice-oriented profession” 

In addition, a set of thirteen learning objectives were developed to apply across the 

undergraduate engineering degree. These objectives are listed in Table 2-I. 
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Table 2-I: The thirteen laboratory learning objectives, each starting with the 
statement “By completing the laboratories in the engineering undergraduate 
curriculum, you will be able to…” (Peterson and Feisel, 2002, pg. 167-168) 

 

 

 

These thirteen learning objectives are important and can be mapped across the 

courses undertaken in this study, but not all learning objectives are assessed within a 

laboratory environment. For example, at the author’s institution the learning of ethics 

in the lab is not assessed or measured, which for example, they can demonstrate 

when reporting measured data which may not appear as the answer expected. This is 

because some learning is tacit, knowledge that typically is not openly expressed or 
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stated (Polanyi, 1966). In an attempt to discover some of the unmeasured benefits of 

learning in a laboratory, an Australian study (Razali and Trevelyan, 2008) explored a 

pilot instrument to measure practical intelligence (psychomotor skills) and tacit 

knowledge. This instrument was tested in a small scale experimental study (Bahri 

and Trevelyan, 2013) that found a significant difference in practical intelligence and 

tacit knowledge between students who had and who had not experienced learning in 

a laboratory. Furthermore, these studies highlight that learning in the laboratory goes 

beyond explicitly specified learning outcomes, and these other forms of learning are 

difficult to measure. However, they are essential for preparing students for a 

practicing profession and provide further evidence for this thesis to explore what 

constitutes a quality laboratory experience and its relationship to learning. More 

importantly, learning in the laboratory that is outside the cognitive domain has not 

been adequately considered in the research. 

 

The learning objectives of laboratory work (Peterson and Feisel, 2002), practical 

intelligence, and tacit knowledge (Razali and Trevelyan, 2008) can be mapped to the 

cognitive, psychomotor, and affective domains of learning outlined in Blooms 

Taxonomy. An instrument to measure the thirteen laboratory learning objectives 

across the three domains was developed by Salim et al. (2013)  who grouped the 

engineering learning objectives in Table 2-I to identified learning outcomes across 

the cognitive, psychomotor, and affective domains. Their research highlighted the 

wide range of skills developed in the laboratory and the fact that multiple domains of 

learning are involved in almost all learning activities. The mapping of laboratory 

learning objectives into three domains, as determined by the authors, is shown in 

Table 2-II, Table 2-III, and Table 2-IV. While this was only a pilot study with 26 

students, it is still the best attempt identified to measure laboratory learning 

objectives across multiple domains. As a result, this thesis will test and build upon 

their “Measuring the Learning Outcomes of Laboratory Work (MeLOLW)” 

instrument. This framework will be used to consider more than the cognitive learning 

in the iterative refinement process, it will also be used to measure perceived learning 

in chapter eight. Expanding this knowledge is an important contribution to laboratory 

learning, especially when comparing the advantages and disadvantages of learning in 

a physical laboratory rather than a virtual or remote laboratory. 
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Table 2-II: Laboratory work learning outcomes (cognitive domain) 

 

Source: Salim et al. (2013) pg. 5  

Table 2-III: Laboratory work learning outcomes (psychomotor domain) 

 

Source: Salim et al. (2013) pg. 6  
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Table 2-IV: Laboratory work learning outcomes (affective domain) 

 

Source: Salim et al. (2013) pg. 6  

 

The ability to better understand learning in the psychomotor and affective domains 

could lead to a possible rethink in the way learning outcomes are assessed.  An 

Australian study by Nightingale et al. (2007) which analysed the civil engineering 

programs in three universities across three Australian states, found a significant 

mismatch between the stated learning objectives of these courses and how the 

students were assessed. All three institutions relied heavily on examinations to assess 

cognitive learning outcomes, with assessments from the laboratory being close to 

negligible. The authors argued that concentrating the assessment to examinations 

sends the wrong message to students about what learning is important. Therefore, by 

better understanding learning in the laboratory it might be possible for students to 

engage in a wider range of learning modes and broaden their learning across the 

three domains. 

 

2.1.3. Learning by Doing 

An example of understanding the importance of learning in the laboratory was 

highlighted by a study conducted by Casas and del Hoyo (2009). They investigated 

the effect of applying the learning objectives to two Electrical Machine courses at a 

Spanish University. The original delivery in the laboratory was via a laboratory 

instructor who demonstrated the operation of laboratory equipment as described in 

the laboratory manual. An analysis of the courses found that students had low 
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satisfaction, which affected their attention, motivation, and learning. Student 

achievement (via assessment) was lower in the practical component of the course 

than with the theoretical component. After redeveloping the practical component to 

incorporate a ‘learning by doing’ approach, guided by the learning objectives defined 

at the ABET colloquy (Table 2-I), there was a significant improvement, and student 

satisfaction, participation, and achievement increased.  This study illustrates that 

having a laboratory component is no guarantee that learning takes place, or that it is a 

gratifying experience. Careful consideration must be given to the design and learning 

objectives. One of the weaknesses of this study was that it did not specify the number 

of participating students, and student achievement could have been measured better 

if they had an instrument to measure learning across multiple domains. 

 

The benefits of learning by doing resonates with the ‘Learning Pyramid’ created by 

The National Training Laboratories (Dale, 2005). The Learning Pyramid is designed 

to indicate the average retention rates of various learning methods, and is shown in 

Figure 2-1. While the Learning Pyramid has taken on many forms over the years, and 

the accuracy of the original research has been criticised for not producing the original 

data, it is highly referenced in training circles to show the importance of learning by 

doing (Lalley and Miller, 2007, Strauss, 2013). The structure of the pyramid suggests 

that active forms of learning are strongest for retention, which provides some 

evidence that practical learning in the laboratory can be very effective as a learning 

tool.  
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Figure 2-1: The Learning Pyramid by NTL 
 

The laboratory study by Casas and del Hoyo (2009), and the Learning Pyramid 

indicate that learning by doing (using multiple learning domains) has a positive 

influence on learning. Whereas learning by watching, whether in a laboratory or 

lecture, has a lower retention; this means that active approaches to learning in the 

laboratory are important. For example, an inquiry based learning approach (posing 

questions, problems or scenarios—rather than just providing facts) was investigated 

by Boxall and Tait (2008) in a civil engineering degree course at the University of 

Sheffield. Students were required to work in small groups with little direct 

supervision, with information being provided on the equipment, background theory, 

and advice on experimental design. The students were then left to undertake their 

own investigations into hydraulic phenomena.  Unlike the previous less active 

format, the students enjoyed and appreciated this new approach, which resulted in a 

better understanding of hydraulics observed with an improvement in class averages. 

Active learning approaches, like inquiry based learning, do not automatically result 

in greater student experiences. For example, an Australian study on civil engineering 
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students by Dawes et al. (2005) investigated the impact on learning in a new student 

experimental learning centre. The centre was developed to provide students with 

focused, hands on experience using multiple forms of media. In 2003 (the centre’s 

first year) a study was conducted on an engineering materials course with 100 

students. The students had to conduct one experiment using the active approach and 

four experiments using the traditional passive approach. More than 70% of students 

preferred the passive approach due to start-up problems with the equipment and the 

extra workload. In 2005 the study was repeated with 99 students undertaking four 

active experiments and one passive (the reverse of the previous study). The outcome 

was reversed with 72% of students enjoying the active approach. The authors believe 

that the change in attitude could be attributed to the change in the first experiment in 

which the students became accustomed in the following experiments. Moreover, 

most of the equipment issues had been resolved. It is therefore important to consider 

the experimental approach and the relationship between student experience and the 

equipment used. This will be examined in chapter four using an iterative refinement 

process. 

 

2.1.4. Section Summary 

The literature has shown that the laboratory still plays an important role in 

engineering education because it is an environment where learning takes place ‘by 

doing’, a learning process considered highly effective and well received by students. 

However, simply including a laboratory component is no guarantee of learning or for 

a satisfying student experience. Therefore, more research is needed into what 

learning occurs in the laboratory, how students learn, and how this can be related to 

the student experience. 

 

The laboratory has been evolving over time with simulations and remote laboratories 

gaining more influence. These new technologies are advantageous to laboratory 

learning and concentrate on cognitive development and specific course learning 

outcomes leading to the possible underdevelopment of skills across the thirteen 

laboratory learning objectives. Since most literature concentrates on cognitive 

learning, an identified gap is the need to consider the laboratory learning across the 
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psychomotor and affective domains. This thesis will therefore consider the three 

domains across the iterative refinement process and will use the Measuring the 

Learning Outcomes of Laboratory Work (MeLOLW) instrument developed by 

(Salim et al., 2013) to evaluate learning. The outcomes will help to design more 

effective experiments and an improved understanding of learning that can be used to 

find the appropriate balance between traditional and new forms of laboratory 

learning. This would result in changes to the quality of learning, an important factor 

that must be understood. 
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2.2. Quality in Education: Benefits for Stakeholders 

 

Quality is important because simply exposing students to a laboratory is no guarantee 

that learning is taking place or that they appreciate the experience. To ensure positive 

learning experiences means that quality processes are needed. This section will 

examine literature to determine how quality is defined in relation to education. Of 

interest is to investigate who are the stakeholders in education, and to define who can 

determine a quality experience. 

 

2.2.1. The Customer 

Mustafa et al. (2012) defined customer satisfaction as being when (pg. 64) “a 

customer is satisfied with a product or service that meets their requirements, needs 

or expectations”. A product or service that meets customer satisfaction can be 

described in terms of quality (Kelso, 2008), and therefore products or services of 

high quality are generally sought after. One of the problems about service quality is 

“that it is subjective, unlike quality of products, which can be measured objectively” 

(pg. 501) (Owlia and Aspinwall, 1998). 

 

In terms of business, quality is a fairly easy concept to grasp because companies try 

to make products that meet customer requirements so that their product/service is 

purchased/used and they can make a profit. Excluding the monopoly environment, if 

a customer is not satisfied they can seek the service or product from a competitor, 

which then reduces the value of the business to its stakeholders; stakeholders being 

management, employees, owners, or shareholders (Grygoryev, 2005).   

 

In terms of education, quality is a very complex issue (Grygoryev, 2005, Kelso, 

2008, Doherty, 2008) because the customer is not easy to define. In business, the 

customer is usually the purchaser of the product or service, but with education, the 

financier of the service and the number of stakeholders interested in the outcome is 

more complicated. An American study on quality in education by Grygoryev (2005) 

claimed that parents wanted the best possible education for their or child’s money, 

students wanted the best possible education to get the best job, industry wanted the 



 

33 

 

best students to increase competitiveness, and governments wanted to see the 

taxpayer’s dollar spent efficiently. Moreover, unlike in business, students are less 

likely to change providers in higher education, opting instead to discontinue their 

studies, thus resulting in a lost opportunity for the institution and the individual (Bain 

et al., 2012).  

 

In a UK discussion paper on quality in education, Doherty (2008) listed a number of 

paymasters, including the student, parent, employer, and the government. The 

makeup of these stakeholders is very diverse and can have conflicting expectations 

on what constitutes a quality education. To add to this complexity (pg. 258) “there 

may be many different purposes” to what is being measured as a quality outcome; is 

it the percentage of students graduating or the percentage of graduating students 

deemed worthy of obtaining a job? 

 

One of the important stakeholders in education is the government. They are 

interested in the quality of education for a number of reasons; one being an efficient 

use of taxpayer’s money, and to keep tax rates low in order to remain competitive 

and stay in power (Grygoryev, 2005). Another reason is that education is a driving 

force for national prosperity; for industry to thrive and grow, they need well trained 

and educated workers that can increase their competitive advantage (improve GDP). 

This is important for governments because the performance of the economy plays in 

the mind of voters (Kelly, 1992). For some governments, especially Nordic countries 

such as Denmark, Finland, Iceland, Norway and Sweden, a quality education is 

primarily seen as a way to offer equal educational opportunities for all their citizens 

(Välimaa, 2015). 

 

While Nordic countries offer free education, England and Australia have been 

increasing the university fees payable by students over the last two decades, leaning 

towards US styled funding models (Woodall et al., 2014). A consequence of this has 

been the transformation in the way government’s identify the student as the customer 

(National Committee of Inquiry into Higher Education, 1997). The notion of 

education being regarded as a product or service has caused concern within the 

academic community. This was well summed up by Lesnik-Oberstein (2015), “for 
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what is there left to learn, when you already know it in order to demand it?”. A 

review of literature by Bunce et al. (2016) found the following concerns: students 

seeking to ‘have a degree’ rather than ‘be learners’ (students become less engaged 

with learning); rating popular lectures over rigorous ones (possible pressure to ‘dumb 

down’ content); and greater sense of entitlement resulting in increased complaints. If 

such concerns are valid, quality cannot be guaranteed by focusing on the student as a 

customer. 

 

While some governments are increasingly seeing students as customers, it is 

important to understand how students see themselves. While research in this area is 

limited and needs extending, some initial findings are quite interesting.  A study of 

first year students in a north east United States university has been carried out by 

Saunders (2015). A survey was completed by 2674 students (offered to 4469 

students) at orientation, before actually experiencing university, seeking to 

understand their perceptions as a customer. Students were asked questions such as, 

“If I’m paying for my college education, I’m entitled to a degree”; “I would take a 

course in which I would learn a little or nothing but would receive an A”; “As a 

student, I believe that my role is that of a customer of the university”; and “If I 

cannot get a good job after I graduate, I should be able to have some of my tuition 

and fees refunded,” which were then rated against a five point Likert scale. 

Considering that paying high tuition fees is well established in the United States, the 

survey data suggests that most students do not express a customer orientation 

towards their education; in fact the study found that only 3 of every 10 students 

expressed a customer orientation.  One serious limitation with this study is that it was 

carried out at orientation and the students could have been ‘idealistic’ before 

experiencing the realities of university life. 

 

A small scale English study by Tomlinson (2015) who interviewed 68 undergraduate 

students, found findings that were similar to Saunders (2015) in that students did not 

see themselves as customer orientated. This was followed by another English study 

by Bunce et al. (2016) who surveyed 608 undergraduate students across 35 

universities in their first, second and final year (a very low sample). This design 

eliminated the possibility of any idealistic responses as might have occurred in 
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Saunders (2015). The survey posed statements including: “I think of my university 

degree as a product I am purchasing”; “I would choose to study even if I didn’t 

achieve a degree from it”; and “I always try my best in assignments”. The study 

found that students with low academic performances were customer orientated who 

could possibly be linked to the 3 in 10 students in Saunders (2015) study, but this 

was not investigated.  

 

These three studies do suggest that to average students, some academic concerns may 

not actually play out in the classroom, so it is possible that students can evaluate 

education fairly without a customer orientated bias. However, this possibility is 

questionable; hence the need for the overarching question asked in this thesis, “can 

student evaluations provide data that can be used to guide improvements in the 

quality of laboratory experiences”. Section 2.3 examines the literature on student 

evaluations and the link to quality. 

 

2.2.2. Learning 

Section 2.2.1 outlined some concerns raised about treating students as customers and 

judging the quality of their experience, and as discussed, the quality of a product or 

service is well understood. What is the impact of a quality education? Does a happy 

student equate to a student that is learning? 

 

The implications of the quality of education and national prosperity was highlighted 

in a World Bank policy research paper by Hanushek and Wößmann (2007), who 

investigated the role that education plays in economic growth. The paper defined 

quality as student performance on a standardised test, and claimed that parents and 

policy makers accept this as a measurement of cognitive skill. The performance data 

from the standardised test (such as the Program for International Student Assessment 

(OECD, 2015)) were then compared to economic factors such as its impact on 

individual incomes. A number of important findings from the paper include that, (pg. 

2) “educational quality, measured by cognitive skills, has a strong impact on 

individual earnings… and has a strong and robust influence on economic growth”; 

that (pg. 60) “there is no relationship whatsoever between expenditure and 
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performance”. This is highlighted in the graph shown in Figure 2-2 which compares 

expenditure on education and student achievement via maths performance across 

many countries. The graph shows that high spending on education does not correlate 

to better maths performance. This leads to the notion (pg. 77) “that knowledge rather 

than just time in school is what counts”. This research highlights the importance of 

governments as stakeholders, and the need to develop policies that pay more 

attention to quality. While it can be extremely difficult to compare spending across 

different currencies, the research suggests that it is the quality of the education or 

cultural attitudes towards education, not the amount of time spent in school, or the 

amount of money spent that is important, and since running and maintaining teaching 

laboratories is very expensive, the need to ensure quality is paramount.   

 

 

Figure 2-2: Student Achievement Compared to Education Expenditure 
 

While the scope of this thesis is on laboratory learning in tertiary education, the focus 

of PISA by (Hanushek and Wößmann, 2007) is an important one. PISA involves 

measuring the  assessment of the reading, mathematics, and science of 15 year old 

students (OECD, 2015), i.e., the skills needed for engineering and science degrees. A 

recent Australian study on the participation of HSC mathematics courses (for 
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entrance into university) by Wilson and Mack (2014) shows that maths participation 

is in decline. The trends in Figure 2-3 show that the uptake of advanced mathematics 

is in decline while the number of students undertaking basic or no maths is 

increasing. As mathematical rigor is vital for an engineering education (Feisel and 

Rosa, 2005), any decline in mathematical skills for students entering university can 

result in negative quality consequences for engineering and science departments. 

This result raises the importance of implementing and ensuring quality processes. As 

the study by Bunce et al. (2016) indicated, students with lower academic 

performances tended to relate towards a customer orientated approach, so if the 

performance of students entering university increases at the lower end, their ability  

to judge educational quality becomes even more questionable. 

 

 

Figure 2-3: Participation in HSC mathematics courses 2001-2013 Source: (Wilson 
and Mack, 2014) 

 

 

Assuming that students are actually able to measure quality in education, the most 

important outcome would then be the measurement of learning; that is, do they really 

know the value of learning obtained from their experiences? The problem with 

research into education is that learning is extremely difficult to measure; most 

assessments measure the level of competency and not the amount of learning gained 

from the start of the course to the point of assessment. Indeed, if the literature in 
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Section 2.1 is considered, it can be debated that even academics are not clear on the 

best ways to measure the learning objectives of the laboratory, so how then would 

students recognise learning and could this be associated with student satisfaction? 

This is important because many research studies focus on implementing a new 

teaching approach, comparing the difference in assessment performance, and then 

compare this to the satisfaction of the student (quality of experience). That is, is there 

any link between learning and student satisfaction? 

 

For example, a study between three modes of learning (online instruction, traditional 

instruction, and a combination of online and traditional) was carried out by Lim et al. 

(2008) to compare student achievement and satisfaction. One hundred and fifty three 

undergraduate students in an undergraduate wellness psychology course completed a 

survey to convey their perceptions and levels of satisfaction, and then a written pre 

and post-test was used to measure student achievement. The study found that the 

online learning group and the combined learning group had statistically higher levels 

of achievement than the traditional group. In terms of student satisfaction, the 

combined learning group was most satisfied; but this was the only group with any 

significant difference to the others. After the mean scores were compared, the order 

for student achievement and student satisfaction was the combined group, the online 

group, and the traditional group, and since the approach with the most learning was 

associated with the highest student satisfaction, this study suggests that a link is 

possible. 

 

A similar study conducted by Mason et al. (2013) compared the effectiveness of a 

control systems course in a flipped classroom  and a traditional classroom, in a 

mechanical engineering department. The course was evaluated over a two year 

period, with one year in each format. All the major variables needed to run the course 

such as a professor, textbooks, timeslots, contents, and order remained the same, 

except for the delivery and student cohort. This study found that the flipped 

classroom increased student achievement, but in terms of student satisfaction it only 

slightly rated better than the traditional classroom. However, student satisfaction was 

tracked regularly, with students only beginning to appreciate the new approach 

towards the end of the course. This new approach was initially associated with the 
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frustration students felt adapting to the new format, and although, a link between 

student satisfaction and learning could be established, the importance of timing the 

evaluation was raised. 

 

While other researchers support a positive relationship between satisfaction and 

achievement (Elliott and Shin, 2002, Zhang, 2005), some other research has raised 

questions. Lewis (1994) carried out an experiment at an Australian university to 

determine what effect incorporating videos into an undergraduate physics laboratory 

would have on student satisfaction and achievement. This study was conducted in 

two first year level courses. To assist in this comparison, the videos were only used 

in half the laboratory sessions; that is, they were either not used in the first half, but 

used in the second half, or vice-versa. Student achievement was assessed via reports 

of the laboratory experiment and class mark based on understanding and 

performance exhibited in class. The study found that the videos helped increase 

student satisfaction, but this was not reflected in student achievement so there was no 

link between student satisfaction and learning. However, perhaps the assessment did 

not reflect the benefit of learning outcomes associated with watching the videos. 

 

A study by Lucke et al. (2013) investigated the impact of flipping the classroom in 

an Australian third year fluid mechanics course. This required students to work 

through study material at home before participating in workshops used to replace the 

traditional lecture approach. This small scale study found that student engagement 

increased with the flipped approach, and the students found the approach better than 

the typical learning approach used at the university. Student comments reinforced 

this result: “I enjoyed a fresh new way of learning. The ability of learning at your 

own pace is something I liked. Coming into workshops was much easier then going 

into a regular lecture due to having the hand-e-lecture”. However, when the authors 

compared the assessment marks against previous cohorts they found no significant 

difference in achievement and the increase in student engagement could have been 

associated with a novelty effect. That is, there was no link between student 

satisfaction and learning, but again, the measurement of learning may be questioned. 

For example, considering that student engagement had increased significantly, could 

this have resulted in an increase in development in the affective domain; particularly 
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considering that Bloom’s Taxonomy educators should be developing students across 

all three domains. 

 

A flipped learning approach was also investigated in a New Zealand university 

engineering management course by Wilson (2013). Findings from the study of 44 

students mirrored those of  Lucke et al. (2013) with students finding the flipped 

approach more enjoyable and beneficial than the traditional approach used in other 

courses at the university. Assessment performance remained the same as student 

cohorts in the previous two years, but there was a significant increase in student 

engagement, so if student engagement increased during class activities, could this be 

associated with unmeasured learning in the affective domain? 

 

The literature has shown that some studies show a link between student satisfaction 

with learning while others dispute this fact; further reinforcement of the need for this 

thesis to investigate whether “student evaluation data can be used as a tool to help 

improve quality in the laboratory”. The literature also suggests that performance in 

assessment tasks is not a guaranteed measure for all types of learning; learning could 

also be improved in ways academic staff did not intend beyond the specific course 

learning outcomes. This also reinforces the approach whereby learning  should be 

considered across the cognitive, psychomotor, and affective domains by building on 

the Measuring the Learning Outcomes of Laboratory Work (MeLOLW) instrument 

developed by (Salim et al., 2013). 

 

2.2.3. Quality by Student Experience 

 

A report into the quality processes in teaching and learning in Australia and OECD 

countries by Chalmers (2007) found that the Australian higher education sector had a 

well-established range of quality measures in place, most of which is leading practice 

that triggered the implementation of similar practices elsewhere. A variety of 

different measures are used to monitor and promote learning quality that meets 

international standards. Australian attempts to measure, promote and reward quality 

include: 
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- National student experience survey (SES) 

- National graduate outcomes survey (GOS) 

- National course experience questionnaire (CEQ) 

- National employer satisfaction survey (ESS) 

- National regulator of tertiary education quality and standards (TEQSA) 

- Australian Awards for University Teaching (AAUT) 

- National research evaluation framework (ERA) 

 

The SES, GOS, CEQ and ESS surveys for comparing higher education institutions 

are accessible from the Quality Indicators for Learning and Teaching (QILT) website 

(Australian Government, 2016). This website is designed to provide prospective 

students with relevant and transparent information from the perspective of recent 

students and graduates. The SES is used to show the percentage of current students 

satisfied with their education experience in relation to the overall quality of 

educational experience; teaching quality; learner engagement; learning resources; 

student support; and skills development. The GOS is completed after students 

graduate and is used to provide prospective students with data on labour market 

outcomes. The indicators relate to graduates in full-time employment; graduates 

undertaking further full-time study; and the median salary of graduates. The CEQ is 

administered as part of the GOS (completed after graduation) and the indicators 

relate to overall satisfaction; good teaching; and generic skills. The ESS is currently 

in pilot and will be used for ongoing assurance from employers about the quality of 

higher education experience. The promotion of this information by the Australian 

Government indicates their confidence in student’s ability to evaluate at least some 

aspects of quality in an educational setting during and after their undergraduate 

study. As was raised in the literature, this outcome is still debatable, especially if a 

student has a customer orientated approach to education.  

 

The Australian Government is not alone in using student surveys to measure quality 

in higher education. Since 2005, students (mainly final year undergraduates) from all 

publically funded higher education institutions in England, Wales, Northern Ireland 
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and Scotland are requested to complete the National Student Survey Questionnaire 

(NSS). The outcomes of the NSS will assist prospective students to make choices; 

provide a source of data for public accountability; and assist institutions to 

implement quality enhancing activities (Chalmers, 2007). Data from the NSS is 

published on a UNISTATS website which is similar to the QILT website. The 

UNISTATS website provides student satisfaction from the National Student Survey; 

student destinations on finishing their course from the Destinations of Leavers from 

Higher Education survey; how the course is taught and study patterns; how the 

course is assessed; course accreditation; and course costs (such as tuition fees and 

accommodation) with information provided by Higher Education Funding Council 

for England (HEFCE) (UK Government, 2016). As with Australia, this suggests that 

students will continue to play an important role in evaluating the quality of their 

education well into the future.  

 

The approach used to consider the student as a customer and provide data on their 

experience has resulted in universities developing sophisticated brands and 

advertising programmes and improving services such as accommodation, campus 

environment, careers, information technology and social activities (Bunce et al., 

2016). This response stems from their desire to grow and attract the best students and 

research funding opportunities (Wilkins and Balakrishnan, 2013). However, a risk 

identified by Ling et al. (2012) is that universities might tend to focus too much on 

enhancing student satisfaction rather than improving learning; which means that  

students might have a great experience, but are they actually learning any better? The 

push by government to use student opinion to evaluate quality and the uncertainty in 

this relationship to learning provides further evidence as to why this thesis is 

attempting to evaluate whether student evaluation data can be used to improve 

quality in the laboratory. However, further understanding of student evaluations is 

needed and this is covered in Section 2.3. 

 

2.2.4. Teaching in the laboratory 

The literature has shown that a quality education is desired, but it also suggests that 

the quality of teaching is a contributing factor in obtaining a quality education. 
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Therefore, it is important to understand the challenges inherent in teaching in order 

to provide a quality laboratory experience. 

 

One of the most comprehensive reports on teaching in the laboratory was carried out 

by O'Toole et al. (2012) on behalf of the Australian Council of Deans of Science. A 

synthesis of literature found that: laboratory demonstrators (sessional teaching 

assistants used in a laboratory setting) have a critical impact on teaching and the 

learning experience; most demonstrators are PhD, Masters and Honour students and 

are inexperienced teachers in need of training, and general training programs do not 

develop the skills required in the laboratory. Identified was that most training 

programs concentrated on administrative matters or did not address laboratory 

instruction directly.  The report made a number of recommendations that institutions 

need to implement in order to improve the quality of teaching in the laboratory. 

These recommendations are (pg. 20): 

1. An explicit vision for the teaching laboratories should be articulated that 

provides focus for demonstrator development as well as teaching and learning of 

students 

2. Demonstrator development should be planned within a framework focused by 

the vision, which could include 

- Formal professional learning sessions that are linked to lab practice 

- Pre-lab briefing sessions 

- Formal and/or informal mentoring during the session 

- Promotion of a learning culture where demonstrators share ideas and 

knowledge, and where new knowledge is embedded in the documents 

and practice of the lab 

- Debriefing or “lessons learned” sessions at the end of the semester 

3. Laboratory program coordinators should provide feedback (both positive and 

developmental) to demonstrators at regular intervals and encourage feedback from 

demonstrators 

4. Student feedback mechanisms on demonstrator performance should be 

established 
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One of the key findings from the report was that most teaching in the laboratory is 

undertaken by inexperienced research and honours students, not by qualified 

academic staff. In 1983 it was observed that it was becoming increasingly rare to find 

professors in the laboratory (Ernst, 1983). Thirty years later this trend has continued 

with over 71% of laboratory demonstrators in the USA being sessional teaching 

assistants (Baumgartner, 2007), and even this thesis is being carried out in a climate 

where approximately ninety per cent of teaching in the laboratory is conducted by 

sessional teachers. This ratio is similar to the findings by O'Toole et al. (2012). For 

this reason, when considering the impact of teaching in the laboratory it is imperative 

to understand how sessional laboratory demonstrators influence student satisfaction.   

 

The trend in the increasing numbers of teaching assistants is not just limited to the 

laboratory; they are being used throughout higher education. Australian universities 

are a prime example of this trend with a report finding that “the full-time equivalent 

(FTE) hours performed by estimated sessional staff, by contract, increased 92% 

between 1996 and 2012” (2014). This increased use of sessional teaching assistants 

has resulted in the Australian government commissioning reports (AUTC, 2003, 

ALTC, 2008). These reports concluded that the quality assurance of sessional 

teaching in many institutions is inadequate and there are virtually no instances of 

formalised standards of practice or professional development. The reports stated that 

the general lack of performance management of sessional teaching assistants is a 

high risk factor for universities that can result in low quality teaching because 

untrained teachers tend to focus more on what they are expected to do, rather than on 

student learning (Santhanam and Codner, 2012). 

 

A review of the role teaching assistants (of all types) play in the UK was carried out 

by Lueddeke (1997) who found that the increased rate of using teaching assistants 

was worldwide, that most teaching assistants were postgraduate students, and that the 

highest percentage were used in the laboratory.  Cited reasons for the increased use 

of teaching assistants included rising student numbers, resource constraints, cost 

efficiencies, and an increasing amount of time spent undertaking research. Many UK 

universities had failed to consider appropriate training for their teaching assistants, 

but thanks to the UK’s Higher Education Funding Council (HEFCE) Review of 
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Postgraduate Education (1996), the conversation had begun to change. Lueddeke 

reported that formal training programs are needed and the ideal program would be 

flexible and combine both theory and practice. When implemented, training 

programs are of benefit to students, teaching assistants, and the institution. This UK 

based research further supports the findings outlined by O'Toole et al. (2012), that  

the use of inexperienced, and untrained laboratory demonstrators poses a potential 

quality risk to learning in the laboratory. 

 

To emphasise this quality risk further, teaching in a laboratory is very different from 

teaching in a lecture or tutorial, because a wider range of skills are needed (O'Toole 

et al., 2012). Teaching staff must know how to teach, to motivate, to manage a 

classroom, use instruments, monitor lab safety, and most importantly know how to 

troubleshoot. Troubleshooting in particular is important because students seek help 

from the demonstrators when things go wrong. This is especially the case in 

electrical and related engineering disciplines where it is common for students to 

design, build, troubleshoot, measure, and then analyse data. As a result 

demonstrators require different training programs than general teaching assistants 

(O'Toole et al., 2012). Without proper training most demonstrators will not be 

experts in the discipline and in  teaching (Luft et al., 2004).  

 

A comprehensive study on teacher training in 22 universities across 8 countries 

carried out by Gibbs and Coffey (2004) highlighted the quality risks of untrained 

teachers. An experimental study was carried out to compare the effect of teaching 

with trained and untrained staff. It also investigated the use of teacher focus 

(presenting lots of facts), student focus (using difficult or undefined examples to 

provoke debate), a deep approach (attempting to make sense of the content), and a 

surface approach (attempting to remember the content) to teaching. The training 

programs ranged from 60 hours to 300 hours and were spread over a period of 4 to 

18 months. While the study had a number of control issues due to the diverse 

institutions involved, the results showed that the group which received training 

experienced a significant improvement in teaching as judged by students. According 

to student feedback, this trained group became more student focussed, gained an 

increase in teaching skills, and encouraged more deep learning.  On the other hand, 
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the control group became less focused on the students and their improvements in 

teaching skills were lower, and the deep approach to teaching remained almost 

constant. While this study did not actually measure learning via assessment, it was by 

student feedback, it did show the importance of having well trained teaching staff, 

and therefore training in the laboratory needs further investigation. In chapter eight 

this thesis will try to extend these findings by trying to link teaching to learning.  

 

 

An important teaching style in the laboratory is the notion outlined in Section 2.1.3 

and others (Bateman, 1990, Volkert, 2012), that inquiry based learning is important 

in engineering, especially in the laboratory. This means laboratory demonstrators 

should not help students by giving them the answer or doing the experiment 

themselves, they should question the students strategically so they come up with the 

answer or process (Randall et al., 2012, Kurdziel et al., 2003). Therefore the need to 

train laboratory demonstrators to teach with this style is important.  

 

2.2.5. Training Programs 

 

Methods for training teaching assistants vary across disciplines and universities. 

Some of the variations include who provides the training, what the program and 

requirements should be, differences between domestic and international teachers, and 

how to evaluate the effectiveness of the program (Weimer et al., 1989). Some 

common training components include seminars, videos, faculty demonstrations and 

classroom observations (Abbott et al., 1989). 

 

Young and Bippus (2008) designed a three day training program that focused on 

preparation, presentation, and practice. The first day focused on policy and 

procedure, the second day focused on the role and strategies of teaching, and the 

third day was spent simulating a classroom environment. This last day allowed 

participants to gain confidence, practice the theory before standing in front of 

students, and most importantly, obtain feedback on their teaching style. Research 

into the success of the program found the training to be effective based on surveying 
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the participants before and after the training program. While this research was 

designed to prevent the survey data from being influenced by time spent in the 

classroom, the data is based on self-evaluation, so the teachers could have felt 

obligated to report that the training was helpful. That is, there was no indication that 

the students perceived the training to be beneficial. The authors also commented that 

(pg. 124) “nothing can replace actual experience in the classroom” without it 

actually containing that component. Indeed, no training simulation can prepare for all 

the random questions, technical problems, nerves, or other issues that teachers face in 

the classroom, but this form of training still makes the transition to teaching 

beneficial for both the teacher and the student. 

 

Santhanam and Codner (2012) outlined a teaching development program (TDP) to 

enhance engineering education. A certification process was put in place to ensure all 

teaching assistants in the faculty received training via a two day training program to 

explore: facilitating learning, diversity and inclusive teaching, communication skills, 

and planning for managing the teaching classroom. At the university the faculty 

gathers annual feedback from the students via questionnaires. Two questions are 

indirectly related to the sessional teaching staff: 

- Q1: The practice classes/tutorials were a useful resource for my learning 

- Q2: The laboratory sessions (if any) were a useful resource for my learning 

The results from the surveys improved between Semester 2, 2006 (prior to the 

commencement of the TDP program) to Semester 1, 2010 (3 years after the program 

had been implemented). Student satisfaction increased by 2% for question 1, and 

increased by 7% for question 2. The results show that any effect of the TDP program 

was most noticeable on laboratory demonstrators. The major problem with the 

analysis is that the two questions do not provide a clear link to the training because 

as presently worded, factors such as changes to the experiments or equipment could 

help to increase satisfaction.  In support of this, chapter five explores the relationship 

between the demonstrators and the laboratory sessions. 

 

Mark et al. (2011) defined a training program that involved a multi-directional 

engagement team-teaching approach, supported by e-learning technologies. The 

team-teaching approach consisted of an on-the-job learning component where a team 
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of new and experienced teachers would work together in the classroom and the main 

speaker would change every 10-15 minutes. Video technology was also used for self-

reflection together with feedback from peers and instructor. Feedback on the 

program was obtained from a learning experience questionnaire and a reflective 

portfolio submitted by participants, describing what they had learned from the 

course. The program was found to be successful and showed that many people can be 

trained together. It also highlighted that training in a real classroom was beneficial, 

that e-learning was a valuable supplementary tool, and that feedback played an 

important role in the training process. However, more understanding is needed on the 

impact that team based teacher training had on student experience. This relationship 

is investigated in chapter five. 

 

An earlier study on training programs also raised the importance of feedback. A 

study of  13 different training programs by Abbott et al. (1989) found that each 

program in their own way resulted in a positive contribution. A common element in 

the most successful training programs was the inclusion of feedback. This was 

usually conducted via student ratings using a mentor (such as a trainer, manager or 

experienced academic), direct feedback from a mentor, or from recording the 

teaching assistant in action. The study highlighted that more needs to be done to 

investigate training programs to find those that produce the greatest benefit. 

 

The use of a mentor and student ratings to improve teaching was also confirmed by 

McKeachie (1980). This study randomly assigned teaching assistants into three 

groups. The first group consisted of personal feedback of student ratings, with 

consultation from an experienced teacher; the second group received a computer 

printout of the ratings but with no other consultation; while the third group did not 

receive any ratings or consultation. The study found that the first group, receiving 

ratings and mentoring were rated the most effective by the students. 

 

The literature showed how important training laboratory demonstrators are to ensure 

a quality learning experience. A good training program covers theory, practice, and 

feedback. Chapter three explores if and how a training program modelled on the 

recommendations made by O'Toole et al. (2012) can improve the demonstrator and 
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student experience in the laboratory. In particular, it will be of interest to understand 

if student evaluations increase in line with the training, providing some form of 

evidence that students can evaluate quality in education. 

 

 

2.2.6. Laboratory Quality 

The importance of laboratories has resulted in much research on how best to conduct 

them, though most studies are isolated, small scale investigations, typically on one or 

two courses over one or two years. Many use a quasi-experimental approach that is 

limited by a pre-determined cohort of students, and the location and biasing factors 

associated with the background of the students and teachers. However, evidence 

from each study with regards to the factors that contribute towards a quality 

laboratory experience can still be gathered; for example, Stanisavljevic et al. (2013) 

developed a simulation tool to help teach digital logic. This software tool was 

developed to facilitate self-learning anytime and also improve learning in the 

laboratory. A key focus for the software was to be user-friendly, visual and provide 

an interactive environment. The outcomes from the software were correlated to an 

increase in numbers who enrolled in the course, to the substantial increase in 

assessment performance, and to the greater enjoyment students experienced 

undertaking the course. 

 

Howard and Boone (1997) investigated what influenced students to enjoy science 

laboratories by comparing student satisfaction with an old and a newly designed 

experiment in a chemistry laboratory by surveying 222 students. The study found 

that pair or team based activities were more satisfying, that the pace at which the 

students had to complete the experiments mattered, procedures needed to be error 

free, and that students preferred to undertake experiments that were connected to real 

world applications. Moreover, the level of interaction with the laboratory staff and 

their ability to solve problems was also found to be important. 

 

Boxall and Tait (2008) tried to improve learning in a civil engineering laboratory by 

implementing an inquiry based learning approach. The study compared the 
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traditional watch and learns approach to one where students could develop and 

explore their own lines of inquiry. The laboratory was self-paced and was also 

supported with a range of materials including video, images, spreadsheets, 

background briefing notes and written instructions. The research found that the new 

approach had a very positive impact on student satisfaction measured by survey 

responses from 31 students and on grades by comparing different cohorts. 

 

Gallardo et al. (2007) re-developed an electronics laboratory based on student 

satisfaction, by applying a learner-centred approach. The study found that the factors 

which influenced student satisfaction included content, user interface, ease of use, 

and motivation. It also found that by applying the learner-centred approach and the 

laboratory improvements, student satisfaction and achievement both increased. 

 

An attempt to improve the student experience by increasing laboratory engagement 

was conducted by Shahnia et al. (2016). The Australian study investigated the impact 

of modifying the course away from students observing a laboratory supervisor 

undertaking experiments to a learner-centred approach with the students being 

actively involved through simulation and practical based activities. The study 

compared 120 students across two years and found that by having the experiments 

redesigned so that the students engaged with the equipment that feedback, student 

motivation and the distribution of grades improved. 

 

Two Indian studies by Deshwal et al. (2012) and Gonsai et al. (2013) investigated the 

laboratory facilities at their respective universities. Their studies found factors such 

as the age of the equipment, internet connections, practical literature, and teaching 

staff had an impact on student satisfaction, but being short term studies, the 

implication for student satisfaction by improving these concerns was not 

investigated. 

 

As was outlined in section 2.1 Lindsay and Good (2005) exploring the impact of 

different access modes in a third year Mechanical Engineering course at an 

Australian university, the study explored the differences between cohorts of students 

undertaking the same experiment in three different modes (proximal, remote and 
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simulation). Findings from the study indicated that alternative access modes may 

improve some learning outcomes at the expense of degradation in others. This 

highlighted that the type of experiment needed to be considered within the learning 

outcomes desired. 

 

These studies have concentrated on one or two courses, so they are limited and tend 

to be a one-off event to determine what drives the satisfaction of students at a 

particular point in time. Findings from such studies can also be supported by 

investigating the effects of change on multiple laboratories at a time over a longer 

time period. 

 

Regardless of the time based limitation, the examples have provided some evidence 

for how to improve achievement and/or student satisfaction. The studies by Howard 

and Boone (1997), Deshwal et al. (2012) and Gonsai et al. (2013) supported the 

connection between demonstrators and student satisfaction as outlined in section 

2.2.4. The ability to solve problems when things went wrong was identified as 

important and this can be mediated through appropriate training. Therefore, chapter 

three explores the relationship between demonstrator training and student 

satisfaction.   

 

Some of the improvements outlined above can be categorised under the term 

experiment including developing self-learning tools, the manner in which the 

experiments are conducted, considering the experiment workload, and developing 

engaging experiments. Other improvements can be categorised under facilities 

including providing reliable and modern equipment and user-friendly and interactive 

computer interfaces. Therefore, chapter four examines quality of equipment and 

facilities in terms of student satisfaction. 

 

Most of the examples associated improvements in student satisfaction with 

performance in assessment. As outlined in section 2.1 learning has multiple layers 

including course learning outcomes, laboratory learning objectives and learning over 

multiple domains. As learning is a key outcome of education, chapter eight explores 

student perception of learning. 
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2.2.7. Section Summary 

The literature has shown that although quality is subjective, it is important for 

education. University education has many stakeholders, including students, parents, 

industry, government, and society, and therefore a quality education is needed for 

student learning, efficiency, economic prosperity, and competitive advantage. The 

trend to determine what a quality education actually is, is increasingly being 

measured by student opinion of their experience. This has been driven by 

government policies that have added weight to the student voice, by entrenching 

them as a customer. While many are concerned with considering education as a 

product or service, the research that students can actually judge a quality education is 

still inconclusive. Quality factors in the laboratory have been found to include the 

demonstrators, the laboratory experience (experiments and facilities) and learning. 

The literature supports the need to evaluate if student evaluation data can be used as 

a tool to help improve quality in the laboratory.  
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2.3. Student Evaluations 

The literature suggests that a quality education is vital for all stakeholders, but 

increasingly, students are used to determine through their experience, whether or not 

they have received a quality education. As examined in Section 2.2.3, the Australian 

Government promotes the data collected by the Student Experience Survey (while 

studying), the Graduate Outcomes Survey and Course Experience Questionnaire 

(after graduation) and the UK government promotes the National Student Survey. 

Data from the surveys are used to encourage the transformation of the universities to 

provide a quality learning experience. This section will consider the literature 

relating to quality measurements via student evaluations to determine whether or not 

students can actually judge the quality of their education.  

 

At the institution level, one of the most used forms of quality management used by 

universities are student evaluations of teaching (SETs). The SET is a widely used 

tool to evaluate the quality of instruction of individual teachers. The first use of 

students to evaluate teaching was carried out in 1920 at the University of Washington 

(Bernold, 2007). The original intention for SET was to provide student feedback in 

order to improve teaching. In 1973 the number of institutions using SETs had 

increased to 29%, and by 2000 had increased to over 90% (Larry Crumbley and 

Fliedner, 2002). The use of SETs has now gone beyond simply being a tool to 

improve teaching, they are now being used for purposes such as to help make 

decisions on retention, tenure, and promotion (Walker and Palmer, 2009). However, 

how they are used differs between institutions and countries. 

 

Like every other tool, a SET must be carefully understood to be used effectively, 

especially when used for retention, tenure, and promotion. The controversial issues 

in regards to the validity, benefits, and biases of SETs has resulted in several 

thousand research studies (Spooren et al., 2013). An analysis of 154 research articles 

between 1924 and 1998 by Aleamoni (1999) (one of the developers of the Course 

Experience Questionnaire) found that SETs can be extremely beneficial for students, 

staff and institutions when they are well-designed and analysed correctly, but they 

can also be easily misinterpreted and misused, thus undermining their credibility. 
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While the SET is used to evaluate teaching performance, universities also use the 

student experience for other forms of quality measurement. This includes, measuring 

the student experience of the entire program. Some of these university surveys used 

around the world include the National Survey of Student Engagement (NSSE) in 

North America, the National Student Survey (NSS) in England, and the Course 

Experience Questionnaire (CEQ) in Australia (Calvo et al., 2010). The results of the 

CEQ are used by the Australian Commonwealth Government, tertiary institutions, 

researchers, and the annual Good Universities Guide for prospective students (Ginns 

et al., 2007). 

 

The CEQ is conducted the year after students graduate so there is  a long time lag so  

universities such as the University of Sydney are now using modified versions of the 

CEQ such as the Student Course Experience Questionnaire (SCEQ),  to gather 

reliable information without the time lag associated with the CEQ (Ginns et al., 

2007). The University of Wollongong uses a similar survey called the Student 

Experience Questionnaire (SEQ).  The SEQ (UOW, 2014a) has only one question 

that relates to the laboratory, “Learning resources and facilities (laboratories, 

studios, equipment, lecture theatres) are appropriate for my needs”. This question 

does not provide much feedback on how engineering students would perceive the 

laboratory learning environment because it is too generalised.  

 

On a more granular level, subject evaluation surveys (SES) (UOW, 2014b) are run 

for courses selected by the organisational unit so that  student experience can be 

understood at the level of individual courses. The questions in this survey do not 

provide any direct information regarding the laboratory component, but the survey 

does allow for an optional question that can be used to ask about laboratory 

experience. 

 

The SES is similar to the Unit of Study Survey (USS), previously Unit of Study 

Evaluation, used at the University of Sydney.  Calvo et al. (2010) used data obtained 

from USE to investigate the student satisfaction of engineering students at the 

University of Sydney. The study measured 1226 engineering courses taught at the 

university over 11 semesters (2001-2007) with 42,853 responses. This 
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comprehensive study provided an insight into what students believe to be important, 

and found that engineering students are satisfied when (pg. 144): 

- The learning outcomes and expected standards are clear  

- The teaching helps them to learn 

- They developed valuable graduate attributes 

- The assessment enabled them to demonstrate what they understood 

- They could see the relevance of a particular course to their degree 

- Staff are responsive to feedback 

- Their prior learning prepared them well 

- They could understand their teacher 

- The faculty infrastructure is supportive 

The research also found that the year of study, class size, and professional 

development influenced student responses. The findings highlighted the importance 

of relating the staff and infrastructure to the teaching laboratory and the need to 

understand factors that may influence the ratings. 

 

2.3.1. SET Research 

One of the most cited SET researchers in recent times is educational psychologist 

Herbert W. Marsh. Marsh developed the Student Evaluation of Education Quality 

(SEEQ) evaluation instrument, which is based on psychometric analysis and is 

claimed to be one of the most reliable and widely used instruments in the USA to 

evaluate teaching (Coffey and Gibbs, 2001). In a monograph (Marsh, 1987) of 

research about student evaluations of teaching, he established from his own and other 

published research that class-average student ratings are (pg.255): “(1) 

multidimensional; (2) reliable and stable; (3) primarily a function of the instructor 

who teaches a course rather than the course that is taught; (4) relatively valid 

against a variety of indicators of effective teaching; (5) relatively unaffected by a 

variety of variables hypothesized as potential biases; and (6) seen to be useful by 

faculty as feedback about their teaching”. These findings depend on the measuring 

instrument because student ratings (pg.401) “can be no more valid than the 

instrument used to collect the information” (Penny, 2003). 
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Validating student evaluations is difficult because there are no specific criteria or 

definition for effective teaching. As a result there has been much debate on how best 

to validate an instrument that measures students evaluation of teaching (Marsh and 

Roche, 1997, Onwuegbuzie et al., 2009, Spooren et al., 2013). Onwuegbuzie et al. 

(2009) stated that (pg. 201) “validation refers to the process of systematically 

collecting evidence to provide justification for the set of inferences that are intended 

to be drawn from scores yielded by an instrument”. The authors conducted a meta-

validity analysis on SETs and found that the current methods are questionable. 

Similar findings were deduced by Spooren et al. (2013). Research investigating the 

validity of student evaluations and the outcomes for this study are examined in 

chapters three, five and eight. 

 

This literature review has showcased a number of studies with a positive correlation 

between student evaluation and learning (Gibbs and Coffey, 2004, Gallardo et al., 

2007, Lim et al., 2008, Boxall and Tait, 2008, Mason et al., 2013), but some recent 

studies have questioned the suitability of having students evaluate teaching 

effectiveness. One such recent study by Braga et al. (2014), investigated student 

responses of a SET in a private Italian university. Management, economics and law 

degree students were investigated by splitting lectures into more than one class. 

Student academic history, demographics, class identifiers, weather reports and 

student assessment were used to help evaluate the SET responses; their research 

suggested that not all students were able to rate a teacher’s ability. They also found 

the following correlations: higher evaluations with classes providing higher grades; 

evaluations from the best students are more aligned to teaching effectiveness because 

weaker students provide lower evaluations when teachers tried to exert more effort; 

and the weather has a marginal effect on evaluations, such that the ratings were lower 

on rainy days.  

 

A similar study by Carrell and West (2010), investigated the SET by comparing the 

data to future achievement. This study was conducted at a U.S. Air Force Academy, 

an undergraduate institution with high achievers (due to the highly competitive entry 

process) where teaching is undertaken in small classes (approx.20). The study 

investigated data from 10,534 students and 421 teaching staff between 2000 and 
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2007. The investigation compared the deep and surface learning (defined in section 

2.2.4) approaches of teachers in first year mathematics and how this was correlated 

with SET and future achievements. The study found that the student evaluations were 

linked to staff that delivered the best short term results, that is, students performed 

better in the introductory course but then lapsed in the follow on courses. The author 

suggested that this could be because less experienced staff concentrated more on the 

curriculum. Teaching staff that concentrated on deep learning received lower student 

evaluations and lower student achievement initially, but were linked to students that 

achieved better long term results. The author also suggested this could be because 

more experienced teaching staff expand the curriculum and provide a deeper 

understanding. 

 

Another study designed to measure the validity and usefulness of SET on learning 

was conducted by Galbraith et al. (2012). Data from 116 business related courses in 

an American university were analysed using a multi-sectional and pool sample 

analysis. The study found that class size was a major influence on SETs ability to 

predict student performance and the SET scores were non-linear. SET scores in the 

“high” and “low” range were associated with lower student ratings. These studies 

also questioned the appropriateness of having students evaluate teaching. 

 

Research by Stehle et al. (2012) found that the type of assessment played an 

important role in the correlation between student achievement and student 

evaluation. A multi-section validity approach was used in a medical school 

consisting of 883 students. This study compared two different instruments of student 

learning, a multiple choice exam and a practical exam, and was carried out over 

seven terms, which resulted in 32 classes being taught by 21 different instructors. 

During this study every aspect of the curriculum remained the same; the results 

showed that in practical examinations, student achievement correlated with student 

evaluations, but there was no correlation for the multiple choice test. The authors 

believe that the instructor has an important role in a practical exam because practical 

skills are taught, which means students require more understanding than can be 

obtained just from a text book. However, multiple choice exams focus on students 

recognising the correct answer, meaning that they do not necessarily need to fully 
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understand the answer. Moreover, the authors claim that the knowledge required to 

pass multiple choice exams is easier to obtain from other forms of study, such as a 

textbook at home, and this can to some extent change the relationship between 

teaching effectiveness and student achievement. Therefore, a possible reason for 

student evaluation and student achievement not correlating could be due to the 

assessment medium. 

 

This result implies that a laboratory could be a more suitable environment to test the 

correlation between teaching effectiveness and student achievement. However, as 

outlined in Section 2.1.2, the learning objectives of the laboratory across the three 

learning domains must also be known, otherwise a practical exam could be just as 

unreliable as a multiple choice exam. This relationship is explored in chapter 8. 

 

2.3.2. Influencing Student Evaluations 

To gain a better understanding of student evaluations, the biases and influencing 

factors must be understood. Research has investigated how student evaluations can 

be influenced by teaching staff; an exploratory study by Simpson and Siguaw (2000) 

investigated the ways in which teachers try to influence the SET. A research 

questionnaire was completed by 52 respondents from the USA, Australia, England, 

Peru, and Ireland. The types of SET influences include: inducements (16.7%), where 

teachers gave snacks or food on the day of the evaluation; pre-evaluation activities 

(6.9%), where teachers would source evaluation comments from students and justify 

approaches to negative comments or telling the class how wonderful they are before 

the evaluation; Manipulation (19.4%) such as using easy assessments before the SET 

and hard assessments after, or conducting an unusually fun class before the 

evaluation; and Grading leniency (23.6%) using no or easy exams, or unchallenging 

course material. Fortunately for the laboratory evaluations the structure of the class is 

set by the course coordinator, meaning that many of these influences should not take 

place. 

 

While grading leniency is a controlled variable in this study, as mentioned by 

Simpson and Siguaw (2000) above, it is one of the most influential and debated 
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sources of bias. A synthesis of literature by d'Apollonia and Abrami (1997) found 

that grading bias depended on the context. That is, if students were graded leniently 

and learning did not improve this would be considered a bias, but if students were 

graded leniently and this encouraged them to work harder, be more motivated, and 

also improve learning, then it would not be a biasing factor. In this study a 

substantial proportion of marks are obtained easily, but they are used to encourage 

participation and learning in the laboratory. The laboratory demonstrators in this 

study cannot choose the degree of leniency because they follow a marking rubric that 

is common for all demonstrators teaching in the course, so any expectation of high 

grades would be applied across all demonstrators in any one course. 

 

Substantial research has been undertaken to investigate a range of other possible 

biases in student evaluations, and almost every bias is associated with research that 

either proves or dismisses potential biases. One example of this is research conducted 

by Cranton and Smith (1986) who investigated 1,777 classes in five departments 

over three years. The authors examined five variables; permanent vs sessional staff, 

time of day, campus, course level, and class size. The interesting finding in this 

research is that the biases in the variables changed depending on the department. 

More recent studies have also shown different biases depending on the department 

involved (Badri et al., 2006, Narayanan et al., 2014). 

 

A range of other studies also investigated bias in student evaluations. For example: 

Calvo et al. (2010) investigated the years of study, class size, and coordinators 

professional development; Johnson et al. (2013) looked at class size, course level, 

course type, gender, experience, academic rank, and grades; Stolte (1996) considered 

the effect that teacher age had on evaluations; and Badri et al. (2006) measured the 

influence on expected grade, actual grade, course level, course size, course timing, 

and gender. These studies indicated that class size was one of the most prominent 

influences on student evaluations. The importance of understanding bias, and factors 

that could influence student evaluations in the laboratory, are examined in detail in 

chapter five. 
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2.3.3. Section Summary 

Undertaking student evaluations is a very complex process because it involves 

validating the measuring instrument, understanding the complexity of using the 

correct instrument to measure outcomes, the potential for teachers to influence 

ratings, and possible bias in ratings. All these factors need more research to gain a 

better understanding. Finally, only a small number of studies investigate these factors 

regarding learning in the laboratory so this forms the basis of chapter five. 
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2.4. Chapter Summary 

 

The question this chapter tried to answer was: 

 

Does previous research answer the question: What is a quality laboratory experience 

and how is quality measured? 

 

The literature has shown that a quality laboratory experience is important because 

engineers ‘learn by doing’ and that the laboratory is an environment that supports 

learning in the cognitive, psychomotor, and affective domains. However, the 

literature also revealed that simply including a laboratory component in a course is 

no guarantee of learning or for satisfying student experience, and therefore 

sustainable quality processes are needed. Moreover, most laboratory studies are 

either small or they only concentrate on only a small number of laboratory courses at 

a time. A comprehensive study which covers a large number of courses would help 

clarify the findings of these smaller studies. 

 

The complex nature of a quality education is identified in the literature, and the 

definition of a quality education is extremely subjective. Education has stakeholders 

such as students, parents, industry, government, and society where the outcome is 

student learning. In terms of the teaching laboratory the literature suggests that 

quality is considered to be an improvement in both student learning and their 

experience with demonstrators, experiments and facilities. 

 

In higher education the notion that quality can be measured via student evaluations is 

almost universal, but the literature has shown that the suitability and capacity of 

students to judge quality is disputed. Even after publishing over a thousand SET 

based studies, many important questions remain unanswered, and in comparison, 

little research has focused on the quality of student evaluations in the laboratory. 

However, most studies measure the quality of their implementations, at least partly, 

based on student opinion. Therefore, there is a need to develop more evidence to 

support or reject the notion that student evaluation data can help improve quality in 

the teaching laboratory.  
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3. CHAPTER 3: STUDENT EVALUATIONS OF TEACHING 

  

3.1. Introduction 

The literature review identified a link between the qualities of laboratory 

demonstrators to the laboratory learning experience, particularly the high use of 

sessional teaching assistants who are untrained and unaware of how to teach 

effectively. This problem is compounded by the fact that generic training is usually 

not suitable for laboratory demonstrators because it is not specific enough for the 

skills required and generally does not deal with inquiry-based approaches. 

 

A number of training programs that contributed to the structure of laboratory training 

were identified in this study (Park, 2004, Young and Bippus, 2008, Mark et al., 2011, 

Santhanam and Codner, 2012), with a particular focus on the recommendations made 

in a report for the  Australian Council of Deans of Science (O'Toole et al., 2012). 

The outcome was a training program that included certification and was based 

around on-the-job training with mentoring and feedback. 

 

The success of most training programs was via trainee reflection, as indicated by 

how well teachers felt prepared after the training program compared to before the 

training. The work by Santhanam and Codner (2012) was intended for laboratory 

demonstrators, and while the research showed a positive contribution to the student 

experience, more research is needed to prove it was linked to the training program. 

The literature showed that the most common tool used to measure teaching 

effectiveness was student evaluations, but debate as to whether student evaluations 

can be correlated with teaching effectiveness still remains. 

 

An iterative refinement process was used to improve the training program and 

observe whether or not the training led to an improvement in student evaluations. 

This was based on an assumption that training, mentoring and self-reflection does 

lead to more effective teaching, as expressed in the literature. If such a relationship 

exists, it could provide some evidence that student evaluations of teaching in the 

laboratory is valid. 
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This chapter presents the method and the results used to answer the sub-question:  

Does training lead to an improvement in student evaluations? 

 

3.2. Method 

 

3.2.1. Background and Implementation 

The teaching laboratory is regarded by the School of Electrical, Computer and 

Telecommunications Engineering as an essential component of learning, but in 2006 

the school became aware from student and staff feedback that quality within the 

laboratory was a growing concern. One outcome of the feedback was the author 

being appointed as Laboratory Manager in December 2006. At that time the long 

term goal set by the Head of School was to improve the quality of the teaching 

laboratories, with the term quality being open to interpretation. Using the definition 

derived from the literature review quality is considered to be an improvement in both 

student learning and their experience with demonstrators, experiments and facilities. 

 

To gain an understanding of the issues within the teaching laboratory, student 

surveys were proposed. The University of Wollongong uses two official instruments 

for evaluation of courses:  the first is a Teacher Evaluation (UOW, 2016) that 

generally targets teaching staff involved in lecturing, usually the course coordinator. 

This survey is generally not suited to laboratory demonstrators because they have no 

real say on how the laboratory is run or courses delivered. The second instrument is a 

Subject Evaluation Survey (UOW, 2014b) that takes a holistic view of the entire 

course. Because the school rates laboratory learning as very important, laboratory 

tailored evaluations were deemed necessary. As a result, the two official university 

survey instruments are only used to measure course quality in its entirety, they are 

not used to specifically measure quality in the teaching laboratories. This led to the 

formation of laboratory specific evaluations, which are the focus of this study.  

 

In 2007 the engineering department approved a trial student evaluation instrument to 

measure student experience in the teaching laboratories. The trial instrument was 
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based on a meeting with academics staff members outlining what they believed 

reflected a quality laboratory experience. The data from the trial evaluation was used 

to fine tune the survey instrument and develop policies and procedures that approved 

its ongoing use.  In 2008, the school approved a certification program for training 

laboratory demonstrators, and approved a revised student evaluation instrument. 

These evaluations commenced in 2009, and training was carried out by the author as 

Laboratory Manager. 

 

The evaluation questions were not guided by research; they were developed through 

metrics that the committee valued as important to the students and the school, so 

their wording could have been refined through research into student evaluations. The 

data collected from the student evaluations was not used for research until March 

2013. This is when the author and other members of the academic staff found value 

in the work undertaken and obtained approval from the universities human research 

ethics committee (ethics approval number HE13/129). Having gathered a significant 

amount of data, and with an ethics clearance to use the data for publication purposes, 

it was decided to keep the questions originally approved by the school committee. 

 

Using a new survey instrument raised issues with validity and reliability, as outlined 

in the literature review in section 2.3. The first test was to check the face validity 

(Onwuegbuzie et al., 2009) by confirming whether the demonstrator questions 

aligned with characteristics that students value the most from teachers. The study by 

Pozo-Munoz et al. (2000) which investigated what students believed was needed to 

be an effective teacher, found that knowledge, communication, and competence were 

valued the most. This was consistent with the themes that came from the trial survey 

in 2007 which was used to craft the approved survey. The questions approved to 

evaluate the teaching effectiveness of laboratory demonstrators are: 

- Question 1: At the start of each laboratory does the casual demonstrator give you a 

satisfactory introduction to the laboratory? 

- Question 2: Is the casual demonstrator well prepared for the subject? 

- Question 3: Does the casual demonstrator communicate the subject matter clearly? 

- Question 4: Did the casual demonstrator appear interested in helping me to learn? 
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- Question 5: Is the casual demonstrator helpful in responding to questions or 

problems? 

 

The questions provide data that are used to evaluate if an improvement in the student 

experience with the demonstrators occurred. The 2007 trial survey found that 

students wanted an introductory overview of the experiments (communication and 

knowledge) and in many cases this had not occurred, which led to the inclusion of 

question one. Question two was included due to a common complaint that some 

demonstrators were not aware of the procedures or logistics such as location of 

equipment (knowledge and competence).  The third question was included due to 

comments about being unable to understand or follow instructions from the 

demonstrator (communication). The final two questions were included to measure a 

demonstrator’s enthusiasm and ability to provide support to students (knowledge, 

communication and competence). Therefore, the survey instrument has alignment to 

the work of Pozo-Munoz et al. (2000) providing some evidence of having face 

validity. Discriminant and structural validity will be examined in chapter five and 

convergent validity in chapter eight. 

 

A paper based survey instrument was administered to students towards the end of 

each semester where laboratory subjects that run at least one and a half hours per 

week (or three hours per fortnight) were surveyed. Twenty-five laboratory courses 

were evaluated each year, as was shown in Table 1-I. Of all the laboratories 

evaluated, the laboratory is only one component of a complete course, which 

typically consists of a lecture, tutorials, and the laboratory. In the laboratory, the ratio 

of laboratory demonstrators to students was aimed to be one to 15, so on average if a 

laboratory consists of 15 students, one laboratory demonstrator was used, if 35 

students’ two laboratory demonstrators were used, and if 45 students’ three 

demonstrators were used. 

 

Each laboratory has one main demonstrator (DEM1), so question one only relates to 

that demonstrator. In a team teaching scenario, all other laboratory demonstrators 

(DEM2 and DEM3) receive a “Not applicable” for that question. There may be 
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instances when statement one is not applicable to the main laboratory demonstrator, 

so they are treated as DEM2. 

 

A five point Likert scale from “Strongly Agree” to “Strongly Disagree” was used to 

collect responses from the students. A comments field was also available to capture 

qualitative feedback which was used as a cross-check against the survey responses. A 

score was developed to easily compare performance over time. The score is a 

weighted average of the survey data with Strongly Agree (5) and Strongly Disagree 

(1). 

 

Approximately 30 to 40 sessional demonstrators are hired and evaluated each 

semester (including demonstrators continuing from previous semesters), and 

approximately ten of them receive training each year. The average length of 

demonstrating is three years. Approximately 400 student evaluations are received 

each semester. These student evaluations were carried out between 2009 and 2013. 

 

3.2.2. Development of Training Program 

An iterative refinement process was used to develop a training program for the 

laboratory demonstrators, and each year a plan was developed to improve and 

implement the program. The implementation was then observed on demonstrator 

training and interactions between demonstrators and students, after which a reflection 

was undertaken on the observations and new actions were considered for the next 

cycle. This means the training program was always evolving.  

 

The first training program was implemented in 2007, and was heavily focussed on 

administrative matters; this type of training is common and has been found to be 

ineffective (Shannon et al., 1998). It was noted that many laboratory demonstrators 

struggled to interact effectively with the students, so in 2008, advice was sought from 

the university’s Learning and Development Centre to explore what resources and 

solutions were available for training purposes. The training program was then 

modified to include instructions on their role in the class, how to engage with 

students, and to use inquiry based questioning (not providing an answer, but using 
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many questions to guide the student to the answer). In the training program it 

appeared that the demonstrators understood, but in practice many failed to implement 

the practice, and since students would ask questions in a variety of ways, an 

inexperienced teacher would not know how to interpret or handle them correctly.   

 

The literature review indicated that Abbott et al. (1989) found that feedback was an 

extremely important part of any training program. This supported the research of 

McKeachie (1980) who found that a combination of student evaluations with 

mentoring was most effective. Therefore in 2009, the year the student evaluation 

instrument was officially implemented, the ratings were used to provide feedback to 

the demonstrators via mentoring by the laboratory manager. In addition, and based 

on reflections of the 2008 training program, on-the-job training became part of the 

training program to help the demonstrators transition to inquiry based questioning in 

the laboratory, and to learn how to respond to a multitude of questions. 

 

The feedback component of the training was carried out by having each demonstrator 

meet with the Laboratory Manager to discuss the student evaluations and their 

teaching experiences, and to develop a plan to improve their method of teaching. For 

example, demonstrators receiving: 1) a low communication score might be asked to 

attend an English conversation group or to undertake regular discussions with the 

Laboratory Manager; 2) a low introduction score might be asked to give their 

introduction to the Laboratory Manager for feedback before each scheduled class; 

and 3) a low helpfulness score could be given practice at answering questions before 

each scheduled class. 

 

The training program implemented in 2009 was far more successful than earlier 

attempts. Since the author was involved in both interviews and training, by the end of 

the on-the-job training component it was evident through observation that most 

demonstrators had vastly improved their teaching ability compared to what they 

demonstrated at the interview. Reflection on the training program over the following 

years resulted in a range of additional measures such as videos, on-line reinforcement 

of theory, and demonstrator teaching forums have also been introduced.  
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The training program consists of 7 stages: interview, school induction, university 

induction, online training, on-the-job training, feedback via student evaluations and 

mentoring from the laboratory manager. At the end of each year the laboratory 

demonstrators are asked to provide a response to the following question on a Likert 

scale, “The school provided me with enough resources/training to perform my job 

successfully”. A weighted average of the Likert responses is used to create a score, 

and to track demonstrator experience with the training program over time. As Table 

3-I shows, the continuous rise in score to a small degree indicates that the 

demonstrators considered the changes implemented via the iterative refinement 

process to be appropriate.  

 

Table 3-I: Changes to Training Program over Time, and response scores to the 
statement: “The school provided me with enough resources/training to perform my 

job successfully” 

 

 

3.2.3. Student Evaluations 

The major change to training occurred in 2009 with the introduction of on-the-job 

training and the use of student evaluations as feedback. Observations by the author 

and course coordinators indicated that demonstrators were displaying a higher 
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standard of teaching. The participation of demonstrators in this program was gradual 

because only those demonstrators new in 2009 commenced this program; those with 

previous experience were not required to participate in the new training program. 

This meant that in 2009 the student evaluations covered only a small number of 

demonstrators who had completed the program. However, each following year the 

student evaluations covered a greater percentage of trained demonstrators than 

untrained ones. 

 

The literature review indicated that training with feedback results in more effective 

teachers. Every year from 2009 a greater percentage of demonstrators evaluated had 

completed the training program, and from 2009 all the demonstrators were receiving 

feedback from a mentor (the laboratory manager). The laboratory manager and 

course coordinator’s observations indicated that teaching in the laboratory was 

definitely improving. Therefore, considering these conditions, it would be expected 

that student evaluations should on average trend higher over each year. If this 

occurred, it would provide some evidence that the students were capable of judging 

quality. Therefore the results of this study would answer the sub-question: 

Does training lead to an improvement in student evaluations? 

 

A limitation of this study is that the first student evaluation was conducted at the end 

of the on-the-job training so there is no student evaluation to compare before and 

after this training. Considering the improvement in teaching performance as observed 

by the laboratory manager at the interview, compared to the end of the training 

program, it is expected that any improvement in student evaluation would be less 

than had the original evaluation occurred before the training program. 

 

3.3. Results 

 

The student evaluations of laboratory demonstrators contained up to five questions 

that must be answered using a Likert scale. As outlined in the method, the evaluation 

data was summarised into scores for easy interpretation, and therefore the proceeding 

sections will analyse the results from each of the evaluation statements. 
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3.3.1. Overall Change in Evaluations 

The student evaluation data showed that demonstrator ratings increased over the five-

year period; in 2009 the overall satisfaction with demonstrators was 79.69%, and by 

2013 it had increased to 89.74%, a 13% increase. An overview of all the scores is 

shown in Table 3-II, and further evidence is shown in Table 3-III. This table shows 

the percentage of demonstrators obtaining a score within a defined range by year, 

and as expected, the percentages were gradually trending higher each year. This data 

is important because it shows that the improvements in evaluations were not just 

occurring to a few individuals, but to the entire group. This data together with the 

course coordinator and laboratory manager observations suggests that training and 

mentoring does lead to an improvement in student evaluations, aligning with the 

definition of quality in terms of an improvement in the student experience with the 

demonstrators. Within this definition it provides evidence that students can on 

average be judges of quality.  

  

Table 3-II: Student evaluation scores with sessional laboratory demonstrators, by 
year, showing the total change over the 5-year period. 

 

 

Table 3-III: Percentage of demonstrators obtaining a score within a defined range by 
year (Bolded figures are the peak of the annual score distribution): 
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3.3.2. Providing an Introduction 

The survey statement upon which the largest improvement (22%) occurred is the 

ability to provide a suitable introduction. In the trial survey conducted in 2007 one of 

the most common complaints was the lack of an introduction at the start of a 

laboratory class. The Laboratory Manager observed that most of the sessional 

demonstrators were not comfortable delivering an introduction so the training 

program enabled the demonstrators to deliver an introduction, while the survey 

question reinforces the process that an introduction should take place. 

 

3.3.3. Preparation 

The evaluation suggests that students perceive that the demonstrators’ level of 

preparation had increased by 10% over the five year period. The training program 

teaches demonstrators that preparation includes: understanding the theory, knowing 

how to build/code/troubleshoot the experiments, knowing where to find the 

equipment/software and notes, understanding the assessment, and talking to the 

subject coordinator.  

 

3.3.4. Communication 

Communication skills have seen the second largest (13%) improvement over the 

period, partly because the weakest communicators are eliminated at the interview 

stage, and also because the training program focuses on using inquiry-based 

questioning to guide students to the information they seek. As a result the 

demonstrator does less explaining and more guiding. Communication is also a skill 

that can be enhanced by practice. The communication score can also be heavily 

influenced by the ratio of international to domestic demonstrators, but this ratio has 

remained fairly constant over the five years, with most demonstrators being 

international with English as a second or third language. A limitation is that the more 

selective interview process may automatically increase the communication score, 

regardless of the training. 
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3.3.5. Interest and Helpfulness 

The final two evaluation statements relate to the demonstrators’ interest and 

helpfulness in the laboratory, scores that have been closely linked over the five year 

period. The training program emphasises that the demonstrator must be constantly 

engaged with the students and always provide support, even when students have not 

asked a question. This builds a relationship between teacher and student and shows 

that the demonstrator is interested in their education. A demonstrator is deemed 

helpful if they can enhance student education by facilitating learning (O'Toole et al., 

2012).  
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3.4. Summary 

 

This chapter investigated the implementation of a training program in an engineering 

department to improve the quality of teaching. Quality was defined as being an 

improvement in both student learning and their experience with demonstrators, 

experiments and facilities, with this chapter focused on the student experience with 

the demonstrators. The expectation being that the training program would increase 

teaching effectiveness and this would be represented by increased student 

evaluations. The sub-question for this chapter is: 

Does training lead to an improvement in student evaluations? 

 

Based on the improvement in student evaluations over the five year period together 

with the observations from the course coordinators and laboratory manager, the 

research does suggest that training does lead to an improvement in student 

evaluations. A limitation of the study is the impact on the results from simply 

improving the selection process. 

 

Feedback from the student evaluations are used to refine the training; which suggests 

that students can judge teaching quality to some degree, and their ratings will help to 

improve quality. However, this data does not provide any evidence that learning 

actually improved. Research in chapter eight will examine whether or not a 

relationship exists between student evaluations and learning and determine the 

convergent validity of the survey instrument. Chapter five will investigate the 

relationships between teaching and laboratory satisfaction (chapter four) and also 

determine the structural and discriminant validity. 
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4. CHAPTER 4: THE LABORATORY EXPERIENCE 

 

4.1. Introduction 

 

The literature review in chapter two discussed a number of research studies that 

showed how laboratories could be improved by modifying their experiments and 

teaching styles (Howard and Boone, 1997, Gallardo et al., 2007, Boxall and Tait, 

2008, Stanisavljevic et al., 2013). However, since most studies only concentrated on 

one particular laboratory at a time, those that looked at all laboratories collectively 

mainly looked at issues in their department at a particular point in time (Deshwal et 

al., 2012, Gonsai et al., 2013). The long term nature of this study provides a larger 

timeframe of data allowing the analysis of the short and long term impact of changes, 

particularly for any novelty effect. Other studies investigated a broad range of 

university facilities such as general computing, the library, accommodation, 

furniture, parking, lecture theatres, and recreation facilities (Douglas et al., 2006). 

 

This chapter therefore aims to address the limitations outlined above by analysing 

laboratory improvements over a number of courses; these improvements will then be 

compared to any changes to student evaluations. An iterative refinement process will 

be used to better understand what students believe to be important for a quality 

laboratory experience. Quality was defined as being an improvement in both student 

learning and their experience with demonstrators, experiments and facilities, with 

this chapter focused on the student experience with the experiment and facilities. 

Therefore, this chapter will present the method and the results needed to answer the 

sub-question: 

What changes lead to improvements in student evaluations of the laboratory 

experience? 

 

4.2. Method 

 

Section 3.1 explained how and why the School of Electrical, Computer and 

Telecommunications Engineering at the University of Wollongong commenced 
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evaluating the teaching laboratories. Chapter three identified that training the 

laboratory demonstrators led to improved student evaluation scores. Using the same 

iterative refinement methodology (and same ethics approval number HE13/129, this 

chapter explores the relationship between laboratory improvements (experiment and 

facilities) and changes to laboratory experience scores.  

 

The school committee approved six statements in 2008 (implemented in 2009) to 

evaluate the laboratory experience, three of which were targeted at the experiments, 

and three were targeted at the facilities. These statements are: 

- Statement 1: I have a great overall impression of the laboratory component 

for this course. 

- Statement 2: The contents of the laboratory notes provided me with enough 

information to successfully complete the required exercises. 

- Statement 3: The experiments undertaken in this laboratory are worthwhile 

learning experiences. 

- Statement 4: The computers in the laboratory are suitable for the work 

required. 

- Statement 5: The electronic equipment in the lab, other than the computers, is 

suitable for the work required. 

- Statement 6: The laboratory is in a good condition. 

A five point Likert scale from “Strongly Agree” to “Strongly Disagree” was used to 

collect responses from the students. A comments field was also available to capture 

qualitative feedback which was used as a cross-check against the survey responses. A 

score was developed to easily compare performance over time. The score is a 

weighted average of the survey data with Strongly Agree (5) and Strongly Disagree 

(1). 

 

The first statement was used to understand if students valued the experiments in their 

entirety. The second statement was used to measure student perception of the 

instructions provided. This does not specifically relate to following recipe styled 
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instructions, it seeks to understand whether students can gather enough information 

to move forward and complete an experiment. The third statement was used to 

determine whether students appreciated the learning experience. The fourth and fifth 

statements were targeted at how students had perceived the equipment used. The 

final statement was used to determine how students had perceived working 

conditions in the laboratory. 

 

Data was collected from the 108 laboratory surveys carried out between 2009 and 

2013. The author as laboratory manager collected the data and worked with the 

course coordinators to improve the laboratories, as guided by the student evaluations. 

An iterative refinement process was used to apply changes and learn how the 

changes corresponded with the student evaluations. The student evaluations were 

only one form of data used in this process. If issues were identified, contact was 

made with student representatives for clarification, as well as feedback from the 

laboratory demonstrators. 

 

4.3. Results 

 

The student evaluations consisted of six statements that were answered using a Likert 

scale, and as stated in the method, the evaluation data was summarised into scores 

for easy interpretation. The proceeding sections will analyse the results from each 

evaluation statement.  

 

4.3.1. Overall Change in Evaluations 

Student evaluation data showed that the laboratory experience ratings increased over 

the five year period. In 2009 the overall satisfaction was at 78.44%, and by 2013 it 

had increased to 87.74%, a 12% increase. An overview of how the scores changed is 

shown in Table 4-I. A summary of this data grouped into experiment and facilities, is 

shown diagrammatically in Figure 4-1. The data in Figure 4-1 seems to indicate that 

a relationship exists between the experiment and facility categories; that is, does 

improving one variable automatically improve another? In order to gain a greater 
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understanding, a number of case studies under the iterative refinement process will 

be detailed. 

 

Table 4-I: Student evaluation scores measuring laboratory experience, by year, 
showing the total change over the 5-year period 

 

 

 

Figure 4-1: Student evaluation scores categorised, by year, showing the total change 
over the 5-year period 

 

4.3.2. Laboratory Notes and Equipment 

The laboratory notes dictate the type and level of instruction students follow to 

undertake an experiment; it can range from a detailed recipe styled step by step 

instructions to limited instruction with inquiry based questioning. Different styles 

and approaches to laboratory notes can lead to different learning outcomes being 

achieved with the same base experiment. The equipment refers to the tools students 

use such as computers and software, measuring devices, electronic components and 
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circuits. A number of case studies will investigate the impact that notes and 

equipment play on the laboratory scores. 

 

4.3.2.1. ECTE344 

The first course to undergo review was ECTE344, a laboratory used to teach control, 

where a combination of modules are connected to control a DC motor. In the trial 

survey in 2007, the students showed the most dislike for the laboratory component of 

this course. The trial survey did not use all the same statements implemented from 

2009, but three of the questions aligned and can be seen in Table 4-II. The low 

laboratory scores in 2007 were accompanied by negative feedback regarding 

‘equipment that does not work’ or ‘faulty equipment’ together with the need to 

‘clarify instructions and circuit diagrams’.  

 

Table 4-II: Change in ECTE344 Laboratory Evaluation Scores 

 

 

In 2008, the author acted as an observer to gather evidence on the shortfalls of this 

laboratory. One of the first major observations was the lack of prerequisite laboratory 

knowledge displayed by some students. In part, this was because mechatronics 

engineers did not follow the degree structure followed by the electrical, computer, 

and telecommunications engineers (ECTE) students. As a result the mechatronics 

engineers were undertaking the course in the first semester of the second year of the 

program instead of in the third year, and were therefore using complex laboratory 

equipment such as oscilloscopes that the ECTE students had gained substantial 

practice with in the second semester of the second year. Moreover, large cohorts of 

international students commence onshore enrolment in the third year and they had 
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very little previous practical experience. This meant they faced a steep learning curve 

before they could even begin to think about the learning objectives of the 

experiment. Moreover, most students (except for those repeating due to failure) had 

no previous exposure to the control hardware and the laboratory notes contained 

scant information on the function of the various control modules.  

 

After investigating why so little information was available on the control modules, 

the author discovered that when this laboratory had been developed a decade earlier, 

some information had been provided in videos and other web interactive elements. 

However, as the codec’s that the original information had been encoded with became 

unsupported by the IT department, no attempt had been made by the subject 

coordinators to transfer this information to new forms and had therefore been 

removed. The awareness of the importance of providing this information had become 

lost because there were no appropriate forms of quality control. 

 

Student dissatisfaction with the laboratory equipment and claims of faulty equipment 

were directly related to a lack of information on the control system and an inability to 

troubleshoot induced the students to complain about the equipment as a means of 

expressing their concerns. This problem was compounded because the teaching 

assistants also suffered from this lack of information in their ability to help the 

students. The consequence of the issues highlighted here was observed as low 

student morale, because as soon as a problem occurred the students would just stop 

and wait for help instead of challenging themselves to move forward. 

 

At the end of the teaching semester the author worked with the course coordinator to 

redevelop the laboratory notes; the experiments would remain the same, with only 

slight modifications. Most of the work was tailored at developing a fundamental 

understanding. A web based laboratory instruction approach was used to provide 

detailed instructions on the operation of each module as well as providing learning 

support on using the signal and measuring instruments used in conjunction with the 

control hardware. An example shown in Figure 4-2 uses the Pre-Amplifier module to 

illustrate how the module operates together with a description of the input and output 

ports. This information was hyperlinked throughout the laboratory instructions so 
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students could refer to it as necessary. On the left window of Figure 4-2 other 

resources can be accessed, such as the terminology and background information used 

for the experiments to further support fundamental knowledge. The benefits of using 

resources such as the one explained are investigated in further detail in chapters six 

and seven. A three to five minute video introducing the laboratory concepts was also 

added to the start of each experiment. The laboratory preparation activities the 

students performed before class were amended to focus on the new resources to 

encourage students to take advantage of them.  

 

 

 

 

 

Figure 4-2: An example of the information provided on the various control system 
modules 
 

The course contained six experiments, with students completing one experiment per 

fortnight. The first section of Experiment One was altered to introduce 

troubleshooting techniques where students are given activities to trace system signals 

with a number of working and purpose built faulty wires. These activities also 

provide students with the opportunity to become familiar with control modules and 
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measuring equipment. They are also taught to colour code wiring with different 

voltages, for example red for +15V, so if they measure the signal at a point with a red 

wire and find a voltage that is not +15V, they should suspect immediately there is a 

fault in the connection. The students really appreciate troubleshooting activities 

because they are developing skills they can use beyond the classroom. The added 

activity was not associated with the course learning outcomes, but is reflected in the 

laboratory learning objectives outlined by Feisel and Rosa (2005). This suggested the 

benefit of considering the use of the holistic set of objectives for the laboratory. All 

other experiments received cosmetic changes such as updated pictures and some 

improvements to clarify instructions.  

 

In 2009 the updated laboratory notes were implemented. The addition of supporting 

information and the lessons on troubleshooting had an immediate impact on the 

student experience. Most students observed made substantial progress in completing 

the experiments and had success in troubleshooting problems when mistakes were 

made configuring the circuit. The remaining major issue was based on clarity. Many 

students were happy to express frustration when they could not understand the 

activity they were expected to perform, but since the notes are web based, corrections 

are made in real time and are not seen by students in the preceding classes. The 

impact of changing the laboratory notes can be seen in Table 4-II, where a 

comparison of scores between 2007 and 2009 show a substantial improvement that 

remained consistent over time. Comments from students across 2009, 2010, and 

2011 changed to a mixture of praise, but with some concerns about the equipment 

being used. Some standard comments included: 

- “Good overall. Interesting labs with good support” Autumn, 2009 

- “Frequency generator and brakes are a bit dodgy” Autumn, 2009 

- “Update electrical equipment” Autumn, 2010 

- “I learnt some great troubleshooting skills” Autumn, 2010 

- “Equipment looks aged” Autumn, 2011 

 

The comments show that while most students are happy with the new laboratory 

notes there are still some concerns about the equipment. The age of the equipment 
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shows through physical wear and tear. For example the function generators are more 

than twenty years old. While the changes to the laboratory notes increased the 

laboratory score, it was suspected that the student evaluation of the equipment 

limited any further increase. As a consequence, money was reallocated for a total 

redevelopment of the laboratories in 2014. 

 

4.3.2.2. ECTE233 

The second course to receive negative feedback in the trial survey in 2007 was 

ECTE233, a course that introduces digital hardware. This course had a low score for 

laboratory equipment. The focus of written comments from students was heavily 

targeted at the Wishmaker, an electronic tool used to build and prototype electronic 

circuits. Comments included: 

- “sick of rebuilding my circuit due to faulty Wishmakers” Autumn, 2007 

- “Replace the Wishmakers” Autumn, 2007 

- “How am I expected to learn with this equipment” Autumn, 2007 

 

The negative feedback with the Wishmakers was confirmed by the laboratory 

demonstrators, so this feedback was used to justify replacing them. The cost to 

replace them was approximately $60,000 and was approved by the Dean of the 

Faculty. Student feedback provided evidence to fund the purchase within the 2008 

budget. 

 

The change in laboratory scores between 2007 and 2009 is shown in Table 4-III, 

which shows that by only changing the Wishmakers, the scores for the overall 

impression, laboratory notes, and laboratory equipment increased. Without any 

further changes to the laboratory made between 2009 and 2011 the consistency in 

scores indicated that the improvement was more than simply a novelty effect. 

Building upon the negative feedback on the old equipment used in the ECTE344 

laboratory, this shows how the equipment can alter student perceptions of their 

laboratory experience. 
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Table 4-III: Change in ECTE233 Laboratory Evaluation Scores 

 

 

Table 4-III shows that the laboratory scores remained relatively constant between 

2009 and 2011, but there was room for a substantial improvement. Student 

comments between 2009 and 2011 were centred on the following themes: 

- “Hot environment, need aircon” Autumn, 2009 

- “Lab notebook vague at times. Improve clarity. Misses important steps” 

Autumn, 2009 

- “Difficulties with Datasheets” Autumn, 2010 

- “Computers run very slow. Might be issues with VMs slowing down 

computers” Autumn, 2011 

In 2011 the author observed student behaviour in the ECTE233 laboratory, and was 

able to validate the common concerns expressed by students. The room contained 

fifty computers with no air-conditioning, which made it an uncomfortable working 

environment in the warmer months. The laboratory notes contained some minor 

activities that were slightly confusing as to which activity to perform. The main 

problems with the laboratory notes, as in the ECTE344 laboratory, were gaps in 

understanding how to troubleshoot, how to use the simulation software and 

Wishmakers, and how to read datasheets. The experiments lacked building a solid 

foundation, and the simulation software had performance issues running in the 

virtual machines due to a memory hungry application.  

 

When the semester finished the author worked with the course coordinator to modify 

the laboratory notes by using a similar framework to the ECTE344 laboratory. The 
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notes were converted into a web format, a short introductory video was added to each 

experiment, and resources were provided to help understand how to use the software 

and hardware; but the biggest change came from making adjustments to the first 

experiment. 

 

The modified first experiment guides students through the simulation software 

(Multisim by National Instruments) to select logic gates and build a simple circuit; 

they were then required to investigate the ‘model information’ (parameters that 

defined operations such as rise and fall times) built for the logic gate, and then follow 

activities to extract information from the datasheet so they could become familiar 

with reading them. The final activity involved students comparing the model 

information from the simulator with the information provided in the datasheet, 

followed by troubleshooting activities based on the common mistakes students faced 

in 2011. These activities included outlining the procedure to troubleshoot a scenario, 

or identify mistakes in a built circuit. An example of such an activity is shown in 

Figure 4-3, with a circuit with four mistakes; two of which are related to an incorrect 

use of the Wishmaker and two with errors connecting the IC. The activity 

encouraged students to read the datasheet, the Wishmaker resources, and the 

troubleshooting processes. As with the changes in ECTE344 the added activity was 

not associated with the course learning outcomes, but reflected in the laboratory 

learning objectives outlined in Feisel and Rosa (2005).  
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Figure 4-3: Example of a troubleshooting activity introduced in ECTE233 
 

Since this is an important (pre-requisite for follow on courses) second year course in 

the first session of study, the author and the course coordinator agreed to provide 

some pedagogical understanding to the first experiment to complement the 

troubleshooting activities and give students some perspective for all future laboratory 

work they undertake. This decision stemmed from student comments regarding a 

range of courses where they experienced faults and could not understand the purpose 

of some activities. These comments included, “please provide pictures to copy the 

construction of circuits”, “please test IC’s and wires beforehand” and “what’s the 

point of this task?” In response, the first activity was changed to read:  

 

“Using the data from the journal paper by Feisel and Rosa (2005) write in 

your logbook details about the 11 learning objectives that the ECTE233 

laboratory will try and develop”  

 

The laboratory report assessment task was also changed to instruct students to 

include a section where the learning objectives of the experiment they were reporting 

on are discussed. These activities encouraged students to think about what they were 
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doing from a pedagogical perspective, and as expected, there was a noticeable 

difference in student perspective and a substantial reduction in negative comments. 

However, this reduction in comments about faults could have been directly related to 

the new troubleshooting activities. This suggests that implementing activities based 

on the laboratory objectives outlined in Feisel and Rosa (2005) and making students 

aware of pedagogical learning outcomes benefits the student experience. 

 

The remaining experiments remained much the same, but with some adjustments to 

improve the clarity and construction of an activity. For example, a laboratory has 

many verification activities such as, given an expression, draw a truth table, and 

build a circuit and compare. These activities were amended to become problem 

based. For example, Figure 4-4 shows a problem scenario that students must solve. 

The solution and approach is similar to the original verification activity, but students 

now gain a perspective on how they can use the logic gates in a real world 

application. The final change was the installation of air conditioning in the 

laboratory. The collective negative feedback received from the laboratory 

evaluations was used to gain funding for the installation.  
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Figure 4-4: Example of a problem based activity in ECTE233 used to verify 
knowledge by linking it to real world situations 
 

 

In 2012 the new laboratory notes were implemented and the author again observed 

students in the laboratory. As seen in Table 4-III, between 2011 and 2012 there was a 

substantial uplift in laboratory scores for each statement, but the only thing that 

changed was the laboratory notes and air conditioning. It was observed that once the 

students developed fundamental skills, they made rapid progress through the 

experiments and the demonstrators needed less time to troubleshoot problems with 

students. Again, as was with ECTE344, a common issue was the clarity of 

instruction for some of the activities, which when identified were easily fixed. This 

resulted in less negative comments from students, including those relating to the hot 

working conditions now that air conditioning was in use. Some comments students 

made: 

- “Love the labs. Well thought out labs and experiments” Autumn, 2012 

- “An Overall great lab. Understanding more in lab then lecture” Autumn, 

2012 
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- “Very well done great and helpful experience” Autumn, 2013 

 

This same method of modifying laboratory notes to reinforce the fundamentals and 

enable students to become more productive in other complex activities was 

implemented in three other courses (ECTE170, ECTE290 and ECTE363) with a 

laboratory component. Table 4-IV shows the impact that updating the laboratory 

notes had on the six individual survey statements across the different courses by 

comparing the difference in scores before and after the changes. 

Table 4-IV: Increase in student satisfaction for each survey statement 

 

 

As expected from the earlier case studies, rewriting the laboratory notes increased the 

scores for most of the six survey statements. Interestingly, S2 (which refers to the 

laboratory notes) does not always lead to the highest percentage of increase in 

student satisfaction, whereas S5, which relates to the hardware used in the laboratory, 

shows a substantial increase in all four cases. ECTE233 (a digital hardware course) 

requires a significant amount of simulation work, which is most likely reason for the 

big jump in satisfaction for S4.   

 

This iterative refinement process shows how the laboratory notes (activity and 

clarity) influence the way students evaluate their experience in the laboratory. It also 

shows that the evaluations are primarily the same across the years when laboratories 

are run the same way. The pedagogical improvements to the experiments with the 

increases in evaluation scores also suggest that students can evaluate quality in the 

laboratory. There is also a strong relationship between the way students perceive 

laboratory notes and equipment/software. Chapters six and seven will continue this 

investigation in greater depth. 
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4.3.2.3. ECTE333 

The ECTE233 laboratory case study revealed how changing the old and faulty 

Wishmaker’s resulted in an uplift factor across all the laboratory statements. This 

effect that laboratory equipment has on the scores was also seen in ECTE333 (a 

microcontroller course). In 2009 students faced problems with the laboratory 

hardware such as random communication problems with the microcontroller 

interfacing with the computers. It took a number of weeks to identify the problem 

(unstable serial ports on the new computers that needed to be replaced), but this 

event allowed for an observation of the impact on the laboratory scores. As shown in 

Table 4-V, by comparing the 2009 score to the 2010 – 2012 scores the computers 

issue had a negative impact on all six statements, but mostly on the facility 

statements. As with ECTE344, ECTE233, and this laboratory, it is important that 

students perceive the equipment to be high quality and be in good working order to 

gain higher laboratory scores. 

Table 4-V: Change in ECTE333 Laboratory Evaluation Scores 

 

 

4.3.2.4. Computers 

The case studies presented here investigated major issues with regards to laboratory 

equipment. Across the 25 courses a number of small changes identified by student 

comments were acknowledged and improved, but they were not easy to identify from 

simply looking at the laboratory scores. The issues at times were clarified or given 

weight by speaking to the demonstrators or students. The effect of implementing 

changes can be seen by omitting relevant comments in future surveys. Most of these 

small issues were targeted towards the computers, the software and applications.  
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Across 2010 and 2011 there were a number of small complaints related to the 

performance of virtual machines and operating systems in other subjects than those 

explored earlier. These complaints were not directed towards any one specific 

course, but had the occasional mention across many. Some examples include: 

- “VMs creates a lag every now and again, maybe a boost in memory would 

help”  Autumn, 2010 

- “Speed of computers needs to be better to help in simulation” Spring, 2010 

- “Software out of date for Win 7. Freezes a lot in VM” Autumn, 2011 

- “Run windows 7 64bit” Autumn, 2011 

These four examples were from different subjects, but with a related theme. Virtual 

machines and simulators can be both processor and memory intensive. A four year 

asset replacement cycle was enacted to ensure that the technology did not become 

excessively old. It was noticeable that the software was pushing the computers to 

their limits, so the computers were replaced at the end of 2010; these new computers 

were installed with Windows 7 32bit to ensure compatibility with the software, and 

in the autumn, a 64bit version was tested on a select number of trial machines. These 

new computers had faster processors and an increase of memory (especially 

important to virtual machines), but the limitation of Windows 7 32bit was that the 

memory could not be addressed beyond four gigabytes and as a result the comments 

continued throughout autumn. When the operating system was upgraded in spring 

most of the performance based comments disappeared. 

 

This example shows the importance of a holistic view because the small number of 

comments seen in evaluating individual courses did not show the extent of student 

frustration with the performance of the computer. This is one of the advantages of 

using a Laboratory Manager to oversee the laboratories and implement continuous 

improvement. 

 

4.3.3. Student Perceptions of Workload 

Student workload can be difficult to measure in the laboratory due to the different 

capability of students. It was observed in a number of courses, across a number of 
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experiments, some students could complete an experiment in less than two hours 

while others could not complete an experiment in three hours and would complain 

about the workload. Student workload issues are generally more relevant when new 

experiments are implemented and the time needed to complete the activities is 

miscalculated. Workload issues are best observed in the laboratory but if there was a 

significant workload issue comments in the survey included: 

- “Less but more "learning efficient" work” Autumn, 2012 

- “Large amount of material to cover in time. Takes away from learning 

experience” Autumn, 2012 

- “Laboratory’s too long, all its teaching us to do is write down numbers” 

Autumn, 2012 

A case study where the impact of workload issues was examined emerged when two 

new laboratory courses commenced in 2012, ECTE412 and ECTE423. Both courses 

were in the fourth and final year of the Bachelor’s program in Electrical Engineering; 

both used a laboratory with similar equipment, the main difference being the 

experiments and modules used. A key component of these experiments was the 

LabVolt equipment which allows for the use of different plug-in modules for 

experiments. One of the courses was rated highly and the other poorly, primarily due 

to the amount of work required in each experiment; this was verified through 

discussions with the laboratory demonstrators. 

 

Table 4-VI shows the difference in student evaluation for the three facility-based 

statements. The data shows that the scores are similar for S4 (computers), although 

computers are not used very much in these labs. The hardware statement (S5) and 

condition of the laboratory (S6) both varied by over ten per cent. The experiments 

were different between the two subjects, but the workload may have been a factor for 

S1-S3. To further verify the effect of workload, in 2013the workload was reduced 

with guidance from the demonstrators. The overall score of ECTE423 in 2013 rose to 

92%, an increase of 28% from 2012. This data supports the work of Lizzio (2002) 

who found that higher student workloads lead to poorer student evaluations. 
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Table 4-VI: Comparison of students’ evaluation of two courses that use the same 
laboratory and equipment 

 

 

 

4.3.4. Facilities 

Table 4-VII shows how students perceived the condition of the laboratories over 

time. University policy is that a vigorous clean only occurs before the start of the 

semester. In 2011 SECTE organised for an individual to undertake weekly dusting 

and tidying of all the laboratories and a vigorous clean at the start and middle of the 

semester. The 7% jump in score between 2010 and 2011 supports the possibility that 

the students noticed the laboratories were in a much better condition in 2011. 

Therefore cleanliness may play some part in student satisfaction. 

 

Table 4-VII: Change in evaluation score for the condition of the lab 09-13 

 

 

4.3.5. Qualitative Data 

The quantitative analysis indicated that laboratory notes, equipment, demonstrators, 

and facilities help to influence student satisfaction in the teaching laboratory. Most of 

the survey data revolved around a five point Likert scale in order to undertake a 

quantitative analysis to measure and compare student satisfaction. The final question 

on the survey was open ended to give students the opportunity to comment on what 

is good and bad, and what improvements are needed. This data was inserted into 

NVivo and analysed. The student comments extend across the 25 laboratory courses. 

The following section discusses observations made beyond the case studies analysed 

earlier. 
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Over this five year period over 686 comments were made, some positive and some 

negative. Any comments that made direct reference to permanent academic staff are 

not reported in the survey data due to the condition specified in the approval of the 

policy by the school committee in 2008. Since the laboratory surveys were 

predominantly run only on sessional demonstrators, the number of comments related 

to academic staff was negligible, and not in relation to the laboratory. Therefore 

more than 686 comments were made but only 686 were recorded. With 4064 surveys 

conducted over the 5 year period, 17% of surveys contained a comment. This low 

percentage of comments can be interpreted to mean that any comments made are 

very important to the individual; that is, student felt strongly enough about an issue 

to think about it and write a comment. 

 

To gain a deeper understanding of what mattered most to students, all the comments 

were separated into the seven different themes as identified throughout section 4.3, 

and if the comment contained multiple themes, it was separated accordingly. The 

seven themes are: 

- Computers including software: The speed, reliability, hardware and operation of 

computers, and software that includes the operating system, internet, versioning, 

speed and reliability; 

- Demonstrators: The assistance, introductions, teaching style, and interactions; 

- Electronic equipment: The type, performance, reliability, functionality, and 

quantity of all non-computer related equipment related to the engineering laboratory; 

- Facilities: This includes any non-experimental facility used or required in the 

teaching laboratory such as chairs, space, and air-conditioning. It also includes 

requests for experimental facilities outside the teaching laboratory; 

- Laboratory Design: Comments made about the overall makeup of laboratory 

experiment including general comments, design of experiments, relationship to 

lectures, difficulty, and suitability; 

- Laboratory Notes: The quality, clarity and depth of information required to 

undertake the experiments. This included supplementary resources required to 

complete the experiment; 
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- Workload: Comments in regards to the amount of work undertaken in an 

experiment and the impact it has on student learning. 

 

The percentage of comments that make up each category is shown in Table 4-VIII. 

Table 4-VIII: Weighting of factors raised in student feedback 

 

 

The data in Table 4-VIII shows that the distribution of comments under each theme 

is in line with the analysis of the evaluation data from the six survey statements, with 

the largest percentages targeted at the importance of laboratory notes and equipment 

to students in the teaching laboratories. Student comments about laboratory notes and 

electronic equipment make up almost 50% of all comments. By combining electronic 

equipment and computers, both important tools for undertaking the majority of 

experiments in SECTE, the combined total of the three categories make up 58% of 

all comments. 

 

Eleven per cent of comments were in regards to the computers and software used in 

the teaching laboratories, with most centred on the speed of the computers, the use of 

virtual machines to drive different operating systems, and software configurations as 

well of the versioning of software. In 2009 the speed, versioning, and virtual 

machine problems were common, but as these issues were addressed the number of 

comments declined.  

 

The electronic equipment category was the second highest, making up twenty-two 

per cent of the comments, most of which included the reliability, age and 

functionality of the equipment. Investigations into many of the claims made by 

students in regards to the reliability of equipment were found to be operator error, 

including errors made by students and demonstrators. This resulted in the need to 
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better educate users, hence the need for developing additional resources to support 

learning (investigated in chapters six and seven). Age also played a significant part in 

student comments because students are not satisfied using equipment that looked old 

and in their eyes, is therefore irrelevant.  

 

Seventeen per cent of student comments are based on the design of laboratory 

experiments; with the most common being the overall quality of experiments, the 

link between experiments and lectures, and the learning experience of the 

experiments. This was connected to the most commented category with twenty five 

per cent of the comments being laboratory notes. The quantitative analysis showed 

that the laboratory notes played one of the most important roles in determining 

student experience, as also observed in the qualitative data.  The comments indicate 

that students want laboratory notes that are clear and have a defined goal; they 

become very frustrated when the task requirements can be interpreted a number of 

different ways, and they want access to resources that will allow them to understand 

the experiments.  

 

The second lowest category commented on was student workload or the time 

required to complete experiments. Most of the comments were about the time or 

length of experiments and the impact this had on student learning. Due to the rapid 

pick up of laboratory issues due to student evaluations, and the relative ease in which 

problems are corrected, comments on workload usually only arose a session after a 

laboratory had been created or redeveloped. Without these evaluations the percentage 

of workload comments could possibly have been much higher 

 

The category with the smallest number of comments was facilities, with only six per 

cent of all comments. Over 9% of the comments for facilities were related to air-

conditioning, but once it was installed the number of facility based questions 

decreased. The other major comment regarded access of facilities outside the 

teaching laboratory so students could work on experiments out of class time, and as 

these needs were addressed the comments also decreased.  
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Twelve per cent of the comments were directed towards laboratory demonstrators, 

with most comments centred on the assistance, availability, interaction and 

introductions to experiments undertaken by demonstrators. Comments about 

ineffective demonstrators were very common in 2009 but by 2013 positive comments 

became standard due to the changes outlined in Chapter three. Some examples of the 

comments include: 

- “Demonstrators should give instructions, introductions at the start of 

laboratory’s” 

- “I hate laboratory’s, but demonstrators made it a worthwhile experience” 

- “A 2nd demonstrator could be useful” 

- “More interaction should be between the demonstrators and students during 

the laboratory, not only at end” 

- “laboratory demos are largely invisible & do not give the impression of 

having looked themselves beforehand” 

- “Good demonstrators. Not only tell us method to solve but also the core 

knowledge related to the subject” 

Chapter three provided some evidence that student evaluations could to some degree 

measure the teaching quality of laboratory demonstrators. The survey comments 

strengthened the notion that they definitely influence laboratory experience. Chapter 

five will explore this relationship. 
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4.4. Summary 

 

The quantitative and qualitative data are similar in that the changes implemented 

across many laboratories via the iterative refinement process have provided an 

insight into answering the sub-question: 

What changes lead to improvements in student evaluations of the laboratory 

experience? 

 

The analysis of student evaluations shows that the laboratory notes (activity and 

clarity) and the quality of the equipment used are the most important factors that 

determine laboratory experience as explored within this study; based on the chapter’s 

focus on quality being the student experience in regards to the experiments and 

facilities. For example, other factors outside the definition such as quality of peers 

could play a role. Laboratory notes or resources with detailed instructions on how to 

use the hardware and software in the experiments resulted in a large increase in the 

evaluation score, while well-written notes of a good length provide an “up-lift” to the 

other evaluation criteria explored. 

 

Experiments that are not clear in terms of the activity students are required to 

perform, that do not provide information about the equipment/software used, or are 

too long for the duration of the laboratory tend to have lower evaluation scores, and 

also tended to drag the other evaluation criteria down as well. Information about the 

equipment/software is important because if students cannot understand how to use 

the equipment or lack troubleshooting skills, they may believe it is faulty and then 

perceive the entire laboratory to be low in quality, an effect noticed in qualitative 

comments about some experiments.  

 

Including a laboratory exercise or resource on fault-finding/troubleshooting can 

improve the laboratory experience and reinforce the notion that things do not always 

work in engineering. Problems encountered in laboratory exercises are seen as skill 

building that will add to student satisfaction. Having good hardware/software in the 

teaching laboratory is equally important because just as user error can lead to 
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negative misconceptions about equipment and perceptions of a low-quality 

laboratory, so can faulty equipment or unusable software. 

 

The changes carried out in the laboratory in some cases have added to learning by 

considering the laboratory learning objectives outlined in Feisel and Rosa (2005) in 

addition to the course learning outcomes. In these cases it was observed to have been 

of great benefit to student learning. Students now perceive this change is providing 

them with better skills for their future and as a consequence, has helped increase 

student evaluations. This is explored further in chapter eight. 

 

Learning in a clean environment can be taken for granted. This study has also 

suggested that students notice when they are learning in a better environment, and 

therefore this chapter has provided evidence of the changes that can be made to 

improve student experience. This study has also provided further justification via the 

qualitative feedback to understand how student evaluations of laboratory 

demonstrators can influence their laboratory experience. This is explored in chapter 

five. This study also indicated that additional learning resources can help to improve 

student evaluations; this is covered in chapters six and seven. 
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5. CHAPTER 5: INSTRUMENT BIAS AND THE RELATIONSHIP 

BETWEEN DEMONSTRATORS AND LABORATORY EXPERIENCE 

5.1. Introduction 

In chapter three, it was confirmed using an iterative refinement process that as 

demonstrators are trained and supported, student evaluation scores increased. This 

suggests that on average, students can identify and report a quality experience. 

Likewise, chapter four also indicated through an iterative refinement process, that as 

the experiments and facilities improved, student evaluations scores also increased; 

this again suggests that students can identify and report a quality experience. It is 

commonly assumed that the teacher is highly influential in determining the outcome 

of student evaluations. However, what is not well understood is how much influence 

does a great teacher have in making a poorly designed and equipped laboratory 

become a great learning experience? Since the iterative refinement process was used 

concurrently to improve the quality of laboratory teaching assistants and the 

experiments and facilities, it is important to understand how these measures are 

related. 

 

To complicate matters further, a laboratory may be run by more than one teaching 

assistant, which raises the question, what influence do different teaching assistants 

play in student experience in the laboratory? Having multiple teachers in the 

classroom is known as team based teaching (TBT), and as stated in chapter two, the 

advantages of TBT are more support in the classroom, students can interact with a 

variety of personalities and teaching styles, and students can seek assistance from the 

teacher they find most effective. To increase knowledge in this area it is important to 

understand how teaching assistants are allocated in a TBT format. For example, is 

having two highly experienced teachers any different from having one experienced 

teacher and one in training? Understanding this would lead to greater efficiency in 

resourcing the teaching staff associated with a teaching laboratory. 

 

Moreover, as outlined in chapter two, the survey instrument must be valid. Chapter 

three explored the face validity of the survey instrument, while this chapter will 

explore the structural validity by confirming whether or not the evaluation questions 

can be grouped into scores. It will also investigate discriminant validity by 
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identifying the impact of bias on the evaluations, and also determine the relationship 

of the instrument to learning. Convergent validity is about whether multiple 

measures are related and this will be tested by examining the relationship with 

learning in chapter eight. There are many possible factors that could influence a 

student evaluation including class size, physical appearance, the time of day, as well 

as the weather and gender. Some unwanted influences can be difficult to measure 

and determine, such as the impact of an individual’s physical appearance.  

 

This chapter will commence by examining common factors found in the literature 

that can influence student evaluations such as: class format (does TBT help alleviate 

any negativity of large class sizes?); course level (do evaluations improve with each 

course level, especially in years when electives are chosen?); and, gender (the 

influence of male and female teachers). These factors will be compared against 

student evaluations of laboratory demonstrators, student evaluations of the laboratory 

experience (the experiment and facilities), and the number of demonstrators used. A 

relationship will then be determined to understand how these three factors influence 

each other. Other influences are explored in section 5.2.5. 

 

This chapter presents the method and the results to answer the sub-questions:  

1) What forms of influence can be found in the survey instrument?  

2) What is the relationship between student evaluations of teaching and the 

laboratory experience? 

 

5.2. Influencing Factors and Hypothesis 

In an ideal world it would be expected that the SET would be free of influence and 

be a reflection of student learning, but the thousands of SET research studies suggest 

otherwise (Spooren et al., 2013). Common influences found in the literature that 

impact a SET when used in the laboratory include class format, course level, and 

gender. 
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5.2.1. Class Format 

Class format refers to the number of demonstrators in the laboratory; it is used to 

compare the difference between a small laboratory class with one demonstrator or a 

larger class with several demonstrators. While in many instances class size depends 

on the equipment, in situations such as in a computer laboratory, large classes are 

achievable and are generally more efficient, especially in terms of timetabling. The 

assignment of these parameters usually cannot be controlled by the laboratory 

demonstrator so understanding the role class size plays and the impact TBT has on 

student evaluation is important. Class size is defined as the number of students 

participating in a single laboratory session.  

 

Literature studying the effect that class size has on SETs tends to show it has some 

impact (Shapiro, 1990, Watkins, 1990, El Ansari and Oskrochi, 2006, Johnson et al., 

2013). A small number of studies have shown that class size has little impact on SET 

(Lin, 1992, Zabaleta, 2007), whereas  several studies involving large datasets found 

class size has a significantly negative correlation with SET scores. This includes a 

study by Narayanan et al. (2014) covering 983 business and engineering courses, 

Johnson et al. (2013) covering 3938 courses and 549 unique engineering instructors, 

and Watkins (1990) with 20,000 ratings from over 200 courses. In terms of student 

learning, Bandiera et al. (2010) found that on average class size did not have much of 

an effect, except for the smallest and largest classes. A large negative effect was 

found in smaller classes from 1-19 students compared to 20-33 students, the most 

common size of laboratory classes conducted in this study. The relationship between 

the SET and student learning was also investigated by Galbraith et al. (2012) who 

studied the relationship between 116 business related courses and found that the 

larger the class, the less probability of SET predicting achievement in student 

learning. 

 

In this study the student to staff ratio was designed to be constant with approximately 

one demonstrator for every fifteen students. When team teaching was required, an 

experienced demonstrator would be partnered up with a less experienced 

demonstrator. Considering this consistent student to teacher ratio, irrespective of 
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class size, and that an experienced and inexperienced demonstrator would work 

together, the following hypotheses were tested: 

 

H1a: Class size does not have an effect on demonstrator teaching scores in a team 

based teaching format 

 

H1b: Class size does not have an effect on laboratory experience scores in a team 

based teaching format 

 

5.2.2. Course Level  

When most students start an undergraduate degree in Australia, they have little 

understanding about the learning experience at university. With age and experience, 

it is often observed that the students (excluding mature age entry students) mature 

throughout the degree.  In this study, some core courses to specific disciplines 

commence in the third year, while the fourth year consists of many discipline 

specific electives. As a result, student motivation may increase with course level. 

This has led to numerous studies that have investigated whether or not course level 

has any effect on SET. The complexity of such an analysis was highlighted by 

Cranton and Smith (1986) who investigated five different departments and found that 

the relationship differed across the departments. 

 

Studies outside engineering, such as psychology courses (Blackhart et al., 2006) and 

business courses (Scherr and Scherr, 1990) have shown that course level has almost 

no effect on SET, whereas major engineering based studies (Johnson et al., 2013, 

Narayanan et al., 2014), indicate the opposite. In particular, the study by Narayanan 

et al. (2014) who compared engineering and business, found that the effect of course 

level was greatest for engineering. A sample of 3,185 business, economics, 

accounting, and statistics students by Badri et al. (2006) also indicated that a 

relationship between course level and SET existed. Considering the literature in 

terms of engineering the following hypotheses were tested: 
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H2a: Higher level courses receive higher demonstrator teaching scores in the 

laboratory, regardless of team based teaching format 

 

H2b: Higher level courses receive higher laboratory experience scores, regardless of 

team based teaching format 

 

5.2.3. Gender 

The gender of the instructor and/or student, and the relationship with SET has also 

been widely investigated, but the findings reached very mixed conclusions. A recent 

investigation by MacNell et al. (2015) into student ratings of online teaching staff, 

where the real gender of staff is not known, found that the SET was biased against 

females. This was determined by having a male and female instructor participate in 

multiple online discussion forums, using both a male or female name in different 

sessions. However, due to the small sample (N=72) and design of the experiment, 

researchers have questioned the validity of the finding (Benton and Li, 2014). Other 

gender bias studies have also found that males give significantly lower SET scores to 

females (Basow and Silberg, 1987, Centra and Gaubatz, 2000), male instructors 

receive higher SET scores regardless of the gender of the student (Basow and 

Silberg, 1987, McPherson et al., 2009), and male instructors received equal ratings 

from males and females (Centra and Gaubatz, 2000).  

 

A wide ranging study of literature by Aleamoni (1999) found that most studies have 

established that gender does not play a biasing role in SETs. Some of the studies that 

have found such a conclusion includes a study of four universities in Pakistan 

(Hameed et al., 2014), a controlled social experiment (Feldman, 1993), and a large 

scale study of a Spanish program (Zabaleta, 2007).  

 

The large scale engineering studies found that male instructors do receive higher 

SET ratings and female instructors were not held to a higher standard (Johnson et al., 

2013), and male instructors in engineering received higher ratings, unlike those in a 

business college (Narayanan et al., 2014). This study investigates this bias further by 
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comparing male and female instructors in a mixed TBT format. Considering the 

mixed literature and engineering studies, the following hypotheses are tested: 

 

H3a: Male instructors receive higher demonstrator teaching scores, regardless of 

team based teaching format 

 

H3b: Laboratories with male instructors receive higher laboratory experience scores, 

regardless of a team based teaching format 

 

5.2.4. Relationship: Teaching vs Laboratory Experience  

The final hypothesis and goal of this study is to investigate the relationship between 

student evaluations of teaching and laboratory experience (the quality of the 

experiments and facilities). As reported in the literature reviewed earlier, substantial 

research has been undertaken to investigate the SET, and separate  research has been 

carried out to investigate student’s perception of the quality of university facilities 

and laboratories (Douglas et al., 2006, Deshwal et al., 2012, Gonsai et al., 2013, 

Nikolic et al., 2015, Vial et al., 2015). What needs more attention is an understanding 

of how student perception of teaching quality relates to their perception of a quality 

laboratory experience. This is important because the “quality of the classroom life is 

significant in shaping students’ feelings and attitudes to their classmates and 

teachers” (Che Ahmad et al., 2013, pg. 368). If universities can quantify this 

relationship, they will be better able to allocate resources to maximise student 

experience and learning outcomes, and also maximise efficiency and monetary gains. 

Therefore, the following hypothesis is tested and then used to quantify the 

relationship between the teaching team: 

 

H4a: There is a positive relationship between demonstrator teaching scores and 

laboratory experience scores 

 

5.2.5. Limitations  

This study does not attempt to investigate all factors that can influence the SET.  

Other effects already investigated in literature include bias against minority and non-
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native English speakers (Plank and Chiagouris, 1997, Hamermesh and Parker, 2005, 

Reid, 2010, Bavishi et al., 2010); age discrimination (Stolte, 1996, Arbuckle and 

Williams, 2003); physical attractiveness (Langlois et al., 2000, Hamermesh and 

Parker, 2005); and the difficulty of achieving high grades (Braga et al., 2014). These 

influences and many other possible influences such as the weather and time of day 

are not in the scope of this study. 

 

5.3. Method 

A simultaneous evaluation of teaching and laboratory experience occurred during 

2012 – 2014, with ethics approval number HE14/156. This consisted of 2519 survey 

responses across six teaching semesters. Evaluation surveys are only conducted in 

laboratories that are run by (casual/sessional) laboratory demonstrators. The same 

laboratory demonstrator is used in a laboratory throughout the semester, so the 

results of this study may differ for a permanent faculty due to differences in teaching 

experience and knowledge of the course and structure. Laboratories that may have 

been influenced by individuals such as permanent faculty have had their evaluations 

removed from this study due to the focus of this research on sessional staff. This 

resulted in 2,161 survey responses being evaluated in this analysis. A lecturer in 

statistics from the university was used to help develop the following statistical 

methodology. 

 

A typical engineering course consists of a lecture, tutorial, and laboratory per week. 

Most courses have duration of one semester per year, with two courses being run, 

and evaluated twice in the year. Many courses have multiple and repetitive 

laboratory classes because the maximum laboratory class size possible due to 

equipment constraints is 45 students. Again, due to equipment constraints, some 

laboratory class sizes could be as small as 10-15 students. The demonstrators usually 

have no input into the delivery, material, and learning objectives associated with the 

experiments.  

 

Having repeated laboratories within a single course with consistent factors such as 

assessment, structure, experiment, and facilities, while having different or the same 

laboratory demonstrators, provides the framework for a rigorous multi-level analysis. 
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A combination of laboratories with different and same demonstrators undertaking 

repeat classes was desired as the multi-level approach factors in these differences. 

Most SET based research studies are not multi-level because the comparisons are 

made between different courses and/or the same courses over a number of years. 

This method has the limitation of many more variables due to uncontrollable 

differences between subjects or years. Since the conditions in multiple laboratory 

classes are consistent, and multiple demonstrators are used, the analysis can be 

carried out between laboratory classes of the same course as well as between courses. 

A simplistic representation of the differences in the comparisons made between 

single and multi-level approaches is shown in Figure 5-1.  

 

 

Figure 5-1: A simplistic representation of the difference between single and multi-
level statistical approaches 
 

This scenario of having students within a laboratory class, and laboratory classes 

within a course, is a typical example of hierarchal data, for which typically a multi-

level model, with levels students, laboratory classes and courses, is used for the 

statistical analysis (Berkhof and Kampen, 2004). Another typical example in 

educational literature is pupils within classes and classes within schools (Moerbeek, 

2004). Not accounting for the hierarchal structure of the data might lead to incorrect 
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statistical results because standard errors would be either under or overestimated 

(Moerbeek, 2004). The statistical platform R (R Core Team, 2013) and the R 

package lme4 (Bates et al., 2014) was used for the statistical analysis, in which the 

fixed effects (usually differences in the means) and p-values of the multilevel model 

will be presented. A multivariate Wald test based on a multi-level approach is 

applied. In some cases when multiple hypotheses are tested at once, the Bonferroni 

method of correction by multiplying the p-value with the number of hypotheses and 

comparing this adjusted p-value with the significance level (Abdi, 2007) is applied. 

 

The data is also compared via a non-hierarchal analysis.  To assess the effect of a 

factor with more than 2 levels, One-way ANOVA and p-values from Welch’s t-test 

are applied, but the latter should be considered as unreliable because it does not 

account for the hierarchal structure of the data collected in this study. That means the 

results of Welch’s t-test and ANOVA are presented only for comparison purposes 

because all the studies outlined in Section 5.2 do not use a multi-level model. This 

difference in design highlights the significance of this research by providing a 

stronger statistical analysis. The conclusions will always be based on a multi-level 

approach based at the standard 5% significance level.  

 

The data for the statistical analysis was obtained from a paper based survey 

instrument outlined in chapters three and four. For some laboratories in a TBT 

format some demonstrators may be evaluated more than once, but across multiple 

sessions, demonstrators involved in teaching a course may have repeated or changed. 

Since a multi-level analysis is used this did not matter because in any given teaching 

semester, for any given course, the experiment and facilities are constant. This means 

an easy comparison between demonstrators is achievable. Twenty-five laboratory 

courses were analysed, including the number of multiple evaluations shown in Table 

5-I. This data includes the number of laboratory classes, laboratory courses, and 

student sample evaluated in each teaching semester across the three years. Table 5-II 

outlines the gender and ethnicity of the laboratory demonstrators, and shows that 

male and international demonstrators were heavily used across the three year period. 



 

108 

 

Table 5-I: List of courses and number of laboratory classes surveyed towards the end 
of each semester. 

 

 

Table 5-II: Demonstrator and survey characteristics 

 

 

As outlined in Chapters three and four, operational management of the laboratory is 

allocated to the designated course coordinator (permanent faculty) who is responsible 

for the design, assessment, and running of the laboratory. Laboratory demonstrators 

were allocated by the author, as laboratory manager. Considerations in allocation 
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include experience, work load, and the skills required. In larger classes, when a 

teaching team was needed, inexperienced laboratory demonstrators were partnered 

with experienced ones (a master/apprentice model). The only exception being for 

first year courses, due to the importance that the first year has on student retention 

(Pendergrass et al., 2001, Daempfle, 2003, Karataş et al., 2016). Due to an 

assumption that the two best demonstrators are needed in the laboratory to try and 

ensure a great first year experience, only the most highly valued (in terms of 

reputation and evaluation scores) teaching assistants were used. This assumption 

highlights the importance of this study in resource allocation; that is, does only one 

demonstrator need to be exceptional, with the other used more effectively in another 

class? 

 

Across all laboratory courses the ratio of teaching assistants to students was aimed at 

being one to 15, therefore on average, if a laboratory consists of 15 students, one 

laboratory demonstrator is used, if 30 students’ two laboratory demonstrators are 

used, and if there are 45 students, three demonstrators are used. A breakdown of the 

number of courses that used the three different class formats is shown in Table 5-III. 

The type of format depended on student numbers as well as timetable and equipment 

constraints. The number of courses sampled using three demonstrators was low, 

which limits the significance of data under this TBT format. 

 

Table 5-III: Number of courses that used a class format of 1, 2 or 3 demonstrators 
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5.3.1. Student Evaluation Instrument 

The teaching allocations were assigned such that the most experienced demonstrator 

would lead the class, assume overall responsibility, and also provide an introduction 

to the students. In this study this demonstrator is referred to as DEM1 (demonstrator 

1). When a TBT format is required the second and third demonstrators assist and 

follow the instructions of DEM1. The second and third demonstrators are referred to 

as DEM2 and DEM3, and are listed in the evaluation instrument in terms of their 

order of experience. The six survey questions outlined in chapter three were used to 

evaluate DEM1 and five questions (Q2-3) are used for DEM2 and DEM3, and the 

difference of one question relates to the introduction delivered by DEM1. The survey 

of laboratory experience was also outlined in chapter four. It consisted of three 

statements (S1-3) that evaluated student’s perception of the experiment, referred to 

as LAB1. Three statements (S4-6) were used to evaluate the equipment and facilities, 

referred to as LAB2. The survey responses for the demonstrator and laboratory 

experience were converted to a weighted average score as described in chapters three 

and four for comparison purposes. 

 

The survey questions were analysed to understand how the data could be cross 

compared. For the demonstrator survey questions, the smallest correlation is 0.3324, 

which is still highly significant (p<0.0001), similarly for DEM1, DEM2 and DEM3, 

the smallest correlations are 0.9053 (p-value <0.0001), 0.9794 (p-value<0.0001), and 

0.9778 (p-value<0.0001).  

 

The next step was to confirm the number of components/factors within each learning 

domain to determine how the questions and statements could be grouped to produce 

a score. The default method of determining factors is via Kaiser Criterion by 

observing if the eigenvalues are greater than one. However, literature suggests that it 

should not be the only criterion because it tends to over extract factors (Lance and 

Vandenberg, 2009), therefore four different checks were used, the Kaiser Rule, 

parallel analysis, optimal coordinates, and the acceleration factor. 

 

For DEM1, DEM2, and DEM3, the methods suggest only one underlying factor. The 

largest and 2nd largest eigenvalues were 4.73 and 0.108 for DEM1, 3.94 and 0.02 for 
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DEM2 and 3.94 and 0.023 for DEM3. Based on the Kaiser rule (Child 1990), these 

findings all suggest one underlying factor. Other methods such as parallel analysis 

and optimal coordinates also suggest only one factor using the R package “psych” 

(Revelle 2015). Similar to Johnson, Narayanan, and Sawaya (2013) we used the 

average score of all questions to maintain interpretability. 

 

The six laboratory experience questions had eigenvalues of 3.43, 1.11, 0.497, 0.39, 

0.28 and 0.28. Using the R package “psych” (Revelle 2015), the Kaiser rule, parallel 

analysis and optimal coordinates all suggest two underlying factors (Child 1990). 

Factor loadings and “varimax” rotation was used to assess the groupings of the 

factors.  Factor 1 has loadings of 0.87 (Q1), 0.86 (Q2) and 0.83 (Q3), whereas factor 

2 has loadings of 0.77, 0.85 and 0.86, with all other loadings being below the cut-off 

value of 0.3. The Bi-plot of a principal component analysis is shown in Figure 5-2 to 

demonstrate that Q1, Q2, and Q3 are clustered, as are Q4, Q5, and Q6 as highlighted 

by the red arrows and numbers. Since the factor loadings are approximately equal 

(around 0.85) we used the average of Q1,Q2,Q3 scores and the average of Q4,Q5,Q6 

scores as the two variables of interest, denoted by LAB1 and LAB2 in order to 

maintain interpretability, just like Johnson, Narayanan, and Sawaya (2013) did for 

one factor. To ensure reliability the standardised Cronbach’s α (R package “psych”) 

was calculated for all scores of interest. The values are: 0.85 (EXP), 0.82 (FACIL), 

0.99 (DEM1), 1.00 (DEM2), 1.00 (DEM3) and are all above 0.70, a common cut-off 

value for validity. 
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Figure 5-2: Bi-plot of laboratory survey responses indicating that the questions can 
be separated into two clusters 

 

5.3.2. Limitations 

Each laboratory class has one, two, or three demonstrators. This means that 2,161 

student responses are available to evaluate laboratory experience, but fewer 

responses are available for a particular demonstrator. Due to the different sample 

sizes, it would be more likely to obtain significant results for laboratory scores rather 

than demonstrator scores. In addition, only a small sample was available for the case 

of three demonstrators (as indicated in Table 5-III). The study was conducted in a 

school of electrical, computer, and telecommunications engineering and different 

disciplines may have different outcomes. Similarly, it is important to note that 

different approaches or pedagogies to laboratory learning may be prevalent across 

disciplines, universities, or countries. The school has a large percentage of 

international students and international teaching assistants, so different combinations 

of student cohorts, student quality, levels of communication, as well as different 

social attitudes towards race and gender could also alter the findings. These 

limitations are in addition to the possible forms of bias mentioned throughout section 

5.2. 
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5.4. Results 

 

Class format:  

H1a: Class size does not have an effect on demonstrator teaching scores in a team 

based teaching format 

H1b: Class size does not have an effect on laboratory experience scores in a team 

based teaching format 

 

H1a and H1b were to confirm whether class size had no effect on teaching or the 

laboratory experience scores in a team based teaching format with a constant student 

to staff ratio. Each laboratory class has approximately 15 (1 demonstrator), 35 (2 

demonstrators) or 45 students (3 demonstrators). Table 5-IV shows that H1a and H1b 

are supported by the analysis based on a multi-level model, because the mean 

differences between scores are not significant at the 5% significance level.  

 

Table 5-IV: Data confirming that class size has no effect in a TBT format 
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Course level:  

H2a: Higher level courses receive higher demonstrator teaching scores in the 

laboratory, regardless of a team based teaching format 

H2b: Higher level courses receive higher laboratory experience scores, regardless of 

a team based teaching format 

 

H2a and H2b were to confirm whether higher level courses had a positive effect on 

teaching or the laboratory experience scores. The effect of course level (1st year, 2nd 

year, 3rd year and 4th year courses) was investigated, and the results of possible 

influence of course level (COURSE) are shown in Table 5-V. The makeup of the 

courses was represented in Table 5-I with the first digit of each course representing 

the course level. All 4th year courses surveyed contained postgraduate coursework 

students (900 level), so 400 and 900 level courses are treated as the same level. 

 

Table 5-V: Possible bias of course level 

 

 

The results from Table 5-V show there is an effect on DEM1 and DEM2 

(significant), but no effect on LAB or DEM3 (using the multi-level approach). 

Interestingly, the single level approach has an effect on all tests, highlighting the 

importance of selecting the appropriate statistical model. To investigate how levels 

compare to other levels, Table 5-VI shows the effects (differences in mean) and p-

values for every pair of course levels. The p-values are based on the multi-level 

approach. In general, H2b must be rejected because there is no clear direction. For 
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example, DEM1 4th year courses scored lower than 1st and 3rd year, but higher than 

2nd year. Third year courses scored much higher than 2nd year courses (even after a 

Bonferroni correction for multiple testing is applied, i.e. multiple p-values by 6 and 

compare with 0.05). For DEM2, after a Bonferroni correction, there are no 

significant differences, except third year courses scored higher than 2nd year.  

Overall, as there is no clear pattern so H2a and H2b are rejected.  

 

Table 5-VI: Differences in mean for every pair of course level 

 

 

Gender:    

H3a: Male instructors receive higher demonstrator teaching scores, regardless of 

team based teaching format 

H3b: Laboratories with male instructors receive higher laboratory experience scores, 

regardless of team based teaching format 

 

H3a and H3b were to confirm if the male demonstrators had a positive effect on 

teaching or the laboratory experience. The makeup of male and female demonstrators 

is shown in Table 5-II, with the female demonstrators on average representing 43% 

of teaching staff. To test whether a male instructor has an effect on LAB scores, we 

calculated the average proportion of male instructors (PROPMALE). This proportion 

has values of 0, 1/3, ½, 2/3 and 1. For example 1/3 indicates 1 out of 3 demonstrators 

are male. We then tested whether the coefficient associated with PROPMALE is 

significant, and then whether the gender of DEM1, DEM2 and DEM3 affects the 

LAB scores. To test H3b, we tested whether ‘male’ demonstrators received higher 
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demonstrator scores. Table 5-VII shows the results, with none of the tests indicating 

any significance. Therefore H3a nor H3b are not supported. 

 

Table 5-VII: Analysis to determine if male demonstrators receive higher scores than 
females 

 

 

Relationship:  

H4a: There is a positive relationship between demonstrator teaching scores and 

laboratory experience scores 

 

The main goal of this study, expressed in H4a, was to confirm if a positive 

relationship exists between the teaching and laboratory experience scores. To 

investigate the relationships between LAB ratings and demonstrator ratings (DEM1, 

DEM2 and DEM3), we need to take into account that only some classes have only i) 

DEM1, some have ii) DEM1 and DEM2, and some iii) DEM2 and DEM3 (when the 

lead demonstrator does not need to give a class introduction) and some iv) DEM1, 
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DEM2 and DEM3. We considered these cases separately using the multi-level model 

analysis. The number of courses representing these cases is shown in Table 5-III. 

 

Table 5-VIII shows the results for case i), Table 5-IX for case ii), Table 5-X for case 

iii) and Table 5-XI for case case iv), and they all show a strong positive relationship 

between the LAB1 scores and demonstrator scores. For example, Table 5-VIII shows 

that an increase in one unit of the DEM1 score results in an increase of 0.5451 in the 

LAB score. Table 5-IX, X and XI has a similar pattern, but they also show the DEM1 

scores are more important than DEM2 scores, and the DEM2 scores are more 

important than DEM3 scores, except for scenario iv), which indicates the DEM3 

scores could be more important than DEM2 scores. Table 5-VIII shows the DEM3 

scores are not significant, which could be due to low sample size for scenario iii). 

The same analysis was repeated between LAB2 scores and demonstrator scores. A 

very similar outcome was found for LAB2 scores across all four scenarios. Table 

5-XII shows the relationship for scenario iv) between LAB2 scores and the three 

demonstrator scores. These results confirm that DEM1 has the largest influence on 

laboratory experience scores and is therefore most important. 

Table 5-VIII: Relationship with only DEM1 
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Table 5-IX: Relationship with only DEM1 and DEM2 

 

 

Table 5-X: Relationship with only DEM2 and DEM3 
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Table 5-XI: Relationship with DEM1, DEM2 and DEM3 

 

 

Table 5-XII: Relationship between LAB2 scores and demonstrator scores 

 

 

These results also show that DEM-ratings are not fully explaining the LAB1 ratings, 

as R2 the proportion of the variance ranges from 0.36 to 0.49 and shows that 36%-

49% of the variance of the LAB1 scores is explained by demonstrator scores. The 

highest values are obtained when more than two demonstrator scores are available; 
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which shows that the ratings of all three demonstrators jointly contribute to an 

accurate prediction of laboratory scores. 

 

5.5. Discussion 

The first hypothesis was to determine how class size affects student evaluations 

scores when using a team based teaching format. Literature suggests that class size 

does impact on student evaluations (Shapiro, 1990, Watkins, 1990, El Ansari and 

Oskrochi, 2006, Johnson et al., 2013), and since the ratio of teachers to students was 

relatively constant, no impact was suspected when using team based teaching. The 

results show that based on a multi-level model where the mean differences between 

scores for different classes are not significant at the 5% significance level, class size 

had no impact on the evaluation scores of teaching staff and laboratory experience. 

This provides weight to the benefit of teaching teams and a master/apprentice model 

for demonstrator training. 

 

The literature also suggests that course level can influence student ratings, especially 

in engineering (Badri et al., 2006, Johnson et al., 2013, Narayanan et al., 2014). 

Analysis of the results suggest that this influence was not present regardless of the 

class format and differences in the mean and corresponding p-values for every pair of 

course levels showed no clear pattern in any direction. Therefore, student ratings of 

demonstrators and laboratory experience did not increase with course level. 

However, the 3rd and 4th year results were greater than the 2nd year results; which 

tends to suggest that those years in which students participate in more discipline 

specific courses, their evaluation is more favourable. 

 

The findings in the literature regarding the effects of teacher gender on student 

evaluations are mixed; some suggest there is no effect (Aleamoni, 1999, Feldman, 

1993, Hameed et al., 2014), while others, including large engineering studies, did 

(Basow and Silberg, 1987, McPherson et al., 2009, Johnson et al., 2013, Narayanan 

et al., 2014). The study shows that none of the tests indicated a significant 

correlation, regardless of class format, and demonstrator gender had no real influence 

on student evaluations scores. 



 

121 

 

The final hypothesis was to investigate the relationship between student evaluation 

scores on teaching and laboratory experience in order to quantify the importance of 

the laboratory demonstrator and also understand how to apply this effectively in a 

TBT class format. Laboratory experience was divided into two components based on 

the factor analysis; one focussed on the experiments and the other on the facilities. 

The results show that the lead demonstrator has the greatest influence on the 

laboratory experience score, regardless of whether one, two, or three demonstrators 

are used. As expected, in a laboratory with one demonstrator their influence is the 

highest, with an increase in one unit of the DEM1 score resulting in an increase of 

0.5451 of the LAB1 score.  

 

In a team based teaching format, a lower but still important influence is shown for 

the other two demonstrators, which suggests the importance of selecting high quality 

demonstrators and providing laboratory specific training to positively influence 

laboratory evaluation scores. It also shows the importance of using the best possible 

lead demonstrator. With the major influence being held by the lead demonstrator 

findings also suggest that using a master/apprentice model in a TBT format will not 

have a major impact on student laboratory experience as long as the lead 

demonstrator is of high calibre. This is an important finding because it should give 

those who allocate teaching staff the confidence to use TBT to help train less 

experienced demonstrators. Moreover, researchers evaluating the success of changes 

to laboratory experiments or facilities can now quantify the impact that teaching staff 

have in their research design. 

 

These results also show that while laboratory demonstrators have a large part in 

influencing laboratory experience, only 36% to 49% of the variance is explained by 

demonstrator scores, and therefore we suggest that other factors contribute at least 

50% to variation in student evaluations of laboratory experience. The remaining 

unexplained variation could be due to factors collected in the study, factors that 

could be observed but were not collected and other factors that are not observable. 

For instance, demonstrator age and ethnicity was not included, but it could reduce the 

unexplained variance. Factors associated with laboratory experience are also very 

important. In chapter four it was found that laboratory notes (activity and clarity), 
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quality of equipment, and student workload within the allocated laboratory timeslot 

influenced the laboratory experience scores. 

5.6. Conclusion 

 

This chapter investigated the use of student evaluations in order to comprehend the 

influences associated with the survey instrument in regards to team based teaching in 

an engineering teaching laboratory. Evaluations were conducted on laboratory 

teaching assistants and analysed using a multi-level model. This chapter also 

showcased the importance of using multi-level statistical models to analyse student 

evaluations due to the contrasting findings of single level models. Seven 

hypothesises were tested: 

 

H1a: Class size does not have an effect on demonstrator teaching scores in a team 

based teaching format - supported 

H1b: Class size does not have an effect on laboratory experience scores in a team 

based teaching format - supported 

H2a: Higher level courses receive higher demonstrator teaching scores in the 

laboratory, regardless of a team based teaching format - rejected 

H2b: Higher level courses receive higher laboratory experience scores, regardless of 

a team based teaching format - rejected 

H3a: Male instructors receive higher demonstrator teaching scores, regardless of 

team based teaching format - rejected 

H3b: Laboratories with male instructors receive higher laboratory experience scores, 

regardless of team based teaching format - rejected 

H4a: There is a positive relationship between demonstrator teaching scores and 

laboratory experience scores - supported 

 

The TBT approach found no significant influence in terms of class format, course 

level, and demonstrator gender, indicating there is an acceptable level of discriminant 

validity. Structural validity was also confirmed by understanding how the questions 

and statements could be grouped into scores. This is in addition to the confirmation 

of face validity in chapter three. Further validation of the survey instrument will be 
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examined in chapters seven and eight by examining the relationship with learning 

and investigating for convergent validity. 

 

A key conclusion is that team based teaching is a valuable method of enhancing the 

laboratory learning experience. As expected, the lead demonstrator has the most 

influence on laboratory experience when one, two, or three teaching assistants are 

used. With this influence quantified, staff conducting teaching allocations should be 

encouraged to use the master/apprentice model by partnering very experienced 

demonstrators with less experienced ones. However, when the laboratory class 

increased (45 plus) the influence from each demonstrator became more equal, 

probably because the lead demonstrator has less time to make contact with all the 

students.  
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6. CHAPTER 6: LABORATORY RESOURCES 

6.1. Introduction 

Chapter three used an iterative refinement process to examine the benefits of 

providing additional resources for experiments and equipment to help train and 

prepare demonstrators for teaching. Similarly, chapter four outlined through an 

iterative refinement process how such resources improved the laboratory experience 

scores from student evaluations. The research found that additional resources that 

help students understand the experiments, the equipment, and develop laboratory 

skills, provided an uplifting factor to student evaluations. From these positive 

outcomes came a further study to investigate this impact in greater detail. The 

findings can aid in understanding if students use such resources to better target the 

development of such resources, helping to improve the student experience. As a 

result, this chapter presents the method and results needed to answer the sub-

question: 

Do students use and appreciate additional laboratory resources? 

 

6.2. The Training Laboratory 

An online multimedia resource database for both demonstrators and students called 

the Training Laboratory was developed to try and improve laboratory experience and 

learning. It is important to gain an insight into the design and usefulness of this 

resource. 

6.2.1. Laboratory Demonstrators 

The idea that sparked the development of this Training Laboratory was the need to 

improve the training delivered to teaching assistants who are known as laboratory 

demonstrators. As outlined in chapter three, training laboratory demonstrators is 

important to provide a quality learning experience for students. In the school, most 

teaching assistants are international PhD students whose theoretical knowledge is 

very high, but who often lack practical skills. This included knowing how to use the 

equipment and how to correctly troubleshoot problems. This problem had to be 

rectified because the laboratory is important means of developing cognitive, 

psychomotor, and affective skills (Salim et al., 2013).  As a result, a website which 
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contained tutorial videos, text and picture information, and manuals that the 

laboratory demonstrators could use as preparation material was created. 

 

6.2.2. Prerequisite Student Knowledge 

The engineering department is a popular destination for international students, 

comprising a large proportion of the student ratio in the third and fourth years. Since 

many international students enter mid-way through the electrical, computer or 

telecommunications degree, it became apparent they were good at theoretical 

learning but their practical skills were lacking and they, like the laboratory 

demonstrators, struggled in the laboratory. 

 

In Australia, multiple pathways are also causing a similar issue; students can obtain 

advanced credit for courses from studies obtained from other universities or colleges 

(Millman, 2013). In addition, the coursework program for double degrees or other 

mixed programs means students undertake courses in a nonstandard order, so the 

resources developed in the Training Laboratory allow students to catch up pre-

requisite laboratory skills. 

 

6.2.3. Laboratory/Resource Design 

Designing laboratory experiments takes time to become effective and increase 

student satisfaction. Additionally, developing supplementary material like video 

guides is time consuming but beneficial for learning (Mason et al., 2013). The 

traditional method of developing laboratory notes is an independent process whereby 

each course coordinator or course teaching team, teaches and also provides resources 

to complete the laboratory. This method suggests that productivity can be low 

because course coordinators may duplicate the resources or instruction. A second 

problem existed if hardware or software is changed resulting in the need to update 

the resources. A third problem was it was often hard to cater for students who do not 

have the prerequisite skills. Finally, advanced students can become bored and lose 

interest in an experiment if it is too simple and only repeated existing skills. It is 

better to share resources across courses and avoid repetitive learning by directing 

students to the online resources. 
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6.2.4. The Internet 

A lot of the resources currently available on the internet are free and useful in 

teaching the skills used in the laboratory. With powerful search engines such as 

Google, and extensive video resources on YouTube, students already have a number 

of pathways to teach themselves practical skills that may be deficient (Lee and 

Lehto, 2013). Finding information in this manner is a very important skill for 

engineers to have, and learning should always encourage this independent searching, 

but there are times when resources need to be ad free, quick to navigate to, and 

delivered in a specific way. 

 

 

6.3. Implementation 

The Training Laboratory website was developed in 2011 and first used by students in 

2012. The content is structured into four categories; Equipment, How to Guide 

(Hardware), How to Guide (Software), and Troubleshooting. It includes written 

instructions, videos, user manuals, and links to external resources. Over time, more 

resources have been developed or linked, to provide students with a one stop shop for 

developing laboratory skills. The main page of the Training Laboratory can be seen 

in Figure 6-1. 
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Figure 6-1: The Training Laboratory Website 
 

Each individual resource took a number of days to develop, especially the video 

resources. It took time to develop a plan, undertake the recording, and then edit the 

video. If a company or website had a well-established training resource, a link was 

provided to prevent unnecessary duplication. The decision as to what resources are 

required, and how to design them, was determined by talking to experienced 

laboratory demonstrators and observations in the laboratory to identify common 

questions and common mistakes made by students. 

 

 

6.4. Research Design 

 

Within the iterative refinement process outlined in chapter four, a study was carried 

out on three second year courses to understand how students used and perceived the 

Training Laboratory. Ethics approval for this study was conducted under HE14/156. 

The first course was on Digital Hardware (ECTE233) run in the first semester of the 

second year, and the second course was on Electronics (ECTE212) run in the second 

semester of the second year of study. The digital hardware and electronics courses 

are undertaken by students studying computer, electrical, mechatronics, and 

telecommunications engineering. The third course also ran in the second semester of 
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second year; it was as an introductory electrical engineering servicing course for 

students studying other engineering degrees such as civil, environmental, materials, 

mechanical, and mining engineering. 

 

In 2011, while designing the resources for the Training Laboratory, and before 

implementation, a qualitative study was undertaken to observe how the students and 

demonstrators interacted with the resources, the experiments, each other, and other 

demonstrators. The observations focussed on the hurdles students faced in 

undertaking the experiments and the support provided by the demonstrators. This 

was to provide direction as to what resources needed to be created and how they 

could be integrated within the experiments to provide support. The Training 

Laboratory was added to ECTE233 and ECTE290 in 2012 and to ECTE212 in 2013; 

observations were then made to see if the interactions had changed. 

 

In 2014 a quantitative study was undertaken to measure how usage changed over 

time, with the hypothesis that usage would reduce with each experiment in a course. 

This was carried out via a large course wide study where students enrolled in 

ECTE233 filled in a survey at the end of the first, second, and last experiments. The 

survey question that related to the Training Laboratory asked “What was the main 

purpose of using the Training Laboratory?” focussed on measuring the number of 

students using the resource for equipment, troubleshooting or other means.  

 

The second quantitative study was to investigate student use of the Training 

Laboratory across all three courses. At the end of the last experiment a survey was 

given to students to gain an understanding on usage across various courses and how 

the resource impacted on student satisfaction. This investigation also looked at how 

usage differed between local Australian students (Domestic Students), and foreign 

students (International Students), who had arrived in Australia to study for one to 

four years of a bachelor degree. The survey questions related to the Training 

Laboratory asked the questions: 

1) “What was the main purpose of using the Training Laboratory?”  

2) “If the resource was REMOVED how would your overall satisfaction for 

undertaking the experiments change?” 
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This research was limited in that it was only undertaken in one engineering 

department, at one university, and with a limited number of courses, so the results 

may vary with different disciplines, universities, and student cohorts. Moreover this 

analysis was carried out with three courses that had a similar experimental approach, 

so the findings could differ if other approaches such as recipe styles are used. 
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6.5. Results and Discussion 

6.5.1. Quantitative Analysis 

The first study was used to understand how much students used the Training 

Laboratory between the first experiment and the last experiment, with the hypothesis 

being there would be a rapid decrease. Table 6-I shows the student responses across 

the three experiments including the test for statistical significance (SS) and 

comparative error. The analysis shows that there was a substantial drop off in usage 

between the first (6.1%) and second experiment (15.3%) but this difference was not 

statistical significant. Usage at the last experiment dropped to 18.5% of students and 

this was statistical significant compared to the first experiment, providing some 

support to the hypothesis.  

Table 6-I: Responses for the 1st, 2nd and 6th experiments to the question, “What was 
the main purpose of using the Training Laboratory?” 

 

 

The second quantitative study was to examine how students were using the resource 

across three different courses. Table 6-II summarises how the students claimed they 

used the resource across the three courses. A statistical test was undertaken to 

compare usage differences between the domestic and international students. This was 

not done for the servicing subject as the international response was too low. 

 

Table 6-II: Responses after the last experiment to the question, “What was the main 
purpose of using the Training Laboratory?” 
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The data between domestic and international students was separated, except for 

ECTE290. Of the 42 responses, only two were from international students, which 

was too small for any meaningful comparison. Since this is a servicing course where 

students have no prior exposure to an electrical laboratory, it was expected that they 

would make substantial use of this resource. The data shows that the students made 

substantial use of the resource, with usage above 75% across the three courses. It 

also suggests that students used the resource to gain an understanding of the 

equipment and to improve their troubleshooting skills. Usage was greatest for 

ECTE290, which was expected because students had no experience in an electrical 

laboratory; only five per cent did not use the resource. The data also shows that there 

is a significant difference in usage between the domestic and international students. 

 

This supports the findings in chapter four which found that providing such resources 

in a laboratory environment improved student experience. While the data in Table 

6-II provided evidence that students used the resource in the classroom, the data in 

Table 6-III shows how such resources can affect student satisfaction. 

 

Table 6-III: Responses after the last experiment to the question, “If the Training Lab 
resource was REMOVED how would your overall satisfaction for the experiments 
change?” 

 

 

 

Students in the three courses were asked how their satisfaction with the experiments 

would change if the resource was removed. For ECTE233 47.7% of students claimed 

their satisfaction would decrease, while for ECTE212 and ECTE290 it was 65.7% 

and 83.3% respectively. These figures reflect the amount of resources a student 
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might need to use from the Training Laboratory. This data supports the findings in 

chapter four that appropriate laboratory resources can increase student evaluations. 

 

6.5.2. Participant Observer Notes 

Chapter four described how an iterative refinement process was used to investigate 

the impact of changes in the laboratory. This was accomplished by observing 

students before and after the Training Laboratory was incorporated into the 

laboratory notes for each course. Before implementation students regularly stopped 

when they found the experiments difficult, especially with early experiments and for 

international students. The international students struggled to complete experiments 

because they were coming into a laboratory not only having to understand the 

learning objectives, but also to try and understand how to use equipment that was 

foreign to them. It was soon noted that learning in the laboratory was not very 

effective for those new to the equipment. The laboratory demonstrators were also 

busy trying to explain how the equipment worked, as well as provide help with the 

learning objectives, all of which resulted in many students waiting a long time for 

help, which was very unproductive. 

 

Implementing the Training Laboratory also required training the laboratory 

demonstrators to use it effectively for teaching purposes. Observations were made in 

laboratory classes with demonstrators trained to use the resource as an aid to 

learning. If the laboratory demonstrators were asked a question that was covered in 

the Training Laboratory, the first step was to point the students to the relevant 

resource. For example, consider the scenario where students cannot measure the 

current in a circuit with a digital multimeter, the laboratory demonstrator would show 

the students the resources available to learn how to use a digital multimeter and how 

to take electrical measurements. This was followed by asking the students if they had 

reviewed the information contained within the resource.   

 

In most cases the students did not explore the available resources, or if they had this 

would help them remember. The laboratory demonstrator would ask the students to 

review the resource, and they would return in five minutes to check if they had 
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gained the required level of understanding. This gave the laboratory demonstrator 

more time to spend with the rest of the class, rather than investing a large amount of 

time teaching fundamental skills. Upon returning to the students, if the appropriate 

level of understanding had still not been reached, the laboratory demonstrator would 

identify the issue and help guide the students to the necessary level of understanding.  

 

This process resulted in a significant increase in learning productivity because 

student awareness of the resources grew, and the demonstrator would always start by 

pointing them to the resource, they began to use it more often when they ran into 

trouble. A direct result of this was that students were no longer sitting and waiting 

for help as much as they had previously done, and the demonstrators had more time 

for all the students.  

 

As expected, the Training Laboratory was of greatest use to international students 

who do not start in the first year of an undergraduate program (equal benefit in first 

year courses). A repeated observation in a number of different laboratories was that 

the resource provided international students with an opportunity to better use 

laboratory time. Entering the laboratory for the first time was no longer a juggle 

between coming to terms with foreign equipment/software and concentrating on the 

learning objectives of the experiment.  

 

Productivity in the laboratory was observed to be the best when the resources were 

tied to pre-laboratory activities. Differences in student preparation became noticeable 

because those that used the resource progressed through the experiments faster, and 

resorted to the troubleshooting resources without direction when needed. Students 

that made little use of the resource wasted time understanding the fundamentals and 

lacked direction when it came to troubleshooting. When these students struggled they 

tended to seek assistance from the demonstrator rather than work out how to use the 

resources to find a solution. It usually took the demonstrator several attempts to put 

the students into a routine whereby they would seek out resources for themselves, 

before asking for help. 
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6.6. Conclusion 

 
Both the quantitative and qualitative analysis conducted in this chapter confirms the 

findings in chapter four, that additional resources that help support learning in the 

laboratory improved student evaluations. The question this chapter tried to answer 

was: 

Do students use and appreciate additional laboratory resources? 

 

The study found that students used the resource more in the earlier experiments 

rather than the later. Usage was centred on both learning about the equipment and 

troubleshooting. A statistically significant difference in usage was found between the 

domestic and international students suggesting that the resource may support the 

laboratory experience in different ways. The study also found that for most students 

student satisfaction would have declined if the resource was unavailable, supporting 

the notion that such resources help improve student evaluation scores and are 

therefore appreciated. The classroom observations suggest that the resource changed 

interactions with the demonstrators and that learning productivity increased with less 

students stopping and waiting for assistance when a particular solution could be 

found within the resource. Further analysis of the use of resources and the impact on 

the student experience is examined in chapter seven. 
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7. CHAPTER 7: RESOURCES AND LEARNING 

7.1. Introduction 

It has become evident throughout this thesis that using an iterative refinement 

process to develop resources can improve student evaluations conducted in the 

laboratory. Chapter three outlined how such resources can be used to improve the 

training of laboratory demonstrators. Chapter four showed how student evaluations 

can be improved by designing experiments with clear instructions and with resources 

that help to develop understanding. Chapter six outlined that students use such 

resources to support their knowledge of hardware and software, and to develop 

troubleshooting skills. This chapter outlines a case study of an iterative refinement 

process that acted upon negative student evaluation data to improve a third year 

telecommunications laboratory. The chapter provides a detailed example of how the 

data was used to identify the problem and put in place actions to improve student 

evaluation scores of the laboratory experiment and facilities. A key action was the 

development of additional resources. As part of this case study, an attempt was made 

to answer if learning also improved through the following the research question: 

Do additional laboratory resources improve learning? 

 

7.2. Background 

 

This study was undertaken in the School of Electrical, Computer and 

Telecommunications Engineering (SECTE) at the University of Wollongong (UOW) 

under ethics approval number HE13/129. Those students undertaking an electrical, 

computer or telecommunications degree must complete the third year undergraduate 

telecommunications course ECTE363. The number of international students 

undertaking the course is approximately 45-55% (depending on the year). 

 

This particular laboratory was first used for teaching purposes in the early 1990s. In 

the intervening years, it has been modified to concentrate more on digital 

communication techniques rather than analog techniques. This resulted in a skewing 

of the laboratory difficulty to the point that material covered in the initial laboratory 

(necessary to understand the laboratory infrastructure) was no longer part of the 
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laboratory experiments.  Not surprisingly, this was a major cause for the 

dissatisfaction expressed by recent student cohorts inside and outside this laboratory. 

 

As outlined in chapters four and six, courses with supplementary material available 

on well organised web sites, saw a significant increase in student evaluations. For 

example, in 2009 the control laboratory was modified so that experiments were 

demonstrated using web-based video instructions and background lectures which 

students could access from their own computers at any time. No such material had 

been previously available for the laboratory component of this telecommunication 

course.  

 

Due to the success of other courses that used online laboratory notes with multimedia 

modules, it was decided to re-design this course in a similar fashion, believing that 

the extra multimedia material would assist both students and demonstrators to better 

understand the laboratory concepts. 

 

The telecommunications course ECTE363 was based on the telecommunications 

instructional modelling system (TIMS) used to allow undergraduate students to inter-

connect a variety of different interchangeable boards that simulate 

telecommunication signals and system. This includes digital modulation and de-

modulation systems. TIMS can also be used to simulate analog communication 

systems. The laboratory implemented in the 1990s included both types of 

experiments. TIMS is used in many tertiary institutions throughout the world. A 

software simulator for TIMS is also available for institutions that cannot afford to 

provide a physical TIMS laboratory for their students (Emona TIMS, 2016). The 

provider of the TIMS system also provides documentation showing sample 

experiments for student activities using the equipment. 
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7.3. Laboratory Redevelopment 

 

7.3.1. Reflection 

Repeated student evaluations of the laboratory component and the laboratory 

demonstrators in 2009 and 2010 were negative (71% and 67%, respectively for the 

laboratory). The course coordinator was concerned with this data and decided to 

work with the Laboratory Manager to implement changes. The course coordinator 

taught in one of the laboratory classes in autumn 2010, and having developed 

material for the original laboratory in the mid- 1990s, was concerned that the 

students had little of understanding of what was required, how they were meant to 

complete the experiments, and what the learning objectives were. Moreover, students 

were taking a long time to complete experiments and only made progress with a lot 

of help from the demonstrator. 

 

The laboratory also suffered from having no initial tutorial experiments introducing 

the equipment, before students had to carry out digital experiments.  Students had 

access to TIMS reference booklets during laboratory sessions, which outlined the 

operating characteristics of each module. When students arrived at the laboratory, 

they were given an initial introduction from the demonstrator and were then expected 

to carry out the experiments outlined in the laboratory notes (studying either in 

groups or alone). An examination of the experimental procedures outlined in the 

laboratory notes provided by TIMS indicated that the notes were accurate and quite 

descriptive. However, the authors of these notes indicated that they expected that 

preliminary experiments would be carried out before attempting more technically 

complex material, and because the experiments changed over from analog to digital 

over the years, scaffolded learning was no longer in place. 

 

Formal and informal feedback by students and demonstrators suggested that students 

from all backgrounds, even when successfully carrying out the experiments, could 

not show they had gained any deep understanding of telecommunication system 

design. Even students who managed to get the TIMS equipment to function correctly 

admitted they were not sure why it functioned from an engineering perspective. 
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In consultation with students, demonstrators, literature, and other staff, a number of 

changes were agreed. These included developing extra multimedia educational 

material for demonstrators and students; creating a laboratory web-site to showcase 

the resources, and creating a training DVD for demonstrators to improve training on 

the TIMS equipment and experiments 

 

7.3.2. Multimedia Website 

One primary area of focus when developing resources was for students to become 

familiar with TIMS and grasp its fundamental operating principles. Despite students 

being in their third year of an undergraduate engineering program, they had not 

previously used the TIMS units.  

 

A video tutorial was therefore created to introduce the setup, operation, and 

manipulation of the TIMS equipment; this tutorial included how to use measuring 

equipment such as an oscilloscope, and how to read the signals produced throughout 

the TIMS equipment. The tutorial was based on the need to reinsert the scaffolded 

learning removed during the transition from analog to digital experiments. The 

tutorial was made available via the newly created laboratory website, as shown in 

Figure 7-1. Students are now required to view the tutorial video before entering the 

first laboratory session. Furthermore, to ensure that students spent their extra time 

preparing for the first laboratory, an e-learning quiz was developed; from a database 

of 28 questions they were asked eight questions, with only one attempt at each, and 

the results contributed to their laboratory assessment.  
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Figure 7-1: Snapshot of Experiment 7 Web site for the revised Telecommunications 
Laboratory 

 

Video introductions for compulsory experiments were also created. This took about 

10 hours of filming and about 20 hours of editing. The assistance provided by the 

videos in how to undertake the experiment gradually decreased as the students 

developed competencies in each experiment. 

 

In addition to the introductory video, resources that explained the operating 

characteristics of different interchangeable TIMS cards (known as modules) were 

also created. This information was previously available only in the laboratory via a 

limited number of resource books, but it is now available for students to view before 

entering the laboratory, thus allowing them to prepare in advance. This information 

was also hyper-linked within the laboratory instructions of each experiment for quick 

reference. 

 

Additional online resources were also created for the other electronic equipment in 

the lab that is used in conjunction with TIMS. This includes instruction manuals on 

how to use the equipment and troubleshooting guides. These resources are also 

integrated into a shared online resource called the ‘Training Laboratory’ which was 

outlined in chapter six. 
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The order of the experiments was also changed to ensure that the more technically 

difficult laboratory experiments followed the easier experiments to ensure a 

scaffolding of knowledge. The first experiment was the only analog experiment but it 

covered FM, while the preceding experiments were digital, covering topics such as 

PRBS, line coding, eye patterns, and noise. 

 

7.3.3. Demonstrator Resource 

As outlined in chapter three, multimedia resources helped to train laboratory 

demonstrators, which resulted in increased student evaluation scores. In an attempt to 

improve demonstrator knowledge, a DVD resource was created from the hours of 

raw video developed for the introductory videos. The DVD enables the laboratory 

demonstrators to understand learning outcomes determined by the design, not by 

their own interpretation. The goal was that better trained demonstrators would be 

able to provide more effective support to students. The demonstrators were required 

to watch the relevant segment of the DVD before undertaking the experiment. 

 

 

7.4. Method 

The success or failure of the multimedia resources to improve student evaluations 

and learning was evaluated during autumn 2011 via a three pronged approach. The 

first required the demonstrators to keep a log of their experiences for each 

experiment. Two laboratory demonstrators were used in autumn 2011, neither of 

which had taught the subject previously. As a part of the log, they had to answer 

twelve questions that explored student experience; these questions are outlined in 

Table 7-I. The second approach was to observe the impact the changes had on the 

student evaluation scores that was outlined in chapters four and five. The third 

approach was to assess any impact the changes had on assessment results and if this 

correlated with the observations of learning conducted by the demonstrators. 
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7.5. Results and Discussion 

 

7.5.1. Demonstrator Observations 

The two laboratory demonstrators were required to keep a log of their teaching 

experience. The questions and a summary of results from the demonstrator log are 

shown in Table 7-I. The two demonstrators were aligned with their observations. 

 

Table 7-I: The twelve questions asked for each laboratory session from each 
demonstrator 

 

 

The responses from the demonstrators indicated that students attempted to prepare 

for the laboratory, especially the first one, because it was an assessment task. In some 

cases they did not complete all the preparations but at least they had begun. They 

also used the new videos before and during the laboratory session. 
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To improve time management, the demonstrators monitored the time taken for each 

laboratory. For most students, experiment one, the FM modulator, took from 120 to 

150 minutes; experiment two took 3 hours, but some students did not complete the 

laboratory, and even with the laboratory videos, found this experiment difficult to 

understand. 

 

The demonstrators reported that students had no difficulty with experiment three, 

which was completed within 90 to 150 minutes; experiment four took between 90 to 

180 minutes; experiment five took at least 90 minutes; and experiment six took all of 

three hours. In fact by the time the students reached this experiment, some were 

concerned about the upcoming laboratory exam and were spending up to an hour 

reviewing/practicing earlier experiments. No students attempted experiment seven, 

an optional experiment. 

 

The demonstrators reported there were no obvious mistakes in the videos or the 

revised laboratory notes (with one very minor exception in the initial laboratory). 

With the exception of experiment two, they found the laboratory material satisfactory 

and indicated that they felt that the students were learning relevant material and 

gaining a good understanding of telecommunication system design. This was a 

substantial improvement compared to previous observations, providing an indication 

that an increase in grades could be expected. They also felt on the whole, that the 

videos were well targeted. 

 

7.5.2. Student Evaluations 

Student surveys had been carried out on the telecommunications laboratory from 

2009 to 2013. The design of the statements and evaluation procedure is outlined in 

chapter four. Table 7-II shows the survey statements, and the responses. 
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Table 7-II: Laboratory survey responses 2009 through 2013 

 

 

The survey shows that the ratings correlate with the changes made to the laboratory, 

and the data can be divided into three different stages. The years 2009 and 2010 

show student ratings before the redevelopment, with consistently low scores across 

the board. The only exception their rating of the computers, probably because 

computers only play a very small role in the laboratory, word processing, 

spreadsheets, and the web. 

 

In 2011, the redeveloped laboratory was deployed with the new online multimedia 

resources. The experiments were the same, compared to 2009 and 2010, and the 

laboratory equipment and instruments also remained the same. However, in 2011 an 

increase in scores occurred for all survey statements, apart from the suitability of the 

computers. In part, this improvement could be due to the multimedia resources used 

for learning, and the DVD training resource could also have played a part in 

providing more effective demonstrators. 

 

Of real interest was the 18% increase in student ratings of the electronics equipment, 

whereas the TIMS unit, the modules, and the measuring instruments remained the 

same. This provides further evidence that by better understanding what the 

equipment does and how it operates, students gain a better appreciation of the 

laboratory environment. 
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The feedback obtained in 2011 indicated that experiment two was too advanced and 

experiment five was easy, so in 2012, experiments two and five were swapped to 

provide better scaffolding. Between 2011 and 2012, the three experiment based 

statements (S1, S2, and S3) was the source of further improvement in the survey 

instrument; this further indicates the importance of correctly scaffolding learning in 

the laboratory, and the impact this has on student evaluations. It also shows the 

importance of an iterative refinement process carried out over a long period of time, 

and even when changes are made, further improvements can generally be found. 

 

No changes were made to the laboratory for 2013, and as expected, many student 

responses were close to those obtained in 2012. Overall the data suggests that by 

having laboratory notes and resources that provide scaffolded learning, and greater 

understanding of the equipment, student experience is greater. This supports the 

findings outlined in chapter four. 

 

7.5.3. Demonstrator Evaluations 

Student evaluations of demonstrator evaluations were also examined. The statements 

and scores are shown in Table 7-III. Demonstrator names are masked for privacy 

reasons, and each demonstrator is assigned a number. 

 

Table 7-III: Demonstrator survey responses 2009 through 2013 

 

 

Six different laboratory demonstrators were used during the four year period, of 

which five were Chinese international research students and one was from the 
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Middle East; they all spoke a comparable level of English. There was a dramatic 

difference in evaluations from 2011, the year the laboratory was redeveloped. All the 

survey responses improved, providing further support to the importance of having 

resources to aid learning in the laboratory. Interestingly the communication scores 

improved, although the ability to communicate was similar. One explanation could 

be that students had gained more knowledge from the videos and other resources, 

and thus were better able to understand the experiments and the accompanying 

explanations. In addition, the DVD resource for the demonstrators could have given 

them more confidence and clarity with the experiments. These resources could also 

have meant that fewer conversations were needed between student and demonstrator.  

 

 

7.5.4. Learning 

The impact of the new multimedia resource was also analysed via student 

assessments. This was first done via the laboratory exam which asked students to 

draw a block diagram of a telecommunications system, build the system using the 

TIMS hardware, and then carry out measurements. They also had to analyse the 

difference between the measured values and the theoretical values of the system. 

 

The logs from the laboratory demonstrators reported that during the laboratory exam 

in autumn 2011, it appeared that the students knew how to connect, manipulate and 

troubleshoot the modules and measuring equipment. The students were also 

observing appropriate signals on the oscilloscopes. That is, they observed an increase 

in cognitive and psychomotor skills. This alone was a large improvement on 2009 

and 2010 where many students were very confused using the TIMS systems. This 

was the driver for the changes implemented. 

 

The assessment marks from the laboratory exam in 2011 also showed an 

improvement compared to 2010, but since an academic staff member left, access to 

the individual marks has been lost, and no accurate analysis or commentary can be 

provided. Final assessment marks for the subject are shown in Table 7-IV. In 2011, 

the laboratory component was worth 25% of ECTE363. Many factors play a role in 



 

146 

 

determining the final grade, but the improvement in grades between 2010 and 2011 

may suggest that improvements to the laboratory played some part. However, this 

link is weak and this experience paved the way for the approach used in chapter 8 to 

measure learning. 

 

Table 7-IV: Student final grades 2010 and 2011 

 

 

7.6. Conclusion 

 

This case study outlined a number of changes to a third year telecommunications 

laboratory based on iterative refinement methodology. At the heart of the changes 

was the development of a number of resources to aid students in learning and 

laboratory demonstrators in training. The redevelopment involved: 

• Developing an online laboratory resource 

• Creating a video tutorial 

• Producing video introductions for each experiment 

• Producing a training DVD for the laboratory demonstrators 

• Providing TIMS datasheets online 

• Providing resources to help understand and use the equipment and resources 

used in the laboratory 

• Providing scaffolded learning 

 

The question this chapter tried to answer was: Do additional laboratory resources 

improve learning? The addition of this extra online multimedia teaching material in 

early 2011 improved the evaluation scores and appears to have improved the student 

learning within the telecommunications laboratory.  This is inferred through the 

demonstrator logs and the improvements in the assessment outcomes, for the student 

cohort between 2010 and 2011. However, this measurement for learning is inclusive 

and not ideal with a more effective study forming the basis of chapter eight. More 

importantly, this infers that the students seemed to have improved learning 

experiences and probably outcomes.  
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8. CHAPTER 8: STUDENT EVALUATIONS AND LEARNING 

8.1. Introduction 

This chapter explores the relationship between student evaluations and perceived 

learning and laboratory exam performance across the cognitive, psychomotor, and 

affective domains. This builds upon some of the known weaknesses in an attempt to 

measure learning in chapter seven. In this respect, quality is considered to be an 

improvement in both student learning and their experience. Outlined in the literature 

review in Section 2.1 was a set of thirteen learning objectives designed for the 

laboratory (Feisel et al., 2002). Salim et al. (2013) combined learning objectives with 

learning across the cognitive, psychomotor and affective domains to develop an 

instrument to measure the learning objectives of a laboratory. This instrument is used 

to examine whether or not the student evaluation instrument in this thesis does more 

than just measure how students feel about their laboratory experience.  

8.2. Method 

The laboratory components of two engineering courses in 2015 were selected for this 

study, which was carried out under ethics approval number HE14/156. The first 

course (ECTE233) was a second year digital hardware laboratory which contained 

simulation and practice based learning. With most experiments the students would 

commence by simulating various integrated circuits (ICs) and purpose built circuits 

using Multisim (National Instruments, 2016). This would then be followed with 

physically constructing the circuits using digital ICs. The course had six experiments 

of three hour durations, conducted fortnightly over the session. A laboratory practical 

examination was held during the official examination period, the first time such an 

examination had been undertaken for this course. 

 

The second course (ECTE363) was a third year telecommunications laboratory 

where all the experiments focused on using TIMS (hardware for simulating 

telecommunications signals and systems), as outlined in chapter seven. There are no 

software components in this course. The course has five, three hour long laboratory 

sessions which are conducted fortnightly over the semester. The students were 

expected to complete at least five different experiments, followed by a laboratory 

exam during the sixth session. The laboratory experiments were used to introduce 

many concepts that were not covered in lectures or tutorials. 



 

148 

 

 

At the start of the first laboratory session for both courses a self-assessment was 

undertaken. Students were asked to rate their knowledge on a scale from zero to five, 

with zero reflecting no knowledge to five reflecting extreme confidence. Students 

who agreed to participate in the research were requested to include their student 

number for identification. At the end of the last laboratory session (sixth laboratory 

session for ECTE233 and fifth for ECTE363) the same self-assessment activity was 

repeated. During the second last laboratory session, laboratory and sessional teacher 

surveys were carried out, and students who participated were asked to include their 

student number for identification. 

 

The data for the self-assessments, student evaluations, and laboratory exam were 

matched using student numbers and then the responses were de-identified for 

analysis. A total of 125 complete responses were matched across the two subjects as 

summarised in Table 8-I. 

 

Table 8-I: Student Participation 

 

 

ECTE233 consisted of one small laboratory class with one demonstrator and three 

large classes with two demonstrators. ECTE363 consisted of five small laboratory 

classes with one demonstrator. Sessional laboratory demonstrators were assigned to 

diversify the teaching experience across the laboratory classes. A summary of the 

laboratory class information is shown in Table 8-II with each demonstrator assigned 

a different number. The student self-assessments were undertaken using a modified 

MeLOLW survey shown in Table 8-III. 
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Table 8-II: Laboratory Demonstrator Allocation and Class Size 

 

 

Table 8-III: Self-Assessment Questions 
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The original MeLOLW instrument contained nine measures for the cognitive domain 

and seven for each of the psychomotor and affective domains. After reviewing each 

measure within each domain it was decided to alter the wording to better position the 

statements within the context of the laboratory experiments the students were 

undertaking. The laboratory component of each course has slightly different learning 

objectives. 

 

Adjustments to the MeLOLW questions were made to be compatible to the learning 

objectives of the two courses. The wording of the questions was also changed from 

being generalised to being specific to avoid any ambiguity for the students. For 

example in digital circuits there is no unit of measurement, simply one or zero. The 

greatest changes occurred for the cognitive domain. The modified and original 

questions were shown in Table 8-III. Students were asked, “How would you rate 

your ability to…” for each measure on a scale from 0 – I have no idea at all to 5 – I 

am extremely confident. 

 

8.3. Results and Discussion 

The first analysis was to check the reliability of the survey after the questions were 

modified. This was achieved by comparing Cronbach’s alpha coefficients to those of 

the MeLOLW instrument to determine whether or not they remained acceptable. As 

Table 8-IV shows, the coefficients of the modified instrument in the first and last 

experiment are high and comparable to MeLOLW. A value greater than 0.70 is 

considered appropriate, and shows there is some flexibility in the wording of the 

measures. 

Table 8-IV: Cronbach’s Alpha Coefficients for Learning Instrument 

MeLOLW data from Salim et al. (2013) 

 

The next step was to confirm the number of components/factors within each learning 

domain to determine how the questions can be grouped. The default method of 

determining factors is via Kaiser Criterion by observing whether the eigenvalues are 
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greater than one. However, literature suggests that it should not be the only criterion 

because it tends to over extract factors (Lance and Vandenberg, 2009). Therefore, 

four different checks were used; Kaiser Rule, parallel analysis, optimal coordinates, 

and acceleration factor. Table 8-V lists the results of underlying factors behind each 

score. 

Table 8-V: Factor Analysis of the Learning Instrument 

 

 

Table 8-V indicates that three of the tests (Kaiser, Parallel and Optimal) show that 

the cognitive domain has two factors present (two groupings of questions). This is 

shown in both the self-assessment activities. To determine the two factors a principle 

component analysis was undertaken. This is shown in Figure 8-1, which suggests 

that measures eight and nine for the cognitive domain are separate to measures one to 

six. After reading the questions, this is highly possible because questions eight to 

nine differ due to their concentration on writing skills. 

 

 

Figure 8-1: Principle Component Analysis of Cognitive Domain 
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After completing the factor analysis, the relationship between perceived learning and 

student evaluations was examined. Perceived learning was measured by comparing 

the difference between perception of learning from the self-assessment carried out at 

the start of the first experiment and the self-assessment of the last experiment. Note 

here that this measure is not an indication of actual learning because there were no 

assessment tasks at the time of the surveys, and the students were probably not really 

aware of actual learning when completing the evaluations. The relationship was 

investigated using: 

- L: All six laboratory evaluation questions outlined in chapter four 

- L1: Only questions one to three of the laboratory evaluation focused on the 

experiments 

- L2: Only questions four to six of the laboratory evaluation focused on 

laboratory facilities 

- D1: The lead laboratory demonstrator questions outlined in chapter three 

- D2: The assistant laboratory demonstrator (where applicable) 

 

The student evaluations were converted into a weighted-average score to allow for 

easy comparison. Full details of the evaluation scores can be found in chapters three 

and four. Table 8-VI shows the relationship between the perceived learning students 

gained across the three learning domains and the student evaluations. The table 

shows the effect of 1 score increase of each learning domain compared to L, L1, L2, 

D1 and D2. The values that are significant at the 5% level and are indicated by the 

asterisks and red text. The significant relationships were between the increases in 

perceived learning across the cognitive and psychomotor domains and student 

evaluations of laboratory experiments. The student evaluations of the laboratory 

facilities or demonstrators had no significant relationship. Moreover, changes in the 

affective domain also had no relationship on student evaluations. However, this 

sample only covers two laboratory courses with a total of 125 students, so the level 

of significance could increase with a larger sample, but this does provide some 

evidence of the importance of cognitive and psychomotor learning to influence high 

satisfaction for laboratory experiments. 
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Table 8-VI: Relationship between Learning and Student Evaluations 

 

 

The factor analysis indicated that the cognitive domain has two factors. The first is 

based on analytical skills (Q1-7), and the other on writing skills (Q8-9). Table 8-VII 

shows the relationship between the cognitive domain and student evaluations across 

these two factors. The data indicates that only the analytical skills influenced student 

opinion of the laboratory experiments. 

Table 8-VII: Effect of Factors in the Measurement of Cognitive Learning 

 

 

The final test was to compare student self-assessment to the performance of the 

laboratory exam. Table 8-VIII shows this relationship by comparing the exams 

separately and simultaneously. A negative sign indicates a decrease in laboratory 

score. The data suggests that the only relationship that exists between students 

perceived learning for analytical skills is within the cognitive domain. In this 

comparison the psychomotor skills are no longer significant. This is a common 

phenomenon and is important because the effect on laboratory exams tends to be due 

to an improvement in cognitive skills, not psychomotor skills. In Q1 to Q7 the 

increasing difference in cognitive skills leads to an increase in the laboratory exam 

score, whereas for Q8 and Q9 the increase leads to a decrease in the laboratory exam 

score. This suggests that the particular lab exams only tests students’ analytical skills 

and therefore an increase in ‘writing’ skills does not help in doing well in the 

laboratory exam. 

 

There were a number of problems associated with the laboratory exams. The ratio of 

equipment to students is often a problem, which means that many repeat sessions of 

the laboratory exam is needed. While the exam questions changed slightly with each 

repetition, the message soon spread about what was in the exam. An analysis of the 
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lab exam cohorts showed that the mean laboratory exam mark for both courses 

increased in each subsequent running of the session. The ECTE233 exam was highly 

skewed towards full marks because students either knew or did not know the 

fundamentals, whereas the distribution of marks in the ECTE363 exam was greater.  

The other major problem about comparing the laboratory exam marks is that students 

cram beforehand, and therefore the level of knowledge can differ substantially when 

student evaluations are taken. As a result the data in Table 8-VIII can only be used as 

a very rough guide. 

 

Table 8-VIII: Self-Assessment vs Laboratory Exam Performance 

 

 

8.4. Conclusion 

This study investigated how the perceptions of learning across the cognitive, 

psychomotor, and cognitive domain influenced student evaluations in the laboratory. 

A modified MeLOLW instrument was used and verified as a reasonable measure of 

perceived learning across the three domains. Factor analysis found that two factors 

were present within the nine learning measures contained within the cognitive 

domain. While the study was only conducted across two courses with a small sample, 

the evidence suggests that student evaluations of the laboratory experiments are 

influenced by student’s perceived analytical skills gained in the cognitive domain 

and psychomotor skills. Expanding this study to increase the sample size may lead to 

more significant relationships being found. This supports the findings in chapter four 

which showed that the laboratory experiment (activity and clarity) played an 

important role in student satisfaction. No relationship with perceived learning was 

found with the laboratory facilities and demonstrators.  
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Compared to laboratory exam performance, the data suggests that the student 

evaluations are only related to their analytical skills within the cognitive domain. 

However, this research found a number of issues in relation to measuring exam 

performance in a laboratory setting. Student evaluations are very complex and this 

data is only one small jigsaw piece in a very large puzzle. More research is needed 

on more courses to obtain a more definitive understanding, and more research is 

required on how to measure real learning in the laboratory; this in itself is work 

required in another dissertation. 

 

Finally, since no perceived learning was discovered in the affective domain, this 

provides for future research opportunities, particularly an investigation into the 

questions used in the survey, such as, were the questions appropriate for measuring 

affective skills associated with the laboratory? Future research could possibly 

investigate the design of experiments and how different styles have an impact on 

affective skills. 
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9. CHAPTER 9: MAPPING THE PROCESS FLOW OF HOW STUDENT 

EVALUATIONS CAN BE USED TO IMPROVE QUALITY IN THE 

LABORATORY 

 

Chapter three and four introduced two survey instruments to measure student 

evaluations of the teaching staff and laboratory experience. An iterative refinement 

process was used to improve the training of laboratory demonstrators, laboratory 

experiments, facilities and resources. Chapter five undertook a statistical analysis of 

the data to investigate possible bias and to understand the relationship between 

laboratory demonstrators and laboratory experience scores. Chapter six continued the 

work from chapter four to further investigate the impact of additional learning 

resources. Chapter seven provided a case study of an iterative refinement process 

together with an attempt to explore any improvements to learning. Chapter eight built 

upon the lessons learnt in chapter seven to undertake a statistical analysis of the data 

to determine the relationship between student evaluations and perceived learning 

across the cognitive, psychomotor, and affective domains. The findings from each 

chapter can be linked together to understand how each variable interacts. This 

chapter will discuss how the variables are related and mapped to build a process flow 

which illustrates how student evaluations can be used to improve quality in the 

laboratory. This is a major contribution to research because no such modelling for 

perceived learning in the laboratory currently exists. 

 

9.1. Teaching Evaluations 

Chapter three outlined a survey instrument used to evaluate laboratory 

demonstrators, after which a rigorous training and mentoring program was applied 

using an iterative refinement process. The training and support structure aligned 

closely  with the recommendations made in the Australian Council of Deans of 

Science report on teaching in the laboratory (O'Toole et al., 2012), so it was 

generally expected it would lead to an improvement in teaching quality and 

improved student evaluations. However, concrete evidence to determine whether 

such changes would be revealed via student evaluations is not available. Chapter 

three shows that students are on average, well able to evaluate teaching performance, 

with evaluation scores increasing with demonstrator training and mentoring. This 
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finding aligns with the work of Marsh (1987), Aleamoni (1999) and Stehle et al. 

(2012). As a part of laboratory training, video resources were developed to provide 

explanations on equipment, software, and fault finding. As further evidenced in 

chapters six and seven, the video resources not only helped students to understand 

the experiments, it also helped the demonstrators. The videos also became a tool that 

the demonstrators used to direct student questions, encourage self-directed learning; 

and increase their productivity, enabling them to move between students at a faster 

pace. These findings are mapped as shown in Figure 9-1. The laboratory 

demonstrator evaluations can be improved by training, mentoring, and resources that 

improve understanding in the laboratory. 

 

 

Figure 9-1: Processes involved with increasing demonstrator evaluation scores 
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9.2. Laboratory Evaluations 

Chapter four presented a survey instrument used to evaluate student opinions on 

laboratory experiments and the facilities used within the laboratory. As expected, the 

research reported in chapter four showed there is a strong relationship between the 

evaluation of experiments and facilities; especially the type of activity students 

perform and the clarity of instructions. This finding supports the work of Gallardo et 

al. (2007), Boxall and Tait (2008) and Stanisavljevic et al. (2013). Ensuring that 

experiments  are interesting, that they linked to the development of skills that 

students consider useful to real world applications, and which combine simulation 

and practice in a pedagogically beneficial way resulted in improvements in the 

evaluation scores for experiments. The experiments should provide a learning path 

for students to understand how to identify problems and troubleshoot accordingly. As 

shown in section 4.3.2, teaching troubleshooting skills improved the evaluation 

scores, and when experiments are difficult and have no direction on what corrective 

actions to take, evaluation scores were generally lower.  

 

Chapter four also provided evidence that clarity of instruction was also a key 

influencer in the evaluations. Students have high expectations of the quality of 

material they receive from teaching staff, but they were quick to complain if the 

notes include spelling mistakes, references to wrong information, wrong sequences 

of instructions, and grammatical errors. As discussed in section 4.3.2 using online 

notes is an easy way to quickly rectify mistakes and improve clarity issues 

immediately after being detected. Most importantly however, clarity is linked to the 

ability of students to extrapolate the aim of the task and what they are required to do. 

As a result, evaluations scores may decrease when they sense a lack of direction or 

become confused.  

 

As previously reported by Howard and Boone (1997) and Lizzio (2002) student 

workload plays a factor in student evaluations because they do not want to feel 

pressured to race through all the activities. Chapter four showed that they want to 

feel like they are learning something from the laboratory and not simply copying 

down numbers. This generally comes from underestimating the amount of time a 

student would take to understand and complete the experimental tasks. As discussed 
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in section 4.3.2, the use of pre and post laboratory activities can be used to shift some 

of the workload away from the scheduled laboratory time. For example, students can 

spend time before the laboratory to simulate the activity and class time to construct 

the required circuits and systems. 

 

Hardware and software issues can have a major influence on laboratory evaluations, 

but this can also be due to infrastructure problems that are out of the control of 

teaching staff (Deshwal et al., 2012, Gonsai et al., 2013). This type of problem can 

be reduced or eliminated by effective laboratory management (Smith, 1988, Voss et 

al., 2005). As was observed in section 6.5, other times this is due to a lack of student 

understanding of how the equipment or software operates, or it can be fixed with 

troubleshooting techniques. Chapters four, six, and seven outline how through the 

use of resources that improve understanding of laboratory equipment and 

troubleshooting, laboratory evaluations can be improved. Multimedia resources were 

used to address misconceptions with prerequisite knowledge and provide students 

with links that aided self-directed learning.   

 

A major challenge with the laboratory study program, as discussed in chapter six, is 

the multitude of entry paths into the degree or study paths.  While prerequisite 

knowledge is generally focused at the theory level, the assumed knowledge required 

for laboratory activities can be overlooked, because many international students 

entering the program with third and fourth year subjects may have never used 

standard electronic equipment such as a multimeter or oscilloscope. Chapters six and 

seven support the use of multimedia resources which can help such students obtain 

the knowledge they need to complete experiments. This results in students gaining 

more from the laboratory experience by concentrating on the learning objectives and 

not on how to use or troubleshoot the equipment. This supports the findings of other 

studies (Lewis, 1994, Wells et al., 2012, Lee and Lehto, 2013) that found a positive 

relationship between videos and student satisfaction.  

 

The findings from these studies were used to create the map presented in Figure 9-2, 

which shows that laboratory evaluations can be increased by improving the design 

and clarity of experiments, adding resources that improve understanding, and 
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applying an effective managerial structure to ensure that all hardware and software 

problems are eliminated before the start of session or are rectified quickly. 

 

 

Figure 9-2: Processes involved with increasing laboratory experience scores 
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9.3. Bias, Demonstrator and Laboratory Relationships 

Chapter five explored whether three major forms of unwanted influence were evident 

in the student evaluations: class size when using one, two, or three laboratory 

demonstrators; course level by investigating the difference between first, second, 

third and fourth year courses; and the gender of the demonstrator. There was no 

significant meaningful level of influence found, resulting in no links between the 

influencing factors and the demonstrator, experiment and facility evaluations. These 

findings support the work of Aleamoni (1999), Blackhart et al. (2006) and Zabaleta 

(2007).This is not to say there is no unwanted influence in the evaluations, but 

factors such as the weather, time of day, and ethnicity of the demonstrator were not 

measured and they could play a role. 

 

The relationship between laboratory demonstrators and laboratory evaluations was 

also explored in chapter five. This was to determine how much influence the 

demonstrators have in determining how students perceive the experiment and 

facilities. There is no literature that has quantified this relationship. In section 5.5 the 

study found that demonstrators account for between 36 and 49 per cent of the 

variance in evaluation scores. As expected, the lead demonstrator had the greatest 

impact on the evaluations, regardless of there being one, two, or three demonstrators 

in the laboratory. However, as class size increased the impact of the lead 

demonstrator decreased, probably due to the lower exposure they have to all students 

as the class size increases. The mapping of these findings is presented in Figure 9-3, 

and indicates that laboratory demonstrator evaluations play an important role in how 

students perceive laboratory experiments and there is no strong influence with class 

format, course level, and gender. 
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Figure 9-3: The relationship between bias, demonstrators, and laboratory experience 
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9.4. Evaluations and Learning 

To complete the process mapping, the student evaluations were compared to 

perceived learning across the cognitive, psychomotor, and affective domains in 

chapter eight. This was to determine whether or not perceived learning played any 

role in student evaluations. Research in this area is divided, with strong evidence 

claiming no link (Carrell and West, 2010, Braga et al., 2014) and other finding a link 

(Gibbs and Coffey, 2004, Mason et al., 2013), while Stehle et al. (2012) claimed that 

the laboratory had the best conditions to determine whether a link was present. While 

most studies concentrate on comparing assessment tasks, this was one of the first to 

compare perceived laboratory learning across three domains. Section 8.3 found there 

is no link between student evaluations and the affective domain. With the laboratory 

being a place to ‘learn by doing’ it was expected that a link could be made with the 

psychomotor domain. There is a link between perceived learning and the laboratory 

experiment evaluations, that is, when students believed their psychomotor ability 

improved they rated the laboratory experiments higher. This relationship was not 

present for the demonstrator and laboratory facility evaluations. Learning measured 

through the laboratory exam did not show a relationship with the psychomotor 

domain, but it was related to problems in designing the exams to measure 

psychomotor skills and in the logistics of running the exam. Substantial research is 

needed to determine solutions to efficiently measure psychomotor skills when 

dealing with large student cohorts. 

 

The data in section 8.3 showed that perceived learning in the cognitive domain could 

be split into analytical and writing skills, so the evaluations were measured 

separately across these two factors.  The analysis found that the analytical skills 

perceived by the student, and confirmed in the laboratory exam, were linked to the 

laboratory experiment evaluations. No relationship was found for the demonstrator 

and laboratory facility evaluations, and no relationship was made to the writing 

skills, something expected due to the analytical nature of laboratory work. These 

findings were mapped and are presented in Figure 9-4. They show that the laboratory 

experiment evaluations have a relationship to perceived learning across the 

psychomotor and cognitive domains. 
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Figure 9-4: The relationship between perceived learning and student evaluations 
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10. CHAPTER 10: CONCLUSION 

The purpose of this study was to gain a better understanding of student evaluations to 

address the question: 

Can student evaluations provide data that can be used to guide improvements in the 

quality of laboratory experiences? 

 

This laboratory based study was one of the first of its type to be carried out across a 

large number of courses over an extended period of time. As a result, the 

contribution to knowledge gained from this thesis includes: 

- A confirmation that evaluation data can be used to guide improvements in the 

quality of laboratory experiences 

- A confirmation that on average students can identify a quality laboratory 

experience 

- Evidence that student evaluations in the laboratory are influenced by 

perceived learning across the cognitive (analytical only) and psychomotor 

domains 

- A process map of the interconnections between laboratory demonstrators, 

experiments, facilities, resources and training 

- An understanding of how student evaluations scores can be positively 

influenced, and how they can be influenced to increase perceived learning 

- A confirmation that following the laboratory demonstrator training 

recommendations outlined in the report for the Australian Council of Deans 

of Science (O'Toole et al., 2012) leads to higher demonstrator evaluations 

- A set of recommendations for laboratory experiments 

 

This thesis examined the importance of providing a quality education in order to give 

future students and the country, a competitive advantage. This thesis found that 

defining what quality in education is, and who has the right to determine what quality 
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is, is a very complex matter.  This thesis considered quality to be an improvement in 

both student learning and their experience with demonstrators, experiments and 

facilities. One debated way of measuring quality is by allowing students to judge 

whether a quality service has been provided. This has led to thousands of research 

studies on student evaluations with the outcome still inconclusive. 

 

This research studied the findings of many student evaluation studies that focussed 

on an evaluation of the lecturer. This approach can assume that all the knowledge 

gained during a course is obtained from the lecture, and ignores the input from 

teaching staff or activities in tutorials and laboratories. Therefore, understanding 

student evaluations in a laboratory environment is limited because most evaluations 

involve measuring student opinions of specific experiments or activities that have 

been trialled in an individual course. What was missing is data that looked across 

many courses at the same time. The studies that did look at many laboratories at once 

generally looked at one point in time to discover what students wanted at a particular 

point in time. 

 

To gain a better understanding of student evaluations and its relationship to learning, 

multiple research questions were studied and reported on in this thesis. These 

research questions provide a snap shot of the complexity of the student evaluation 

instrument, and how it can be used to improve learning. This process map, presenting 

the complex matrix of connections can be seen in Figure 10-1, and discussed in detail 

in chapter nine. 
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Figure 10-1: Process map of the interconnections between laboratory demonstrators, 
experiments, facilities, resources and training 
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10.1. Summary of Findings 

 

The first research sub-question was: 

Does training lead to an improvement in student evaluations? 

Based on the improvement in student evaluations over a five year period, the 

research suggested that training does improve student evaluations. Using feedback 

from the student evaluations to help improve teaching effectiveness, it does suggest 

to some degree that students can judge teaching quality within the laboratory, and the 

evaluation data can be used to help improve quality. It also showed that resources 

that improve understanding in the laboratory helped in training the demonstrators. 

 

The second research sub-question was: What changes lead to improvements in 

student evaluations of the laboratory experience? 

An analysis of student evaluations showed that the laboratory notes (activity and 

clarity) and the quality of the equipment used are the most important factors that 

determine the laboratory experience. Laboratory notes or resources that provide 

significant detail on how to use the hardware and software in the experiments yielded 

a large increase in evaluation score. Well-designed experiments can provide an “up-

lift” to other evaluation criteria explored. 

 

Chapter five presented two sub-questions: 1) What forms of influence can be found in 

the survey instrument? 2) What is the relationship between student evaluations of 

teaching and the laboratory experience? 

The study found no evidence of unwanted influence in the survey instrument using a 

team teaching approach based on class format, course level, and gender of the 

laboratory demonstrator.  

 

Most importantly, this study showed the significantly positive relationship between 

the student evaluation of a laboratory demonstrator, and the student experience in the 

laboratory. This was examined by having one, two, or three demonstrators in the 

laboratory, and as expected, the lead demonstrator always had the most influence.  
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The fourth sub-question was: Do students use and appreciate additional laboratory 

resources? 

The study found that students used the resource to understand how the equipment 

and software worked, and how to troubleshoot when they ran into trouble. Such 

resources help create a level playing field for students who may not have experience 

using such software and hardware. It also helps the laboratory demonstrators 

facilitate learning and encourage self-directed learning. The study confirmed the 

findings within the second sub-question that such resources play an important role in 

improving student satisfaction in the laboratory. 

 

The fifth research sub-question was: Do additional laboratory resources improve 

learning? 

The addition of this extra online multimedia teaching material in early 2011 appears 

to have significantly improved the student experience within the telecommunications 

laboratory.  This is inferred through the demonstrator logs, the improved student 

experience surveys, and improvements in the assessment outcomes for the student 

cohort between 2010 and 2011. Some unmeasurable improvement in learning was 

observed that led to the research of the last sub-question. 

 

The sixth and final sub-research question was: Is there a relationship between 

student evaluations and learning in the laboratory? 

This was the most important question in order to understand whether or not student 

evaluations are doing more than just making students feel happier about their 

experience. The findings found that student evaluations of the laboratory experiments 

were influenced by how they perceived the analytical skills gained in the cognitive 

domain, and the psychomotor skills. This supports the study in chapter four which 

found that laboratory experiments (activity and clarity) played an important role in 

student satisfaction. No relationship with learning was found with the laboratory 

facilities and demonstrators, but as the process map shows, they have an indirect 

influence because the demonstrators and facilities influence the laboratory 

experiment evaluation. Expanding this study to increase the sample size may lead to 

more significant relationships being found. 
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When compared to laboratory exam performance, the data suggests that student 

evaluations are only related to their analytical skills within the cognitive domain. 

However, this research found a number of issues in relation to measuring learning in 

a laboratory setting, thus opening up the need for future work. 

 

Enough evidence emerged from the six research sub-questions to answer the research 

question of this thesis; it strongly suggests that student evaluations, when examined 

collectively can identify issues within the laboratory that need further investigation.  

These evaluations do not provide a full story because an in-depth analysis is still 

needed, but they do help point out what is working and what does not work. 

 

The interconnection of processes required to improve student evaluations is very 

complex, which explains the need for such substantive research into this area. 

However, it seems that the overlying experience of students and learning in the 

teaching laboratory can be measured via their opinions about laboratory experiments. 

Therefore, student evaluation data can be used to guide improvements in the quality 

of laboratory experiences. 
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10.2. Recommendations 

Through the findings from this dissertation, a major contribution is the development 

of a number of recommendations that can be used to help engineering departments 

develop high quality laboratories. Key recommendations from this dissertation 

include: 

- Map all the laboratory courses against the thirteen laboratory objectives 

outlined in Feisel et al. (2002). This will help determine the balance between 

physical and simulated/virtual/remote laboratories. 

- In one of the first laboratory courses students undertake, have an activity in 

the first experiment that makes students read the thirteen laboratory 

objectives outlined in Feisel et al. (2002) and reflect upon them. 

- When designing assessment tasks, consider activities that measure learning in 

the psychomotor domain. 

- Consider supporting scheduled laboratory time with appropriate pre and post 

laboratory activities in order to remove workload pressures and encourage 

experimentation. 

- When designing a laboratory experiment, some questions to consider: 

o Is the learning path scaffolded? 

o Does the learning path consider students that may undertake courses 

in a non-standard order (focused on laboratory learning and not 

theoretical learning)? 

o Are there activities that teach or reinforce fault-

finding/troubleshooting, reading manuals, models or datasheets? 

o Do the experimental activities involve inquiry based learning? 

o Do some of the activities relate to real world applications? 
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o Are there resources for the equipment or software students are going 

to use readily available? (e.g. user manuals or YouTube videos) 

o Have the laboratory notes been tested to check for mistakes and 

clarity of instruction? 

- Use laboratory management solutions to ensure laboratory equipment and 

facilities are in good condition and have been upgraded to a predetermined 

asset replacement cycle 

- Develop a laboratory demonstrator training program based on the 

recommendations outlined by O'Toole et al. (2012) 

- Consider using a team based teaching approach by pairing experienced and 

inexperienced demonstrators for succession planning 

- Conduct regular student evaluations in the laboratory, ensuring that the 

findings are assigned to an individual (preferable a laboratory manager). 

Solutions must be appropriately followed up, executed, and communicated to 

students 
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10.3. Further Research 

The findings in chapter eight highlight the issue of the difficulty of measuring 

learning in the teaching laboratory. While cognitive ability is important, as per the 

laboratory learning objectives, it is not the only learning domain that should be 

measured. The laboratory is a place not only to learn and reinforce knowledge, but to 

gain new skills by doing and improve confidence. 

 

The findings suggest that substantial research should be invested in determining 

efficient methods in assessing psychomotor and affective skills. While self-

assessment does indicate an improvement in learning, it may not be an accurate 

measure. Currently the greatest issue with measuring the psychomotor and affective 

skills is the large amount of resources needed, and the amount of time needed for this 

assessment. 

 

While this thesis produced a process map of student evaluations, it was limited to one 

department of engineering, in one institution, in one country. The findings from this 

study would gain further weight should they be reproduced in other departments, 

institutions, and countries.  
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Appendix A: Standard Student Evaluation Form 
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Appendix B: HREC Approval HE13/129 
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Appendix C.1: HREC Approval HE14/156 
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Appendix C.2: HREC Approval HE14/156 Amendment 
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