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Abstract

Steel studs are used in double walls to provide structural stability. This
creates a vibration transmission path between leaves that can often be more
critical than the airborne path through the cavity. Some of the existing models
for sound transmission consider the studs as elastic springs. The spring stiffness
may be taken as the cross-section elastic stiffness of the stud, but this leads to
an underestimation of the vibration transmission. A procedure to obtain more
accurate parameters to be used in vibration and sound insulation models is
presented. The results show that they must be obtained from dynamic models
and /or experiments.

PACS no. 43.40.Cw 43.55.Ka, 43.55.Rg

1 Introduction

Double walls are a common solution in lightweight structures. They are typically
constructed by means of two thin leaves (plasterboards, wood plates or similar) and
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Figure 1: Sound transmission paths in a double wall with studs.

some kind of absorbing material placed inside the air cavity to improve the acoustic
insulation capacity of the system. In order to satisfy construction requirements and
to give a certain stiffness to the wall, wood beams or steel studs are used. Studs act
as sound bridges between the two leaves.

These connections between leaves cause the actual acoustic response of the wall
to be worse than that of an ideal double wall. A new vibration transmission path
(besides the airborne or cavity path) is created, see Fig. 1. The decrease in the
sound reduction index of the double walls highly depends on the mechanical properties
(mainly stiffness) of these connecting elements. In this paper, the attention is focused
on the study and characterisation of lightweight cold-formed steel studs. Their effect
is greatly influenced by the cross-section shape.

Two direct applications can be mentioned. On the one hand, stud manufacturers
are interested in knowing which stud is better from an acoustic (vibration transmis-
sion) point of view. On the other hand, wave approach or statistical energy analysis
(SEA) models cannot reproduce the exact geometry of the stud and require some
parameters describing its mechanical response. Some of these parameters can be pro-
vided by a numerical model because it can deal with accurate geometry descriptions.
Numerical models can also deal with the whole problem. However, working with two
different levels of detail (rooms - double wall and stud shape) increases the mesh-
ing tasks and the computational cost. Thereby, it is also interesting for a numerical
approach to simplify the modelling of the stud.

An outline of the paper follows. A literature review of sound transmission models
of double walls with connection between leaves and experimental characterisation of
studs is done in Section 2. The method to characterise studs is presented in Section 3.1.
The studs and wall typologies used in the analysis are described in Section 3.2. Nu-
merical results are shown in Section 4. The influence of the stud mass and shape in the
transmission of vibrations is shown in Sections 4.1 and 4.2 respectively. Some studs
are characterised by means of an averaged response corrected stiffness in Section 4.3.
The values obtained have been used as input data for SEA models of vibration trans-
mission in Section 4.4 and numerical models of sound transmission in Section 4.5.
The concluding remarks of Section 5 close the paper.
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2 Literature review

2.1 Models

Several models dealing with double walls with connections can be found in the liter-
ature. In the simplest cases the studs are considered as infinitely rigid connections
between the leaves [1]. Such models can be quite correct for rigid studs (i.e. wood
studs) but underestimate the isolating capacity of lightweight double walls by ne-
glecting the benefits of the use of more flexible steel studs. In [2] and [3] the two
leaves of the double walls are supposed to be connected by means of springs. Both
translational and rotational springs are considered. The value of the stiffness is con-
sidered to be constant in the whole frequency range and it is typically taken from
an elastic measurement (i.e. elastic stiffness of the flange of the stud). In [4] three
different models of sound transmission through double walls are proposed: i) two
infinite leaves linked by means of point connections; 4i) one infinite leave and one
infinite leave with rib-stiffeners linked by means of point connections; 4ii) one infinite
leave and one infinite leave with rib-stiffeners linked through the lines defined by the
stiffeners. It has been found that the stiffness of the connector has important effects
on the radiated acoustic power. A complete model of sound transmission through
double walls is developed in [5]. Both the cavity and the stud paths between infinite
homogeneous plates are accounted for. Finite cavities are considered and the pressure
field inside solved by means of cosine-series. The stud is considered to be an Euler
beam and the cross-sectional stiffness is modelled by means of a spring.

In the model proposed in [0], each transmission path is described by a different
expression. The sound insulation of double walls can be calculated by means of very
simple expressions, which is attractive for practical computations. Note, however, that
these expressions (piecewise-defined in the frequency domain) are based on ad-hoc
considerations, not in any governing equation. This contrasts with [2, 3, 4, 5], which
solve the vibroacoustic equations of the double wall (i.e. clear physical foundations)
by means of a wave approach. In [7] a model for lightweight double walls with studs is
presented. The leaves are modelled as infinite plates and solved with a wave approach.
The steel studs connecting them are considered by means of line connections or point
connections depending on the frequency range (mid and high respectively). The
second option uses statistical energy analysis expressions. Finally, in [8] the effect of
studs is modelled by assuming valid a simple model of vibration isolation devices. The
parameters of the model (damping and critical frequency) are adjusted. The influence
in the low-frequency range of resilient connections between leaves is discussed. The
mass-air-mass resonance frequency of lightweight double walls is shifted due to the
studs.

The characterisation of the studs can be used in order to simplify numerical-based
models of sound transmission through double walls. To consider the full vibroacoustic
problem often implies a very expensive calculation. A common approach is to describe
the rooms by means of modal analysis and concentrate the use of the numerical method
(i.e. finite elements) in the analysed wall [9, 10, 11, 12]. This simplification is even
more relevant when the analysed structure is a double wall. In [13] the rooms are
described by means of modal analysis and the double wall using finite elements. The



connection between leaves is done by means of plane homogeneous plates. The rooms
are supposed to be infinite in the direction orthogonal to the wall in [14] where the
sound transmission through single and double walls is also predicted.

All the models cited above predict the acoustic isolation of the double wall with
studs, but the characterisation of the connecting element is not their main goal. A
review of the more referenced simplified models of sound transmission in double walls
is done in [15]. It shows that only five of the seventeen models considered take into
account the possible existence of studs. Moreover only two of them allow these studs
to be flexible.

2.2 Experimental measurements

Some laboratory measurements of the effect of the studs in the sound reduction index
can be found in [16] and [17]. In [18] lightweight steel studs are considered. Measure-
ments of the dynamic stiffness of isolated studs (using the methodology proposed in
[19]) and its effect on the sound reduction index of double walls are reported. A set of
measurements illustrating the importance of studs in the sound insulation of exterior
walls can be found in [20]. The discussion is focused on the effect of stud size and
the spacing between studs. This is relevant in the low-frequency range and affects
the primary structural resonance. In [21], studs with non-conventional cross-section
shape are tested in order to check the improvement in sound isolation. However, stud-
ies dealing with a deterministic approach to the problem (exact descriptions of stud
geometry and solution of the problem by means of analytical or numerical methods)
can be rarely found. No practical rule on how to choose the correct value of the stud
stiffness has been found. It is a necessary parameter in most of the models mentioned
above. In [22], the laboratory measurements that motivated the stud characterisation
methodology proposed below are presented.

The dynamic properties of resilient studs have also been measured in the labo-
ratory. Most of the techniques were originally developed in order to determine the
properties of rubber-like materials that are used as vibration isolators. An exten-
sive literature review can be found in [23]. The consequence of this background is a
set of ISO regulations establishing the basis of this kind of measurements [24]. Two
laboratory tests are proposed: direct [25] and indirect [20].

The dynamic stiffness of resilient steel elements is measured by means of the indi-
rect method in [27]. Some guidelines are proposed in order to increase the frequency
range where the method is valid. In [28] an extensive review of measurement tech-
niques on resilient elements can be found. Moreover an iterative procedure that cor-
rects some of the simplifications done in the indirect technique is proposed. Common
steel studs used in facades and inner walls are characterised.

In all the measurement techniques described in these references the resilient el-
ement is loaded by means of an static load and the behaviour is supposed to be
one-dimensional. As reported in [27], the measurements can differ depending on this
load value. Moreover, the specimen must be placed between plates that force the
behaviour to be one-dimensional. Thus, these load and boundary conditions largely
differ from the ones of a stud placed between leaves in a floor or a wall.

The results obtained in this work are in line with those obtained previously with
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the various approaches mentioned in this section.

3 The characterisation method

The aim of our research is to study in detail how to characterise the steel studs
(especially their dynamic cross-section behaviour). Studs are characterised taking
into account their final role inside the structure (double wall or floor), instead of the
laboratory set-ups described in [24]. The analyses are done using two-dimensional
models describing the cross-section of a wall. This is enough in order to illustrate
the proposed methodology and study the differences in the vibration behaviour due
to the stud shape. The connection between the stud and the leave is considered to
be a line-connection (i.e. a point in the two-dimensional cross-section). The study of
the connection type has been omitted but this is an important issue that should be
analysed by means of three-dimensional models [7].

The literature review of Section 2 reveals that resilient devices tested in the labo-
ratory are usually characterised by means of a four-pole parameter analysis [23] (also
called two-port parameter analysis in [28]), but double wall models usually consider
the stud to be a translational or rotational elastic spring.

In the four-pole parameter analysis a relationship between the input (applied point
force and velocity) in one side of the resilient device and the output (point force and
velocity) on the other is established. The parameters are frequency-dependent and
take into account mass and stiffness effects. In the low-frequency range the device
behaves like a single spring and the four parameters are equal (their value is the
low-frequency stiffness). For higher frequencies their value, depending on symmetry
considerations, can be different. In practise, it requires to perform several measure-
ments in order to determine each frequency-dependent parameter (i.e. blocking some
of the displacements of the stud).

The option chosen here is to consider the studs as translational or rotational
springs. It is a more simplified approach appropriate to provide data for existing
double wall models. The mass of the stud is divided in two concentrated masses.
These springs are then characterised by means of an averaged response corrected
stiffness. Thus, for each stud, the cross-section dynamic behaviour is described by
two parameters, the averaged response corrected translational and rotational stiffness.
The idea is to have a single device with a frequency-dependent parameter that provides
the same vibration level difference as the stud.

As shown in [22], if the stud is isolated it is difficult to distinguish between transla-
tional and rotational effects and the boundary conditions highly modifies the vibration
response. For these reasons, we will consider from now on the entire package leave-
studs-leave, see Fig. 2. This situation is closer to the actual use of studs in the double
wall.

In this section the characterisation procedure is described. The procedure to
determine the averaged response corrected stiffness values is described in Section 3.1
and the analysed studs and material data used are defined in Section 3.2.



Figure 2: Laboratory tests of the entire package (studs and leaves). The lower leave
is blocked.

g Fr

B 4 o -
SR oy 3 T8

Lre!ationship: uy uy (6)
(a) (b)

Figure 3: Models of the leave-stud-leave package: (a) detailed model with the actual
geometry of the studs; (b) simplified model with studs modelled as a translational
stiffness K, a rotational stiffness K, and two concentrated masses M/2. F* indicates
the four load positions considered.

3.1 Cross-section structural vibration models

In order to study the vibration transmission path, the two structures of Fig. 3 are
considered. It is assumed that the transmission of vibrations between leaves of a
double wall can be studied at cross-section level. The required parameter for the
studs in sound transmission models is the averaged response corrected cross-section
stiffness per unit length. In addition, the main difference between double walls using
different stud types is found at cross-section level. This is represented by the models
of Fig. 3.
The output of interest is the vibration level difference between the upper and the
lower leaves )
Dy ;; = —10logyo (dij) with d;; = —z Z;ms,, z (1)

Tms,i
where < e > is the spatial average of e, v,,,s; is the root mean square velocity in
leave i (upper), where the force is applied, j is the receiving leave (lower) and d;; is
the vibration reduction factor. D, ;; can be calculated from the data of the numerical
model as

< [thicopent - >
D,;,: =10lo ik e o Wi 2
»2] 210 << |ulower|2 >) ( )

where Uypper and Uiower are the phasors of displacements for the upper and lower leaves.
The spatial average is done along the leave. A larger value of D, ;; means a better
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vibration isolation.

The vibration level difference D, ;; is a useful parameter in order to compare
the performance of different studs used in the same double wall. However, it is an
environment-dependent parameter: the values of D, ;; do not only depend on the stud
type. They also depend on other variables, such as leave properties and boundary
conditions. Thus, D,;; is not the the most suitable characterising parameter. As
shown in the following sections, an averaged response corrected stiffness of the stud
is a better parameter, less dependent on each particular situation and more related
with every stud type.

In the detailed model of Fig. 3(a), the actual geometry of the stud is discretised.
In the connection between the stud flanges and the leaves, continuity of displacements
and rotations is imposed. In the simplified model of Fig. 3(b), the stud is replaced
by a translational spring, a rotational spring and two concentrated masses. The
equivalence between both models has been established by comparison of the vibration
level difference D, ;.

A set of admissible values of averaged response corrected rotational and transla-
tional stiffness can be obtained by comparing the two deterministic models presented
in Fig. 3. The key is to find pairs of values that provide, for a given frequency, the
same vibration level difference. This requires to generate surfaces of vibration level
difference in the plane K, - Ky for every 1/3 octave frequency band.

Once the surfaces have been generated, the admissible values of rotational and
translational stiffness can be obtained by imposing the same value of vibration level
difference for both models of Fig. 3:

D(simpliﬁed) (Kt, KG) _ D(detailed) (3)

v,1] v,1j

Both the surface Dl(,s,i?lphﬁed) (obtained with the simplified model) and the value Dl(,fliejtaﬂed)
(obtained with the detailed model) are known. The equality provides a set of admis-
sible values (K}, Ky), which yield the same vibration isolation in the simplified model

and the detailed model.

For all the results presented here, four load configurations have been considered, see
Fig. 3(b). The positions of point loads have been chosen in order to be representative:
load applied over the stud or between studs, and at the centre of the double wall or
on the side. The study is done in terms of averaged responses: average of the load
position, average in time (over a period), average in frequency (the results are given
in 1/3 octave frequency bands) and average in space. One analysis per Hz is carried
out in order to describe the response spectrum.

The structural spectral finite element method (SFEM, see [29] and [30]) has been
chosen. In two-dimensional situations, the exact solution is reached using only the
necessary elements in order to describe the geometry (i.e. 5 elements are required for
the case of the TC cross-section, 9 for the AWS and 4 for the O, see Fig. 4). This
is a very important advantage since typical mesh requirements of the finite element
method can be ignored. Results presented in Sections 4.2 and 4.3 are obtained using
this model.



3.2 Studs and leaves analysed

The analysis has been extended to several stud sections. The results presented here are
by default obtained using double walls with an air space between leaves (stud height)
of 70 mm. Two other stud heights (125 mm and 175 mm) have been considered in
the analysis. For every height, several cross-section shapes have been studied. Five
of them will be employed in order to illustrate the most interesting aspects of the
study. They are plotted in Fig. 4, and the dimensions for the 70 mm series can be
found in Table 1. Both conventional studs (TC, S, O) and acoustic studs (AWS, LR)
are analysed. Acoustic studs have a similar bending stiffness but are more flexible at
cross-section level than conventional studs. Experimental studies of the influence of
cross-sectional shape on acoustic performance can be found in [18] and [21].

~az B 44
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Figure 4: Sketch of the stud cross sections.
Section dl1 d2 d3 d4 d5 e
TC 70 40 10 - - 0.47
LR 70 40 10 0.7.d2 0.2.d1 0.47
S 70 40 10 0.2-d1 - 0.47
@) 70 40 - - 0.47
AWS 70 40 10 24 13 0.47

Table 1: Dimensions (in mm) of the cross sections shown in Fig. 4. e is the thickness

of the section.

Case Upper leave Lower leave

Connection ¢ [m] no. studs

Wall 1 GN GN
Wall 2 GN GEK
Wall 3 GEK GN

Uy, Uy and 0 3 4
Uy, Uy and 0 3 4
Uy, Uy and 0 3 4

Table 2: Description of the three wall typologies.

Meaning Symbol Value, GN Value, GEK
Thickness t 13 mm 13 mm
Young’s modulus F 2.5-10° N/m? 4.5-10° N/m?
Density Psolid 692.3 kg/m3 900 kg/m?
Damping n 3% 3%

Table 3: Geometrical and mechanical properties of the leaves [31]



Besides the changes at cross-section level, three different double walls have been
considered. Each of them has different leaves, see Tables 2 and 3. For all the situations,
the length of the double wall is 3 m and the separation between studs is 0.6 m
(four studs employed in every double wall). The plasterboards (GN and GEK) are
supported at the beginning and ending points.

4 Results, analysis and discussion

All the results shown in this Section are obtained by means of two-dimensional models
and no experimental result is shown. The two-dimensional models can reproduce the
more relevant aspects of vibration transmission at cross-section level and deal with the
different shape of the studied studs. Sections 4.1, 4.2 and 4.3 present results obtained
with the SFEM models of Fig. 3. In Section 4.4 these results are used as input data
in SEA models and in Section 4.5 the whole vibroacoustic problem is solved by means
of the finite element method or a combination with modal analysis [11, 12, 13]. Note
that to characterise the stud, both the simplified and detailed models have to be
solved. However, these are purely structural problems and the results obtained can
be used as input for vibroacoustic and SEA models dealing, for example, with a sound
transmission problem.

4.1 Effect of concentrated masses

The effect of concentrated masses in the vibration level difference for the case of the
simplified model can be seen in Fig. 5. Differences are not larger than 4 dB. The stud
mass provides, in general terms, an increase in the vibration isolation. This value
would be larger for heavier studs. In the low-frequency range the mass effect can be
neglected, however it is relevant for high frequencies. The increase of isolation caused
by the concentrated masses is more important for stiffer springs connecting the upper
and lower leaves.

4.2 Influence of stud shape in the vibration level difference

The vibration level difference between the leaves of a wall can be different depending
on the stud cross-section shape. This is shown in Fig. 6 where the results obtained
with several studs are compared. For all of them, the isolation of vibrations in the low-
frequency range is really poor, see Fig. 6(a). It cannot be improved by changing the
stud shape. Note that standard sections like TC, O or S provide an almost constant
level of vibration isolation. On the contrary, acoustic sections like LR or AWS improve
the isolation of vibrations in the mid and high-frequency range, see Fig. 6(b) (but they
can be worse than the others for some frequencies in the low-frequency range).

The important variations of D, ;; with frequency found in Fig. 6 can be understood
by means of a modal analysis of the structure. The vibration level difference of the
double walls with TC and AWS studs shown in Fig. 6 is compared in Fig. 7 with
the vibration level difference of the eigenmodes of the structure. The vertical red
lines indicate the value of D, ;; of each mode. Not all the eigenmodes in the range
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Figure 6: Comparison of the vibration level difference for several studs with different
cross-section: (a) low-frequency range; (b) mid-frequency range. Note the different

vertical scales.
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Figure 7: Comparison of the vibration level difference between leaves of a double wall
(analysis of the frequency response) with the vibration level difference of the more
contributive eigenfunctions: (a) double wall with TC studs; (b) double wall with AWS
studs.

50 — 6300 Hz are shown in Fig. 7. Only the eigenmodes that have more contribution
to the frequency response have been plotted. The criterion used to identify such
eigenmodes is to verify if the displacement at the application point of the force is
larger than the mean displacement of the structure. This is related with the modal
expression of a point force applied at zp, for mode m: U,,,(zr)F' (¥,, is the eigenmode
and F' the point force applied at zr). With this selection criterion, most of the modes
with negative vibration level difference (the vibration in the lower leave is larger than
in the upper leave) are discarded and do not appear in the plot. (Note, however, that
a few modes with negative D, ;; do pass this filter). In the discarded modes, V,,,(zf)F
is small when compared with the plotted modes.

Fig. 7 shows that the evolution of the vibration level difference of the structure has
a correct agreement with the vibration level difference of the structural eigenmodes.
This has been found for all the analysed studs. Therefore, it can be concluded that
the variations in the vibration level difference observed in Fig. 6 are related to the
modal behaviour of the studied system.

4.3 Stud equivalent stiffness

The procedure to obtain averaged response corrected values of stiffness is shown here.
The vibration level difference surfaces for several values of the translational and ro-
tational springs in the simplified model of Fig. 3(b) are shown in Fig. 8. The four
surfaces are for 200, 500, 1000 and 3150 Hz and for wall 2 (see Table 2). They
have been generated analysing 36 different situations combining values of K; =
10, 10%,106,107,10%,10° N/m? and K, = 10',102, 103 104,105 10° N - m/ (rad - m).
The vibration level difference increases with frequency but only for the lower values
of rotational and translational stiffness.

When these surfaces are intersected by the vibration level differences obtained
from the detailed model of Fig. 3(a), a set of admissible average response corrected
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Figure 8: Vibration level difference D, ;; in wall 2 as a function of translational stiffness
K, and rotational stiffness Kj, for various frequencies.

values of stiffness is obtained. The values for the TC section and wall 2 (see Table 2)
can be seen in Fig. 9.

Several important aspects have to be highlighted. On the one hand, a frequency
dependence of the parameters is observed. On the other hand, an equivalent effect
in terms of D, ;; can be obtained using: ) only a translational spring; i) only a
rotational spring; iii) and adequate combination of both. The option chosen here is
to use Ky = 0 and a frequency-dependent K;. Most of the models available in the
literature tends to consider only translational springs. This is also a more intuitive
idea than rotational springs. For low frequencies the values of stiffness are smaller
(around the typical values of elastic measurements), and they generally increase with
frequency.

For a given cross-section, similar results are obtained for the three different walls.
In Fig. 10, the results of walls 1, 2 and 3 (see Table 2) for the AWS section are
compared. The influence of the wall type in the K; — K, curves can be measured
by considering the dimensionless parameter o/p along the curve. o is the standard
deviation and p the mean value. It has to be measured in the normal direction. For
the three different curves at f = 200 Hz, o/p is evaluated at five discrete positions:
i)K; = 10* N/m and K, variable; ii)K; = 10° N/m and Kj variable; iii)K; variable

12
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Figure 9: Admissible values of rotational and translational stiffness for the T'C section
obtained by comparison of deterministic models. Wall 2.

and K, = 10®> N-m/rad-m; iv)K, variable and K, = 10> N-m/rad-m; v)K, variable
and Ky = 10! N-m/rad-m. Three values (of K, or Kj) corresponding to each wall
type are used to calculate the ratio o/p. The five o/p values are averaged in order
to obtain an approximation to the curves variation. The final outputs obtained are
for the curves in Fig. 10 are: f =200Hz, o/p = 11.0%; f = 1250H 2, o /p = 69.4%;
f=4000Hz, o/p = 78.1%. These values are not large enough in order to modify the
global response of the vibroacoustic system.

The difference between walls 1, 2 and 3 is more important for low frequencies,
where the modal behaviour governs the response and the number of modes in the
1/3 octave band is smaller. In the low-frequency range (frequencies under 200 Hz) it
is difficult to obtain the stiffness variation with frequency. The values of D,(f;l?p W)
oscillate between 0 dB and 5 dB depending on the value of the stiffnesses and the
mechanical and geometrical characteristics of the leaves. Thus, the intersection of the
D,(,f;';'phﬁed) surface with a constant value D,(,fl;ta"'led) does not provide smooth curves
like in Fig. 9.

In Fig. 11 a typical final output for this kind of analysis can be seen. Frequency-
dependent translational stiffness laws are presented for every section.

4.4 Using the stiffness values in a SEA model

The values of stiffness characterising the studs can be used as input data for other
modelling techniques. A clear example is its use as input data for Statistical Energy
Analysis (SEA). The transmission of vibrations between two leaves (i and j) connected
by means of a spring has been studied by [32]. This SEA model is two-dimensional and
the two leaves are considered to be infinite or semi-infinite Euler beams. A mechanical
load is applied to the upper leave (i = 1). The SEA vibration level difference can be
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written as

Y, 1Y, 1+Y,|?
Dv,ij = D12 = ]'OloglO <m2,”2w| i + 9 — tl >

nRe (3] @
where my is the mass per unit length, 7, is the loss factor, n is the number of con-
nections (springs) per unit length, Y7 and Y5 are the mobility of the two leaves and
Y; is the mobility of a point connecting tie (Y = v/F, v being the velocity and F'
the force). The last parameter can be related to the dynamic stiffness of this tie,
Y; = iw/ K}, where K; is the stiffness (in this SEA model, only translational stiffness
is considered). For the mobility of the two leaves, the formulas given in [33]

(L=1) . w
Yoo eave — _}/;emi-oo eave — th ey ——————— 5
eove = gVoemicoleave = o0 With €5 = s 5)
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are used, where my is the density per unit length of the leave, E the Young’s modulus
and I the moment of inertia. Note that two reference cases have been considered:
infinite and semi-infinite leaves. The former provides better approximations for high
frequencies where the influence of boundaries is not important and the vibrations are
localised due to damping. The latter is a better approximation for low frequencies or
situations where the mechanical load is close to the boundary.

We have considered first the case of two leaves connected by means of springs,
see Fig. 3(b). In this case the value of the stiffness is known and a ‘pure’ compari-
son between the SEA model and the numerical method (SFEM) can be established
without additional errors caused by the uncertainties due to the characterisation of
the stud shape. Note that the SEA model does not consider concentrated masses. In
order to make the comparison, concentrated masses have also been removed from the
numerical model.

The results are presented in Fig. 12. The transmission of vibrations in wall 2 has
been calculated with the numerical model and with the SEA model with two variants:
infinite and semi-infinite leaves. The agreement is correct. The numerical results are
closer to the infinite leave curve. Differences are smaller for mid and high frequencies.

The modal behaviour at low frequencies is affected by the value of the stiffness. For
the smaller values of K;, the two leaves are weakly connected and vibrations develop
all along the span length (3 m). Nevertheless, for larger values of K; the link between
leaves becomes stronger, and each leave cannot be considered as a 3 m long structure.
Due to the connections it behaves like a group of short cells (space between springs).
Oscillations in the response curve are then important for frequencies below 400 Hz
(K; =107 N/m?), 2000 Hz (K; = 10® N/m?) and 4500 Hz (K; = 10° N/m?).

Results presented here are also important in order to understand the type of laws
obtained for the translational and rotational stiffnesses. The values of D, ;; for some
of the studied sections have a small variation range. See for example the variation
of O, TC and S studs in Fig. 6(b), where the values of D, ;; are between 15 and 35
dB. On the contrary, the variation range of D, ;; for some cases of constant spring
stiffness is very large (see Fig. 12, D, ;; € [25,90] for K; = 10* N/m?, D, ,; € [10,80]
for K, = 10° N/m?, D,;; € [0,60] for K, = 10° N/m?...). This means that the
studied sections behave like a spring of variable, rather than constant, stiffness. If
the required stiffness was constant, the variation of D, ;; obtained with the model
considering the geometry of the stud would be larger. This is not the case.

The same method has been used for the detailed model, see Fig. 3(a). In this case,
two different errors are possible. On the one hand the agreement between a SEA model
and a numerical model (shown with the previous example). On the other hand, the
correct characterisation of steel studs (K; — f frequency dependent behaviour).

The results for AWS and TC studs are presented in Fig. 13. Again the vibration
level differences calculated by means of a numerical model and by means of the SEA
model are compared. Now, for the case of the SEA model, the value of stiffness is
variable with frequency. The laws obtained in Section 4.3 have been used as input
data.

This example shows how the double wall behaviour predicted by a model that
considers the geometrical detail of the studs can be reproduced by means of a SEA
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K, = 107 N/m? K, =108 N/m? K; = 10° N/m?

In all figures: —l— is SFEM; —@— is SEA infinite; —%¥— is SEA semi-infinite.

Figure 12: Two leaves connected with springs. Comparison of the vibration level
difference obtained by means of a numerical model (SFEM) and statistical energy
analysis (SEA). Note the different scale for D, ;;.

model, where the geometrical complexity has been reduced to the use of a frequency-
dependent stiffness law.

As done in Section 4.2, the frequency response can be explained by means of a
modal analysis of the structure, see Fig. 14. The general tendency is an increase of
the vibration level difference of the eigenfunctions with frequency. Note also that the
oscillations observed for the detailed model (i.e. studs connecting elements, cf. Fig. 7)
do not occur for the simplified model (i.e. springs as connecting elements).
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In both figures: ----- is SFEM; —@— is SEA infinite.

Figure 13: Comparison of vibration level difference obtained by i) a detailed numerical
model where the actual geometry of the studs is discretised (SFEM) and ii) a SEA
model, which uses a frequency-dependent stiffness provided by the numerical model:
(a) acoustic stud AWS; (b) standard stud TC.

88888383

Dy

Figure 14: Comparison of the vibration level difference between leaves of a double wall
with spring connecting the two leaves (analysis of the frequency response) with the
vibration level difference of the more contributive eigenfunctions: (a) K, = 10 N/m?;
(b) K; = 10® N/m?.

4.5 Global response of double walls

In previous sections the effort has been focused on the characterisation of flexible steel
studs and the study of the vibration transmission path (vibration level difference). It
is only one of the parts of the problem of sound transmission. The performance of
the studs and the validity of results obtained in Section 4.3 is now verified in a two-
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(a)

Figure 15: Finite element mesh used to solve the vibroacoustic problem: (a) general
view of the two rooms and the double wall; (b) detail in the double wall zone.

dimensional vibroacoustic problem. This means that both the stud path and the
cavity path are considered at the same time, see Fig. 1.

The relevance of the acoustic design of studs depends on the type of double wall.
If the cavity path is very insulating, the stud path will be the critical path and then
the type of stud used is very important. On the contrary, if the isolation of the cavity
path is poor, the type of stud used will not be relevant because most of the sound is
not transmitted through the stud.

The effect of mechanical connections between leaves has been studied in [12]. The
main conclusion is that there are limit values of stiffness below and above which the
effect of the stud is not important. These limit values depend on the type of double
wall (air space between leaves, use or not of absorbing material, type of leaves). If
the modifications in the stud (shape, thickness, materials, damping) can change its
stiffness in this frequency range the optimisation is possible, otherwise the type of
stud used is not an important variable of the problem.

The model presented in [12] has been used. The studs have been discretised, see
the finite element mesh of Fig. 15. Two rectangular acoustic domains, the two leaves
connected by means of a steel stud and the cavity between leaves can also be seen. The
dimensions of the rooms are 5.7 m x 4.7 m and 6.35 m x 5 m. The double wall is 3 m
long. For some cases absorbing material (resistivity ¢ = 8000 Pa-s/m?) is placed inside
the air cavity. The absorbing material has been modelled by means of the equivalent
fluid model proposed in [34]. The cavity has been considered continuous through the
studs. The opposite situation where small cavities between the studs are modelled
instead of a large single cavity can also be reproduced with the numerical model.
However, the thermal slots in the studs web establish a continuity in the air between
leaves that justifies the use of a single air cavity. In addition, [5] concludes that ‘the
error of letting the cavity field passing through the beams probably is minor’. A sound
source has been placed in the lower left corner of the sending room (separated 0.5 m
from each wall). The value of impedance in the absorbing contours of the acoustic
cavity is Z/ (poc) = 19.03 (absorption o = 20%).

In Fig. 16 the sound reduction index for the 70 mm thick double wall with and
without absorbing material in the cavity can be seen. Several values of translational
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Figure 16: Influence of the value of translational stiffness K; (K, = 0). Sound reduc-
tion index R: (a) double wall with air cavity; (b) double wall with absorbing material.
Thickness of double wall: d = 70 mm.

stiffness have been considered. The limit values for this double wall are 10° N/m?
and 10® N/m?. It can be seen that the improvement by the use of flexible studs is
larger if there is absorbing material in the cavity (high cavity path isolation) than in
the case of air cavity (poor cavity path isolation). This improvement is found in the
high-frequency range.

Fig. 17 shows the results obtained from the vibroacoustic model of sound trans-
mission where: i) the leaves are connected with springs of constant value (like in the
simplified model); 7i) the leaves are connected by means of studs (like in the detailed
model).

A set of TC studs with increasing value of thickness (0.47 mm, 1 mm and 3
mm) have been considered. The translational stiffness laws obtained by means of the
methodology proposed in Section 3.1 are shown in Fig. 17(a). In Fig. 17(b) the sound
reduction index of double walls with leaves connected by means of springs of constant
stiffness or by means of the TC studs is presented.

The results for the studs and the springs are in good agreement. As an example,
consider the case of the 1 mm thick TC stud. The calculated values of translational
stiffness go from 10" N/m? to 10® N/m?, see Fig. 17(a). The 1 mm thick stud curve
in Fig. 17(b) shows how the stud behaves as a spring of frequency-dependent stiffness
as predicted in Fig. 17(a).

5 Concluding remarks

The main conclusions of the paper can be summarised as follows:

e Studs can be successfully modelled as a translational spring with a frequency-
dependent averaged response corrected stiffness. It is not necessary to use both
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Figure 17: Influence of the thickness e of the studs: (a) K; — f laws for a set of TC
studs whose thickness is: e = 0.47 mm, e = 1 mm, e = 3 mm; (b) sound reduction
index of a double wall with TC-studs (e = 0.47 mm, e = 1 mm, e = 3 mm) and with
springs of constant stiffness (K, = 10°N/m?, K, = 10’N/m? and K, = 10°N/m?).

a translational and a rotational spring in order to match the vibration level
difference between leaves provided by the stud.

e The steps to follow in order to determine the frequency-dependent averaged
response corrected stiffness law for each stud are: i) solve the detailed model;
ii) solve the simplified model with translational springs; i) identify, for each
frequency, the translational stiffness K; that provides the same vibration level
difference for the two models.

e For each new stud geometry, it is necessary to solve the two models (simplified
and detailed). Note, however, that these are purely structural problems (i.e.
no acoustics) and that the resulting frequency-dependent stiffness law can be
used as input data for SEA or numerical simulations of the full vibroacoustic
problem.

e According to our numerical simulations, the stud shape is not relevant at low
frequencies but has a larger influence at higher frequencies. Two reasons explain
the improvement in the isolation of vibrations of acoustic studs. On the one
hand, they are more flexible due to their cross-section shape. However, this
intuitive increase of flexibility is only true around the eigenfrequencies where
the central part of the stud acts as a spring, see Fig. 18(a). On the other
hand, acoustic studs have a larger perimeter. This represents an increase of
the effective damping in the vibration transmission path from the upper to the
lower parts of the stud. This is mainly relevant for high frequencies where the
length of vibration waves is smaller than a characteristic length of the stud.
The displacements are small but fast and dissipation is more relevant. This is
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Figure 18: Different vibration shapes of a TC stud placed between leaves (zoom of
the entire package): (a) f = 50 Hz, the stud vibrates by separating its upper and
lower parts like an spring; (b) f = 2000 Hz, the vibration wave length is shorter than
the stud. The colour indicates the amount of vibration.

the case of Fig. 18(b). The increase of the vibration isolation in this frequency
range could also be achieved by means of some damping mechanism in the stud
(i.e. use of materials with high damping).

e There is an important variability of the vibration level difference between leaves
with frequency. This can be explained by means of a modal analysis.

e There is a range of stiffness where the stud shape affects the overall response. By
considering realistic designs of double walls (air space between leaves, material
parameters,...), the stiffness of the considered steel studs fall into this range.
This means that in usual double wall typologies, improving the stud design will
lead to and increase of the sound insulation.

e The cavity path (i.e. air space between double wall leaves, type of absorbing
material) and the stud path must be controlled simultaneously.
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