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ABSTRACT The interactions of people using public transportation in large metropolitan
areas may help spread an influenza epidemic. An agent-based model computer
simulation of New York City’s (NYC’s) five boroughs was developed that incorporated
subway ridership into a Susceptible–Exposed–Infected–Recovered disease model frame-
work. The model contains a total of 7,847,465 virtual people. Each person resides in
one of the five boroughs of NYC and has a set of socio-demographic characteristics and
daily behaviors that include age, sex, employment status, income, occupation, and
household location and membership. The model simulates the interactions of subway
riders with their workplaces, schools, households, and community activities. It was
calibrated using historical data from the 1957–1958 influenza pandemics and from
NYC travel surveys. The surveys were necessary to enable inclusion of subway riders
into the model. The model results estimate that if influenza did occur in NYC with the
characteristics of the 1957–1958 pandemic, 4% of transmissions would occur on the
subway. This suggests that interventions targeted at subway riders would be relatively
ineffective in containing the epidemic. A number of hypothetical examples demonstrate
this feature. This information could prove useful to public health officials planning
responses to epidemics.

KEYWORDS Computer simulation, Infectious disease transmission, Human influenza,
Subway travel, Agent-based model, Pandemic

INTRODUCTION

An important part of planning for an influenza epidemic is to understand how the
epidemic spreads throughout a health care planning region. Most preparedness
plans are designed to maintain “business as usual” and resort to high-impact
interventions only when officials find substantial evidence of a high rate of disease
spread. In a large metropolitan area, if infected patients use the public transportation
(PT) facilities to maintain their normal daily routine, they will interact closely with
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other PT users, who in turn will interact with other uninfected people, including their
colleagues and family members. In this paper, we investigate the possible effect that
users of a specific mode of transportation—a large metropolitan subway system—
may have on the spread of influenza. In particular, we investigate the role the New
York City (NYC) subway system could play in spreading influenza throughout the
five boroughs of NYC.

Among American cities, New York has the highest subway ridership populations.
Consequently, we posit that PT interventions effective in NYC will be less effective in
other US cities due to lower ridership rates. To address this issue, we developed an
agent-based model (ABM) computer simulation of NYC’s five boroughs that
incorporates subway ridership into a Susceptible–Exposed–Infected–Recovered
(SEIR) disease model framework. The model simulates the interactions of subway
riders with their workplaces, schools, households, and community activities. It also
examines the impact that a severe influenza epidemic would have on NYC and the
potential effects of different hypothetical subway-related disease control measures.
To support this assessment, the model explicitly stratifies subway riders as
commuters, shoppers, and miscellaneous travelers. The model also compares
interventions that target specific NYC subpopulations including subway riders.

MATERIALS AND METHODS

Model Structure and Synthetic Census-Based Population
Figure 1 illustrates the NYC five-borough region in our simulation. We used a
method developed by Beckman et al.1 to help extract the agent population from the
US Census Bureau’s Public Use Microdata files and Census aggregated data.2 The
model contains a total of 7,847,465 computer agents, or virtual people. Each person

FIGURE 1. The New York City five-borough region.
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resides in one of the five boroughs and has a set of socio-demographic characteristics
and daily behaviors that include age, sex, employment status, occupation, and
household location and membership. Students and teachers are assigned to schools,
and employed adults are given employment status and locations. All persons are
given disease status.3 A total of 2,005,024 people are under 18 years of age, and
848,590 are over 65.

The model also depicts the region’s individual households, schools, and workplaces,
with people assigned to each using the methods above and the following data sources.

� Public and private schools and school assignments came from the US Department
of Education National Center for Education Statistics. A total of 2,073 public and
private schools were included in the NYC region with a total of 1,467,884
students of school age (5–17) in attendance.

� Workplaces and workplace assignments were taken from US Census Standard
Tabulation Product (STP64) commuting pattern data and ESRI Business Analyst
(InfoUSA business data). The NYC region included 116,979 workplaces with
2,858,151 employees. The distribution of firm sizes included: 4,813 with over 100
employees, 7,372 with 50 to 99 employees, 5,987 with 20 to 49 employees, 20,045
with 10 to 19 employees, and 78,239 with G10 employees. Nearly 70% of these
workers commute to work 5 to 7 days a week by subway, bus, by their own vehicles,
or as part of a car pool, but a significant percentage (916%) walk to work.4

� Commuting estimates for public transportation by mode of travel were taken
from 2000 US Census data. Non-commuting patterns of travel were obtained
from the following travel surveys:

� New York Household Travel Patterns: A Comparison Analysis4

� The 1997/1998 Regional travel/Household Interview Survey5

� Characteristics of subway riders were identified in an analysis of the 2006
Community NYC Health survey.6 Each virtual person was assigned a probability
of using the subway based on information regarding the characteristics.7

A detailed description of agent parameters is provided in the Electronic
supplementary material (ESM) document that provides a fuller description of all
aspects of the model.

Disease Parameters
At any given time, each person is in one of four mutually exclusive states: susceptible
(S), exposed (E), infectious (I), or recovered (R). All people are initially susceptible
(S) to disease until infectious individuals are introduced into the model. Contact with
an infectious person has an assigned probability of disease transmission from the
infectious person to the susceptible person, as listed in Table 1, derived from studies
by Longini et al.,8 Ferguson et al.,9 Germann et al.,10 Ferguson et al.,11 and Halloran
et al.12 on the basis of the 1957–1958 Asian influenza pandemic. For example, as
the second row in Table 1 indicates, an infectious child coming into contact with a
susceptible adult in a shared household has a 30% probability of transmitting the
virus to the adult per contact. By comparison, the fifth row of Table 1 indicates that
an infected elementary school student who comes into contact with a susceptible
student has a 4.35% probability of transmitting the virus per contact.

A newly infected person moves to the exposed (E) state for the duration of the
disease’s incubation period and then to the infectious state (I), in which the person
may infect others.
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Consistent with the results of the Models of Infectious Disease Agent Study
(MIDAS) combined-model study, two-thirds of infectious patients exhibit
symptoms.8,12 After the infectious period, the person enters the recovered state
(R) and remains immune to subsequent infections for the remainder of the
simulation.

The simulations incorporated a set of assumptions that described movements and
contact patterns of individual people within the five-borough population which are
based on research done in other MIDAS network models.12–15 People move back
and forth from their households to designated workplaces for employed adults and
to schools for school-aged children, where they interact with other people in close
proximity based on endogenously estimated contact rates.

Also, people interact daily with family members in the same household. In schools
and workplaces, students and workers contact a fixed mean number of people per
day representing that person’s classroom or office. Each person also has an
additional random probability of interacting with other people within the same
school or firm, but in different classrooms or offices. Workers in firms that have only
one office repeatedly contact the same people each day. Every day, all people
potentially interact with each other in the community, although with a fairly low
probability of transmitting the virus. On weekends, students do not go to school, but
their community interactions increase by 50%.16

Our base model also assumes that 20% of working adults work on weekends.17

Our base model also assumes that 50% of sick students and workers, that is, agents
in stage I, stay home with no community contacts unless they see a doctor, and 40%
of patients with influenza symptoms visit a clinic or emergency department. These
values have been used in previous studies, and the sensitivity of changes to these
assumptions and their effect on simulated epidemics are examined in the ESM
document that provides a fuller description of the model.8, 10–12, 17–21

Model Calibration
The model was calibrated using historical data from the 1957–1958 and 1968–1969
influenza pandemics. Our calibration targets were derived from the assertion defined
by Ferguson et al. that postulates that 30% of all influenza transmissions occur

TABLE 1 Model transmission parameter values

Contact group Infected Susceptible Transmission probabilitya

Household Adult Adult 0.4
Household Child Adult 0.3
Household Adult Child 0.3
Household Child Child 0.6
Elementary school Student Student 0.0435
Middle school Student Student 0.0375
High school Student Student 0.0315
Workplace Adult Adult 0.0575
Hospital HCW HCW 0.0575
Hospital HCW Patient 0.01
Hospital Patient HCW 0.01
Community All All 0.0048

aTransmission estimates are obtained from Ferguson et al.9, Halloran et al.12, and Longini et al.8
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within the household, 33% occur in the general community, and 37% occur in
schools and workplaces.9 These calibration targets apply to epidemics with a basic
reproduction rate, R0=1.4. It was also necessary to add a new subway-based
parameter to the calibration process. The total number of subway riders and the
proportion of those that commute are available from the NYC transportation
department (see below under “Subway Ridership” discussion) and census data,
respectively.4,5 These parameters are treated as exogenous variables, but an
endogenous parameter, the probability of being a subway rider, was incorporated
into the calibration process.

Social Network Contact Rates We estimated social-network-specific contact rates
and applied them in our SEIR simulation framework together with NYC household/
demographic data to generate results to satisfy the calibration criteria. The usual
social networks represented in the model were: households, schools, workplaces,
and a general category of community interactions. Two new social networks were
added: subway riders that commute to work and subway riders that are not
commuting. The strategy was to generate influenza epidemics that characterize the
behavior of the 1957–1958 pandemic in the NYC setting.

Our position also posits that subway ridership and its potential for spreading an
epidemic is particularly relevant to NYC, where almost 30% of city dwellers ride the
subway. Nearly eight out of ten New York State households without a vehicle are in
NYC, and 36% of NYC commuters walk to work.5

However, despite evidence of people using public transport, subway ridership and
subsequent influenza transmission during subway travel has not been described in
the literature and has not been represented in other models.

Even though available data allow us to identify the agent population that
always uses the subway, there is no obvious way to separate transmissions
between commuters from transmissions in the workplace without knowing the
relative exposures within the separate social networks. Thus, to estimate
transmission on the subway, we added the two social networks identified
above that have not been included in other disease transmission models:
commuters that ride the subway as their principal mode of transportation to
work (30.2% of NYC commuters)22 and personswho ride the subway as part of their
day-to-day social interactions within the general community, i.e., outside of workplaces
and schools.

Calibration Details A revised process for calibrating the modified model to the
criteria established in Ferguson et al.9 was developed. We assigned subway riders
identified as commuters to the workplace social network, and shoppers and other
non-commuters to the community social network. Reliable estimates of subway
ridership exist; however, the relative contact exposures of subway riders waiting at
the station and riding the train are not available.

Our approach factors into the estimation process the relative contact exposure
rates for each of six endogenous variables (one each for workplaces, schools, and
community; two for subways; and one for households) that compromise the six
broad social network groups portrayed in the model (households, schools,
workplaces, subway riders—commuters, subway riders—non-commuters, and
communities). The strategy is to estimate the six estimated contact rates that
generate an epidemic that satisfies the 30–70 (household transmission versus
other sites) rule calibration criteria.9 The estimation process used the downhill

COOLEY ET AL.986



simplex method of Nelder and Mead23 to fit the source of infection estimates to the
1957–1958 flu pandemic-based calibration criteria. The estimation approach
estimates the relative exposures realized by each of the six social network
categories. The exposures are adjusted by transmission probabilities (from Longini
et al.)8 that account for the different interaction properties inherent to the different
social networks. For example, the adult-to-adult transmission probability in
households is substantially higher than the adult-to-adult transmission probabilities
between shoppers. This in part reflects the closer quarters in a household than in a
shopping mall.

Additional Model Assumptions
The other (non-contact) disease parameters and assumptions are consistent with the
MIDAS studies.9–15 For example, we assume that 50% of sick students and workers
stay at home and do not interact with anyone outside of the household. Our workplace
absentee rate is also consistent with those models. However, we use a school absentee
rate that is generally lower than other models (Ferguson et al. used a 90% absentee
rate).1 We also included the following assumptions from our base model: 50% of sick
students and workers stay home with no community contacts unless they see a health
care worker (HCW); 20% of working adults work on weekends; and student/
community and adult/community contacts increase by 50% on weekends.

The rationale for using the above defined calibration method is based on our
goal of objectively discriminating between infections that occur in the workplace,
those that occur commuting to work, those that occur in the community
(shopping, etc.), and those that occur while traveling to community activities.
Census data provide the number of commuters and where they reside and work.
The NYC health survey identified subway riders from the non-commuting
population and where they reside.

Subway Ridership A key component for calibrating the model was to obtain reliable
subway ridership information. Table 2 shows an estimate of total NYC subway ridership
trips for 2008 by total annual ridership, including daily ridership for weekdays,
Saturdays, and Sundays. The ridership information was obtained from Metropolitan
Transportation Authority sources for NYC (see http://www.mta.info/nyct/facts/ridership/
index.htm). The information is identified as turnstile entry, and for our study, we
assumed that two turnstile entries define a single outbound and inbound trip.

To further refine the calibration, we were specifically interested in determining the
distribution of commuters and non-commuters as subway riders. The estimate of
subway daily riders shown in Table 3 is based on the 2000 Census data. The
estimate of 2,398,082 subway trips per weekday assumes that each commute

TABLE 2 Total subway ridership figures for 2008

Category Annual Average weekday Average Saturday Average Sunday

Trips 1,579,866,600 5,086,833 2,928,247 2,283,601
Ridersa 789,933,300 2,543,417 1,464,124 1,141,801

Source: http://www.mta.info/nyct/facts/ridership/index.htm
aAssumes that each rider turns the turnstile twice for a single outbound and inbound trip
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involves a trip to and from the workplace. Saturday commuters were assumed to be
20% of the weekday estimate.

The residual (non-commuter) trips were estimated as the difference between
5,086,833 total trips and the 2,398,082 commute trips. The difference (2,688,751)
is the non-commute subway trips per weekday. This shows that a slight minority
(47.1%) of all subway transit trips are for commuting purposes on weekdays. This is
consistent with census data.22

To summarize, to incorporate subway rider social network into our NYC model,
we did the following:

� Identified commuters who used the subway to travel to work from the 2000
Census data;

� Estimated non-commuting trips by subway riders to shop, socialize, and conduct daily
activities from total ridership data with commuters removed from the total count;

� Generated trips of a non-commuting nature at random for each NYC dweller
over the age of 5 with the probability of a person riding the subway depending on
age, day of the week, and proximity to a subway station;

� Simulated commuter and non-commuter subway riders interacting with X other
subway riders traveling in the same physical space, where X is defined as the
number of contacts made between the index case and the proportion of riders
sharing the air space on a subway train and at the station per day (Table 4);

TABLE 3 Subway daily riders assumptions

Category Weekday Saturday Sunday

Commute trips 2,398,082 479,614 0
Commuters 1,199,041 239,807 0
Other trips 2,688,751 1,224,317 2,283,601
Non-commuters 1,344,376 1,151,359 1,141,800
Total tripsa 5,086,833 2,928,247 2,283,601
Total riders 2,543,147 1,464,124 1,141,800

ahttp://www.mta.info/nyct/facts/ridership/index.htm

TABLE 4 Estimated (derived) person-to-person contact values (contacts per day)

Place Participant
Mean contacts
per day Social network

Within schoola Student 14.98 School
Per firma Worker 1.84 Workplace
Subwaya Worker (commuter) 33.88 Subway
Subwaya Non-worker 6.75 Subway
Communitya Non-student 34.80 Community
Householda All .922b Household
Classroomc Student 29.96 School
Community weekday non-schoolc Student 7.50 Community
Community weekend non-schoolc Student 11.24 Community
Per officec Worker 3.68 Workplace

aEstimated
bDaily contact probability per person
cBased on estimates in rows 1–6
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� Treated the value of X as an endogenous variable and used it to reproduce the
1957–1958 epidemic according to the validation criteria;

� Applied daily contact parameters to other social networks and also (simultaneously)
treated them as endogenous variables to fit the calibration criteria (Table 4);

� Fixed the estimated contact rates to generate the baseline (no intervention) runs
result (as shown in “Results”); and

� Separated interactions among the subway riders for commute and non-commute
purposes from interactions in the workplace.

Using this model, we assessed community activities and interventions affecting
subway transmission patterns. See the ESM for a fuller description of the calculation
process.

Epidemic Simulations
We ran the model and generated 20 calibrated epidemics using 20 distinct random
number sequences, each seeded with ten single-infected adults. The variance in the
epidemic process is small for fixed-contact estimates. The tables of results below
present the mean value estimates only.

To examine the spectrum of potential influenza transmissions, we simulated the
effects of various prior immunity levels, the effects of different interventions on
subway transmissions and R0, or the number of secondary cases that a typical
infected person will produce in a completely susceptible population.

The ABM was programmed in C++ and is naturally parallel regarding statistical
realizations. Simulations were performed on the RTI Opteron-based Linux cluster.
Each simulation run took an average of 5 minutes and operated over 32
computational cores.

RESULTS

Calibration Results
Table 4 lists the estimated number of contacts per day per social network category.
These parameters define the baseline model.

The distribution of infection by the source of infection for the calibrated or
reconstructed 1957–1958 pandemic model is presented in Table 5. This table identifies
the social network categories (place), the size of the social networks (population), the
number of infections estimated by the model (infections), the percentage of the total
infections (%), and the ratio of infections per unit of population (at risk).

TABLE 5 Baseline source of infection results

Place Population Infections % Infections At risk (per 1,000)

Households 7,847,445 777,161 30.0 99.03
School 1,467,884 643,152 24.5 438.15
Workplace 2,858,151 226,075 8.9 79.10
Subway commute 1,199,041 94,394 3.6 78.73
Subway other 1,344,376 19,637 .8 14.61
Other (community) 7,847,445 837,956 32.2 106.78
Total 7,847,445 2,601,375 100.0 331.49
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Table 5 indicates that 4.4% (114,031) of the 2.6 million cumulative infections
that compromise the simulated epidemic occurred on the subway with the
distribution between commuters (3.6%) and non-commuters (G1%) shown. This
table also indicates that with a risk factor of 78.73 per 1,000 for infection, subway
commuting poses a risk comparable to working. However, occasional use of the
subway, i.e., riders that are not commuters, posses the lowest risk of all categories.
Students attending school have the greatest risk.

Prior Immunity Impacts
The baseline run was intended to simulate the 1957–1958 type (no immunity) of
epidemic in NYC if it occurred today. However, a more relevant scenario would
be to simulate an epidemic that assumed the form of the H1N1 epidemic of
2009. To simulate the H1N1 epidemic, we investigated obtaining estimates of
prior immunity to H1N1 and adding them to the baseline model. We looked to
recent studies concerning the H1N1 epidemic of 2009, which was a global
outbreak of a new strain of H1N1 influenza virus. First described in April 2009,
the virus appeared when a previous triple assortment of bird, pig, and human flu
viruses combined with a Eurasian pig flu virus.24 Unlike most strains of influenza,
H1N1 does not disproportionately infect adults older than 60; this was an unusual
and characteristic feature of the H1N1 epidemic and indicated that prior immunity
was a major difference between the epidemics of 1957–1958 and H1N1. To
estimate this influence, Miller et al.25 conducted a cross-sectional serological
survey on English patients, based on 1,403 serum samples taken in 2008 before the
first wave of H1N1 and 1,954 serum samples taken in August and September
2009, after the first wave.

We applied the estimates of prior immunity from this study and added them to
our baseline NYC model. Table 6 compares the infection attack rates of the baseline
(no prior immunity—the 1957–1958 reconstruction) and the H1N1 of 2009
reconstruction (with prior immunity) epidemics. Overall, applying prior immunity
rates dropped the attack rate (AR) about 10 percentage points from 33% to 22.4%.
While an estimate of prior immunity based on English data may not fit a NYC
scenario, it is the only example of prior immunity to H1N1 we know of.

The continued high attack rate for the 5–14 age group reflects the absence of
immunity for this age category, whereas the attack rate for the 65+ age group has
halved. Figure 2 presents the epidemic curves for each of the two epidemics.

TABLE 6 Age-specific attack rates assuming no prior immunity in the baseline model and
prior immunity consistent with the H1N1 epidemic

Age Population
Baseline
infection

Baseline
AR

Prior
immunity (%) H1N1 infection H1N1 AR

0–4 565,376 130,187 23.0 1.8 92,217 16.3
5–14 1,124,576 777,104 69.1 3.7 651,840 58.0
15–24 1,105,279 386,152 34.9 17.5 226,582 20.5
25–44 2,541,471 736,544 29.0 8.9 468,620 18.4
45–64 1,662,265 404,519 24.3 14.3 232,028 14.0
65–99 902,498 163,412 18.1 23.3 82,517 9.1
Total 7,847,465 2,597,918 33.0 X 1,753,804 22.3
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Interventions
Because we do not represent the bus-riding agents explicitly (they are included in
community action), we do not examine explicitly the effects of reducing or
eliminating subway service because that would result in subway riders switching
to an alternative mode of travel. Instead, we simulated the “perfect” subway-
targeted intervention by eliminating all infections occurring to all subway riders by
other riders. This would illustrate the impact of a subway intervention of 100%
effectiveness and would provide a frame of reference against which all related
interventions could be compared.

Also, we do not simulate school closure as that has been studied by others (see
Lee et al.14). Instead, we focus on social distancing behaviors as well as vaccination
policies to explore the potential of reducing transmission for a fixed level of
contacts. The contact-reducing policies would include:

Hand Washing, Microbial Use, and Mask Wearing on Subways We investigated
the collective effects of restricting contacts only on subways. We do not argue
that these are realistic, well-crafted interventions. Given the relatively low
incidence of infections on subways (4.5%), we investigate whether any type of
social distancing intervention would have sufficient effect to pursue their
adoption. In the first instance, we assume that some combination of hand
washing, microbial applications, and mask wearing that specifically targeted
subway riders had the effect of reducing the effective number of contacts by a
fixed percent. We further assume a 10%, 20%, or a 30% reduction in
transmissions on subways. The impact of these assumptions is very small, as
shown in Figure 3.

The subway-only interventions have a small effect on both the peak daily
infection rate and the cumulative number of infections. Even the totally effective
subway-targeted intervention only drops the peak 19% (from 104,944 to 84,604),
and the cumulative infections decrease only 12% (from around 2,600,000 to
2,270,000; see Table 7). Because the portion of total infections that occur via the
subway mixing process is sufficiently small, subway-targeted interventions can only
have a limited effect on containing an epidemic.

FIGURE 2. Baselines with and without prior immunity.
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Hand Washing, Microbial Use, and Mask Wearing Used in the Community We
also simulated contact-reducing effects within the general community social
network. These interventions assume that contact reductions occur on the subway
as well as in the community at large, so naturally we would expect them to have a
greater impact. As above, we investigated the effects of 10%, 20%, and 30%
reductions in contacts, which are shown in Table 7.

In these scenarios, the interventions are directed at a larger segment of the
population, i.e., they are not restricted to the population of subway riders. These
larger impacts are best illustrated by noting that even a modest (10%) contact-
reducing intervention in the community sector drops the peak infection by 19% and
cumulative infections by 11%, which is comparable to a “totally effective” (100%)
subway-targeted intervention.

Vaccination Programs We also evaluated a low-compliance vaccination program
as a potentially effective intervention. We were motivated to analyze vaccination as
an intervention strategy because Levine et al.7 report that subway commuters
specifically have lower vaccination rates than other segments of the population.
Here, we do not specifically target subway riders nor limit our focus to contact

FIGURE 3. Impact of reducing contacts on subways for a R0=1.4 epidemic assuming 10%, 20%,
30%, and 100% reductions in transmission rates.

TABLE 7 Effect of NYC interventions

Intervention
Transmission
rate reduction (%)

No. of infections
at peak

Total no.
of subway
infections

Subway
infections (%)

Total no.
of all
infections

None 0 101,557 114,377 4.41 2,596,176
Community 10 82,092 80,167 3.46 2,315,767
Subway 10 100,354 100,427 3.92 2,564,504
Vaccination 10 94,092 104,592 4.23 2,475,404
Community 20 75,047 75,047 3.64 2,060,896
Subway 20 97,974 87,434 3.48 2,512,033
Vaccination 20 90,754 97,688 4.13 2,362,695
Community 30 53,276 64,047 3.51 1,824,884
Subway 30 88,110 74,232 2.98 2,491,400
Vaccination 30 87,750 89,197 3.96 2,252,843
Subway 100 84,604 0 0.0 2,271,697
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behaviors outside of the workplace and school. Instead, we simulate the effect of
targeting all adults with a 10%, 20%, or a 30% vaccination rate that is applied on
day 14 of the epidemic to all adults. The efficacy rate of the vaccine is assumed to be
80%. These results are also summarized in Table 7.

In summary, the most effective intervention is the process that targets the most
people. That intervention is the community contact-reducing strategy which is more
effective than the vaccination strategy because of its 100% compliance assumption.

CONCLUSION

In this study, we developed a unique influenza agent-based transmission model for
NYC that explicitly represents subway riders as a transmission conduit. We
calibrated our model to reconstruct a baseline epidemic that is characteristic of the
1957–1958 pandemic, but with the influence of subway riders on disease
transmission also represented in the model. The results indicate that the proportion
of total infections that occur on subways is between 4% and 5%. We also show that
by incorporating immunity data into the baseline model, a transformation from the
calibrated baseline model to an H1N1 2009 epidemic is suggested.

While computer models are simplifications of reality and cannot account for
every possible factor or interaction, they can provide useful information to persons
who must decide how to respond to possible epidemic scenarios and create response
plans. For example, our model did not account for children commuting to school on
the subway, nor did it distinguish between healthy and high-risk individuals who
may become sicker and miss longer periods of work. Both of these factors may be
important to decision makers. In addition, an influenza epidemic and the resulting
circumstances may not necessarily conform to the data and assumptions that we
drew from referenced sources or previously published models. Finally, the high rate
of subway travel in the NYC metropolitan region may not be representative of other
locations.

Our results indicate that the high level of subway ridership in NYC can influence
disease spread, but that interventions aimed at subway riders would provide very
limited benefits on overall attack rates and epidemic peaks. Even a highly unlikely
intervention targeting all subway riders that provided 100% effectiveness (or,
alternatively, subway service was suspended without side effects) would only reduce
the cumulative incidence by 12.5%.

It is likely that the most effective policy to lower attack rates and the epidemic
peaks is a policy that targets a broadest class of NYC residents. This is consistent
with the targeted layered strategy demonstrated by others.12
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