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Abstract

Recent platforms, like Uber and Lyft, offer service to consumers via “self-scheduling” providers

who decide for themselves how often to work. These platforms may charge consumers prices

and pay providers wages that both adjust based on prevailing demand conditions. For example,

Uber uses a “surge pricing” policy, which pays providers a fixed commission of its dynamic

price. We find that the optimal contract substantially increases the platform’s profit relative

to contracts that have a fixed price or fixed wage (or both) and although surge pricing is not

optimal, it generally achieves nearly the optimal profit. Despite its merits for the platform,

surge pricing has been criticized in the press and has garnered the attention of regulators due

to concerns for the welfare of providers and consumers. However, we find that providers and

consumers are generally better off with surge pricing because providers are better utilized and

consumers benefit both from lower prices during normal demand and expanded access to service

during peak demand. We conclude, in contrast to popular criticism, that all stakeholders can

benefit from the use of surge pricing on a platform with self-scheduling capacity.

Keywords: self-scheduling capacity, peer-to-peer markets, contract design, dynamic pricing,

service operations, ride-sharing

1 Introduction

The rise of the “sharing economy” has transformed the way firms can deliver service to consumers.

The firm no longer must centrally schedule its capacity by assigning workers to shifts. Instead,

∗Operations, Information, and Decisions Department, Wharton School, University of Pennsylvania, email:
{cachon, kaitd, rlobel}@wharton.upenn.edu. Thanks is extended to seminar participants at Harvard University,
Northwestern University, University of California Los Angeles, University of Pittsburg, University of North Carolina
Chapel Hill, and Washington University.
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workers may act as independent service providers who determine their own work schedules, and

the firm’s role becomes that of a platform which connects providers to consumers. (See Katz

and Krueger (2016) for data on the growth of alternative work arrangements in the United States.)

Although the platform has far less control over how many providers work at any one time, providers

gain the freedom to “self-schedule” the hours they work, presumably allowing them to better

integrate their work with the other activities in their lives (Hall and Krueger (2015)). To make

these new relationships viable, customers must be charged a reasonable fee and be adequately

served.

Examples of relatively new platforms that feature self-scheduling capacity include Uber and

Lyft for local transportation, and Postmates for local delivery. A potential provider for one of

these platforms must first make the long-term decision of whether to join the platform or not. This

decision has implications for several months or years, and providers join only if they expect to earn

more with the platform than with their next best alternative. If a person joins a platform as a

provider, then they must make short-term decisions about when and how often to work. These

decisions are made on a daily or hourly basis, so the participation decision is relevant over a much

shorter time interval than the joining decision. The participation decision is based in part on the

wage providers receive per service. It is also based on providers’ expectations of how likely they are

to get work, which is a function of the overall level of demand and the number of providers working

at that time on the platform. For example, an Uber driver may know that demand is higher on

rainy days but may also know that other drivers are more likely to drive as a consequence. What

matters to the provider is the amount of demand relative to the amount of offered capacity at a

particular time.

In this paper we focus on the contractual forms a platform could select to make a viable market

with self-scheduling capacity. We study a stylized model with the following features: (i) there exists

a large pool of potential providers, (ii) providers join the platform only if their rational expectation

of their earnings from participation on the platform exceeds the opportunity cost of their next best

activity, (iii) the platform sets a price for consumers, a wage paid to providers for work completed

and regulates the maximum number of providers who join the platform, (iv) the platform cannot

directly determine when providers work and, instead, the providers who joined the platform self-

schedule their offered capacity, (v) demand varies in predictable ways (e.g., more consumers seek

transportation on a rainy evening), (vi) if the offered capacity exceeds demand, providers share the

available demand equally, but if the offered capacity is less than demand, then demand is randomly

rationed (i.e. all consumers are equally likely to receive the scarce service), and (vii) the platform’s
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price and wage can depend on the current level of demand.

There are two key features of the model that make this environment distinctive. First, providers

self-schedule their offered capacity. Consequently, even if the number of providers who have joined

the platform is sufficient to satisfy demand, it is possible that demand rationing can occur because

too few providers may choose to work. However, it is also possible that capacity rationing can

occur, because too many providers may choose to work leaving some underutilized. Both forms of

rationing represent costly inefficiencies for the platform. Second, the platform can offer demand-

contingent prices and wages. Demand-contingent prices are often called dynamic prices. Uber and

Lyft employ versions of dynamic prices and wages called surge pricing and prime time respectively.

There is a large literature on dynamic prices, while the literature on dynamic wages is far less

extensive, and there is no work on the interaction between dynamic prices and dynamic wages.

The platform’s primary goal with the design of its contract is to maximize its profit. Doing so

requires a contract that assures providers that join sufficient expected profit. However, the contract

must not give providers too much of an incentive to participate, which could lead to an excess of

providers, nor too little incentive, which could entice too little participation from providers to

satisfy demand.

Although maximizing profit is a clear objective for the platform, it is not the platform’s only

concern. A number of controversies have emerged with this new business model. Some people

believe providers are not adequately compensated because they are not given benefits and rights

associated with being employees (Isaac and Singer (2015), Scheiber (2015)). Others worry that

customers are unfairly discriminated against as a result of dynamic pricing (Kosoff (2015), Stoller

(2014)). Consequently, with a view towards potential litigation and regulation, a platform should

be concerned with both provider and consumer welfare. In particular, it is important to understand

the degree to which there is a tension between maximizing the platform’s profit and the surplus

earned by the other relevant stakeholders, the providers and consumers.

We focus on five possible operating models, or contracts, for the platform. With the simplest

possible contract, called the fixed contract, the platform offers providers a fixed wage and charges

consumers a fixed price. Next, we consider contracts in which the the platform either chooses

dynamic prices (with a fixed wage), or dynamic wages (with a fixed price). We refer to the former

as the dynamic price contract and the later as the dynamic wage contract. A commission contract,

which resembles surge pricing used in practice, allows the platform to dynamically adjust both

prices and wages in response to demand, but imposes the contraint of a fixed commission, i.e., a

fixed ratio between the two. It has been argued that this constraint may substantially lower the
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platform’s profit (Economist (2014)). Finally, the platform’s optimal contract dynamically adjusts

both prices and wages without the constraint of a fixed commission. A closed form solution for

the optimal version of each of these contracts is unavailable, but we analytically determine how to

determine the optimal form of each contract with a single dimensional search over a bounded space.

In addition, we are able to analytically determine conditions under which a commission contract is

optimal for the platform. Via numerical analysis over the set of feasible and plausible parameters,

we compare profits, consumer surplus and provider surplus across all five contracts. Those results

are consistent with the analytical results derived from a special case of the model.

Beyond the contractual form, our framework allows us to explore the consequence of self-

scheduling. As already discussed, self-scheduling imposes a challenge for the platform because

it can only regulate the level of participation through its contract rather than directly, as it would

with “central-scheduling.” However, self-scheduling provides a benefit to the providers: they can

work when it is most desirable for them to do so, rather than being forced to work at times the

platform dictates.

To preview our main results, we find that the optimal contract provides the platform substan-

tially higher profit relative to the fixed contract and self-scheduling is a profitable arrangement

for the platform relative to central-scheduling. Although not optimal, the commission contract is

nearly optimal, and given its simplicity, this may explain its use in practice. We find that con-

sumers indeed have a reason to be skeptical about dynamic pricing: relative to the fixed contract,

adding dynamic pricing (with a fixed wage) reduces consumer surplus. However, again relative

to the fixed contract, adding dynamic pricing and dynamic wages together generally can increase

consumer surplus even though that combination also maximizes the platform’s profit. It does so

when the fixed contract rations demand when demand is high. Thus, if the lack of dynamic prices

and wages leads to poor service for customers in high demand periods, then consumers actually

benefit from the introduction of dynamic pricing, like Uber’s surge pricing.

2 Literature Review

Our work is primarily connected to three domains in the existing literature: research on capacity

and pricing, revenue management models, and recent papers on peer-to-peer platforms and self-

scheduling capacity. For simplicity and consistency, we refer to the various components in other

papers using the terms relevant for our model. For example, the “platform” is the organization

responsible for designing the market, “providers” generate capacity, “dynamic prices” are demand-
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contingent payments from consumers to the platform in exchange for service, and “dynamic wages”

are demand-contingent payments from the platform to providers.

There is a large number of papers in operations management that study both capacity and

pricing within the same model. In the price-setting newsvendor model, a single capacity and price

decision is made before demand uncertainty is resolved (see Petruzzi and Dada (1999) for a compre-

hensive review). In a supply chain setting, “wages” are used to align firm and provider incentives,

though a wage-only (traditionally referred to as price-only) contract cannot fully coordinate the

system (Perakis and Roels (2007), Cachon (2003)). Additional work considers dynamic prices (e.g.

van Mieghem and Dada (1999b)) or dynamic wages (e.g. Cachon and Lariviere (2001), and van

Mieghem and Dada (1999a)). Those papers generally have only a single provider, they do not

investigate the interaction between dynamic prices and dynamic wages, and they do not explore

welfare for all stakeholders. A separate body of work studies how a firm should manipulate its

short-term capacity via production given that it is restricted to charge a single price over a selling

horizon (e.g. Gilbert (1999, 2000)). In these papers the firm directly controls production, so there

is no consideration of wages. Several papers study competition among multiple providers and es-

tablish that competition can lead to excessive entry (e.g. Mankiw and Whinston (1986), Besanko,

Doraszelski, Lu, and Satterthwaite (2010)) and a platform should discourage competition to mit-

igate the losses in system value due to this issue (e.g. Bernstein and Federgruen (2005), Cachon

and Lariviere (2005)), but those papers do not consider dynamic wages or prices.

Dynamic prices, or prices that respond to updated information, are a central focus for the

revenue management literature (see Talluri and Van Ryzin (2006) and Elmaghraby and Keskinocak

(2003) for reviews). In many papers supply is assumed to be fixed, which means prices are set

over a (generally) finite horizon to maximize revenue. Some papers include supply (e.g. inventory)

decisions: e.g. Gallego and Van Ryzin (1994), Federgruen and Heching (1999), Thowsen (1975), and

Zabel (1970). Some work incorporates strategic consumer response to pricing (e.g. Su (2007), Aviv

and Pazgal (2008), and Cachon and Swinney (2009)), and a growing number of papers investigate

how pricing and supply decisions affect consumer surplus: e.g. Cohen, Lobel, and Perakis (2015),

Yu, Debo, and Kapuscinski (2013). Those papers assume a constant marginal cost of supply

and, more importantly, the platform directly controls supply. In our model the platform lacks

such control: the platform must make joining the platform attractive enough in the long run and

providers decide whether they want to work or not in the short run.

A set of papers considers peak-load pricing, the practice of charging higher prices during peak

periods of demand (e.g. Steiner (1957), Crew, Fernando, and Kleindorfer (1995), and Gale and
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Holmes (1993)). The primary motivation of peak-load pricing is to increase revenue by shifting

demand from the peak period to the off-peak period. We do not incorporate this capability into

our model. For example, consumers in need of transportation during a rainy evening are unable to

postpone their need to a time with better weather.

There is work on the value of dynamic prices in systems that experience congestion. Celik and

Maglaras (2008), Ata and Olsen (2009), and Kim and Randhawa (2015) each define a model with

a platform that serves stochastically arriving price sensitive consumers, but with fixed capacity.

Banerjee, Riquelme, and Johari (2015) considers the value of dynamic pricing in a model with

random arrivals of consumers and providers. Providers join based on their expectation of long run

earnings (as in our model) and are paid a fixed commission of the consumer price (whereas we

consider other wage structures). Prices are selected in the short-term in response to the length of

the queue of providers active in the market but waiting for work. Unlike us, they find that dynamic

pricing provides no benefit in terms of maximizing the platform’s expected profit or system welfare,

but they have a single demand regime whereas in our model some periods have predictably higher

demand than others for a given price.

Peer-to-peer service platforms have attracted significant academic interest; e.g. Kabra, Belav-

ina, and Girotra (2015), Gefen and Carmel (2008), Hong and Pavlou (2014), Snir and Hitt (2003),

Moreno and Terwiesch (2014), and Yoganarasimhan (2013). Those papers investigate how to subsi-

dize different market players to accelerate the growth of a peer-to-peer platform, whether consumers

have geographic preferences over providers, the influence of platform design on provider quality,

and how provider reputation impacts the market. We do not explore those issues: our providers

are ex-ante homogenous and do not build reputations.

There is modeling and empirical work on the competition between peer-to-peer service mar-

ketplaces and existing markets: Einav, Farronato, and Levin (2015), Zervas, Proserpio, and Byers

(2014), Seamans and Zhu (2013), Cramer and Krueger (2016), and Kroft and Pope (2014). We

do not directly consider the competition between the platform and incumbents. However, to the

extent that existing firms use fixed prices and wages, we show that they would be at a substantial

disadvantage relative to a platform that uses dynamic prices and wages.

Several papers (e.g. Hu and Zhou (2015) and Allon, Bassamboo, and Çil (2012)) explore the

process for matching providers to consumers when capacities are exogenous and all participants

have preferences for the match they receive (e.g. a courier prefers to be matched to a nearby

consumer). We do not consider matching because our consumers and providers are homogeneous,

so careful matching does not provide a benefit. However, we do consider rationing if supply exceeds
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demand or vice-versa.

Closest to our work are papers on self-scheduling capacity. Ibrahim and Arifoglu (2015) con-

siders a model in which the platform chooses the number of providers and providers are either

assigned by the platform to work in one of two different periods or they self select which of the

two periods they work in. Consumer prices are implicitly assumed to be fixed and the arrival of

potential consumers is exogenous. Rationing of demand can occur via customer abandonment. Un-

like in our model, the platform can directly control the number of providers in the system and all

providers must choose to work in one of the two available periods. Taylor (2015) studies a queuing

system in which a platform creates a market for service where arrivals of consumers and servers are

endogenously determined based on decisions to seek and provide service respectively. His model

does not consider dynamic prices or wages. Gurvich, Lariviere, and Moreno-Garcia (2015) studies

a model in which a platform directly chooses the number of available providers, the wage for each

provider who chooses to work, and a cap on the number of providers who are allowed to work: given

the platform’s prevailing wage, more providers may want to work than the platform wants. They

do not include dynamic pricing - in all versions of their model the platform selects a single price.

They also do not impose an earnings constraint for providers. Instead, they impose an exogenous

minimum wage. In our model providers decide whether to join the platform based on rational

expectations of future earnings.

3 Model

Figure 1: Timeline of events

As shown in Figure 1, the interaction between the platform, providers, and consumers occurs

over two stages, or periods. At the start of the first period the platform announces the terms

of trade, consisting of prices charged to consumers, wages paid to providers, and the maximum
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number of providers allowed to join the platform. A large pool of potential providers then decides

whether to join the platform or not. We refer to this as the “joining” decision. This period

represents the providers’ long-term decision. With a ride-sharing platform such as Uber, period 1

would represent a provider’s decision to sign up for Uber instead of Postmates, for example. The

second period represents the short-term decisions to work on the platform or not. We refer to this

as the “participation” decision. For example, once on the platform, providers for Uber must decide

whether to offer their service during a particular day or even a particular hour. Consequently, the

participation decision is relevant over a much shorter time interval than the joining decision. Hence,

the provider expects to make many of these short-term decisions. For simplicity and without loss

of generality, we collapse these decisions into a single period, which we refer to as the short-term

period or the second period.

In period 1 a provider incurs an opportunity cost, c1, for joining the platform and in period 2

the provider can earn a profit from participation on the platform. Hence a provider joins in period 1

only if the provider expects to earn in period 2 at least c1. All providers share the same opportunity

cost, so either all are willing to join or none are. Our model approximates a market with a deep

pool of potential providers and a highly elastic supply curve: if expected earnings are less than c1,

then the number of interested providers drops substantially, but if greater than c1, then there is an

ample number of interested providers. We suspect that incorporating heterogeneous opportunity

costs into the model would not effect our qualitative results, but it would substantially complicate

the search for optimal contracts.

There are two types of uncertainty. The first is each provider’s cost to participate on the

platform in period 2. For example, on some days participation might be costly (e.g. a child needs

to visit a doctor) while on other days participation isn’t costly (the provider has nothing else to

do that day). Each provider can anticipate in period 1 that they will incur a participation cost in

period 2, but they do not know what that cost will be. They learn their participation cost at the

start of period 2 before their participation decision. In particular, let c2 be a provider’s realized

participation cost in period 2. (Recall, period 2 is really the aggregation of many decisions, and

a provider’s participation cost can vary over these decisions.) The stochastic participation cost

is independently and identically distributed across providers with distribution G(c) and density

g(c), which are known at the start of period 1 at the time of the provider’s joining decision. We

assume G(c) is strictly increasing and differentiable, G(0) = 0, there does not exist a finite c such

that G(c) = 1, and g(c)/G(c) is decreasing, which is satisfied for log-concave distributions. Many

common distributions (e.g. uniform, exponential, normal, gamma) are log-concave (see Bagnoli

8



and Bergstrom (2005) for additional details).

The demand level is the second type of uncertainty. Demand occurs only in period 2 and it

can be either “high” or “low”. For example, for a ride-sharing platform, “high” demand could

be a rainy evening on a holiday weekend, whereas “low” demand could be a warm Wednesday

evening. (Again, as period 2 represents the combination of many decisions, the demand state can

vary across time.) The platform and the providers can anticipate in period 1 that demand can be

either high or low, but they only learn the actual state of demand at the start of period 2, after their

joining decision but before their participation decision. Thus, providers make their joining decision

before either uncertainty is resolved, but they make their participation decision after observing

both demand and participation cost. Note, while each provider observes their own c2, the platform

does not observe each provider’s participation cost, so only demand uncertainty is resolved for the

platform.

The platform faces a linear demand curve with an uncertain intercept. To be specific, demand

for the platform’s service is Dj = (aj − bpj)+, where pj is the price charged to consumers, b is a

constant, and the demand state can either by low or high, aj ∈ {al, ah}, where al < ah. Let fj ,

j ∈ {l, h} be the probability of state j demand, where fl + fh = 1. Each participating provider can

serve up to a single unit of demand in period 2. The parameter b has no impact on the qualitative

results, so b = 1 is assumed throughout.

At the start of period 1 the platform announces the terms of trade for providers joining the

platform. The terms consist of (i) an upper bound, N, on the number of providers who can join (e.g.

Uber imposes a cap on the total number of drivers that can operate in a city), (ii) a price charged

to consumers in each demand state, pj , and (iii) a wage paid in each demand state to each provider

for service, wj . Because feasible contracts entice all potential providers to join the platform in the

first stage, N is exactly the number of recruited providers. The cap N is important - providers

recognize that their earnings are decreasing in the number of providers on the platform, so the

platform uses N to ensure that providers earn enough to justify the cost of joining the platform, c1.

We say that the platform uses demand-contingent, or dynamic, prices if pl 6= ph. The platform can

also choose a single price no matter the demand state, i.e. pl = ph. The same applies for wages.

For a particular demand realization, price, and wage, it is possible that demand exceeds the

capacity of participating providers. In that case demand is randomly rationed: some demand is

not served while all participating providers serve one unit of demand. Alternatively, it is possible

that capacity exceeds demand. In that case capacity is rationed: participating providers utilizes

only a portion of their capacity. To be specific, let φj be a provider’s utilization in demand state
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aj , where φj is the fraction of capacity offered by the participating providers used to serve demand.

When demand is rationed, φj = 1, whereas when capacity is rationed, φj < 1.

A participating provider earns revenue φjwj in period 2. All providers with participation cost

φjwj or lower choose to participate, while providers unfortunate to have high participation costs

choose not to participate. Hence, NG(φjwj) providers participate. We require that providers

make optimal decisions based on rational expectation regarding their earnings. (See Farber (2015)

and Chen and Sheldon (2015) for evidence that taxi drivers and Uber providers respectively make

decisions based on rational expectations to maximize their return.) Thus, in equilibrium

φj =

1 NG(wj) ≤ aj − pj
aj−pj

NG(φjwj) aj − pj ≤ NG(wj)

Note that in the second case with capacity rationing, i.e. aj−pj ≤ NG(wj), a recursive relationship

determines the equilibrium utilization. This equilibrium utilization exists and is unique.

Let πj be a provider’s expected profit conditional on joining for a given demand state aj , wage

wj , and price pj :

πj = (wjφj − Ec2 [c2|c2 ≤ wjφj ])G(wjφj) =

∫ wjφj

0
G(c)dc

Let Π be a provider’s expected profit from joining the platform:

Π(p, w,N) =
∑

j∈{l,h}

(∫ wjφj

0
G(c)dc

)
fj

For a given price, wage, and recruitment level, the platform expects to earn

U(p, w,N) =
∑

j∈{l,h}

(pj − wj)φjNG(φjwj)fj

The platform’s objective is to choose price, wage, and recruitment to maximize its expected profit

subject to the constraint that providers are willing to join the platform:

max
w,p,N

U(p, w,N)

s.t. c1 ≤ Π(p, w,N)
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It is helpful for our analysis to implicitly define four parameters, w′, w′′,φ̄l, and c1:

∫ w′
0 G(c)dc = c1∫ w′′

0 G(c)dcfh = c1∫ φ̄lw
0 G(c)dcfl +

∫ w
0 G(c)dcfh = c1

c̄1 =
∑

j∈{l,h}
∫ aj

0 G(c)dcfj

The first, w′, is the smallest wage that induces providers to join when they can assume that they are

assured to be paid w′ in either demand state in equilibrium. The second, w′′, is similar to w′, except

this is the lowest wage that induces providers to join when they are assured to receive w′′ payment

in the high demand state and no payment in the low demand state. (If al ≤ p, then there are no

customers to serve in the low demand state.) The third, φ̄l, which applies when w′ < w < w′′, is

the rational expectations equilibrium utilization when providers expect to be rationed in the low

demand state but not in the high demand state. The fourth, c1, is the maximum joining cost that

allows for a positive surplus in the system (i.e., if c1 < c1 then a provider wouldn’t join the platform

even if she were the only provider on the platform and the platform allowed her to keep all of the

possible profit). As c1 < c1 means this market cannot function, we assume c1 < c1 throughout.

Beside its own profit, the platform may have an interest in consumer and provider surplus,

especially if the platform’s practices are potentially controversial, thereby motivating negative pub-

licity, lawsuits, or government regulation. We measure consumer surplus under a linear stochastic

demand in a similar fashion to Cohen, Lobel, and Perakis (2015): CS =
∑

j∈{l,h} 0.5 min((aj −

pj)
2, (aj − pj)NG(φjwj))f(aj). Consumer surplus decreases in the prices charged and increases

in the number of consumers served. The latter depends on the number of providers that join the

platform, N , and the fraction of those recruited providers that decide to participate. Provider

surplus increases in the number of recruited providers and in those providers’ expected earnings.

If each provider earns exactly c1 conditional on joining (as is shown in each of the contracts we

consider), then total provider surplus is c1N .

Although our model does not include direct competition from another platform or service, it

indirectly includes the effect of competition. For example, the joining cost c1 reflects the competition

for labor from other sources of employment (which may be very different than the platform’s

service). As the cost c1 rises, providers earn a larger share of system surplus to reflect their

greater opportunities outside of the platform. Consumers also have other options, which is why we

include price sensitive demand. However, future research could explicitly model the dynamics of

competition across multiple platforms.
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4 Contract Design

We focus on five contract designs that vary by the amount of flexibility given to the platform to

adjust its prices and wages in response to observed demand in period 2. A closed form solution for

the platform’s best version of each contract is unavailable, but the following five theorems indicate

that the platform’s optimal contract within each design can be found via a single dimensional search

over a bounded interval (even though each contract involves up to five decisions, a price and wage

for each demand state and the number of providers to allow on the platform). Proofs are available

in the appendix.

4.1 Fixed Contract

With the fixed contract the platform chooses a single per-service wage, w, to pay providers and a

single per-service price, p, to charge consumers. These quantities are independent of the realized

demand state. As a result, the platform is subject potentially to two inefficiencies: demand rationing

and capacity rationing. With demand rationing, the offered wage is too low to induce enough

providers to participate relative to realized demand, leaving some customers without service. With

capacity rationing, the offered wage is too high because too many providers participate relative

to realized demand. For a given contract, it is possible that demand is rationed in the high

demand state and capacity is rationed in the low demand state, as is illustrated in Figure 2. In

the low demand state, NG(φlw) providers participate, which exceeds demand, Dl = al − p. In the

high demand state, NG(w) providers participate, all are allocated a customer, but Dh − NG(w)

customers do not receive service, even though the number of providers on the platform, N, may be

adequate to serve all demand.

The fixed contract may not be able to earn a positive profit (given c1 < c1), but if it does so,

then Theorem 1 describes the optimal fixed contract for the platform, which can be divided into

two types: (i) the platform serves both demand states, or (ii) the platform only serves high demand.

There are two extreme versions of serving demand in both states. In the first, which we refer to as

the poor service version, capacity matches low demand, meaning that there is no capacity rationing

and providers are fully utilized in all states. However, while all customers are served in the low

demand state, in the high demand state ah − al of demand is lost. In the second version, which

we refer to as the poor utilization version, capacity matches high demand. Customers are fully

served in either state, but in the low demand state too many providers participate, chasing too

little demand, leading to capacity rationing.
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Figure 2: An example of demand and capacity rationing with a particular fixed contract.

Theorem 1. Conditional on earning a positive profit, the optimal fixed contract has one of the

following two characteristics:

1. The platform serves both demand states. In particular, w ∈ [w′,min(al, w
′′)],

p = max

(
al + w

2
,
G(w)al − φ̄lG(φ̄lw)ah(
G(w)− φ̄lG(φ̄lw)

) )

N = (al − p)/ (φlG(φlw)), there is capacity rationing only in the low state (i.e. φl = φ̄l ≤ 1 and

φh = 1), and each provider’s joining constraint is binding, i.e. c1 = Π(p, w,N).

2. The platform serves only high demand. In particular, w = min {w′′, ah}, al < p = (ah+w)/2,

N = (ah − p)/G(w), and participating providers are fully utilized, i.e. φh = 1.

4.2 Dynamic Wage Contract

With the dynamic wage contract the platform charges consumers a fixed price, p, but pays providers

a wage, wj , that depends on the demand state aj . Relative to the fixed contract, the dynamic wage

contract allows the platform to address the issue of capacity rationing due to excessive provider

participation. For example, suppose the platform’s fixed contract rations capacity in the low

demand state. The platform could lower its wage in the low demand state while leaving providers

no worse off; providers would be paid less but, because fewer providers participate, their utilization

would increase. Consequently, the platform’s profit would strictly increase. Alternatively, suppose

the platform’s fixed contract rations demand in the high demand state. This is the best fixed

contract when it is too costly to regulate provider participation with a single wage, so it is regulated

13



by restricting recruitment in the first stage, N . However, because a demand-contingent wage gives

the platform a greater ability to regulate provider participation, the platform may no longer need

to rely exclusively on restricting recruitment, allowing higher N , thereby mitigating some demand

rationing. In fact, according to Theorem 2, the dynamic wage contract is capable of eliminating

capacity rationing in all demand states. However, the optimal dynamic wage contract may still

ration demand, which is why it may not be able to earn a positive profit.

Theorem 2. Conditional on earning a positive profit, the optimal dynamic wage contract has one

of the following two characteristics:

1. The platform serves both demand states. In particular, wl ∈ (0, w′],

∫ wl

0
G(c)dcfl +

∫ wh

0
G(c)dcfh = c1

p = max

(
ahG(wl)− alG(wh)

(G(wl)−G(wh))
,min

{
al,

al
2

+
fhG(wh)wh + flG(wl)wl
2(fhG(wh) + flG(wl))

})

N = (al − p) /G(wl), there is no capacity rationing, i.e. φl = φh = 1, and each provider’s joining

constraint is binding, i.e. c1 = Π(p, w,N).

2. The platform serves only high demand. In particular, wh = min {w′′, ah}, p = (ah+wh)/wh,

N = (ah − p)/G(wh), and participating providers are fully utilized, i.e. φh = 1.

4.3 Dynamic Price Contract

With the dynamic price contract, the platform selects a price for each demand state, pj , but

pays providers a fixed wage. The dynamic price contract enables the platform to manage demand

rationing. For example, suppose the best fixed contract has poor service. Capacity is restrictive

because higher capacity would lead to costly capacity rationing in the low demand state. However,

with dynamic prices the platform can increase its price in the high demand state without affecting

providers, thereby reducing demand rationing while increasing its revenue and profit. With the

other extreme, suppose the best fixed contract has poor utilization. In the high demand state, the

platform would prefer to raise the price further. But doing so would exacerbate the problem of

capacity rationing in the low demand state. Once the platform has the ability to charge dynamic

prices, it can indeed raise its price in the high demand state while also lowering its price in the

low demand state, both of which help to mitigate capacity rationing while still avoiding demand

rationing. Nevertheless, a positive profit is not always feasible.

14



Theorem 3. Conditional on earning a positive profit, the optimal dynamic price contract has one

of the following two characteristics:

1. The platform serves both demand states. In particular, w ∈ [w′,min(al, w
′′)], pl = (al + w) /2,

ph = ah−G(w)N , N = (al − w) /
(
2φ̄lG(φ̄lw)

)
, there is capacity rationing only in the low state, i.e.

φl = φ̄l ≤ 1, and φh = 1, and each provider’s joining constraint is binding, i.e. c1 = Π(p, w,N).

There is no demand rationing.

2. The platform serves only high demand. In particular, wh = min {w′′, ah}, p = (ah+wh)/wh,

N = (ah − p)/G(wh), and participating providers are fully utilized, i.e. φh = 1.

4.4 Commission Contract

The commission contract, which resembles Uber’s surge pricing policy, adjusts both price and

wage in response to demand, but also imposes the constraint that the two have a constant ratio. In

particular, the platform charges a demand-contingent price, pj , and pays providers wj = βpj , where

β is the (fixed) commission rate. Given the market is viable (c1 < c1), there exists a sufficiently

high commission rate that enables the market to function and the platform to earn some profit.

For a given commission, there is a unique optimal wage schedule and recruitment level satisfying

the optimality conditions in the following theorem, but a line search is required to find the optimal

commission.

Theorem 4. For a given β ∈
[
w′

ah
, 1
]
, the optimal fixed commission contract is uniquely defined,

earns a positive profit for the platform and satisfies:

pj = max

{
aj −NG(ŵj),

1

2
aj

}
φj = min

(
1,

aj

2NG
(

1
2βφjaj

))
c1 =

∑
j∈{l,h}

∫ wjφj

0
G(c)dcfj .

where ŵj is uniquely defined by ŵj = β(aj−NG(ŵj)). The providers’ joining constraint is binding.

Capacity rationing is possible, but demand rationing does not occur.

4.5 Optimal Contract

The optimal contract allows the platform complete flexibility: both wages and prices may vary

according to the demand state without the constraint of a fixed ratio between the two. With these

two levers, the platform maximizes its profit, it eliminates both demand and capacity rationing, it
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always serves demand in all demand states, and it maximizes system surplus (the sum of platform

and provider expected profits).

Theorem 5. (i) The platform earns a positive profit with the optimal contract (for all c1 < c1),

(ii) the optimal contract is uniquely defined by wo, po, and No satisfying,

woj = aj − 2NoG(woj )

poj = aj −NoG(woj )

c1 =
∑

j∈{l,h}

∫ wo
j

0
G(c)dcfj

(iii) there is no capacity rationing, i.e. φol = φoh = 1, nor demand rationing, (iv) each provider’s

joining constraint is binding, i.e. c1 = Π(p, w,N), and (v) system surplus (the sum of platform and

provider profits) is maximized.

For a given N , the system of the first two equations uniquely identifies prices and wages. A

search over N finds the contract that satisfies all three equations.

Unlike the commission contract, the optimal contract is not burdened with the constraint of a

fixed ratio between wage and price. Nevertheless, there are cases in which the optimal contract is a

commission contract (i.e., the commission contract is optimal for the platform). For example, the

optimal wage to price ratio,
woj
poj

=
woj

woj +NoG(woj )

is independent of the demand state (i.e., constant across states) if participation costs are uniformly

distributed (i.e., G(c) is linear in c). Alternatively according to Theorem 6, the commision contract

is optimal if joining costs are either very low or very high. To explain, when the joining cost,

c1, approaches its upper bound c̄1, the optimal contract gives nearly all revenue to providers in

order to recruit them. This is equivalent to a commission contract with β → 1. When c1 instead

approaches zero, the platform can recruit many providers and encourage enough participation with

a very small wage. In the limit, the optimal contract offers almost no wages, which is equivalent

to a commission contract with β → 0.

Theorem 6. The commission contract is optimal (i.e., yields the same profit for the platform as

the optimal contract) if (i) c1 → c̄1 or (ii) c1 → 0.
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5 Fixed Participation Cost

In this section we consider an specialized version of the main model in which, instead of heteroge-

neous and stochastic participation costs described by the distribution function G(·), all providers

have a fixed participation cost, c2, in period 2. (i.e., G(c|c < c2) = 0 and G(c|c2 ≤ c) = 1.) All

other aspects of the main model remain. Hence, this fixed c2 model, retains most of the critical

features of the main model: e.g., providers act on rational expectations, and capacity and demand

rationing are possible. The primary difference is that the average participation cost conditional on

participation is independent of the number of joining providers, N, (i.e., it is always c2), whereas

in the main model it decreases in N (i.e., for the same desired number of participating providers,

increasing the pool of potential providers, N, results in a selection of providers with lower average

participation cost).

To conserve space, we focus on three contract types with the fixed c2 model: (1) a fixed contract,

(2) the optimal contract (i.e., dynamic prices and wages), and (3) the commission contract (i.e.,

dynamic prices and a fixed ratio between wage and price). With the fixed contract the platform

selects a fixed price and compensates the providers so that their joining constraint binds, i.e., they

each earn c1. Hence, the fixed contract in this model is comparable to the fixed contract in the main

model.1 For notational convenience, let a = flal + fhah and ĉ = c2 + c1/fh. Proofs and derivations

of results are available from the authors.

The objective of this section is to use the tractability of the fixed c2 model to derive analytically

(i) the conditions under which the optimal contract increases consumer surplus relative to the fixed

contract, and (ii) a lower bound for the platform’s profit with the commission contract relative to

the optimal contract. The numerical calculations in the subsequent section demonstrate that these

results carry over to the more general main model.

To begin the analysis, with the fixed contract it is optimal to adopt one of three versions as

described in Table 1. There are two extreme solutions that serve customers in both demand states:

in the “poor service” version, capacity matches low demand, thereby causing demand rationing

in the high demand state; while in the “poor utilization” version, capacity matches high demand,

thereby causing capacity rationing in the low demand state. In the third version only high demand

is served. Thus, it is never optimal for the platform to have both demand and capacity rationing.

The optimal contract, described in Table 2, serves both demand states and sets recruitment,

N, equal to high demand. To facilitate comparison with the commission contract, it is possible

1This compensation can be achieved with a fixed wage for service (equal to c2, so that all providers who participate
receive demand) and a fixed salary for joining the platform (equal to c1, to ensure the joining constraint is satisfied).
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version price, p platform profit,U consumer surplus,S

poor service:
p < al,
N = al − p

al+c1+c2
2

(al−c1−c2)2

4
1
8

(
(a− c1 − c2)2 − f2

h (ah − al)2
)

poor utilization:
p < al,
N = ah − p

a+c1+c2
2

1
4 (a− c1 − c2)2

−fl (ah − al) c1

1
8 (a− c1 − c2)2 + 1

2

(
fla

2
l + fha

2
h − a2

)
only high
demand: al < p,
N = ah − p

ah+ĉ
2

1
4fh (ah − ĉ)2 1

8fh (ah − ĉ)2

Table 1: Three possible versions of the optimal fixed contract in the fixed c2 model.

c1 ≤ fh (ah − al) fh (ah − al) < c1

pl (al + c2) /2 1
2 (al + c1 + c2 − fh (ah − al))

ph (ah + ĉ) /2 1
2 (ah + c1 + c2 + (1− fh) (ah − al))

N (ah − ĉ) /2 1
2 (ah − c1 − c2 − (1− fh) (ah − al))

βl 2c2/ (al + c2) 2 (c1 + c2) / (a+ c1 + c2)
βh 2ĉ/ (al + ĉ) 2 (c1 + c2) / (a+ c1 + c2)

Uo
fl
4 (al − c2)2 + fh

4 (ah − ĉ)2 1
4 (flal + fhah − c1 − c2)2

So
1
8

(
fl (al − c2)2 + fh (ah − ĉ)2

)
1
8 (flal + fhah − c1 − c2)2

Table 2: Contract terms (pl, ph, N, βl = wl/pl, and βh = wh/ph), profits (Uo) and consumer surplus
(So) with the optimal contract for low (c1 ≤ fh (ah − al)) and high (fh (ah − al) < c1) values of the
joining cost.

to describe the platform’s wage in terms of a demand-contingent commission: with low demand

the platform pays a commission βl = wl/pl, and with high demand it pays βh = wh/ph. If

c1 ≤ fh (ah − al), then the amount of demand served in the low state is strictly less than the

amount served in the high state. In this case the wage/commission in the low state is chosen

to avoid excessive participation, leaving providers with zero earnings. (If the platform chooses

a higher wage in the low state then it merely induces more participation among the providers

without increasing their profit.) In the high demand state the wage/commission is selected so that

all providers are willing to participate and their earnings are just sufficient to justify joining the

platform. When the joining cost is higher, fh (ah − al) < c1, the platform equates the amount of

demand served in both states - providers are too costly to have some of them not serving customers

in the low demand state. In these settings the platform uses the same commission in both demand

states.

Now consider the issue of how consumer surplus compares between the fixed and optimal con-

tracts. It can be shown analytically that whether the optimal contract increases or decreases
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high demand
exceeds low demand

high demand equals low demand only high
demand

pl c2/β
1
2 (al + c1 + c2 − fh (ah − al)) -

ph ĉ/β 1
2 (ah + c1 + c2 + (1− fh) (ah − al)) ah+ĉ

2

N ah − ph 1
2 (ah − c1 − c2 − (1− fh) (ah − al)) ah−ĉ

2

β
2(flc22+fhĉ

2)
2

flc2al+fhĉah+flc
2
2+fhĉ2

2 (c1 + c2) / (a+ c1 + c2) 2ĉ
ah+ĉ

Uβ
(flc2(al−c2)+fhĉ(ah−ĉ))2

4(flc22+fhĉ2)
1
4 (flal + fhah − c1 − c2)2 fh

(ah−ĉ)2
4

Table 3: Contract terms (pl, ph, N, β = wl/pl = wh/ph) and profits (Uβ) with three potential
versions of the commission contract - each of these versions can be the best solution for the platform.

consumer surplus relative to the fixed contract depends on which version of the fixed contract

yields the highest profit for the platform (i.e., the version the platform would choose to imple-

ment). If the fixed contract involves demand rationing (either poor service or only high demand)

then consumers benefit from switching from the fixed contract to the optimal contract. In these

cases the fixed contract is unable to provide adequate supply and even though consumers pay more

in the high demand state with the optimal contract, the additional supply available with the opti-

mal contract leads to higher consumer surplus. However, if the fixed contract rations capacity (the

poor utilization version), then consumers are worse off with a switch to the optimal contract. The

fixed contract rations capacity when capacity is relatively cheap, meaning a low joining cost, c1.

The second issue is how the platform’s profit compare’s between the commission and optimal

contracts. To be specific, when does the commission contract perform poorly relative to the optimal

contract and by how much. Table 3 reports parameters and profits for three possible versions of the

commission contract. (A fourth possible version exists but it does not yield closed formed solutions.

This is not problematic for two reasons - it is the least likely of the versions to be optimal , and it

is not necessary to include in the derivation of a profit lower bound.)

Given that we are able to evaluate the entire parameter space for the fixed c2 model, we can

determine that the profit ratio Uβ/Uo is minimized when either c2 → 0 or c1 → 0. When c2 = 0

and 0 < c1, the optimal contract chooses a low wage when demand is low (merely to induce

enough participation without allowing providers to earn a profit in that state) and, when demand

is high, chooses a sufficiently high wage to give providers enough profit (c1/fh) to justify joining the

platform. Thus, the optimal low demand commission, βl, is very small, whereas the high demand

commission, βh, is large. This disparity in the two commission rates creates a challenge for the fixed

commission contract, which is required to choose a single commission. With the other extreme,

c1 = 0 and 0 < c2, the optimal policy chooses βh � βl. The joining constraint is not relevant (c1
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is low), so the focus for the optimal contract is on the participation constraint. Because pl < ph,

the optimal commission with low demand is higher than with high demand. Again, the fixed

commission contract is restricted to a single commission. If that commission is set high enough to

induce participation with low demand, then it gives the providers too much profit when demand is

high. But if it is set to the level needed for participation with high demand, then there will be no

customers served when demand is low.

It is possible to analytically derive a lower bound (which is often tight) on the profit ratio:

min {Uβ/Uo} =
1

2

(
1 +

√
fh

)
Thus, the commission contract performs poorly when one of the two costs is very low (either

c1 or c2) and the probability of high demand is small. In the extreme, as fh → 0, the fixed

commission contract earns only 1/2 of the profit of the optimal contract. However, when the two

demand states are equally likely, the commission contract earns at least 85% of the optimal profit(
(1/2)

(
1 +

√
1/2
))

.

Although there are cases in which the commission contract performs poorly relative to the

optimal contract, this does require rather special parameters. For example, consider cases in which

fh = 0.05, which yields a lower bound of Uβ/Uo = 0.612. Evaluation of 3,600 evenly spaced

observations throughout the feasible parameter space yields a minimum profit ratio close to the

lower bound, Uβ/Uo = 0.646. (The lower bound is not achieved because the extreme border

conditions c1 = 0 or c2 = 0 are not included.) However, the average ratio is Uβ/Uo = 0.995 and the

median ratio is Uβ/Uo = 1.000. We conclude that for the majority of parameters, the commission

contract yields nearly the optimal profit in the fixed c2 model. In the next section we report that

the analytical results from the fixed c2 model match the numerical analysis of the main model.

6 Numerical Study

To study the performance of the five contracts in our main model, we constructed 14,700 scenarios

with the goal to cover the set of feasible and plausible parameters. Table 4 summarizes the pa-

rameters used to create the scenarios. Without loss of generality, the demand intercept is set to

ā = flal + fhah = 100. The two demand states are al = δā and ah = (2 − δ)ā, which includes

from a minimal level of variance in demand outcomes (δ = 0.9) to nearly the maximal variance

(δ = 0.1). The probability of the low demand state ranges from a low of 0.05 to the high of 0.95.

(The fixed c2 model indicates that the fl and fh = 1− fl probabilities are important for comparing
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the optimal and commission contracts.) In all scenarios the provider’s participation cost, c2, is

Gamma distributed, with mean µ and standard deviation σ. The coefficient of variation of the par-

ticipation cost ranges from a low 0.05 to a relatively high 1.5. The mean of the participation cost,

µ, is selected relative to the average demand intercept value, a, by adjusting G(a) to correspond to

a particular fractile of the distribution, ranging from 0.01 to 0.99. In the former case the average

participation cost is high relative to consumer willingness to pay, i.e., a� µ, whereas in the latter

case participation costs are relatively low, i.e., µ� a. Finally, the joining cost, c1, spans the range

from a low value (0.05c̄1), to nearly its upper bound (0.95c̄1).

Parameters Included values

δ {0.1, 0.25, 0.5, 0.75, 0.9}
fl {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}
σ/µ {0.05, 0.1, 0.25, 0.5, 1, 1.5}
G (a) {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99}
c1/c1 {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}

Table 4: A summary of tested parameter values. All combinations of these values constitute 14,700
scenarios.

Table 5 reports on the frequency of different versions of the fixed contract. In 10.3% of the

scenarios the fixed contract is unable to earn a positive profit for the platform. (By construction,

because c1 < c1, the optimal and commission contracts earn a positive profit in all scenarios.) In

the majority of scenarios (74.3%) the fixed contract serves only the high demand state - as the

fixed contract does not respond to demand, it can be better to focus on only one demand state

rather than trying to cater to both. (The optimal contract always serves both demand states.)

When the fixed contract serves both demand states (2,253 scenarios), it does so with one of the

two extreme versions identified in section 4.1. The poor service version is more common (73.8% of

2,253 scenarios) - capacity is set to the low demand state so that providers are fully utilized but

demand is rationed. The other extreme is the “poor utilization” version - capacity is set to the

high demand state, which never rations demand but leaves providers with poor utilization when low

demand occurs. As expected, the low capacity (poor service) version is more prevalent when the

joining cost, c1, is high, otherwise the high capacity (poor utilization) version tends to be selected.

No scenarios were found which have both capacity and demand rationing. (This is always true in

the fixed c2 model.)

Table 6 reports on the profit performance of the four sub-optimal contracts relative to the

optimal contract in all 14,700 scenarios. In this table, and in the remaining discussion, we use the

subscripts f, w, p, β, and o to refer to the fixed, dynamic wage, dynamic price, commission and
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Version Number of scenarios %

“Poor utilization” - capacity equals
high demand, capacity rationing
occurs

591 4.0%

“Poor service” - capacity equals low
demand, demand rationing occurs

1,662 11.3%

Only the high demand state served 10,926 74.3%
Neither state served - unable to
earn a positive profit

1,521 10.3%

Table 5: Frequency of different versions of the fixed contract.

Uf/Uo Uw/Uo Up/Uo Uβ/Uo
Minimum 0.000 0.000 0.000 0.637

5% 0.000 0.000 0.000 0.966
25% 0.620 0.632 0.752 0.998
50% 0.966 0.971 0.981 1.000
75% 1.000 1.000 1.000 1.000
95% 1.000 1.000 1.000 1.000

Maximum 1.000 1.000 1.000 1.000
Average 0.757 0.762 0.791 0.993

Table 6: Profit performance of the four suboptimal contracts relative to the optimal contract in all
14,700 scenarios. f, w, p, β, and o to refer to the fixed, dynamic wage, dynamic price, commission
and optimal contracts, respectively.

optimal contracts, respectively. On average, the fixed, dynamic wage and dynamic price contracts

perform poorly relative to the optimal contract, earning only on average 75.5%, 76.2% and 79.1%

of the optimal profit respectively. However, this is due to the very poor performance of a few

scenarios: the median performance of those three contracts is considerably better: 96.6%, 97.1%,

98.1%. Furthermore, while the dynamic wage and the dynamic price contracts perform better than

the fixed contract, their incremental performance on average is not substantial. This suggests that

in this context it is insufficient to operate dynamically only on one dimension (price or wage). In

contrast, while the commission contract is not optimal, its performance is nearly optimal - the

average profit earned with the commission contract is 99.3% of the optimal profit and with 95% of

the scenarios the commission contract earns at least 96.6% of the profit of the optimal profit. (A

similar result is obtained in the fixed c2 model.) However, there are a few scenarios in which the

commission contract performs poorly - in the worst scenario the commission contract earns only

63.7% of the optimal profit. That performance is close to the analytical lower bound from the fixed

c2 model for these scenarios, Uβ/Uo = 1
2

(
1 +
√

0.05
)

= 0.612.

Table 7 focuses on the subsample of 2,253 scenarios in which the fixed contract serves demand

in both states. These scenarios are considered to be less extreme (and therefore more plausible)
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Uf/Uo Uw/Uo Up/Uo Uβ/Uo
Minimum 0.000 0.000 0.005 0.824

5% 0.046 0.046 0.326 0.970
25% 0.460 0.475 0.797 0.997
50% 0.738 0.792 0.939 1.000
75% 0.904 0.943 0.983 1.000
95% 0.976 0.988 0.997 1.000

Maximum 0.995 0.997 0.999 1.000
Average 0.652 0.680 0.844 0.994

Table 7: Profit performance of the four suboptimal contracts relative to the optimal contract in the
2,253 scenarios in which the fixed contract serves both demand states. f, w, p, β, and o to refer to
the fixed, dynamic wage, dynamic price, commission and optimal contracts, respectively.

because the variance in demand is not so large and provider cost is not so high as to cause the

platform to restrict attention exclusively to a single demand state (i.e., in the 12,447 scenarios not

included in the table the fixed contract earns the same profit whether the low demand state exists

or not). In this sample, three of the sub-optimal contracts perform worse than in the broader

sample. Adding only dynamic wages to the fixed contract provides only a marginal improvement,

whereas adding only dynamic pricing boosts the platform’s profit considerably. However, there

are substantial losses in profit even with dynamic pricing. In contrast, the commission contract

improves its performance in this sample, in particular its worst case performance is better (yielding

82.4% of optimal profit).

The overall conclusions from Tables 6 and 7 are (i) it is insufficient to dynamically adjust only

wage or only price, i.e., the platform should adjust both price and wage in response to demand and

(ii) although the commission contract constrains the platform with the requirement of a fixed ratio

between wage and price, the platform is nevertheless able to earn nearly the optimal profit in the

vast majority of scenarios.

It is worth emphasizing that the fixed contract performs poorly relative to the optimal contract

(or the commission contract) because it charges too little during high demand and it charges too

much during low demand. The popular press likes to emphasize higher prices, but it is important to

recognize that a fixed price leads to poor utilization among providers during low/normal demand

and that destroys some value in the system, value that can be recaptured through the use of

dynamic pricing. Thus, while consumers may (understandably) dislike the elevated prices paid

during high demand, they should appreciate the benefit of paying a lower price when low/normal

demand prevails.

To explore a bit further the finding that the commission contract generally performs very well

relative to the optimal contract, Table 8 reports the correlation between the profit ratio of the
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δ/a fl σ/µ G (a) c1/c1

Uβ/Uo 0.13 -0.19 0.31 0.03 0.22

Table 8: Correlations between scenario parameters and the profit ratio of the commission and
optimal contracts, Uβ/Uo, in the 2,253 scenarios in which the fixed contract serves both demand
states.

two contracts, Uβ/Uo, and the other parameters. As expected, the commission contract does best

when there is less variability in demand (i.e., δ is high): the commission contract is identical to

the optimal contract if there is no variability in demand. Consistent with the analytical results

obtained from the fixed c2 model, the profit ratio Uβ/Uo is lowest when c1 is low and fl = 1 − fh
is high. Finally, the commission contract performs poorly when the coefficient of variation of the

participation cost, c2, is smallest, which suggests that the lower bound for Uβ/Uo derived from the

fixed c2 model (which has zero variation in c2) should provide a suitable bound even in the main

model. Furthermore, it emphasizes that the commission contract is most effective in environments

in which providers really want to work on some days, don’t want to work on other days, and their

is no consistent pattern to those days across time.

Although the commission contract is nearly optimal in the vast majority of cases, it is worth

asking if there exists another simple contract that might perform even better. One option is a

membership fee contract that has been applied in several industries (Rochet and Tirole (2006))

and has been specifically suggested for ride-sharing (Economist (2014)). With a membership fee

contract the platform sets dynamic prices, providers keep all of the revenue they earn (as in a 100%

commission) and the platform earns revenue by charging providers a fixed fee to join the platform.

Providers join the platform only if their earnings net of the joining fee exceeds their requirement, c1,

and participation behavior continues to be governed by rational expectations. Unfortunately, with

the membership contract there is not a mechanism to limit excessive participation in the low demand

state, which is an important feature of the commission and optimal contracts. Consequently, there

can be a considerable loss in system value and that limits the platform’s potential earnings. Let

Um be the platform’s best profit with the membership fee contract. In our preferred sample of

2,253 scenarios, the median ratio of the platform’s profit with the membership fee contract to the

optimal profit, Um/Uo, is only 0.858 and the lowest ratio is 0.565. (The analogous ratios for the

entire sample are 0.964 and 0.531.) Thus, the membership fee contract is not a suitable alternative

to the commission contract. (Details to evaluate the membership fee contract are available from

the authors.)

Turning to consumer surplus, we use the fixed contract as the benchmark. Tables 9 and 10
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provide consumer surplus results for the set of scenarios with poor utilization or poor service with

the fixed contract. The impact of adding a dynamic component to the fixed contract depends

starkly on which component is made dynamic. If dynamic wages are added to the fixed contract,

then consumers are always better off (i.e., 1 < Sw/Sf in all cases). To explain, the fixed contract

with poor utilization mitigates the capacity rationing in the low demand state by constraining

recruitment. Restricting recruitment limits the excess participation in the low demand state that

causes capacity rationing. Once a dynamic wage is allowed, the platform can mitigate capacity

rationing in the low demand state by lowering the wage in that state. This enables the platform

to increase recruitment, which is beneficial to consumers. Similarly, the fixed contract with poor

service substantially restricts recruitment to eliminate capacity rationing. But then a considerable

amount of demand rationing occurs in the high demand state. The addition of dynamic wages

allows the platform to increase the number of recruited providers while ensuring that providers

continue to be fully utilized in both demand states. The increase in recruitment again benefits

consumers.

Although adding dynamic wages is beneficial to all stakeholders, the same cannot be said of

dynamic prices (i.e., Sp/Sf < 1 in all cases). This is particularly evident with the fixed contract

with poor service (Table 10). In this case, dynamic prices can address demand rationing without

changing recruitment or the wage: the platform simply increases the price in the high demand

state so that demand in both states matches the number of providers willing to participate under

the fixed wage. The same number of consumers are served, but the high price screens consumers

by their willingness to pay, improving platform profit, but lowering consumer surplus. (Better

screening improves consumer surplus, but always by less than the loss of consumer surplus due to a

higher price.) Dynamic prices are also problematic for consumers with the fixed contract with poor

utilization (Table 9). In this case the fixed contract selects an intermediate wage and price which

results in too little demand in the low demand state and too much demand in the high demand

state. The addition of dynamic prices allows the platform to let its prices diverge - a low price

in the low demand state and a high price in the high demand state. Increasing price in the high

demand state reduces the maximum demand, so the platform can offer a smaller wage and recruit

fewer providers. Neither the reduction in available supply nor the higher price benefits consumers.

The optimal contract combines the dynamic wage contract, which is good for consumers, with

the dynamic price contract, which is bad for consumers. Consequently, the optimal contract presents

a mixed results for consumers, but one with a clean demarcation - consumers are better off with the

optimal contract if the fixed contract chooses the poor service version (Table 10) and consumers
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fractile Sw/Sf Sp/Sf Sβ/Sf So/Sf Nw/Nf Np/Nf Nβ/Nf No/Nf

Minimum 1.001 0.333 0.723 0.706 0.847 0.539 0.603 0.629
5% 1.003 0.541 0.780 0.777 0.871 0.686 0.748 0.756
50% 1.025 0.854 0.957 0.956 0.995 0.911 0.945 0.946
95% 1.130 0.975 0.992 0.992 1.043 0.985 0.989 0.989

Maximum 1.234 0.986 0.994 0.994 1.099 0.989 0.993 0.994

Table 9: The ratio of consumer surplus and number of providers with the dynamic wage, dynamic
price, commission or optimal contract to the fixed contract in the 591 scenarios with poor utilization.

fractile Sw/Sf Sp/Sf Sβ/Sf So/Sf Nw/Nf Np/Nf Nβ/Nf No/Nf

Minimum 1.000 0.001 1.001 1.001 1.000 1.000 1.014 1.015
5% 1.002 0.115 1.005 1.005 1.000 1.000 1.028 1.029
50% 1.053 0.716 1.138 1.128 1.025 1.000 1.283 1.298
95% 1.580 0.952 3.962 3.912 1.336 1.000 6.335 6.378

Maximum 2.644 0.976 190.175 190.016 1.975 1.944 360.601 360.491

Table 10: The ratio of consumer surplus and number of providers with the dynamic wage, dynamic
price, commission or optimal contract to the fixed contract in the 1,662 scenarios with poor service.

are worse off with the optimal contract if the fixed contract chooses the poor utilization version

(Table 9). The fixed c2model analytically yields the same result.

The commission contract provides nearly the same consumer surplus as the optimal contract,

which is to be expected given that the two contracts yield similar surplus (i.e., profit) for the

platform. Furthermore, as the poor service version of the fixed contract is more likely as the

joining cost increases, it is expected that consumer surplus with the commission contract is more

likely to increase relative to the fixed contract when the selected commission rate is high because

the platform offers a high commission generally when providers incur high joining costs. Figure 3

confirms this intuition. The figure plots consumer surplus with the commission contract relative

to the fixed contract (y-axis) as a function of the selected commission (x-axis). While there is

variation, the general pattern is clear - as the commission rate increases, consumers are more likely

to be better off with the commission contract than the fixed contract. As a point of reference,

ride-sharing platforms tend to offer an 80% commission. Among the 864 scenarios that select a

commission of 80% or higher, consumers surplus with the commission contract is higher than with

the fixed contract in 859 scenarios (or 99.4% of them) and always higher whenever the commission

is 82% or higher.

Tables 9 and 10 also report on provider surplus, which equals Nc1 with all contracts. Thus,

provider surplus is determined by the number of providers who join the platform, N. As with

consumers, whether providers are better off from a switch from the fixed contract to the optimal or

the commission contract depends on which of the two versions of the fixed contract is adopted. The
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Figure 3: The ratio of consumer surplus with the commission contract to consumer surplus with the
fixed contract as a function of the commission earned by providers with the commission contract
in the 2,253 scenarios in which the fixed contract serves both demand states. Red squares indicate
the average ratio for scenarios grouped by the commission contract commission in 0.05 intervals.

poor utilization version of the fixed contract recruits too many providers relative to the optimal, so

the optimal contract reduces the number of providers, decreasing their total surplus. In contrast,

the poor service version of the fixed contract does not recruit enough providers, so total provider

surplus increase with a switch to the optimal (or commission) contract.

7 Self-Scheduling vs. Central-Scheduling of Capacity

Self-scheduling capacity is a relatively new business practice. Traditionally, the platform decides

how many and which providers participate, a practice we call “central-scheduling.” The key ad-

vantage of central-scheduling is that it allows the platform to eliminate the inefficiency of capacity

rationing: the platform would never choose to have more providers working than necessary as that

lowers the providers’ earnings, making recruiting them more costly. It can also assist with demand

rationing: if the number of providers on the platform exceeds demand, then all demand can be

served. However, the key limitation of central-scheduling is that the platform does not observe the

providers’ participation costs. It would simply be too costly to credibly learn the details of every

provider’s planned outside activities at every possible moment. Consequently, when the platform

use central-scheduling, it can regulate the number of providers who participate, but it must select a
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random sample of providers, which may not be the set with the lowest participation costs. Providers

anticipate that they may be scheduled to participate at less than ideal times, which affects their

decision to join the platform.

In our model with central-scheduling the platforms selects the number of providers who par-

ticipate, Kj , for each realization of available demand where Kj is bounded by recruitment, i.e.

Kj ≤ N . Participating providers earn wjφj − c2 and have a Kj/N chance of being selected to

participate. Recall that µ is the mean participation opportunity cost. Providers maintain their au-

tonomy in the long-run first period. Hence, to recruit providers the platform must still compensate

them for their participation costs. The platform’s problem is then

max
K,w,p,N

∑
j∈{l,h}

(pj − wj)φjKjfj

s.t.Π ≥ c1 (1)

N ≥ Kj ∀j

where the providers’ expected profit from joining the platform is

Π =
∑

j∈{l,h}

(wjφj − µ)
Kj

N
fj

Theorem 7. The platform earns higher profit and providers earn higher surplus with self-scheduling

than with central-scheduling of capacity.

The platform and providers are worse off with central-scheduling because exerting direct control

over provider participation increases the average provider’s opportunity cost, making recruitment

more difficult. The downside of self-scheduling for the platform is that it may lead to demand or

capacity rationing. However the combination of dynamic wages and dynamic prices in the optimal

contract eliminates both of those inefficiencies. Hence, the problem of self-scheduling can be fixed

via the contractual form, but the downside of central-scheduling cannot be corrected.

This result stands in contrast to Gurvich, Lariviere, and Moreno-Garcia (2015), which shows

that self-scheduling is less profitable for a platform than central-scheduling. Unlike Gurvich, Lar-

iviere, and Moreno-Garcia (2015), in our model providers make joining decisions based on rational

expectations of their future earnings. This forces the platform to internalize the costs faced by

providers. Hence, because providers value the flexibility of self-scheduling, so does the platform.

Using our sample of 14,700 scenarios from the numerical study, Table 11 illustrates the mag-

nitude of the loss that a platform incurs from central-scheduling instead of self-scheduling. On
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Uc/Uo Nc/No

σ/µ σ/µ
G(a) 0.05 0.25 0.5 1 1.5 0.05 0.25 0.5 1 1.5
0.01 0.53 0.17 0.02 0.00 0.00 0.49 0.15 0.02 0.00 0.00
0.10 0.57 0.23 0.09 0.00 0.00 0.53 0.21 0.08 0.00 0.00
0.40 0.63 0.28 0.15 0.04 0.01 0.59 0.26 0.14 0.05 0.01
0.80 0.74 0.42 0.30 0.21 0.16 0.70 0.40 0.29 0.22 0.19
0.99 0.82 0.65 0.60 0.59 0.60 0.76 0.58 0.54 0.55 0.57

Table 11: The ratio of profit, Uc/Uo, and provider recruitment, Nc/No between the optimal contract
with central-scheduling (“c” subscript) and self-scheduling (“o” subscript) in the 14,700 scenarios
of the numerical study. σ/µ is the coefficient of variation of a provider’s participation cost, c2. G(a)
influences the distribution of participation cost relative to consumer willingness to pay - when G(a)
is small, the average participation cost, µ, is high relative to consumer willingness to pay, whereas
when G(a) is high, the average participation cost is low relative to consumer willingness to pay.

average, the platform’s optimal profit with central-scheduling, Uc, is only 35.7% of the optimal

profit with self-scheduling providers, Uo. Providers are also worse off by a considerable amount -

Nc/No is 33.6% on average. That said, there is considerable variation in the performance of central-

scheduling. As intuition suggests, the penalty associated with central-scheduling is smaller when

the providers experience less variability in their participation cost (σ/µ is small) and the average

participation cost is small relative to consumer willingness to pay (G(a) is large). Nevertheless,

even in these scenarios, on average the platform and providers earn substantially less on average

than they would with self-scheduling.

8 Conclusion

We study a platform that offers a service via a pool of independent providers. Providers self-

schedule when they offer their service to the customers on the platform and decide whether or not

to join the platform based on their earnings expectations. Demand varies over the long-term but is

predictable in the short-term. For example, demand is known to be high or low based on observable

factors like the time of the week or the current weather. Two inefficiencies can arise: (i) demand

can be rationed either because too few providers join the platform or too few choose to participate;

and (ii) capacity can be rationed because competition for a limited number of jobs leads too many

providers to participate. Demand rationing is costly because some customers are unable to access

the service that they value at the price charged, and the customers that do get the service might

not be the ones that value it the most. Capacity rationing is costly because participating providers

are not fully utilized but still incur their full opportunity cost of joining the platform.

Although self-scheduling removes some control from the platform (it cannot directly control
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the number of providers who work), it allows providers to self-select when it is most beneficial for

them to work. We show that this additional flexibility is beneficial to providers, the platform and

consumers.

We study several contractual forms that vary in whether prices and/or wages respond to de-

mand. The most basic contract, the fixed contract, sets a single price and wage no matter what

demand level occurs. To the fixed contract the platform could add either dynamic wages or dynamic

prices. The optimal contract requires that the plaform chooses both a price and a wage contingent

on demand. We find that adding one dynamic component to the fixed contract (either wage or price

but not both) increases the platform’s profit but still leaves the platform with substantially lower

profit than what it could earn with the optimal contract, which is dynamic in both components.

We also consider a commission contract that chooses both price and wage dynamically, but with

the added constraint of a fixed ratio between the two. The commission contract mimics pricing

used in practice, such as Uber’s surge pricing. Our main result is that even though the commission

contract is not optimal, it yields nearly the optimal profit for the platform in the vast majority of

plausible scenarios. Consequently, it is probably sufficient for a platform to offer providers a fixed

commission and to then dynamically only adjust the price charged to consumers.

While maximizing profit is clearly an important objective for the platform, it isn’t the only

relevant one. A considerable amount of controversy has arisen over whether self-scheduling providers

should be treated like employees (e.g. given additional rights and benefits) and whether surge

pricing gouges consumers. Hence, a platform should also be concerned with how it influences

both provider and consumer surplus. We find that dynamic wages eliminate the inefficiency of

capacity rationing, and thus additional supply is provided to the system. With more providers,

more customers are served, leaving both providers and consumers better off. In contrast, consumers

should be wary of dynamic pricing on its own. Relative to the fixed contract, adding dynamic prices

while keeping the wage fixed reduces consumer welfare.

Given that dynamic pricing and dynamic wages work in opposite directions, the optimal contract

leads to ambiguous welfare implications, which depend on how the fixed contract manages demand

and capacity. If providers are relatively inexpensive (i.e. their opportunity cost to join the platform

is low), then the fixed contract recruits an ample number of providers and underutilizes them

during low demand periods. Adding dynamic prices and wages to that situation always works

to the disadvantage of providers and consumers because the platform recruits fewer providers

and, in the high demand state, charges more and serves fewer customers. However, if providers

have a high opportunity cost, then the fixed contract recruits a limited number of providers and
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forces customers during peak demand to suffer through poor service. In those cases, providers and

consumers are better off with the introduction of dynamic prices and wages: capacity expands to

serve more customers in all demand states. To frame this in the context of ride-sharing, if with the

fixed contract (e.g. taxis) it is hard to find service at peak demand times (e.g. a rainy evening),

then Uber’s introduction of surge pricing (i.e., dynamic pricing and wages) is likely to make all

stakeholders (Uber, drivers, and consumers) better off.
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9 Appendix

9.1 Proof of Theorem 1

With a fixed contract the platform chooses p, w, and N . Price can be selected from one of two

regions, corresponding to whether demand is served in both demand states or only in the high-

demand state: p < al and al ≤ p < ah. We consider each region separately. Suppose p < al. The

platform’s expected profit is

U =


(p− w)G(w)N G(w)N ≤ al − p

(p− w)((al − p)fl +G(w)Nfh) al − p ≤ G(w)N ≤ ah − p

(p− w)((al − p)fl + (ah − p)fh) ah − p ≤ G(w)N
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and the utilization of a provider is implicitly defined by φj = min{1, (aj − p)/NG(φjw)}. The

provider’s expected profit conditional on joining in period 1 is Π,

Π =



∫ w
0 G(c)dc G(w)N ≤ al − p∫ φlw
0 G(c)dcfl +

∫ w
0 G(c)dcfh al − p ≤ G(w)N ≤ ah − p∫ φlw

0 G(c)dcfl +
∫ φhw

0 G(c)dcfh ah − p ≤ G(w)N

The optimal contract does not exist exclusively in the first domain of the provider profit function.

To explain, suppose G(w)N < al − p were optimal. Then the platform’s profit strictly increases

in N while the provider’s profit is independent of N , so N must be at least (al − p)/G(w). The

optimal solution does not exist exclusively in the third domain of the provider profit function. To

explain, suppose ah− p < G(w)N . Utilization, φj , is decreasing in N , so decreasing N allows w to

be decreased, strictly increasing U . So N must be at most (ah − p)/G(w).

Given the optimal contract is in the second domain of U , the platform’s profit is strictly in-

creasing in N . This implies that either the provider profit constraint binds, c1 = Π, or the upper

bound on the feasible region binds, NG(w) = ah − p. If the former is not true but the latter is,

i.e. c1 < Π and NG(w) = ah − p , then the platform’s profit is strictly decreasing in w. As φlw

is increasing in w, a reduction in w is feasible (because c1 < Π ), which increases platform profit,

which leads to a contradiction. Thus, if the optimal solution has p < al, then it must be that

al − p = Nφ̄lG(φ̄lw), which, when substituted into U and the feasible region constraint yields

U = (p− w)(al − p)
(
fl +

G(w)

φ̄lG(φ̄lw)
fh

)
(2)

and

p̄ =
G(w)al − φ̄lG(φ̄lw)ah(
G(w)− φ̄lG(φ̄lw)

) ≤ p (3)

As the platform profit (2) is concave in p, the optimal price, subject to the constraint (3), is

p = max ((al + w)/2, p̄). which satisfies the p < al constraint as long as w < al. To satisfy the

0 ≤ φ̄l ≤ 1 constraint, it must be that w′ ≤ w ≤ w′′. Thus, a search over w ∈ [w′,min (w′′, al)]

finds the optimal wage.

Suppose al < p < ah. The provider joining constraint is
∫ w

0 G(c)dcfh ≥ c1. The platform’s

expected profit is

U =

(p− w)G(w)Nfh 0 < G(w)N ≤ ah − p

(p− w)(ah − p)fh ah − p ≤ G(w)N
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If ah − p < G(w)N , then the platform’s profit is strictly decreasing in w, so at optimal G(w)N ≤

ah−p. In this regime, U is strictly increasing in N, so it must be that G(w)N = ah−p. Therefore,

U = (p−w)(ah−p)fh, which is strictly concave in p, so the optimal price is p = max{(ah+w)/2, al}.

With either price, the platform’s profit is strictly decreasing in w, so with the optimal contract the

optimal wage is w = w′′ because that is the wage, by definition, that results in Π = c1.

9.2 Proof of Theorem 2

See technical appendix.

9.3 Proof of Theorem 3

See technical appendix.

9.4 Proof of Theorem 5

We show that the optimal contract is equivalent to the contract that maximizes system surplus

(the sum of platform and provider profit) The platform selects a price pj and a wage wj for each

demand state aj to maximize system surplus. Although the platform makes two decisions for each

demand state, it is possible to reduce this to a single decision because it is never optimal to choose

a price/wage combination such that demand doesn’t exactly match supply: if demand exceeds

supply, system profits can be increased by raising the price; and if demand is less than supply,

system profit can be increased by decreasing the wage. Hence, for any demand state aj , the price

and wage selected must satisfy NG(wj) = aj − pj . Let Sj(pj(wj), wj) be the system’s expected

profit given a wage and demand realization:

Sj(pj(wj), wj) = (aj−pj)(pj−wj)+N

∫ wj

0
G(c)dc = NG(wj)(aj−NG(wj)−wj)+N

∫ wj

0
G(c)dc

The system’s expected profit, including the cost of having N providers join, is S(wj , N) = Sl(wl)fl+

Sh(wh)fh−Nc1. Because Sj(wj) is quasi-concave, there exists a unique w∗j that maximizes system

profit for each demand state aj : w
∗
j +2NG(w∗j ) = aj , which is decreasing in N . Changing N affects

system surplus:

dS
dN =

∑
j

(
G(w∗j )(aj − 2NG(w∗j )− w∗j ) +

∫ w∗j
0 G(c)dc

)
fj − c1 =

∑
j

(∫ w∗j
0 G(c)dc

)
fj − c1

∂2S
∂N2 =

∑
j

∂w∗j
∂N G(w∗j )fj < 0

.
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Thus, system profit is concave in N and there exists a unique N∗ that maximizes system profit.

With N = N∗ providers earn their minimum profit, i.e. Π(N∗) = c1. It follows that the system

optimal solution is also the contract that maximizes the platform’s profit subject to Π ≥ c1. Finally,

a series of substitutions yields p∗j = w∗j (1 +NG(w∗j )/w
∗
j ).

The optimal contract yields a bound on the largest feasible provider reservation price. As c1

becomes large, the platform extracts all surplus from consumers by charging poj → aj and passes

all profit to providers via woj → aj . The platform earns weakly positive profit and providers earn∑
j∈{l,h}

∫ aj
0 G(c)dcfj . Then the largest c1 for which the platform can feasibly operate is

c̄1 =
∑

j∈{l,h}

∫ aj

0
G(c)dcfj . (4)

9.5 Proof of Theorem 4

Let wages be a fixed commission, β, of price, i.e. wj = βpj . As before, a provider’s expected

payoff for realization aj conditional on joining is Πj =
∫ wjφj

0 G(c)dc, where utilization in state j

is implicitly defined by φjNG(φjwj) = (aj − wj/β). Let ŵj be the unique wage that matches

supply and demand, i.e. ŵj = β(aj − NG(ŵj)). The platform’s expected profit for wj ≤ ŵj is

Uj = (1/β − 1)wjNG(wj), which is increasing in wj . Hence, the optimal wage is at least ŵj . The

platform’s expected profit for wj > ŵj is U = (1/β − 1)wj(aj − wj/β), which is concave in wj .

Thus, the profit maximizing wage is for a given aj is max{w̃j , ŵj}, where w̃j = βaj/2.

Now consider the platform’s optimal recruitment for a given commission. The optimal wage

schedule is a function of recruitment: ŵj ≤ w̃j if and only if NG(ŵj) ≤. aj/2 ≤ NG(ŵj) is an

increasing function of N :

∂NG(ŵj)

∂N
= G(ŵj)

(
1− βNg(ŵj)

βNg(ŵj) + 1

)
≥ 0

Define N̄j > 0 to be the unique recruitment threshold for which ŵj < w̃j if and only if N̄j < N

and define provider utilization given wage w̃j to be φ̃j = aj/2NG(φ̃jw̃j). Then expected profit of

a provider for a given aj is

Πj =


∫ w̃j φ̃j

0 G(c)dc, N̄j < N∫ ŵj

0 G(c)dc, N̄j ≥ N

Notice w̃jφ̃j is a decreasing function of N , so Πj is a monotonically decreasing function of N . In
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contrast, the platform’s expected profit from a realization aj is a weakly increasing function of N :

Uj =

(1− β)a2
j/4, N̄j < N

(1/β − 1)ŵj(aj − ŵj/β), N̄j ≥ N

It follows that the platform chooses recruitment so that Π =
∑

j∈{l,h}Πjfj = c1.

It remains to search over β. Because wj is decreasing in both N and β, we may find an lower

bound on β from maxj wj(N = 0) = ŵh(N = 0) = βah ≥ w′. Search for the profit maximizing

commission on the interval [w′/ah, 1].

9.6 Proof of Theorem 6

See technical appendix.

9.7 Proof of Theorem 7

See technical appendix.
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