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Abstract

Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neuro-

degenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this 

ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental 

cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of 

ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including 

mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown 

to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin–proteasome system. In this 

review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environ-

ment of the cell.
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Introduction

The survival motor neuron (SMN) protein was first high-

lighted as a protein of interest when mutations in its cod-

ing gene, SMN1, were linked to the neuromuscular disease 

spinal muscular atrophy (SMA) [1], a leading genetic cause 

of infant mortality. SMA presents in a range of severities 

with the most severe form, Type 1, being fatal within the 

first 2 years of life. Patients show degeneration of α-motor 

neurons in the lower spinal cord leading to progressive mus-

cle weakness. The clear importance of SMN protein to the 

motor system, alongside findings that knockout of Smn in 

mice was embryonically lethal [2], led to it being named 

“survival motor neuron”, despite subsequent research show-

ing that it is a ubiquitously expressed protein, required by 

all cells and tissue types, not just neurons [3]. Over the past 

three decades, significant research efforts have sought to bet-

ter understand the mechanisms through which SMN acts [3]. 

Most of the resulting knowledge has been generated from 

animal models of SMA, where reduced expression of SMN 

reveals its role in several important intracellular processes, 

which we will discuss in this review.

The full-length—294 amino acids, 38 kDa—human iso-

form of SMN (also known as FL-SMN, referred to as SMN 

hereafter) is mainly transcribed from the telomeric SMN1 

gene, located on chromosome 5q13. SMN1 contains nine 

exons, 1, 2a, 2b, 3, 4, 5, 6, 7 and 8, with exon 8 remain-

ing untranslated (Table 1). An inverted duplication in the 

region of SMN1 resulted in a second centromeric copy of the 

gene, termed SMN2, an evolutionarily recent event unique 

to Homo sapiens [4]. SMN2 differs from SMN1 at 5 bases, 

and a C-to-T transition in exon 7 of SMN2 favours skipping 

of exon 7 during splicing, resulting in the majority of SMN2 

products being a truncated isoform referred as SMNΔ7 [1, 

5]. However, limited amounts of SMN can still be produced 

from the SMN2 gene and it is known that the copy number of 

SMN2 is inversely correlated with SMA disease severity [6]. 

Patients with homozygous null mutations of SMN1 carrying 
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four or more copies of SMN2 show a less severe phenotype, 

later age onset, and can have a normal lifespan [7]. SMNΔ7 

is highly unstable and quickly subjected to the ubiquitin–pro-

teasome pathway for degradation [8, 9]. Phylogenetic studies 

further highlighted the importance of SMN, since it is highly 

conserved throughout evolution and there are even multiple 

copies of SMN1 in the chimpanzee genome [4]. Other SMN 

isoforms have been found in various tissues (Table 1). An 

“SMN6B” protein can be translated from both the SMN1 and 

SMN2 genes by the inclusion of an intronic Alu sequence 

as an alternative exon following exon 6 [10]. SMN6B is 

present both in the nucleus and cytosol, and is twofold more 

stable than SMNΔ7 but twofold less stable than full-length 

SMN. SMN6B is able to interact with Gemin2, although its 

physiological function is not fully understood [10]. mRNA 

transcripts of another isoform, SMNΔ5 (with the exclusion 

of exon 5), can be found in muscle and the central nervous 

system (CNS) although, again, whether it has a physiologi-

cal function is not clear [11]. An axonal-SMN (a-SMN) has 

also been proposed, being produced from intron 3 retention 

during splicing. Due to an in-frame stop codon in intron 3, 

a-SMN mRNA is much shorter and encodes a protein of 

19 kDa. a-SMN is reported to be localised to the axon, and 

its expression is enhanced in the spinal cord and the brain 

during development and declines in the adulthood, with a 

hypothesised role in axonogenesis [12].

The SMN protein contains several functional motifs 

including, moving from N-terminus to C-terminus, a basic/

lysine-rich domain, a Tudor domain, a proline-rich domain 

and a YG box. The basic/lysine-rich region is encoded by 

exon 2 and has been found to interact with Gemin2 and 

RNA in vitro and in vivo [13–16]. The Tudor domain is a 

highly conserved motif with a function in protein–protein 

interactions [17, 18]. The SMN Tudor domain binds to the 

C-terminal arginine- and glycine-rich tails of Sm proteins 

which contain symmetrical dimethylated arginine residues, 

thereby facilitating the assembly of spliceosomes as dis-

cussed later [18–24]. Mutations in this domain, which dis-

rupt the interaction of SMN and Smith core (Sm) proteins, 

are often found in SMA patients [18, 25–27].

The Tudor domain of SMN is also responsible for an 

interaction with coilin, a marker of Cajal bodies (CBs) [28]. 

Liu and Dreyfuss originally described the localisation of 

SMN to nuclear bodies which they termed “gems” [29], 

and which are coilin negative as opposed to CBs. Gems are 

composed of SMN complex proteins, whereas CBs are more 

complex nuclear structures to which SMN also localises, 

and the presence of SMN in these nuclear bodies increases 

during neuronal differentiation [30]. CBs are enriched with 

small nuclear RNAs (snRNAs) and small nucleolar RNAs 

(snoRNAs), and are essential for the biogenesis of the small 

nuclear ribonucleoproteins (snRNP) complex [31]. Interest-

ingly, motor neurons from a Type I SMA patient showed a 

reduced number of CBs and defects in recruitment of SMN 

and snRNP for spliceosomal maturation [32]. Tapia et al. 

[33] also demonstrated that SMN has a SUMO-interacting 

motif (SIM) in the Tudor domain, which is required for Sm 

protein binding and the assembly of CBs. Three polypro-

line stretches encoded by exons 4–6 are responsible for the 

binding of profilins, key proteins in the regulation of actin 

dynamics [34, 35]. A tyrosine/glycine-rich region in the 

C-terminus of SMN, termed the YG box, is found to facili-

tate oligomerisation of SMN by formation of the glycine-

zipper structure [36]. Mutations found in the YG box count 

Table 1  Main isoforms of SMN, their composition, expression and localisation

Other splicing isoforms of SMN have also been discovered in cell cultures, although their role in vivo is yet to be determined. These include 

isoforms excluding exons 3, 4 and 5 or multiple exons both in stressed and normal conditions [207, 208]. Skipping of any internal exons of SMN 

maintains the reading frame

SMN isoform Splicing Protein isoform Expression Localisation References

Full-length SMN (FL-

SMN)

Exons 1, 2a, 2b, 3, 4, 5, 

6, 7, 8

Functional SMN protein High expression during 

development, decreas-

ing into the adult CNS

Nuclear gems and cyto-

solic, including axons, 

dendrites and synapses

[102, 205]

SMNΔ7 Exons 1, 2a, 2b, 3, 4, 

5, 6, 8

Degradation signal intro-

duced by the change in 

C-terminal

High expression during 

development, decreas-

ing into the adult CNS

Nuclear accumulation [104, 206]

Axonal-SMN (a-SMN) Inclusion of intron 3 Truncated protein due to 

premature stop codon 

on the boundary of 

exon 3/intron 3

Expressed during devel-

opment, not detected 

in the adult CNS

Motor neuron axons [12]

SMN6B Inclusion of an Alu ele-

ment forming exon 6B

Truncated protein due to 

premature stop codon 

after exon 6B

Unknown Nuclear and cytosolic [10]

SMNΔ5 Exclusion of exon 5 Unknown Expressed in the mature 

CNS

Unknown [11]
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for nearly half of missense mutations in SMA patients and 

this motif was shown to be essential for survival in chick 

cells under conditions of SMN depletion [37, 38]. The YG 

box is required for SMN self-oligomerisation and proteins 

with mutations found in this motif, as seen in the Type I 

SMA patients, severely impair this association [39]. A recent 

study demonstrated that a phosphor degron within the YG 

box is exposed to  SCFSlmb ubiquitin E3 ligase when SMN is 

monomeric, implying that the YG box plays a role in SMN 

stability and indicating the importance of SMN oligomerisa-

tion [9]. Post-translational modifications to the SMN protein 

discern its localisation and function. As well as SUMOyla-

tion via the SIM regulating Sm protein binding, and ubiq-

uitination of SMN (discussed later), the protein may also 

be acetylated, which promotes a cytoplasmic localisation 

and increases its half-life [40], or phosphorylated on certain 

serine/threonine residues to promote its localisation to CBs. 

Mutations of three tyrosine residues in the Tudor domain 

greatly affect its enrichment in CBs via disrupted interaction 

with coilin [41, 42].

Several model organisms have been utilised to study 

the SMN protein and its role in SMA (Table 2). Although 

the protein product of SMN2 is truncated and unstable, its 

expression is crucial for survival once SMN1 expression 

has been lost. As SMN2 is specific to humans, most of the 

commonly used mouse models have undergone genetic 

manipulation to generate an endogenous Smn null mutation 

with concurrent overexpression of the human SMN2 gene, 

a cDNA copy of SMN2 lacking exon 7 or other variants of 

the SMN genes [43–45] (reviewed in [46]). Another widely 

used animal model is the zebrafish (Danio rerio). Having the 

advantages of well-characterised motor neurons and neuro-

muscular junctions, easy manipulation of gene overexpres-

sion or knockdown by injection of in vitro-transcribed RNA 

or antisense oligonucleotides, respectively, and a transpar-

ent body for imaging applications, zebrafish are becoming 

increasingly popular for translational SMA research pro-

jects [47–50]. Fruit flies (Drosophila melanogaster) have 

also been used to study SMN biology. They possess one 

copy of an Smn gene ortholog or DmSMN and can also be 

easily genetically manipulated. Each of the models referred 

to in this review are summarised in Table 2, with more com-

prehensive reviews of SMA models available elsewhere 

[51–54].

The selective cell death of motor neurons is a key feature 

of the disease, but the reasons behind this selectivity are 

still poorly understood. A recent study demonstrated that 

there were heterogeneous and surprisingly diverse expres-

sion levels of SMN in SMA-patient-derived iPSC motor 

neurons. Moreover, motor neurons with lower levels of 

SMN protein were more susceptible to cell death from toxic 

compounds, whilst overexpression of SMN in motor neu-

rons was protective [55]. SMN, therefore, clearly plays a 

major role in SMA pathology and the specific vulnerability 

to motor neurons in this disease. To understand why SMN 

is so vital for healthy cell maintenance, we must understand 

Table 2  Overview of animal models referred to in this review

For a comprehensive review of animal models of SMA, see Edens et al. [51]

Species Endogenous 

SMN ortho-

logue

Modelling strategy and/or genotype References

Caenorhabditis elegans CeSMN Knockdown of expression through RNAi [209]

Drosophila melanogaster DmSMN Point mutations or transposon insertions for knockout or knockdown studies [210, 211]

Danio rerio Smn Knockdown of expression through antisense oligonucleotides [47]

Mus musculus Smn

 Smn knockout Smn−/− Smn null mutation by targeted insertion of 

β-galactosidase in Smn exon 2A

[2]

 Taiwanese mice SmnH7/H7; SMN2Hungtg/− Two copies of the SMN2 transgene, Smn 

exon 7 is replaced with hypoxanthine 

phosphoribosyl transferase (HPRT) but 

transcripts without exon 7 are produced.

[43]

 SMNΔ7 Smn2A/2A; SMN2tg/tg; SMN∆7tg/tg One copy of the SMN2 transgene and one 

SMNΔ7 transgene on Smn null back-

ground

[45]

 Smn2B Smn2B/− Mutation within the splicing enhancer of 

Smn exon 7 producing SMN2-like tran-

scripts and reduced FL-SMN protein

[212]

 Burghes severe model Smn−/−; SMN2tg/tg Smn null mutation by target replace of 

β-galactosidase in Smn exon 2A; with 

one copy of SMN2

[44]
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its role under normal, as well as disease, conditions. In this 

review, we describe the role of the SMN protein in regulat-

ing protein homeostasis. Protein homeostasis within cells 

can be regulated by two major pathways, production and 

clearance, which reach a dynamic balance to support and 

maintain physiological status. Production pathways incorpo-

rate protein translation, folding, modification and assembly, 

while protein clearance pathways are centred around protein 

disassembly and degradation. We discuss known functions 

of the SMN protein, starting with its first-described role in 

RNA splicing and spliceosomal assembly, followed by more 

recently discovered functions in regulating mitochondrial 

homeostasis, endocytosis and the cytoskeleton, ubiquitina-

tion and autophagy, and RNA transportation, thus giving a 

broad picture of the many ways in which SMN plays a key 

role in regulating protein homeostasis.

SMN and ribonucleoprotein assembly

Although it is now clear that the SMN protein contrib-

utes to numerous cellular processes and pathways, the first 

identified and most studied function of SMN is its role in 

snRNP assembly. The spliceosome is a complex machine, 

which catalyses the removal of introns from pre-mRNA 

transcripts (see [56] for a detailed review). The biogene-

sis of an snRNP starts in the nucleus by the transcription 

of uridine-rich snRNAs (U1, U2, U4, U5, U6, U11, U12, 

U4atac, U6atac), which are then exported to the cytoplasm. 

Each snRNA is then bound to accompanying proteins and—

with the exception of U6 and U6atac—to a set of seven Sm 

proteins. Whilst Sm proteins can spontaneously associate 

in vitro with almost any single short-stranded uridine-rich 

RNA forming a thermodynamically stable heptamer [57], 

this process lacks specificity regarding RNA substrates. 

The role of the SMN protein, tightly associated with eight 

other proteins (Gemin 2–8 and Unrip) in a large macromo-

lecular SMN complex, is to chaperone the biogenesis of 

snRNPs from snRNAs and Sm proteins in the cytoplasm, 

and subsequent snRNP trafficking to the nucleus [14, 29, 

58–66]. First, the SMN complex enforces specificity during 

the snRNPs’ assembly with the direct and specific binding 

of Gemin5 to the cytoplasmic snRNAs [67–71]. The Sm 

core is then loaded onto the snRNA in an ATP-dependent 

process with Gemin2 playing a key architectural role in this 

assembly. Finally, the snRNA undergoes hypermethylation 

of its m7G-cap by TGS1 (trimethylguanosine synthetase 

1), leading to the formation of a trimethylguanosine (TMG) 

cap and trimming of its 3′ end before it can be imported 

back into the nucleus. The TMG cap and Sm core operate 

as nuclear localisation signals [72, 73]. Importation to the 

nucleus also necessitates the binding of the nuclear import 

complex (snurportin and nuclear import receptor importin-β) 

to the TMG cap [72, 74–77]. In that process, SMN has been 

shown to have a direct interaction with importin-β facilitated 

by WRAP 53 [78, 79]. WRAP 53 also plays a fundamental 

role in the trafficking of SMN towards CBs by facilitating 

the interaction between SMN and coilin [80]. The snRNA 

then dissociates from the SMN complex and undergoes its 

final maturation steps within the CB. Studies of splicing 

activity in cells from SMA patients or mouse models con-

firm the fundamental role of SMN in snRNP assembly with 

a correlation between the reduction in snRNPs levels and 

disease severity [81–83]. A recent study has also identified 

an alternative assembly pathway, whereby the U1-specific 

RNA-binding protein (RBP) U1-70K can directly interact 

with the SMN-Gemin2 complex, independently of Gemin5. 

This U1-specific Sm core-assembly pathway not only con-

tributes to U1 overabundance, but it was also proposed that 

SMN-Gemin2 could play a role as a hub, where various 

RBPs and their RNA cargos congregate, hence promoting 

ribonucleoprotein exchange [84].

The SMN complex is also involved in the biogenesis 

of U7 snRNPs, a specific subgroup of snRNPs which are 

involved in processing the 3′ stem loop of histone mRNAs 

by endonucleolytic cleavage of the pre-mRNA sequence 

which immediately follows the hairpin [85]. The assembly 

of U7 snRNPs is overall analogous to that of the spliceo-

some snRNPs, with the exception of the slightly degenerate 

Sm-binding site of the U7 snRNA and the replacement of 

two of the Sm proteins in the Sm core (SmD1 and SmD2) 

by two U7-specific Sm-like proteins (Lsm10 and Lsm11). 

Similar to spliceosome assembly, the SMN complex is a 

specificity chaperone that is necessary to precisely recognise 

and combine U7 snRNA with the Sm heptamers containing 

Lsm10 and Lsm11, without which the U7 snRNPs cannot 

function in histone RNA processing [86–88].

Although less extensively studied, the SMN complex is 

suspected to be involved in the assembly and metabolism of 

other ribonucleotide complexes, including small nucleolar 

ribonucleoproteins (snoRNPs), associated with the post-

transcriptional processing and modification of ribosomal 

RNA in the nucleolus (methylation and pseudouridylation) 

[89]. Indeed, SMN has been shown to directly interact with 

fibrillarin and GAR1, two markers of snoRNPs, and expres-

sion of a dominant-negative mutant of SMN results in abnor-

mal accumulation of snoRNPs in large aggregates outside 

of the nucleolus [90]. Furthermore, in SMA-patient-derived 

cells, a decreased localisation in CBs of the snoRNP chaper-

one Nopp140 was observed, which correlated with disease 

severity [91]. In addition, SMN may be involved with tel-

omerase, a large RNP complex that adds repeat sequences 

at the chromosomal ends. It comprises a telomerase reverse 

transcriptase (TERT), the telomerase RNA and other associ-

ated proteins (for a review on telomerase RNA, see [92]). 

The telomerase RNP belongs to the H/ACA snoRNP class 
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and it is suspected that SMN plays a role in telomerase bio-

genesis, ensuring specificity of assembly and correct traf-

ficking [93, 94].

As snRNP assembly and splicing occurs in all cells, 

including neurons, why do low levels of SMN in SMA par-

ticularly affect motor neurons [95]? This remains a major 

question challenging the SMN and SMA research field. As 

previously noted, the reduction in snRNP biogenesis cor-

relates with the degree of clinical severity in SMA [81]. 

However, SMN deficiency seems to preferentially disrupt 

the formation of minor snRNPs, such as those responsible 

for the removal of U12-containing intron genes [81, 83, 

96]. Amongst these, the gene coding for a transmembrane 

protein, stasimon, has been identified as being aberrantly 

spliced in a Drosophila model of SMA [97]. Upregula-

tion of stasimon rescued deficient neuromuscular junc-

tion (NMJ) transmission in SMN-deficient Drosophila and 

improved neuronal development in SMN-deficient zebrafish 

[97]. Other genes, not all containing U12-introns, such as 

chondrolectin, agrin and neurexin2 have also been identi-

fied as being abnormally spliced and could, therefore, play 

a role in the pathophysiology of the disease [98–100]. It 

could consequently be the case that defects in splicing have 

a larger effect on a specific subset of neuronal genes, thereby 

rendering motor neurons particularly vulnerable. However, 

despite this evidence for mis-splicing in the SMA disease 

pathway, other studies have suggested that wide-spread 

splicing defects mainly occur during the late stage of the 

disease [101], supporting the theory that alternative roles 

of SMN may play an equally important part in cell function.

SMN and tra�cking

The first indications that SMN played a role aside from its 

canonical functions in the spliceosome came when electron 

microscopy revealed localisation of SMN in the dendrites 

and axons of motor neurons in the developing rat spinal cord 

[102]. It has been suggested that there is a progressive shift 

in SMN protein localisation from mainly nuclear during 

development to a more cytoplasmic and axonal localisa-

tion in the mature neuron [103]. SMN was also found to be 

present at the growth cones of cultured motor neurons, and 

live cell imaging showed puncta positive for SMN being 

actively transported bi-directionally along axons [104]. 

SMN co-localises with some elements of the SMN complex 

in the axon, such as Gemin2, but Sm proteins show very 

low abundance in distal neurites, and most axonally located 

SMN granules lack Sm proteins [105]. The neuron-specific 

protein neurochondrin is required for the correct localisation 

of SMN in the cytoplasm, and neurochondrin was found not 

to co-localise with snRNPs, further indicating that SMN is 

involved in activities other than splicing [106].

Recent studies have identified that SMN can bind to the 

α-COP subunit of the COPI vesicle [107]. The COPI system, 

a Golgi-derived vesicular transport system, is involved in 

intracellular trafficking in neurites, necessary for the mat-

uration of neuronal cell processes [108]. Knocking down 

α-COP was found to disrupt SMN localisation within growth 

cones, resulting in its accumulation within the trans-golgi 

network [109]. Depletion of α-COP reduced neurite forma-

tion in NSC-34 cells and primary cortical neurons, with 

shortening of both map2-positive dendrites and tau-positive 

axons [110], and both α-COP and SMN are required for cor-

rect neurite formation [111]. This indicates a role for SMN 

in trafficking for the purposes of neuronal outgrowth and for-

mation of the axonal and synaptic cytoskeleton (see below).

In keeping with this potential role for SMN, Rossoll and 

colleagues discovered an interaction between SMN and 

the RBP hnRNP-R [112]. SMN and hnRNP-R were found 

to co-localise in the cytoplasm of primary cultured motor 

neurons, and in motor neurons cultures from  Smn−/− mice, 

there was a large reduction in β-actin mRNA localisation in 

axons and growth cones. Primary motor neurons cultured 

from Taiwanese SMA mice showed growth cones with a 

threefold reduction in size compared to healthy controls, as 

well as reduced staining for β-actin mRNA with no overall 

change in protein expression [112]. Since these initial find-

ings, fluorescence in situ hybridisation experiments against 

the polyA tails of mRNA revealed a more than 50% reduc-

tion in localisation of mRNA transcripts along the axon of 

primary motor neurons following SMN knockdown [113]. 

In addition, further co-localisation studies have shown SMN 

to associate with a number of RBPs via its Tudor domain, 

including KSRP [114], FMRP [115], HuD [113, 116], FUS 

[117] and IMP1 [118]. The association between SMN and 

other RBPs has linked it to another motor neuron disease, 

amyotrophic lateral sclerosis (ALS). RBPs associated with 

ALS, FUS and TDP-43 have been shown to co-localise in 

nuclear gems with SMN and mutations in either of their 

genes in ALS patient fibroblasts show reduced gem forma-

tion leading to abnormal accumulation of snRNAs in the 

nucleus [119, 120]. This highlights an interesting mecha-

nistic link between ALS and SMA.

SMN acts as a molecular chaperone for the binding of 

RBPs to mRNA transcripts as well the RBPs’ binding to the 

cytoskeleton and subsequent localisation, as evidenced by 

disruption of these processes in SMN deficiency [121]. Both 

IMP1 and HuD have been shown to influence the locali-

sation and translation of β-actin and GAP-43 mRNA tran-

scripts, which are in turn both necessary for correct axonal 

growth [113, 118, 122]. Indeed, SMN knockdown leads to 

a reduction of HuD in the axonal compartment [113], while 

knockdown of HuD in zebrafish leads to a similar phenotype 

to SMN knockdown of shorter axons [122]. Further experi-

ments using FLAG-tagged SMN in NSC-34 cells [123] 
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identified SMN as a binding partner for several species of 

non-coding RNAs, including snRNAs, snoRNAs and ribo-

somal RNAs, which were expected due to SMN’s known 

role in RNA processing, as well as miRNAs and tRNAs. 

The majority of RNAs identified were mRNA, with many 

being part of ribosomal and/or metabolic pathways. When 

compared to mRNAs known to localise to neuronal axons, 

the study’s authors identified 75 axonally localised SMN-

associated mRNAs, including RNA transcripts of several 

ribosomal proteins and Ubb, the transcript of the protein 

ubiquitin [123]. However, it should be noted that this group 

of mRNAs is unlikely to be comprehensive, as it does not 

include the known RNA transcripts regulated by SMN 

including β-actin, GAP43, tau and neuritin [112, 116, 124].

SMN and translation

While SMN plays an integral role in the transport of RNA 

transcripts along axons and dendrites, it also appears to be 

involved in the local translation of proteins. The transporta-

tion of mRNA transcripts along the axon allows for rapid 

protein turnover in distal regions of the neuron in response 

to, for example, activity [125]. Dysregulation of local trans-

lation has been associated with several other neurodegen-

erative disorders, including Alzheimer’s disease and amyo-

trophic lateral sclerosis (reviewed in [126]).

Recent evidence has pointed to a role for SMN in the local 

translation of mRNA transcripts, as well as their localisa-

tion. Early on, it was reported that loss of SMN changed the 

expression of plastin-3 in a zebrafish model of SMA [127]. 

Although, at the time of this discovery, the mechanisms 

behind changes in protein expression were not clear, more 

recent studies suggest that SMN affects the local translatome 

through several mechanisms. Translation within the axon 

was found to be dysregulated in primary neurons derived 

from  SMN−/− mice in vitro, with no corresponding change in 

somatic translation, and axonal defects could be rescued by 

overexpression of the RNA binding proteins HuD and IMP1 

[128], suggesting a link between the role of SMN in mRNA 

trafficking and translation. Furthermore, ultrafractionation of 

cell extracts from a motor neuron-like cell line revealed an 

association of the SMN protein with polyribosomes, whilst 

treatment with RNase displaced RBPs associated with the 

polyribosomes such as SMN, but also other known binding 

proteins such as FMRP [129]. When SMN was introduced 

to an in vitro translation system, there was a dose-dependent 

reduction in translation efficiency, with no change in transla-

tion when incubated with the SMNΔ7 fragment [129].

Alongside its direct interaction with ribosomes, sug-

gesting a possible direct role in translational control, SMN 

may also influence protein translation through micro-

RNAs. MicroRNAs miR-183, miR-96 and miR-182 are 

transcribed in a cluster and are associated with increased 

cell proliferation via the mTOR pathway [130]. Primary 

motor neurons with a 50% knockdown of SMN pro-

tein showed increased expression of miR-183 in neu-

rites whereas there was no change in expression in the 

cell body, along with downregulation of proteins in the 

mTOR pathway [131]. It is possible that SMN regulates 

the mTOR pathway and, therefore, protein translation 

through miR-183, since motor neurons in the Taiwanese 

mouse model and SMA-patient-derived fibroblasts both 

showed reduced levels of de novo protein synthesis, and 

a knockdown of miR-183 in Taiwanese mice produced 

a mild rescue of the phenotype with improved survival 

and increased body weight [131]. Another indication that 

SMN interacts with the mTOR pathway came from studies 

examining the effect of manipulating the PTEN pathway 

on primary motor neurons of SMNΔ7 mice. PTEN is a 

negative regulator of the mTOR pathway, and in SMN-

depleted primary motor neurons where axonal growth was 

defective, decrease of PTEN/activation of mTOR rescued 

the SMA phenotype [132].

Most of the work detailed above was performed in vitro, 

where primary cultures allow analysis of changes in axonal 

growth and the ability to isolate axonal compartments 

relatively easily. However, in vivo evidence is important 

to determine the role of SMN in these mechanisms. A 

recent study examined translational pathways in vivo and 

found SMN associating with ribosomes in control tissue, 

as well as a shift in residual SMN levels to non-ribosomal 

fractions and an overall reduction in the number of ribo-

somes associated with polysomes in Taiwanese SMA mice 

[133]. This study also compared the whole transcriptome 

to the translatome using next-generation sequencing, and 

confirmed significant deficiencies in translation following 

reduced SMN expression in vivo [133], including results 

that point to defects in the biogenesis of ribosomes, sug-

gesting a possible explanation for translational defects that 

occur upon SMN depletion.

Taken together, the studies detailed above strongly sug-

gest that SMN plays an important role in regulating pro-

tein translation through several mechanisms. First, through 

subcellular localisation of mRNAs along the axon; second, 

through association with ribosomes themselves regulating 

the availability of ribosomal units for local translation and 

finally, through regulation of the mTOR pathway. In this 

way, SMN is well positioned to play a role in the develop-

mental polarisation of motor neurons, as well as control 

their growth, maturation and proper function. This crucial 

role, alongside the expansive physical size of motor neu-

rons, may partly explain why motor neurons are particu-

larly susceptible to loss of SMN, as opposed to other more 

ubiquitous roles that the protein plays in the cell.
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SMN and the cytoskeleton

The cytoskeleton—incorporating key components such as 

microtubules, neurofilaments and actin protein—plays a 

fundamental role in regulating neuronal architecture and 

function. It is crucial for signalling and trafficking of vari-

ous molecules, but also for the formation of growth cones 

during neuronal development. Therefore, it is perhaps not 

surprising that defects in the cytoskeleton have been linked 

to several neurodegenerative disorders, including SMA 

(for reviews on the neuronal cytoskeleton see [134, 135]).

The observation that SMN localised to neurites and 

growth cones [102, 105, 136–138] and that SMN modu-

lated the localisation of β-actin within growth cones [112] 

provided the first hints of a possible role for SMN in regu-

lating cytoskeletal dynamics. At the same time, knock-

ing down SMN in zebrafish was found to result in motor 

axon pathfinding deficits [47], whilst SMN-deficient cell 

cultures showed neurite extension defects [104, 112, 139, 

140]. The fact that selective overexpression of the SMN 

C-terminal domain could rescue these neurite deficits in 

SMN-deficient PC12 cells argued in favour of a role of 

SMN in microfilament metabolism independent of snRNP 

biogenesis, as the Tudor domain where Sm proteins binds 

was not present in this C-terminal construct [139].

Growth cone formation and neurite extension are medi-

ated by actin dynamics, and SMN has been found to colo-

calize with profilin 2a during neurite cell extension [141] 

and in nuclear gems [34]. Profilin 2a is an actin-binding 

protein primarily expressed in the nervous system where 

it is involved in the regulation of actin turnover by pro-

moting actin polymerisation. Profilin 2a binds to a stretch 

of proline residue within the SMN protein [35], and this 

interaction with SMN modulates the activity of profilin. 

Profilin 2a is also a known downstream target of the rho-

kinase (ROCK) pathway, a key regulator of actin dynamics 

(reviewed in [142]). Knocking down SMN in PC12 cells 

resulted in an upregulation of profilin 2a, which, combined 

with its increased availability due to decreased interaction 

with SMN, lead to an upregulation of the ROCK pathway 

with subsequent inhibition of neuronal outgrowth [143]. 

ROCK pathway inhibition in an intermediate SMA mouse 

model (Smn2B) also resulted in increased life span and 

amelioration of muscle pathology [144] (see Fig. 1 for 

a summary of the role of SMN in cytoskeleton dynam-

ics). Moreover, it was recently suggested that SMN loss 

resulted in the dysregulation of the actin cytoskeleton 

by interfering with PlexinD1. PlexinD1 is a receptor for 

class 3 semaphorins and acts as a signalling factor to guide 

axonal growth. In the Taiwanese mouse model and in 

iPSC-derived motor neurons from SMA patients, PlexinD1 

was shown to be cleaved by metalloproteases, resulting in 

its functional change from being an attractant to a repel-

lent signalling factor, thereby contributing to growth cone 

collapse [145]. In the same study, cleaved PlexinD1 was 

found to be enriched in actin rods, a pathological struc-

ture of elongated actin aggregates also found in some age-

related neurodegenerative diseases but not in control cells.

Interestingly, by studying discordant families where sib-

lings of SMA patients were asymptomatic despite carrying 

the same SMN1 and SMN2 alleles as their affected siblings, 

Oprea et al. [146] were able to identify the first protective 

genetic modifier of SMA: plastin 3 (PLS3). PLS3 is involved 

in axonogenesis by bundling F-actin and stabilising growth 

cones. Its overexpression was able to rescue the axon out-

growth defects in SMN-deficient zebrafish and increase 

the life span of the intermediate Smn2B model [146, 147]. 

Other studies have suggested additional roles for SMN in 

regulating microtubule formation, required for transporting 

mRNAs, proteins and organelles to or from the nucleus to 

distal regions of the neuron (reviewed in [148]). Stathmin, 

a protein known to promote microtubule depolymerisation 

[149] was found to be upregulated in the spinal cord in Tai-

wanese mice and also in SMN-depleted NSC-34 cells lead-

ing to defects in the structure of axons and reduced mito-

chondrial transport along the axons [150]. In SMN-deficient 

cells, microtubules failed to re-polymerise following treat-

ment with the microtubule-depolymerisation agent nocoda-

zole, an effect which could be rescued by knocking down 

stathmin [150]. However, the detailed mechanisms linking 

SMN to these pathways, and whether or not they are indeed 

separate from SMN’s involvement in the mRNA traffick-

ing of components of the cytoskeleton such as GAP-43 and 

β-actin, remains to be determined.

SMN and endocytosis

Endocytosis is a basic cellular process, essential for neuronal 

signalling, axonal and dendritic growth (reviewed in [151]). 

It plays a particularly important role at synapses (including 

at neuromuscular junction synapses formed by motor neu-

rons), facilitating synaptic vesicle recycling necessary for 

repeated rounds of neurotransmitter release. A bioinformat-

ics analysis carried out on two different species (Caenorhab-

ditis elegans and D. melanogaster) identified the endocytic 

pathway, along with mRNA regulation, as potential modi-

fiers of SMN loss [152], with numerous individual genes 

being highlighted. In another study, SMN depletion resulted 

in a marked impairment of endocytic function in multiple 

tissues of C. elegans [153]. The neuromuscular junction was 

particularly affected, with structural and functional changes 

being reported. A reduction in the number of pre-synaptic 

docked vesicles was observed, accompanied by unusually 

large cisternae suggestive of arrested endocytic vesicle 



3884 H. Chaytow et al.

1 3

maturation [153]. This was associated with a decreased 

activity of, and disruption to, the NMJ (a key feature of 

SMA [154–156]): synaptic transmission was reduced, likely 

secondary to an impairment in synaptic vesicle recycling. 

In this model, endosomal defects were noted not only at the 

level of the NMJ, but also in non-neural tissue as endocytic 

activity in coelomocyte cells was lower. The importance of 

SMN for NMJ homeostasis was further demonstrated in the 
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Fig. 1  Schematic overview of the alterations in cytoskeletal dynamics 

and endocytosis observed following SMN deficiency. The diagram 
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Taiwanese model of SMA, where pre-synaptic uptake of 

FM1-43 dye by endocytosis was significantly reduced upon 

electrical stimulation. Interestingly, this disturbance was 

restored by PLS3 overexpression. The fact that PLS3 overex-

pression could improve the endocytic defect was perhaps not 

surprising, however, as the actin cytoskeleton is required for 

this process [157] and yeast cells lacking Sac6p, the PLS3 

ortholog, are defective for the internalisation step of endocy-

tosis [158]. Moreover, another F-actin binding and bundling 

protein, coronin 1C (CORO1C), has been shown to interact 

with PLS3 and its overexpression rescued endocytosis in 

SMN-deficient cells and improved the axonal phenotype 

in Smn-deficient zebrafish [159]. The importance of SMN 

for endocytic processes has also been confirmed in SMA-

patient-derived cells, which proved resistant to infection by 

a clathrin endocytosis-dependent virus [153] (see Fig. 1 for 

a summary of the role of SMN in endocytosis).

Using the same approach that led to the discovery of 

PLS3 as a modifier of SMA, a second modifier, neuronal cal-

cium sense protein neurocalcin delta (NCALD) was recently 

reported [160]. Contrary to PLS3 which acts as a positive 

regulator of endocytosis, NCALD is a negative regulator 

of endocytosis and axonal growth. Knockdown of NCALD 

restored neurite outgrowth in SMN-deficient cells and 

improved axonal growth and NMJ function in a zebrafish 

model of SMA. An enhanced neuromuscular function in C. 

elegans and murine models of SMA was also observed fol-

lowing NCALD depletion [160]. In the absence of calcium 

or at low calcium levels, NCALD, which localises to growth 

cones and pre-synaptic sites at the NMJ, interacts with clath-

rin, which mediates the endocytosis needed for fast recycling 

at axon terminals. Low SMN levels have been shown to lead 

to a reduction of voltage-activated  Ca2+ influx [98, 160], 

and it is possibly through this mechanism that endocytosis 

and vesicle recycling was impaired. It was postulated that, 

in normal motor neurons, the high local  Ca2+ concentra-

tion observed following neurotransmitter release led to the 

dissociation of NCALD from clathrin, therefore “freeing” 

clathrin to perform its endocytic function. In SMA, due to 

low  Ca2+ concentrations, dissociation did not occur and the 

clathrin was, therefore, not available for coating of the vesi-

cles. Moreover, disturbed calcium homeostasis would also 

be predicted to affect the function of actin-bundling proteins 

PLS3 and CORO1C, giving further strength to the hypoth-

esis that low calcium levels secondary to SMN deficiency 

play an important role in endocytosis impairment [158].

SMN and autophagy

Autophagy is a highly conserved catabolic process utilised 

by cells to break down unwanted macromolecules such 

as aggregated proteins or cellular organelles (reviewed in 

[161]). Autophagy involves a double-membrane bound 

structure engulfing target proteins and organelles to form 

an autophagosome. The autophagosome later fuses with lys-

osomes to become an autolysosome, in which the proteins 

and organelles are degraded (reviewed in [162]). Autophagy 

is a finely balanced mechanism: a decrease in expression 

of autophagy-related genes may lead to the accumulation 

of unwanted proteins whereas over-active autophagy leads 

to increased numbers of autophagosomes, possibly leading 

to cell death [163, 164]. Both of these outcomes have been 

described in various models of SMN depletion, indicating a 

role for SMN in the regulation of autophagy.

It is debatable whether an increase in amount of 

autophagosomes is protective or deleterious to the cell. 

Through measuring expression of LC3-II, a marker of 

autophagosomes, it has been shown that autophagosome 

number is increased in primary motor neurons following 

lentiviral SMN knockdown [165] and in spinal cords of 

the Taiwanese mouse model [166] and the SMNΔ7 mouse 

model [167]. Another way of measuring autophagic activ-

ity is through autophagic flux indicated by the level of p62/

SQSTM1 protein [168–170]. Again, the p62 protein level 

was found to be upregulated in the spinal cord of Burghes 

severe SMA mice compared to their control littermates 

[171], as well as in an NSC-34 cell line following lentivi-

ral SMN knockdown, and in the spinal cord of Taiwanese 

SMA mice [166], indicating a reduction in autophagic flux. 

Inconsistent with data from the Taiwanese mouse model, 

autophagic flux did not appear to increase in the spinal cord 

of SMNΔ7 mice [166, 167]. Inhibition of lysosomal prote-

olysis with Bafilomycin A1 (BafA1) resulted in an accumu-

lation of LC3-II in cultured motor neurons from the Burghes 

severe model, suggesting that SMN deficiency can activate 

autophagy [171].

Conversely, autophagy modulators can alter SMN pro-

tein levels. Treating cultured motor neurons isolated from 

wild-type mice with mTORC1 inhibitor rapamycin, which 

is believed to enhance the activity of autophagy [172, 173], 

showed increased SMN levels, whilst in BafA1-treated 

motor neurons SMN levels were decreased [171]. A recent 

study has indicated that SMN may be partially degraded 

through the autophagy pathway, since a knockdown of p62 

in stem cell-derived motor neurons from SMNΔ7 mice 

increased SMN protein levels [174]. A role for SMN in 

autophagy is also supported by the finding that overexpres-

sion of the SMN-binding partner α-COP, normally involved 

in cytoskeletal growth [110], partially restored autophagic 

flux in SMN-depleted cells [166], although the mecha-

nism involved remains unclear. Moreover, injection of the 

autophagy inhibitor 3-methyladenine (3-MA) into SMNΔ7 

mice at P3 greatly reduced autophagic activity and protected 

motor neurons from degeneration, possibly via inhibition 

of the apoptotic pathway as shown by reduced expression 
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of apoptotic markers [167]. On the other hand, rapamycin 

failed to influence the loss of motor neurons, but reduced 

survival significantly in SMNΔ7 mice [167]. These con-

flicting findings show that further work is still required to 

fully elucidate the interaction between SMN and autophagy 

pathways.

SMN, mitochondrial homeostasis 
and bioenergetics pathways

SMN deficiency has been linked to changes in oxidative 

stress, mitochondrial dysfunction and impairment of bioen-

ergetic pathways. Acsadi et al. [175] showed that knocking 

down SMN levels by ~ 66% in NSC-34 cells resulted in a 

marked reduction in ATP levels. This was associated with an 

increase in cytochrome c oxidase activity and mitochondrial 

membrane potential, resulting in increased free radical pro-

duction. This increase in oxidative stress in SMN-deficient 

cells was further confirmed in spinal motor neurons derived 

from human embryonic stem cells (hESCs). Interestingly, 

mitochondrial superoxide production was only increased in 

the SMN-knockdown hESCs which were made to differenti-

ate into spinal motor neurons, but not in the cells differenti-

ated into forebrain neurons [176].

Further analysis of mitochondrial dysfunction was per-

formed by the same group using two models of SMN-defi-

cient cells, SMA Type 1 patient-specific-induced pluripo-

tent stem cells (iPSCs) and SMN-knockdown hESCs, both 

differentiated into spinal motor neurons [177]. Impaired 

mitochondrial axonal transport and a reduction in axonal 

mitochondrial number and area were noted at early stages 

of cell culture. Partial rescue by the anti-oxidant N-acetyl-

cysteine provides evidence to support the hypothesis that 

oxidative stress plays an important role in neuronal degen-

eration in SMN-deficient motor neurons. However, experi-

ments on SMA patient iPSCs led to conflicting results as, 

in this model, no oxidative stress was detected [178]. These 

inconsistencies could be secondary to differences in the way 

the stem cells were differentiated and highlight the limita-

tions of studying cell type-specific pathological processes 

in cell cultures. More recently, studies in SMNΔ7 and Tai-

wanese mouse models confirmed marked mitochondrial 

dysfunction in spinal motor neurons, with decreased basal 

and maximal mitochondrial respiration, impaired mitochon-

drial membrane potential, impaired mitochondrial mobility, 

increased oxidative stress level and increased fragmentation 

[179]. Interestingly, mitochondrial defects in SMA are not 

thought to be limited to motor neurons in vivo, as they have 

also been identified in SMA patient muscle associated with 

a downregulation of mitochondrial biogenesis regulatory 

factors [180].

Mitochondrial oxidative phosphorylation is a core part 

of bioenergetic pathways. Mitochondrial electron trans-

port chain function relies on a supply of electrons from 

the carriers NADH and  FADH2 through upstream reac-

tions (mainly glycolysis and TCA cycle). Proteomics stud-

ies identified that bioenergetics pathways were affected by 

SMN deficiency, more specifically GAPDH, an enzyme of 

the glycolysis pathway, was downregulated in SMA models 

[181]. Interestingly, gene expression studies of affected and 

disease-resistant motor neuron pools in mice revealed that 

susceptible neurons had lower basal expression not only of 

specifically mitochondria-related genes but also of genes 

involved in more generic bioenergetic pathways. Specifi-

cally, the expression of PGK1, a key enzyme of the glyco-

lytic pathway, was significantly elevated in motor neurons 

that are intrinsically resistant to low levels of SMN, with 

experimental elevation/activation of PGK1 sufficient to res-

cue motor axon defects and loss of neuromuscular function 

in a zebrafish model of SMA [182].

Taken together, these studies highlight that SMN defi-

ciency leads to impairment in mitochondria and bioenerget-

ics pathways. However, the precise mechanisms involved 

in these interactions remain unclear. Studies in various cell 

types have shown that SMN does not localise to mitochon-

dria [175, 183]. Therefore, it has been postulated that the 

effects of SMN on mitochondrial function could be indirect, 

possibly by affecting preferentially the splicing, translation 

or mRNA transport of genes fundamental to mitochondrial 

homeostasis [175, 177]. As previously mentioned, cytoskel-

etal changes can also lead to decreased mitochondrial trans-

port, particularly within long axons [150]. Therefore, fur-

ther studies are required to better understand how SMN 

affects these energetic pathways, fundamental for cellular 

homeostasis.

SMN and ubiquitin pathways

Another key mechanism required for protein homeostasis is 

the protein degradation pathway. There are two major routes 

of protein degradation in eukaryotes: the ubiquitin–protea-

some system (UPS) and lysosomal proteolysis, or autophagy 

(see above). The mammalian ubiquitin pathway is initiated 

by activation of the E1 ubiquitin-activating enzyme UBA1, 

which then transfers ubiquitin onto one of around 40 E2 

conjugating enzymes. E2 ligases control whether a substrate 

is mono- or polyubiquitinated [184]. E3 ligases (of which 

there are several hundred) collect the substrate protein and 

form a complex between it and the ubiquitinated E2 ligase, 

where the ubiquitin is transferred onto the protein substrate. 

Ubiquitination is a dynamic process, and proteins can be 

stripped of their ubiquitin by deubiquitinating enzymes.
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SMN has been shown to be ubiquitinated and ultimately 

degraded via the ubiquitin–proteasome system, with a pro-

tein half-life of between 6 and 10 h depending on the cell 

line analysed [185, 186]. Inhibition of the proteasome in 

SMA-patient-derived fibroblasts increased the intracel-

lular abundance of SMN, both in terms of the amount of 

SMN protein and the number of nuclear gems [187]. Mon-

oubiquitination, as opposed to polyubiquitination, serves 

other functions in the cell instead of degradation including 

protein trafficking and intracellular localisation (reviewed 

in [188]) and SMN is known to be monoubiquitinated 

[186]. Indeed, preventing the monoubiquitination of SMN 

changed the localisation of the protein from the cytoplasm 

to the nucleus, and also prevented its co-localisation with 

Sm proteins [189]. Meanwhile, the SMNΔ7 fragment is 

polyubiquitinated and quickly degraded [186]. Pharmaco-

logical inhibition of ubiquitination of SMN, such as with 

the small molecule ML372, increased SMN protein levels 

and slowed disease progression of SMNΔ7 mice leading to 

longer survival, increased motor neuron size and less mus-

cle atrophy [190]. When SMA-patient-derived fibroblasts 

were treated with salbutamol, the β2-adrenergic recep-

tor agonist, there was also an increase in levels of SMN 

protein, possibly acting via activation of protein kinase 

A, thereby preventing SMN ubiquitination [191]. SMA 

patients treated with salbutamol also showed an increase 

in SMN levels in the blood [192].

Through proteomic analysis, SMN has been found to 

interact with several components of the ubiquitin pathway, 

including UBA1 and several E3 ligases, as summarised 

in Fig. 2 [9, 193]. Mutations in the UBA1 gene cause the 

disease X-linked SMA [194], a rare condition with simi-

lar symptoms to classical SMA but with no mutations in 

the SMN1 gene, suggesting a link between UBA1 and SMN 

which, when lost, leads to SMA-like phenotypes. Mutations 

in the Drosophila homologue of UBA1 cause motor defects, 

indicating that the motor system is particularly suscepti-

ble to the loss of UBA1 despite its ubiquitous expression 

[195]. Proteomic analysis of hippocampal synaptosomes 

from Burghes severe SMA mice showed decreased levels 

of UBA1 compared to controls, with decreased expression 

also reported in spinal cord and skeletal muscle [196]. The 

Taiwanese SMA mouse model similarly showed tissue-wide 

lower levels of UBA1, along with changes in splicing of the 

UBA1 transcript, which may account (at least in part) for 

the altered protein expression. Experimental suppression of 

UBA1 in wild-type zebrafish was sufficient to phenocopy 

SMA-like motor axon defects. Likewise, in the zebrafish 

SMA model UBA1 expression was reduced by 70%, whilst 

increasing UBA1 expression rescued the SMN-knockdown 
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Fig. 2  Diagrammatic representation of the ubiquitin pathway and the 

components, where SMN interacts. SMN is both ubiquitinated via the 

UPS pathway and an interacting protein influencing several steps of 

the process. SMN directly interacts with the UBA1 enzyme, which 

transfers ubiquitin to the E2 ligases. Ubiquitinated E2 ligases then 

form a complex with E3 ligases bound to protein substrates. SMN has 

been shown to interact with several E3 ligases, including Mindbomb 

1, Itch and TRAF6. Ubiquitin is then transferred to the protein sub-

strate and the complex dissociates. Monoubiquitinated substrates con-

tinue on to other intracellular processes, whereas polyubiquitinated 

substrates are targeted for proteasome degradation. SMN has also 

been shown to interact with deubiquitinating enzymes, which remove 

ubiquitin from protein substrates
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phenotype [197]. Finally, treating Taiwanese mice with 

an AAV9-UBA1 expression vector improved the survival, 

weight gain and motor performance of the mice as well as 

rescuing motor neuron cell number in the spinal cord and 

neuromuscular junction pathology [197].

As well as UBA1, SMN is known to interact with sev-

eral other ubiquitin-associated enzymes (Fig. 2). Several 

E3 ubiquitin ligases have been shown to interact with SMN 

and so may be involved in its degradation through recruit-

ment into the UPS. For example, Mindbomb 1 directly 

interacts with SMN [190]. Overexpression of Mindbomb 

1 was shown to increase the amount of ubiquitinated SMN 

protein in cell culture, while a knockdown of Mindbomb 1 in 

the C. elegans model of SMA improves the SMN-deficient 

phenotype of defects in pharyngeal pumping [198]. Other 

E3 ligases known to interact with SMN include Itch [189], 

TRAF6 [199] and the Drosophila E3 ligase SCFslmb [9]. 

Monoubiquitination following interaction with Itch was 

shown to regulate SMN’s intracellular localisation [189]. 

TRAF6 activity is apparently inhibited by SMN, and so 

SMN binding may be involved in the activation of NF-κB 

signalling further downstream [199].

Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a 

deubiquitinating enzyme specifically expressed in neuronal 

tissue, and its downregulation has been associated with 

Parkinson’s and Alzheimer’s diseases [200–202]. Follow-

ing knockdown of UCHL1 in cell culture, there was a con-

cordant increase in SMN expression [203]. Conversely, in 

Taiwanese mice, there was an increase in UCHL1 expres-

sion. However, inhibition of UCHL1 expression in Taiwan-

ese mice failed to increase SMN levels and did not have an 

effect on survival or phenotype of the SMA model, with 

evidence suggesting that an increase in UCHL1 levels in the 

absence of SMN may be a compensatory response to restore 

levels of ubiquitination [204]. Usp9x, another deubiquitinat-

ing enzyme known to interact with SMN, also influences its 

ubiquitination levels, where a loss of Usp9x impairs SMN 

nuclear gem formation while overexpression leads to an 

increase in ubiquitinated SMN [186]. It, therefore, appears 

that SMN is regulated at several levels of the UPS, which 

may have an effect on cell-wide ubiquitination as well as 

regulation of the SMN protein itself.

Concluding remarks and future perspectives

SMN, originally discovered due to its association with the 

neurodegenerative disorder spinal muscular atrophy, is in 

fact a ubiquitous protein with numerous roles within the cell. 

Although its first-identified and most-described function is 

in the biogenesis of ribonucleoproteins, it is now evident that 

SMN plays a more general housekeeping role. With this in 

mind, here we have discussed various areas of intracellular 

homeostasis in which SMN has been shown to interact: its 

well-known role as part of the ribonucleoprotein complex, 

but also other stages of RNA processing such as transport 

and local translation, important neuronal functions such as 

cytoskeletal dynamics and endocytosis, protein turnover 

processes of autophagy and ubiquitin–proteasome pathway 

and regulation of mitochondrial activity. Through tradition 

and necessity, the majority of current research into the func-

tion of SMN comes from SMA models of SMN deficiency. 

However, as this review has highlighted, SMN function is 

involved in so many aspects of normal intracellular activity 

that future SMN research should move beyond its associa-

tion with disease to better understand its role in maintain-

ing the homeostatic environment of the cell. Two major 

questions need answering in terms of the function of SMN. 

First, to what extent is SMN involved in the regulation of 

processes discussed in this review. While some areas have 

been researched extensively, such as ribonucleoprotein pro-

duction, other areas of SMN involvement are a relatively 

new discovery, such as the association of SMN with mito-

chondrial function and ubiquitin degradation, and so further 

exploration is needed. Secondly, the particular vulnerabil-

ity of motor neurons in SMA patients cannot be ignored. 

Although the idea that SMA is in fact a systemic disease, 

with defects seen across tissue types, is gaining acceptance 

in the research community, a better understanding of the 

multiplicity of SMN functions could serve to highlight areas 

of particular susceptibility in motor neurons which lead to 

their cell death in SMA. As SMN is at the cornerstone of so 

many molecular pathways, fundamental research into these 

cellular homeostasis processes is crucial to the better under-

standing of cellular biology.
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