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The performance of DNA metabarcoding approaches for characterizing biodiversity can be influenced by multiple factors. Here, we used mor-

phological assessment of taxa in zooplankton samples to develop a large barcode database and to assess the congruence of taxonomic identi-

fication with metabarcoding under different conditions. We analysed taxonomic assignment of metabarcoded samples using two genetic

markers (COI, 18S V1–2), two types of clustering into molecular operational taxonomic units (OTUs, ZOTUs), and three methods for taxo-

nomic assignment (RDP Classifier, BLASTn to GenBank, BLASTn to a local barcode database). The local database includes 1042 COI and 1108

18S (SSU) barcode sequences, and we added new high-quality sequences to GenBank for both markers, including 109 contributions at the
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species level. The number of phyla detected and the number of taxa identified to phylum varied between a genetic marker and among the

three methods used for taxonomic assignments. Blasting the metabarcodes to the local database generated multiple unique contributions to

identify OTUs and ZOTUs. We argue that a multi-marker approach combined with taxonomic expertise to develop a curated, vouchered, lo-

cal barcode database increases taxon detection with metabarcoding, and its potential as a tool for zooplankton biodiversity surveys.

Keywords: barcode, biodiversity, Gulf Stream, holoplankton, meroplankton, metabarcode, zooplankton

Introduction
Recent studies suggest that metabarcoding could eventually re-

place traditional morphological methods for biodiversity surveys

and ecosystem assessment (Lejzerowicz et al., 2015; Aylagas et al.,

2016; Elbrecht et al., 2017; Lobo et al., 2017; Carew et al., 2018).

By using DNA-identification to analyse a mixture of unidentified

species, metabarcoding offers the potential to dramatically reduce

the time and cost of biodiversity surveys while increasing detec-

tion of taxa that are difficult to identify based on morphology

alone (e.g. invasive species, Abad et al., 2016; cryptic species,

Aylagas et al., 2016; parasites, Pagenkopp Lohan et al., 2016).

However, in many environments, it remains to be demonstrated

that metabarcoding can perform better than traditional morpho-

logical assessments by taxonomic experts. The performance of

metabarcoding approaches is highly dependent on multiple fac-

tors, including how the initial samples are processed (Ransome

et al., 2017; Pagenkopp Lohan et al., 2019), the choice of primers

(Lobo et al., 2017), PCR profiles (Aylagas et al., 2016; Clarke

et al., 2017), genetic markers (Pitz et al., 2020), the completeness

of the DNA sequence reference database (Lindeque et al., 2013),

and even the software used for taxonomic assignment (Bazinet

and Cummings, 2012).

Even though traditional biodiversity surveys based on mor-

phological assessments are time consuming and depend on the

level of taxonomic expertise available, they may capture relevant

details for population and community analyses (such as sex, life

history stage, and relative abundance of taxa, Lindeque et al.,

2013). Most importantly, taxonomic experts can contribute DNA

sequences to reference databases based on confidently identified

and well-documented specimens deposited in a vouchering insti-

tution. When paired with metabarcoding, this traditional ap-

proach can dramatically reduce the number of unidentified (or

misidentified) sequences (Ransome et al., 2017), which in many

studies, comprise a large part of a community sample (e.g. 93%

of taxa for the COI marker in Cowart et al., 2015). These uniden-

tified sequences may actually represent species that are new to sci-

ence; however, most often they represent known taxa that are not

represented in current reference DNA-sequence databases.

Therefore, experts agree that continued contribution of vouch-

ered sequences to existing reference databases will be a major step

to fulfil the promise of metabarcoding approaches (Cristescu,

2014; Cowart et al., 2015; Bucklin et al., 2016; Ransome et al.,

2017; Porter and Hajibabaei, 2018).

Several curated databases have been developed in parallel to

the implementation of metabarcoding methods, emphasizing spe-

cific taxonomic groups or genetic markers (e.g. BOLD,

Ratnasingham and Hebert, 2007; SILVA, Quast et al., 2012; see

Table 2 of Porter and Hajibabaei, 2018 for a summary of data-

bases commonly used in metabarcoding studies). PR2 and

Midori are additional curated databases that were not assessed in

Porter and Hajibabaei (2018). The PR2 database includes rRNA

sequences with a curated taxonomy structured to conform with

Linnaean ranks (Guillou et al., 2012). The Midori database

includes sequences from GenBank with taxonomic information

at the species level for 13 protein-coding genes (including COI)

and two ribosomal RNA (lrRNA and srRNA; Machida et al.,

2017). The stringent filtering of GenBank data improves data reli-

ability in Midori, but greatly reduces the representation of known

species diversity (Machida et al., 2017). While not often quanti-

fied, similarly uneven and incomplete representation of extant

taxa should be expected for other curated databases.

The identification at any level from population to phylum of

metabarcoding sequence profiles depends not only on the com-

pleteness of the reference database but also on the algorithm

used. Following Bazinet and Cummings (2012), these algorithms

can be classified as (i) similarity-based (e.g. programs using

BLAST), (ii) composition-based (e.g. programs using Naive

Bayes Classifier), and (iii) phylogeny-based (e.g. programs using

maximum likelihood or Bayesian methods). Even within a cate-

gory, the performance of different bioinformatics pipelines can

vary widely when applied to the same dataset (Bazinet and

Cummings, 2012; Pitz et al., 2020). In addition, the resolution

and error rate of taxonomic assignments can vary for different ge-

netic markers (Richardson et al., 2017; Pitz et al., 2020). Opinions

on which markers work best vary greatly even for the same taxo-

nomic group (Bhadury et al., 2006; Tang et al., 2012). In studies

targeting taxonomically diverse assemblages, there is agreement

that a multi-marker approach is more effective (Cowart et al.,

2015; Bucklin et al., 2016; Djurhuus et al., 2018), but continued

assessment of different methods and markers for taxonomic as-

signment remains critical to enable metabarcoding data for stud-

ies of biodiversity and ecological research.

A more fundamental methodological choice in any metabar-

coding study is to determine how to generate the final set of

sequences for taxonomic identification. Sequences are usually

clustered into operational taxonomic units (OTUs), using a de-

fined similarity threshold (typically 97%) that is likely to repre-

sent different species. But recent studies have suggested that

individual unique amplicons (sequences amplified from an envi-

ronmental DNA sample) make metabarcoding more reproducible

and better represent the full biological diversity within environ-

mental samples (Callahan et al., 2017; Edgar, 2018). These unique

sequences have been called amplicon sequence variants (ASVs) or

zero-radius OTUs (ZOTUs) and capture both inter-specific and

intra-specific variability. While the full impact of this choice on

derived research questions is still being assessed, it affects the

number of taxa detected (Schenk et al., 2020).

Our study combined expert taxonomic knowledge with stan-

dard DNA barcoding and examines how metabarcoding results

can be improved by using taxonomic expertise to develop a cu-

rated database of vouchered DNA barcodes for multiple genetic

markers. We focused on a challenging yet commonly sampled as-

semblage, marine zooplankton communities. Given their broad

taxonomic diversity, their roles as critical members of ocean food
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webs, their many morphologically distinctive early life stages, and

the extensive taxonomic expertise required for accurate morpho-

logical identifications, marine invertebrate zooplankton are a nat-

ural target for diversity surveys using a metabarcoding approach.

Specifically, we compared the resulting taxonomic identification

of metabarcoding samples analysed using: (i) different markers,

i.e., either COI or 18S V1–2, (ii) different bioinformatic pipelines,

and (iii) different operational taxonomic units (OTUs and

ZOTUs). The different methods were compared among each

other, since the true community composition is unknown. To ac-

complish these goals, the StreamCode Project (a collaborative ef-

fort led by researchers in the Smithsonian National Museum of

Natural History), made multiple collections of plankton from a

specific geographic area and developed one of the largest curated

zooplankton databases that includes DNA barcodes. We analyse

if this regional database can help to identify organisms to higher

taxonomic levels such as phylum, and also if it can increase the

taxonomic resolution necessary to classify zooplankton into eco-

logical plankton type to identify permanent (holoplankton) or

temporary (meroplankton) residents of the plankton.

Methods
StreamCode project plankton collection

Twelve plankton tow samples were collected from the Florida

Current of the Gulf Stream off the Atlantic coast near Fort Pierce,

Florida (27.45�N 79.95�W) in June and August 2017 between the

surface and 77–145 m depth. To maximize the diversity of taxa

recovered, we used both a circular mouth plankton net (mesh

size 209mm) and a modified mid-water trawl (1.0 m2 square

mouth net with 500mm mesh). Upon collection and mixing, ap-

proximately one-quarter of each plankton sample was separated

for metabarcoding analysis. Each tow-specific subsample desig-

nated for the metabarcoding analysis was concentrated by pour-

ing it through a 50mm mesh nylon filter, rinsed with ultracold

95% ethanol into a 50 ml polypropylene tube, stored on dry ice

for transport to the Smithsonian Marine Station at Fort Pierce

(SMSFP), and stored at �80�C until processing. The leftover por-

tion of the mixed tow sample was diluted in at least 10 l of seawa-

ter, kept aerated and chilled during transport to SMSFP, and used

for live sorting of individuals.

Taxonomic identification using morphology

Live plankton were hand-sorted based on taxonomic groups un-

der stereomicroscopes at the SMSFP by a team of taxonomic

experts and students. Animals were selectively picked with the

goal of maximizing the diversity of samples collected from focal

groups across 15 invertebrate phyla (between 1 and 200 individu-

als per focal group, Table 1). For some groups (pteropods, holo-

planktonic polychaetes), selective sampling was able to capture

most of the expected species diversity. For species-rich groups

such as copepods, the sorting effort captured only a fraction of

the expected species diversity, and experts targeted taxa not yet

represented in GenBank. Live specimens were grouped by mor-

photype and classified to the lowest taxonomic level possible.

Individuals and populations of live specimens were photo-

graphed in the laboratory at SMSFP (see photography details and

how to access images in the Supplementary material). The high-

resolution images allowed us to verify the initial identifications

made in the field. Tissue samples or whole animals were placed

directly in 150ml TD-M2 tissue buffer (Autogen, Inc., Hollister,

MA) for extraction, PCR amplification and Sanger sequencing

(see DNA Barcoding below). All morphological and image

vouchers generated by the StreamCode project (Supplementary

Table S1), as well as tissues and DNA aliquots, are available in the

collections of the National Museum of Natural History

(NMNH).

After each of the samples was sequenced for COI and 18S V1–

2 regions, a two-pronged approach was taken to verify and refine

the initial identifications: (i) BLAST and alignment based and (ii)

phylogeny based. Both approaches were run on the Smithsonian

Institution’s High Performance Computing Cluster (https://doi.

org/10.25572/SIHPC), see Supplementary material for additional

details. For the BLAST approach (Altschul et al., 1990), each se-

quence was compared against sequences in GenBank and personal

reference libraries to verify taxon assignments. For the phylogeny-

based approach, we combined target sequences, related sequences

from GenBank, and sequences from personal libraries to build

phylogenetic trees and to determine the placement of each target

sequence in relation to known sequences. Based on the initial field

IDs, results of the BLASTn searches, the phylogenetic trees, photo-

graphs, and voucher specimens, taxonomic experts assigned a final

ID to each sample (Supplementary Table S1).

DNA barcoding

Detailed sequencing methods, primers used (Supplementary

Table S2), and quality control protocols are provided in the

Supplementary material. DNA extraction, amplification, and se-

quencing were performed in the Smithsonian Laboratories of

Analytical Biology (LAB), NMNH. All 18S V1–2 and COI sequen-

ces produced in the current study, the StreamCode DNA Barcode

Database, were uploaded to GenBank (https://www.ncbi.nlm.nih.

gov/genbank/, NCBI BioProject PRJNA421480, see Supplementary

Table S1 for accession numbers).

StreamCode DNA barcode database

To identify novel contributions of the StreamCode DNA barcode

database to GenBank, we used the gap analysis tool developed by

the Global Genome Initiative (GGI) for each refined ID

(Supplementary Figure S1) at the rank of species and higher taxo-

nomic levels (GGI Gap Analysis Tool, 2019; https://www.global

geno.me/gaps/live), GGI tool last accessed on 29 October 2020.

The live gap analysis tool searches GenBank for each name con-

sidering only sequences of barcode quality, defined as GenBank

sequence records for COI, rbcL, matK, and/or ITS with a se-

quence length > 500 bp that include information identifying a

scientific name, a voucher specimen, and the amplification

primer sequences (GGI Gap Analysis Tool, 2019). From the two

markers we used for this study (COI and 18S), only COI is offi-

cially considered a barcode and included in the Gap Analysis

Tool; however, we modified this tool with an in-house Python

script to search for 18S sequences in GenBank separately for each

Phylum.

DNA metabarcoding and bioinformatics protocol

DNA extraction, PCR amplification, and multiplex library prepara-

tion of pooled amplicons were performed at the SMSFP; final

quantification and library-size determination steps for sequencing

protocols were performed by staff at LAB. Raw metabarcoding

data is available through NCBI Sequence Read Archive and can be

found in NCBI BioProject PRJNA421480 (https://www.ncbi.nlm.
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nih.gov/bioproject/?term¼PRJNA421480). Additional details on

primers (Supplementary Table S3), sequencing methods and bioin-

formatics pipeline are provided in the Supplementary material.

Reads were merged and filtered with USEARCH 10.0 (Edgar,

2013). Post-merging, the allowable sequence range was 400–

500 bp for 18S V1–2 and 300–400 bp for COI. Primer specific

barcodes were demultiplexed in QIIME (Caporaso et al., 2010).

In USEARCH, primers were removed, and then unique sequences

were identified, de-replicated, and sorted by abundance. Because

the “species level” clustering threshold likely varies by taxonomic

group, we took two clustering approaches: (i) clustering sequen-

ces into operational taxonomic units (OTUs) at 97% similarity

after removing singletons and (ii) clustering sequences into zero-

radius operational taxonomic units (ZOTUs), allowing at least

four copies, which is recommended for smaller datasets (Edgar,

2016). The number of metabarcode sequences in each filtering

step is detailed in Supplementary Table S4. The variability in the

number of OTUs per phylum with an alternative OTU filtering

(keeping only sequences with at least four copies) is presented in

Supplementary Table S5.

Assigning taxonomy to the metabarcode sequences

We took three approaches to assign taxonomic identities to

OTUs and ZOTUs: (i) taxonomic assignment using the RDP

Classifier (Wang et al., 2007) with Midori or PR2 as reference

databases for COI and 18S, respectively; (ii) taxonomic assign-

ment using BLASTn against the NCBI nt database (we refer to

this approach as BLASTn-GenBank); (iii) taxonomic assignment

using BLASTn against the StreamCode DNA barcode database

(we refer to this approach as BLASTn-StreamCode).

The RDP classifier (Wang et al., 2007) was implemented in

QIIME (Caporaso et al., 2010) for the taxonomic assignment of

the 18S sequences, selecting PR2 11.1 as the reference database

(Guillou et al., 2012, PR2 database includes rRNA sequences with

curated taxonomy). For the COI sequences, the RDP Classifier

was implemented in the Midori server queried on 3 October 2020

(http://reference-midori.info/server.php; Leray et al., 2018), using

the Midori 2-LONGEST database as the reference (Machida et al.,

2017; filtered database of mitochondrial-encoded genes for meta-

zoans). We accepted a phylum classification as correct when the

confidence threshold was equal to or larger than 0.90. Based on

the information available in Midori, we observed that using 0.90

as the confidence threshold for COI yields an error rate less than

1% for most phyla commonly found in zooplankton assemblages

(http://reference-midori.info/download.php#; follow the path

Archive/Leave-one-sequence-out_test_1.1/COI). We are not

aware of similar specific guidelines for 18S using the PR2 data-

base, so we applied the same confidence threshold to 18S.

For the BLASTn-GenBank approach, we assigned taxonomy to

the OTUs and ZOTUs by running a BLASTn search with default

options on 6th October 2020. We filtered out matches lacking

specific taxonomic information using custom scripts in R (R

Core Team, 2020, see Data Availability for code). For the

BLASTn-StreamCode approach, we created a reference database

with the StreamCode voucher-based barcodes for each marker

and assigned taxonomy using BLASTn. A match to phylum was

Table 2. Performance of methods to assign barcodes to phylum using the StreamCode DNA barcode database.

RDP classifier BLASTn to GenBank BLASTn to StreamCode

Marker StreamCode Phylum N barcodes % identified % wrong % identified % wrong % identified % wrong

COI Annelida 107 6.5 14.3 22.4 0 83.2 0

Arthropoda 415 78.8 0 74.2 0 90.1 0

Brachiopoda 12 NA NA NA NA 100 0

Bryozoa 6 NA NA NA NA 100 0

Chaetognatha 19 89.5 5.9 84.2 0 84.2 0

Chordata 6 NA NA NA NA 66.7 0

Cnidaria 95 74.7 0 72.6 0 86.3 0

Echinodermata 64 89.1 0 64.1 0 84.4 0

Hemichordata 8 12.5 100 NA NA 87.5 0

Mollusca 278 75.2 0 77 0 87.8 0

Phoronida 1 NA NA NA NA NA NA

Sipuncula 31 35.5 0 74.2 0 77.4 0

18S V1–2 Annelida 115 88.7 8.8 99.1 1.8 100 0

Arthropoda 413 87.2 0 96.9 0 99.5 0

Brachiopoda 12 100 0 100 0 100 0

Bryozoa 7 100 0 100 0 100 0

Chaetognatha 12 91.7 0 100 0 100 0

Chordata 31 100 0 100 0 100 0

Cnidaria 123 94.3 0 100 0 100 2.4

Ctenophora 5 100 0 100 0 100 0

Echinodermata 70 87.1 0 100 0 100 0

Hemichordata 6 100 0 100 0 100 0

Mollusca 279 95 0 99.6 0 99.3 0

Phoronida 1 100 0 100 0 100 100

Sipuncula 34 88.2 0 100 0 97.1 0

Total number of barcodes tested, percentage of barcodes identified to phylum, and percentage of barcodes with a wrong assignment for each marker and

StreamCode phylum. To accept an identification to phylum, the confidence threshold was equal to or larger than 0.90 with RDP Classifier, and percent similar-

ity was equal to or higher than 85% for BLASTn. The RDP Classifier was used with the Midori database for COI and with the PR2 database for 18S. NA (not ap-

plicable) are instances where no assignment passed the confidence threshold.
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accepted as correct if the percent similarity and sequence coverage

were equal to or larger than 85% (Ransome et al., 2017). At least

for COI, Ransome et al. (2017) showed that an 85% similarity

threshold provides a relatively small error rate (0.7%) when

assigning sequences to phylum.

At the beginning of this project, we intended to compare

agreements at various taxonomic levels, but we did not find stan-

dardized recommendations. Initial explorations with our dataset

showed that we would need to generate specific thresholds of tax-

onomic assignments for each marker, method, and taxonomic

group. For this reason, we focused our main analysis on the

assignments to phylum.

Taxonomic matching between databases

To standardize the taxonomic names across the morphological

assignments and the different databases consulted in the metabar-

coding analysis (PR2, MIDORI, and GenBank), we followed the

classification in the World Register of Marine Species (WoRMS,

Horton et al., 2020). All names corresponding to marine organ-

isms were matched using the WoRMS online taxon match tool

(http://www.marinespecies.org/aphia.php?p¼match), last

accessed in October 2020. For matches to non-marine organisms,

we followed the NCBI taxonomy database (https://www.ncbi.

nlm.nih.gov/taxonomy), last accessed in October 2020. When a

phylum assignment of a sequence did not pass the corresponding

thresholds for each method, the phylum was labelled

“Unidentified.”

Standardizing names across databases is important because the

taxonomic differences between databases are not minor. To give

one example, the PR2 database considers Urochordata to be a

phylum, but the WoRMS classification considers Urochordata to

be subphylum Tunicata (within the Phylum Chordata). There is

some debate about the placement of Sipuncula as a subgroup of

the phylum Annelida (Struck et al., 2011; Parry et al., 2016); to be

consistent in our analysis, we followed the WoRMS classification,

as of November 2020, that considers Sipuncula a phylum. In ad-

dition, there were a few cases in which the minimum taxonomic

level reported in the output (by MIDORI or PR2) did not match

the phylum assigned by WoRMS. When that happened, we ran

independent BLASTn searches of each OTU/ZOTU and verified

that the WoRMS assignment was correct. We enumerate those

cases in the R code provided in the Dryad data package.

Validating methods for a taxonomic assignment using

the StreamCode DNA barcode database

To validate the performance of the taxonomic assignment to phy-

lum for the metabarcoding data, we ran the StreamCode COI and

18S barcodes using the same three methods for a taxonomic as-

signment detailed for the metabarcoding data: (i) RDP Classifier,

(ii) BLASTn-GenBank, and (iii) BLASTn-StreamCode, without

including the query sequence. As not all the barcodes were suc-

cessfully identified at the quality thresholds specified, we calcu-

lated the percentage of barcodes that were identified, and from

the barcodes identified, we calculated the percentage of wrong

assignments to phylum.

Variability in the metabarcoding results

To examine the variability of taxonomic assignments associated

with methodological choices when assessing a zooplankton as-

semblage, we compared sequence assignments to the phylum level

resulting from the use of different genetic markers (COI, 18S

V1–2), different types of clustering (OTUs, ZOTUs), and differ-

ent approaches to assigning taxonomy (RDP Classifier with

MIDORI/PR2, BLASTn-GenBank, and BLASTn-StreamCode).

We calculated the number (and proportion) of OTUs/ZOTUs for

each phylum, genetic marker, and approach for a taxonomic

assignment.

Agreements and unique contributions among methods

for assignment to phylum

For all the OTUs/ZOTUs, we quantified the agreement between

methods for taxonomic assignment to phylum. We recorded

whether all methods agreed, only two agreed, or zero agreed.

Additionally, we kept records of how many agreements were to a

specific phylum (e.g. Annelida) versus agreements in failure to

identify a phylum (e.g. Unidentified).

For the taxonomic groups best studied by the StreamCode tax-

onomic experts (Annelida, Arthropoda, Cnidaria, Mollusca, and

Sipuncula), we combined the barcodes and OTUs into a phyloge-

netic tree (details in Supplementary material). For the metabarco-

des, we highlighted the cases in which two or three methods

agreed in the assignment and unique cases in which only one

method was able to assign the sequence to a phylum (we refer to

these cases as unique contributions).

Plankton types

To investigate a categorical approach where it is necessary to

match taxa with an ecological planktonic type, we classified

OTUs/ZOTUs into meroplankton and holoplankton. Meroplankton

consists of the life-history stages of benthic organisms that live

temporarily in the water column (e.g. eggs, larvae, and adults in

the case of medusozoan cnidarians), whereas holoplankton refers

to organisms that live permanently within the water column.

Although in some cases all members of a phylum belong to the

same plankton type (e.g. all Sipuncula were meroplankton), for

Annelida, Arthropoda, Chordata, Cnidaria, and Mollusca, we used

customized taxonomic filters that involved taxonomic assignments

below the level of phylum (i.e. Class, Order, Family). In this analy-

sis, we excluded OTUs/ZOTUs assigned as “Unidentified” or as

non-target phyla.

Results
StreamCode project

The collection, handling, morphological identification, and pho-

tographing of zooplankton samples involved approximately

1800 h of field work by 31 persons, or 58 person-hours. Of the

2260 specimens collected, representative individuals were cata-

logued (n¼ 1529; Supplementary Table S1), tissue sampled

(n¼ 1399), photographed (n¼ 1149, Figure 1), and, when possi-

ble, a morphological voucher was deposited into the National

Museum of Natural History collections (n¼ 403). Universal pri-

mers were effective for sequencing individuals of most taxonomic

groups, although there was considerable variation in success be-

tween the two genetic markers (COI, 18S V1–2) across the differ-

ent target groups (Table 1). The number of morphospecies

identified by the taxonomic experts for each target taxonomic

group is reported in Table 1. The refined ID for each sample, cur-

rent classifications following the WoRMS taxonomy, voucher

identification number (USNM), and GenBank accession numbers

3402 P. Pappalardo et al.
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for the samples sequenced successfully are also included in

Supplementary Table S1.

Contributions to GenBank

The gap analysis allowed us to identify taxa for which

StreamCode contributed new COI or 18S sequences to GenBank

as of 29 October 2020 (taxon names are detailed in

Supplementary Figure S1). The COI results were specific to con-

tributions of barcode quality (e.g. Flaccisagitta enflata will count

as a new contribution because the available sequence in GenBank

is shorter than 500 bp), but the 18S results represent any contri-

bution for that genetic marker without a predefined quality filter.

For COI, we contributed sequences for three classes that were

previously not included in GenBank (Appendicularia and

Thaliacea within phylum Chordata, and Phascolosomatidea

within phylum Sipuncula). No new class-level contributions were

made for 18S. Order level contributions were made for both COI

and 18S within the phyla Echinodermata, Mollusca, and

Sipuncula (these could be related to taxonomic backbone differ-

ences, see Supplementary Figure S1); and for COI within the

phyla Annelida and Chordata (Supplementary Figure S1). We

also contributed COI sequences for 33 families (from 6 phyla)

previously not represented, and 11 for 18S; sequences were con-

tributed for 66 genera (from 8 phyla) previously not represented

for COI, and 33 for 18S; and sequences were contributed for 63

species previously not represented for COI, and 46 for 18S

(Supplementary Figure S1). Overall, the largest number of se-

quence contributions were for the phyla Arthropoda, Cnidaria,

and Mollusca.

Validating taxonomic assignment methods using the

StreamCode DNA barcode database

The percentage of StreamCode barcodes identified to phylum

ranged from 0 to 100%, depending on the genetic marker and the

method used to identify taxa (Table 2). For both markers and

most phyla, the BLASTn-GenBank method identified a larger per-

centage of barcodes than the RDP Classifier, and in most cases at

a smaller or zero error rate (Table 2). Using the local database

(BLASTn-StreamCode) improved the percentage of identified

taxa for most phyla, with the largest improvement observed with

COI for the phylum Annelida (Table 2). Not all the barcodes

identified to a phylum were assigned to the correct phylum; the

percentage of wrong assignments varied with marker and method

but was in general larger for COI than for 18S. All of the

StreamCode phyla were identified using the 18S barcodes, with

only small errors in the assignment to phylum for Annelida and

Cnidaria (Table 2), and a failure to correctly identify Phoronida

using the BLASTn-StreamCode approach. Since there was only

one StreamCode DNA barcode available for the phylum

Phoronida, when that sequence was queried there were no other

sequences from the phylum Phoronida for comparison.

Variability in metabarcoding results

The total number of OTUs/ZOTUs identified to phylum differed

by marker, and methods used for a taxonomic assignment

(Table 3). Regardless of the type of clustering or method for a

taxonomic assignment, the proportion of unidentified taxa was

smaller for 18S V1–2 than COI (18S: 15.3–40.8%; COI: 34.7–

75.0%). In general, the BLASTn-GenBank method returned a

smaller number of unidentified taxa and identified a larger num-

ber of non-target phyla when compared with the other methods

(Table 3).

Phylum detection at the defined taxonomic thresholds varied

by marker, type of clustering, and method for a taxonomic as-

signment. The phyla detected by all metabarcoding method com-

binations (and by the morphological analysis) were Annelida,

Arthropoda, Bryozoa, Chaetognatha, Chordata, Cnidaria,

Echinodermata, Mollusca, and Sipuncula. Other phyla were

detected only by some combinations: Acanthocephala using 18S

V1–2; Porifera using COI with BLASTn-GenBank and by mor-

phological analysis; Nematoda using OTUs by BLAST-GenBank

and RDP Classifier. By definition, the phyla not represented in

the StreamCode DNA barcode database (Acanthocephala,

Nematoda, Nemertea, and Platyhelminthes) were unidentified us-

ing the BLASTn-StreamCode approach.

The cases in which the only one of the methods used for a tax-

onomic assignment was able to identify a phylum (unique

Figure 1. Examples of StreamCode specimens. (a) Pelagobia sp.
(Polychaeta), USNM 1450035; (b) Maupasia sp. (Polychaeta), USNM
1450037; (c) Peachia sp. (Cnidaria), USNM 1448832; (d) Cytaeis sp.
(Cnidaria), USNM 1447971; (e) Phronima sp. (Arthropoda), USNM
1450286; (f) Clio recurva (Mollusca), USNM 1448342; (g) Euchirella
curticauda (Arthropoda), USNM 1448593; (h) Otoporpa sp.
(Cnidaria), USNM 1448490; (i) Copilia sp. (Arthropoda), USNM
1448598; (j) Abralia veranyi (Mollusca), USNM 1447996. (a–d)
Highlight of four StreamCode samples that represent new COI
contributions of barcode quality at the genus level not previously
represented in GenBank.
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Figure 2. Unique OTUs contributions from each method for a taxonomic assignment (BLASTn-GenBank, BLASTn-StreamCode, RDP
classifier), for (a) COI and (b) 18S V1–2. The RDP Classifier was used with the PR2 database for 18S and MIDORI 2 database for COI. Upper
panels: counts for all the unique contributions to identify OTUs in each phylum. We added a constant of 0.5 when the number of unique
contributions was 1, to be able to represent those values in the logarithmic scale. “Non-target” refers to taxa identified to phyla that do not
belong to the target zooplankton groups. Lower panels: distance tree of all the barcodes and OTUs for Annelida and Arthropoda, coloured
according to the identification method for each genetic marker sequence. When two or three metabarcoding methods agreed in the
assignment to the phylum, we coded it “Agreement.”

Table 3. Summary of metabarcoding results.

Marker Clustering Taxa RDP classifier BLASTn-GenBank BLASTn-StreamCode

COI OTUs Zooplankton 1661 1986 1234

Unidentified 3283 2817 3712

Non-target 2 143 0

ZOTUs Zooplankton 5168 5910 4646

Unidentified 4080 3206 4603

Non-target 1 133 0

18S V1–2 OTUs Zooplankton 1892 1914 2935

Unidentified 1468 1453 663

Non-target 238 231 0

ZOTUs Zooplankton 2252 2570 2744

Unidentified 781 526 707

Non-target 418 355 0

Number of OTUs/ZOTUs identified to target zooplankton phylum, unidentified to phylum, or identified to non-target phylum for each genetic marker, type of

clustering, and method used for taxonomic assignment.

3404 P. Pappalardo et al.
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contributions) varied by taxonomic group and genetic marker

(Figure 2). For COI OTUs, the BLASTn-StreamCode method

generated more unique contributions for Annelida, Bryozoa,

Chaetognatha, and Echinodermata (Figure 2a); whereas for 18S

V1–2 OTUs, the BLASTn-StreamCode method generated the

largest number of unique contributions for taxa within

Arthropoda (Figure 2b). BLASTn-GenBank and RDP Classifier

had more unique contributions within Chordata, Arthropoda

(for COI) and non-target phyla; BLASTn-GenBank and BLASTn-

StreamCode had the largest number of unique contributions for

the phylum Cnidaria; and RDP Classifier (for COI) performed

best to identify taxa from the phylum Platyhelminthes (Figure 2).

A distance tree including StreamCode barcodes and OTUs for

taxa assigned to Arthropoda and Annelida is presented in

Figure 2 (lower panel), similar trees for both markers and other

phyla are presented in Supplementary Figure S3. The unique con-

tributions to identify ZOTUs were fairly similar and are presented

in Supplementary Figure S2.

Arthropods (predominantly crustaceans) were the most di-

verse group in our plankton samples for all markers and cluster-

ing schemes (Figure 3a). Depending on the marker and clustering

type, the second most diverse groups were chaetognaths, chor-

dates, cnidarians, mollusks, or non-target phyla. (Supplementary

Table S6, Figure 3b).

Combining all OTUs and ZOTUs to analyse agreement among

methods, we observed that the three methods agreed on the phy-

lum assignment in 55% of sequences for 18S and 68% of sequen-

ces for COI. Agreements between the two methods were observed

in 42% of sequences for 18S and 32% of sequences for COI

(Figure 4). The case of no agreement between methods was rare

(0.1–3%). However, in many cases, the methods agreed only in

their inability to identify a specimen to phylum, e.g., in 53% of

the cases all three methods were unable to identify a phylum for

COI at the specified thresholds (Figure 4). When all three meth-

ods assigned a specific phylum, 98.9% of 18S V1–2 sequences

agreed on phylum and 99.8% of COI sequences had matching

phylum assignments.

Plankton types

After removing unidentified matches or matches to non-target

phyla, we found that most metabarcoding samples consisted of

holoplankton, in agreement with morphological analyses

Figure 3. Variability in the proportion of OTUs/ZOTUs belonging to each phylum identified using different genetic markers (COI and 18S
V1–2) and different approaches for taxonomic assignment (BLASTn-GenBank, BLASTn-StreamCode, RDP Classifier). (a) All samples
(unidentified samples and samples identified to phylum). (b) Only samples identified to phylum without including the phylum Arthropoda.
The RDP Classifier was used with the PR2 database for 18S and MIDORI database for COI. “Non-target” refers to taxa identified to phyla that
do not belong to the target zooplankton groups, “Unidentified” are the OTUs/ZOTUs without a phylum assignment at the defined
taxonomic thresholds. The more abundant taxa are highlighted with black silhouettes.
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(Figure 5). Although found at a comparatively smaller propor-

tion, a meroplankton component was detected across all plankton

samples, with a larger proportion detected using morphology and

the BLASTn-StreamCode method in the metabarcoding samples.

For this analysis, we used the classification to lower taxonomic

levels when available; however, many of the metabarcoding sam-

ples lacked enough resolution to classify taxa into holoplankton

or meroplankton (coded N/A in Figure 5). For each combination

of clustering and genetic marker, the BLASTn-StreamCode

method produced the smallest number of taxa unassigned to

plankton type (Figure 5). In Supplementary Figure S4, we detail

the phyla composition for holoplankton and meroplankton iden-

tified using all methods.

Discussion
Biodiversity assessments performed with metabarcoding methods

indicate astonishing levels of diversity in biological communities.

Despite the promising potential of metabarcoding methods for

standardized biodiversity surveys (Baird and Hajibabaei, 2012;

Deiner et al., 2017), our study highlights that even identification

to phylum is not straightforward for understudied ecosystems

with poor representation in DNA reference databases. Identifying

metabarcoding samples at taxonomic levels below phylum is criti-

cal for ecological studies (e.g. biogeography, connectivity, func-

tional groups, biological indicators, parasitism, invasive species),

yet, our case study demonstrates how many metabarcoding sam-

ples cannot even be identified to phylum or plankton type.

Because bias in taxonomic identification with metabarcoding

propagates to downstream analyses, it is important to minimize

errors in taxonomic assignment (Santoferrara, 2019). To mini-

mize errors and improve taxonomic resolution, the implementa-

tion of metabarcoding methods and compilation of reference

databases should be associated with taxonomic experts (Clarke

et al., 2017; Porter and Hajibabaei, 2018). By integrating tradi-

tional taxonomic assessment, barcoding, and metabarcoding, we

have highlighted how a targeted effort to develop a regional DNA

barcode database can help improve metabarcoding taxonomic

assignments. Moreover, we showed that the chances of correctly

identifying taxa belonging to different marine zooplankton phyla

varied by genetic marker, the type of clustering, and the approach

used for taxonomic assignment.

During the short timeframe of the StreamCode project (one

field season, two collection weeks), a small collaboration of taxo-

nomic experts made a large contribution of barcode quality

sequences to GenBank (1108 for 18S and 1042 for COI belonging

to 15 phyla) as well as images and voucher information

(Supplementary Table S1). Hopefully, this encourages similar

work that targets taxa underrepresented in reference databases.

Local bioblitz efforts (Plumb, 2014, where there is intense biodi-

versity sampling in a small region carried out by experts and vol-

unteers) coupled with barcoding efforts are becoming popular

because they are essential for enhancing reference databases.

Large international efforts such as the Marine Barcode of Life

project have contributed voucher information and barcode

sequences to the Barcode Of Life (BOLD) system (Puillandre

et al., 2012). Barcoding efforts led by non-taxonomists would

benefit from including taxonomic experts at the beginning of the

project, incorporating their expertise for sampling design and col-

lection of samples (DeWalt, 2011), and also for subsequent qual-

ity control checks and determination of unidentified taxa. Both

targeted efforts and large collaborations are critical to improving

the quality and taxonomic coverage of reference DNA databases,

which in turn will make metabarcoding a more efficient tool for

characterizing communities captured in environmental samples.

Developing local DNA sequence libraries helps to overcome

problems associated with incomplete publically available DNA

reference databases (and with incorrect entries), one of the cur-

rent limitations of resolving taxonomic assignment with metabar-

coding (Porter and Hajibabaei, 2018). Every new sequence counts

because the addition of even a few species to a local reference

database can improve metabarcoding taxonomic assignments

substantially (Abad et al., 2016); so when a large local barcode

database is used, the improvement in taxonomic identification

can be immense (e.g. up to 7-fold increase in Ransome et al.,

2017). In our study, by using the StreamCode DNA barcode data-

base (BLASTn-StreamCode method), we identified more unique

taxa to phyla that are likely less represented in reference databases

(e.g. Annelida, Bryozoa, Chaetognatha; the first two also identi-

fied by Ransome et al., 2017 as under-represented taxa). Working

toward a comprehensive genetic inventory of marine life will not

only reduce the number of unidentified sequences in metabar-

code analyses, but it will also help focus taxonomic efforts by re-

vealing undescribed species in poorly studied groups.

To avoid the problem of inadequately identified records (e.g.

“environmental sample” or “uncultured metazoan”), researchers

that apply metabarcoding methods can opt for curated databases

that include only sequences that have passed a quality check and

have complete taxonomic information. In some cases, curated

databases also require sequences to be associated with voucher

specimens (e.g. BOLD, http://barcodinglife.org/), which allows

Figure 4. Frequency of agreement in the identification to phylum
between the different methods for taxonomic assignment for each
of the two genetic markers (18S V1–2 and COI). Colours separate
the cases in which all methods agree, two methods agree, and zero
methods agree. For the cases in which two or three methods agree,
the percentage of agreement in the failure to identify a phylum is
presented within the bar.
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updates to identifications as taxonomic information continues to

grow. Even though curated databases are not comprehensive,

they are continuously improving and there are many efforts un-

derway to develop curated databases for different taxonomic

groups and genetic markers (EukRef, http://eukref.org/;

MetaZooGene, https://metazoogene.org/; PR2, https://pr2-data

base.org/). Despite the higher reliability of data from curated

databases, for a coarse identification of marine zooplankton taxa

to phylum, we showed that the BLASTn-GenBank approach out-

performed PR2 and Midori databases in assigning a phylum to

most OTUs. This probably happens because PR2 and Midori:

(i) lag behind GenBank in incorporating new sequences; (ii) in-

clude only sequences identified to genus or species level. Finally,

the BLASTn-Streamcode method using our local database out-

performed GenBank in some groups, likely because of our more

complete coverage of relevant taxa (e.g. Annelida: Polychaeta).

Additionally, we have observed that the StreamCode DNA bar-

code database improves resolution at lower taxonomic levels as

well (Pappalardo et al., 2020; ESA Abstract).

Importantly, given that we detected some phyla with only one

genetic marker, we support the idea that a multi-marker ap-

proach can be more effective in studies with a broader scope

(Cowart et al., 2015; Bucklin et al., 2016; Leray and Knowlton,

2016; Djurhuus et al., 2018). Both when we tested the

StreamCode barcodes (Table 2) and when we analysed the meta-

barcoding data (Table 3), we found a smaller proportion of

unidentified sequences for 18S V1–2 than for COI, regardless of

the method used for a taxonomic assignment. Other studies using

COI have also found a large number of unidentified samples

(Leray and Knowlton, 2015; Ransome et al., 2017). To better re-

flect marine biodiversity, some authors recommend a first step

that involves a conserved marker useful for coarse taxonomic

assignments (e.g. 18S V1–2 or V9), and a second step that targets

a highly variable marker (e.g. COI) to provide finer taxonomic

resolution (Leray and Knowlton, 2016). In our study, there were

also differences between markers in the relative taxonomic com-

position detected (as also observed by Cowart et al., 2015;

Djurhuus et al., 2018), and in the proportion of taxa that we were

able to classify into plankton type. Both of these sources of varia-

tion could have large impacts on the interpretation of community

comparisons in ecological studies. Regardless of whether different

genetic markers can vary in their specificity to detect some taxa,

or the ability to identify samples with different taxonomic resolu-

tion, multiple markers may still reflect similar trends in spatial di-

versity (Pitz et al., 2020).

An important consideration when using a multi-marker ap-

proach is to apply a common classification scheme across markers

and DNA reference databases. In our marine zooplankton-fo-

cused analyses, we standardized the classification scheme used by

Midori (based on NCBI) and the PR2 database (custom classifica-

tion defined by experts) to that in WoRMS. Even though some

aspects of the current WoRMS classification are still under debate

Figure 5. Proportion of taxa identified as members of the holoplankton, meroplankton, or others (mixed life histories within a group, or a
benthic group) for the metabarcoding results with two genetic markers (COI, 18S V1–2) and three methods for taxonomic assignment,
combined with the results from the morphological analysis. (a) Metabarcoding-OTUs, (b) metabarcoding-ZOTUs, and (c) morphological
analysis. N/A indicates samples that lacked enough taxonomic resolution to be classified into holoplankton or meroplankton.
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(e.g. placement of Sipuncula as a phylum), their large editorial

group reviews newer publications and updates their classification

when there is enough support. WoRMS also provides a useful

tool for matching taxon names (https://www.marinespecies.org/

aphia.php?p¼match) and overall, is the most current and author-

itative resource for the classification of marine taxa. It would be

ideal if genetic data resources (e.g. NCBI, BoLD) could adopt a

global taxonomic system (such as the Catalogue of Life, https://

www.catalogueoflife.org/), provided that the classification hierar-

chy is maintained for all groups with the best data sources. For

example, even though the Catalogue of Life follows WoRMS for

marine organisms, their online website was not updated with the

current WoRMS edition at the time of submitting this article

(December, 2020). In the meantime, it falls on researchers to ad-

dress taxonomic standards in multi-marker studies. Individual

researchers and research groups could still adopt their own taxon-

omies, even rankless ones (given the arbitrary nature of Linnean

ranks) such as PhyloCode (i.e. PhyloCode, http://phylonames.

org/code/).

Our data also indicate that exploring different clustering meth-

ods can improve taxon detection. When a phylum was detected

only in some of the combinations of clustering, genetic marker,

and method for taxonomic assignment (e.g. Acanthocephala,

Porifera, Hemichordata, see Supplementary Table S6), it was usu-

ally represented by a few (sometimes only one) OTUs or ZOTUs.

We found two possible explanations for these differences in phy-

lum detection. Differences could appear because of the different

filtering algorithms used to generate OTUs and ZOTUs. For ex-

ample, Schenk et al. (2020) found differences between OTUs and

ASVs (¼ZOTUs) in metabarcoding of freshwater nematode com-

munities and suggested as an explanation the more stringent fil-

tering in the pipeline prior to generating ASVs. In addition, many

of the taxa found using only OTUs by Schenk et al. (2020) were

detected with a small percentage of sequence reads. For our data,

another explanation relates to the pre-defined confidence thresh-

olds to assign a phylum. We noticed cases in which for the raw

data a phylum was assigned for both OTUs and ZOTUs, but with

different confidence thresholds, and only one of the clustering

schemes passed the pre-defined taxonomic thresholds. Singletons

are commonly filtered out in metabarcoding studies given the

likelihood that they represent artefacts, but some authors argue

that they could be important for the detection of rare species

(Brown et al., 2015). Future research using mock communities

could contribute to our understanding of these topics; in the

meantime, we suggest implementing different clustering

approaches if taxon identification is important.

Recommended confidence thresholds for accurate taxonomic

assignment depend on the completeness of the reference database

for the focal taxon (Porter and Hajibabaei, 2018). We followed

recommended guidelines to assign taxa to phylum (e.g. Ransome

et al., 2017; Leray et al., 2018). However, there are no agreed-

upon criteria at lower taxonomic levels. For example, for meta-

barcoding of 18S using the CREST LCAClassifier algorithm,

Lanzén et al. (2012) used minimum similarities between related

taxa and cross-validation from reference datasets to propose spe-

cific thresholds for each taxonomic level (phylum: 80%, class:

85%, order: 90%, family: 95%, genus: 97%, and species: 99%);

whereas Leasi et al. (2018) used BLAST when analysing the 18S

V9 region and chose different thresholds based on the literature

and analysis of mock communities (phylum: 90%, family: 93%,

species: >97%). For metabarcoding of COI, Elbrecht et al. (2017)

mentioned specific thresholds for different taxonomic levels as a

“rough proxy” (order: 85%, family: 90%, genus: 95%, and spe-

cies: 98%), but did not specify how the thresholds were deter-

mined. In metabarcoding samples containing taxa from multiple

phyla, uniform thresholds across different phyla may not be ad-

visable, due to different evolutionary rates in different taxonomic

groups. One example of this variation in COI can be seen in the

range of confidence thresholds needed by RDP Classifier to ob-

tain a correct assignment for each taxonomic level in different

phyla of marine organisms (results from Midori “leave-one-out-

test”, available in http://reference-midori.info/download.php#).

More research is needed on how to define confidence thresholds

for assignment to lower taxonomic levels when using metabar-

coding methods, and how those decisions affect results.

Increasingly, the computational methods being developed for

analysing metabarcode data focus on “micro-scale” variation,

such as strain-level variation (e.g. UNOISE, DADA2). These algo-

rithms were developed with the primary goal of examining bacte-

rial diversity and community structure, as bacteria are not

traditionally categorized as species. In fact, many microbiologists

explore strain-level variation in bacteria, as it can be used to elu-

cidate differences in virulence, growth patterns, etc. In contrast,

researchers examining metazoan communities to assess commu-

nity diversity, identify potential invasive species, and examine tro-

phic-level interactions, are generally more interested in

examining inter-specific diversity. Thus, extending these “micro-

scale” analytical tools to examination of metazoan sequences for

inter-specific diversity, particularly without somewhat arbitrarily

assigning a species-level sequence threshold for all taxa, can re-

quire substantial additional work. On the simpler end of the spec-

trum, this includes building phylogenetic trees to confirm

“species-level” clustering, and on the other end involves incorpo-

rating sophisticated species delimitation methods (e.g. multi-rate

Poisson tree processes, Kapli et al., 2017). Development of analyt-

ical tools that can be used to explore metazoan diversity, particu-

larly taking into account sequence variation across taxonomic

groups, is needed.

Conclusion
If identification of different taxa is critical for a metabarcoding

study, we recommend: (i) using multiple genetic markers,

(ii) implementing multiple methods for a taxonomic assignment,

(iii) clustering the data into different types of molecular opera-

tional units, and more importantly, (iv) collaborating with taxo-

nomists to develop a regional database of the groups of interest,

especially if they are underrepresented in reference databases.

This multi-analysis approach can enhance taxon detection and

increase confidence in the results. There are already many such

collaborations underway that are collectively populating reference

databases and will improve the performance of taxonomic assign-

ment in biodiversity surveys using metabarcoding. In addition,

new tools and pipelines are continuously being developed, many

of them in open-access platforms. To improve taxonomic assign-

ments at lower taxonomic levels (species, genus, family), we think

that future research should aim to develop taxon-specific thresh-

olds for different genetic markers, to account for the different

evolutionary rates in different taxonomic groups.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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