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Abstract

Background: The role of meteorological factors on influenza transmission in the tropics is less defined than in the
temperate regions. We assessed the association between influenza activity and temperature, specific humidity and rainfall in
6 study areas that included 11 departments or provinces within 3 tropical Central American countries: Guatemala, El
Salvador and Panama.

Method/Findings: Logistic regression was used to model the weekly proportion of laboratory-confirmed influenza positive
samples during 2008 to 2013 (excluding pandemic year 2009). Meteorological data was obtained from the Tropical Rainfall
Measuring Mission satellite and the Global Land Data Assimilation System. We found that specific humidity was positively
associated with influenza activity in El Salvador (Odds Ratio (OR) and 95% Confidence Interval of 1.18 (1.07–1.31) and 1.32
(1.08–1.63)) and Panama (OR = 1.44 (1.08–1.93) and 1.97 (1.34–2.93)), but negatively associated with influenza activity in
Guatemala (OR = 0.72 (0.6–0.86) and 0.79 (0.69–0.91)). Temperature was negatively associated with influenza in El Salvador’s
west-central departments (OR = 0.80 (0.7–0.91)) whilst rainfall was positively associated with influenza in Guatemala’s central
departments (OR = 1.05 (1.01–1.09)) and Panama province (OR = 1.10 (1.05–1.14)). In 4 out of the 6 locations, specific
humidity had the highest contribution to the model as compared to temperature and rainfall. The model performed best in
estimating 2013 influenza activity in Panama and west-central El Salvador departments (correlation coefficients: 0.5–0.9).

Conclusions/Significance: The findings highlighted the association between influenza activity and specific humidity in
these 3 tropical countries. Positive association with humidity was found in El Salvador and Panama. Negative association
was found in the more subtropical Guatemala, similar to temperate regions. Of all the study locations, Guatemala had
annual mean temperature and specific humidity that were lower than the others.
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Introduction

Influenza is estimated to infect approximately 1 billion people

each year with 3 to 5 million severe cases and up to 500,000 deaths

worldwide [1,2]. Influenza epidemics typically occur during winter

months in temperate regions. In contrast, the timing of influenza

epidemics in the tropics varies and often cannot be easily defined

because of insufficient surveillance, multiple annual epidemics [3],

or continuous influenza activity throughout the year [4]. Several

studies have suggested an association between the environment or

climate with influenza transmission because of the apparent

spatiotemporal variation in influenza spread [5–9].

Temperature and relative humidity (RH) have been linked to

influenza virus survivability [10–12]. A recent study also showed

that the stability of the virus outer membrane, which possibly

provides protection for the virus during airborne transmission,

depends on temperature [13]. In addition, Lowen et al. [8] showed

in a laboratory experiment that virus shedding in guinea pigs was

significantly longer in low temperatures. Findings on the

relationship between influenza transmission and RH were less
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consistent [14]: Some studies found that aerosolized virus survival

decreased as RH increased, while others showed a two-mode

relationship. Meanwhile, Shaman and Kohn [9] argued that

absolute humidity (AH) influenced influenza virus survival and

transmission efficiency more significantly than RH. The associa-

tions between influenza and low temperature and humidity have

mostly been observed in temperate regions [15,16]. But in the

tropics, where the annual average of temperature and humidity

are normally higher than those in the temperate regions,

insufficient evidence exists for such a relationship. Nevertheless,

the monthly proportion of influenza positive in a few tropical and

subtropical countries seemed to be associated with low tempera-

ture [3]. In addition, influenza transmission in the tropics often

coincides with the rainy season when absolute humidity is typically

at its highest [17].

In the tropics, several regions including northeastern Brazil,

Philippines and the western part of India, had high influenza

activity during the rainy season [18,19], but others had semi-

annual peaks that are not necessarily associated with rainfall [20].

The direct relationship between rainfall and influenza has yet to be

established. It is postulated that rainfall leads to crowding which in

turn increases the probability for contact, droplet and aerosol

transmission. An experimental study [21] showed that contact

transmission, unlike aerosol-borne transmission, remained efficient

at 30uC. This study also suggested that contact or very close-range

transmission may predominate in the tropics, and that more

studies are needed to elucidate the transmission route of influenza

in the tropics.

In Central America, influenza surveillance data has been limited

and the role of environmental and climatic factors on influenza

transmission has not been studied. In an effort to comply with the

2005 International Health Regulations, several countries in

Central America initiated influenza pandemic preparedness and

response plans during 2006. In the same year, countries in Central

America also introduced the Generic Protocol for Influenza

Surveillance [22] in order to strengthen influenza surveillance

[23]. By 2010, this program already showed a significant

improvement in influenza surveillance, as evidenced by the

expansion of sentinel surveillance networks and the ten-fold

increase in the number of samples reported by National Influenza

Centers (NIC’s) to the World Health Organization Global

Influenza Surveillance and Response System [24].

This increased surveillance capacity in the region has provided

a better depiction of the respiratory viruses prevalence throughout

the year. The countries in Central America now detect respiratory

virus in more than 15–20% of samples tested each month –

although the periodicity and intensity are different in each country

[25]. For example, in Panama, Nicaragua and El Salvador,

influenza epidemics occur in a pattern similar to those of southern

hemisphere where the epidemics usually occur at mid-year. In

other countries such as Costa Rica, Honduras and Guatemala,

influenza activity may also occur to a lesser extent during winter

months (December to February) [26], although there can be larger

variations in Guatemala. In this study, we used data from the

improved influenza and other respiratory virus surveillance

systems in El Salvador, Guatemala and Panama to explore the

association between weekly proportions of surveillance samples

tested positive for influenza and temperature, rainfall and specific

humidity.

Materials and Methods

Study Area
We used influenza surveillance data collected from 11

departments or provinces in 3 Central America countries

(Figure 1). These included 4 departments in Guatemala: San

Marcos, Quetzaltenango, Guatemala and Santa Rosa; 5 depart-

ments in El Salvador: Santa Ana, La Libertad, Cuscatlán, San

Salvador and San Miguel; and 2 provinces in Panama: Chiriquı́

and Panama. To have larger influenza sample sizes, we combined

adjacent departments in Guatemala and El Salvador. The

combined study areas included western Guatemala departments

(San Marcos and Quetzaltenango), central Guatemala depart-

ments (Guatemala and Santa Rosa) and west-central El Salvador

departments (Santa Ana, La Libertad, San Salvador and

Cuscatlán). Other departments or provinces, including San Miguel

Department in El Salvador and both Chiriquı́ and Panama

Provinces in Panama – were analyzed individually. Overall, there

were 6 study locations.

According to the Köppen climate classification [27] which is

based on temperature, precipitation and natural vegetation, these

three countries have a tropical wet and dry (savanna) climate.

Climate in this zone generally has mean temperature above 18uC
year-round and a pronounced dry season. However, there are

substantial variations in climate across the region. Most of the

cities in Guatemala are located in the mountainous highlands

formed by Sierra Madre, the Cuchumatanes range and other

sierras. The climate on the highlands is subtropical, and cooler and

drier than the rest of Guatemala. Both Panama and El Salvador

have less varied topography and are at lower elevation than

Guatemala.

Virological Data
We obtained influenza surveillance data from National Influ-

enza Centers (NIC) at the Gorgas Memorial Institute for Health

Studies in Panama [28], the Dr. Max Bloch National Laboratory

of the Ministry of Health of El Salvador [29], and the National

Laboratory of the Ministry of Public Health of Guatemala [30].

Each NIC compiled and tested respiratory samples from the

country’s sentinel surveillance system, which is composed of

ambulatory clinics and hospitals. There are 9 participating clinics

and hospitals in western Guatemala departments, 5 in central

Guatemala departments, 13 in west central El Salvador depart-

ments, 3 in San Miguel Department in El Salvador, 3 in Chiriquı́

Province in Panama and 9 in Panama Province [31]. Samples

were taken from influenza-like illness (ILI) case-patients in the

clinics, and severe acute respiratory infection (SARI) case patients

in the hospitals. In all 3 countries, ILI was defined according to

WHO criteria [31]: sudden onset of a fever .38uC, either cough

or sore throat, and an absence of other diagnoses. SARI case-

patient for children under 5 years old was defined as any child ,5

years old who was clinically suspected of having pneumonia or

severe/very severe pneumonia, and requiring hospitalization [31].

For persons older than 5 years old, SARI was defined as a sudden

onset of fever .38uC, either cough or sore throat, shortness of

breath or difficulty of breathing, and requiring hospital admissions

[31]. Each clinic and hospital selected a convenience sample of

case-patient (about 5 samples per week). Influenza was identified

using indirect immunofluorescence, and starting in 2009 subtyped

through reverse transcription polymerase chain reaction (RT-

PCR) [31,32]. Other respiratory viruses that were also identified

using RT-PCR included respiratory syncytial virus (RSV),

parainfluenza viruses and adenoviruses. Influenza data in each

department or province was collected for at least 3 years, ending in
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July 2013 (Table 1). In the analysis, we excluded influenza data

during the pandemic year period (2009) when influenza transmis-

sion was atypical.

Meteorological Data
The meteorological data for the analysis was obtained from the

Tropical Rainfall Measuring Mission (TRMM) satellite and the

Global Land Data Assimilation System (GLDAS) [33,34]. In

another study on associating influenza activity in other countries

with meteorological variables, we also used meteorological data

from ground stations [35]. For the study locations in these 3

countries, however, ground stations were sparsely distributed and

their measurements had extensive gaps throughout the study

period. Therefore, we did not use ground station data in this study.

All meteorological variables in this study were obtained for the

same time period as the influenza data.

Rainfall measurements from the Tropical Rainfall Measuring

Mission (TRMM) satellite were downloaded via NASA’s Goddard

Earth Sciences and Data Information Service Center (GES-DISC)

Interactive Online Visualization And Analysis Infrastructure

(GIOVANNI)[36]. We used the daily precipitation product

(TRMM 3B42) with 0.25u by 0.25u spatial resolution (,25 km

Figure 1. Study areas. Departments or provinces included in the study. Adjacent departments in Guatemala and El Salvador were combined in the
analysis: Western departments in Guatemala (1,2), Central departments in Guatemala (3,4) and West-central departments in El Salvador (5–8).
doi:10.1371/journal.pone.0100659.g001

Table 1. Descriptive statistics for influenza and meteorological data in the study period.

El Salvador El Salvador Guatemala Guatemala Panama Panama

West-central
departments San Miguel

Central
departments

Western
departments Chiriquı́ Panama

Departments or provinces included Santa Ana,
Cuscatlán, El
Salvador, La
Libertad

Guatemala, Santa
Rosa

San Marcos,
Quetzaltenango

Study Period 2008–2013 2010–2013 2008–2013 2009–2013 2008–2013 2008–2013

Total samples tested 8395 1169 11270 5053 2130 6841

Influenza positive samples 1591 (18.95%) 113 (9.67%) 2114 (18.76%) 921 (18.23%) 323 (15.16%) 1358 (19.85%)

RSV positive samples 960 (11.44%) 84 (7.19%) 1895 (16.81%) 1059 (20.96%) 227 (10.66%) 731 (10.69%)

Adenovirus positive samples 155 (1.85%) 15 (1.28%) 554 (4.92%) 409 (8.09%) 71 (3.33%) 146 (2.13%)

Parainfluenza positive samples 209 (2.49%) 4 (0.34%) 750 (6.66%) 300 (5.94%) 92 (4.32%) 314 (4.59%)

Temperature (uC) 22.9561.37 24.7561.49 20.3861.40 17.6561.12 22.8360.83 25.0460.59

Specific Humidity (g/kg) 14.2962.14 14.8462.32 13.1661.96 11.6361.65 15.3861.47 17.6661.04

Rainfall (mm/day) 5.0966.29 4.9965.61 4.8965.69 6.5966.52 9.0467.45 6.6866.0

For meteorological data, mean and standard deviation are shown.
doi:10.1371/journal.pone.0100659.t001
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at the equator) and a geographical coverage of 50uS–50uN. We

averaged all pixels that had more than 10% of its footprint within

the study region. Subsequently we took the weekly average in

order to match the influenza data temporal resolution.

As a measure for humidity, we obtained specific humidity data.

Briefly, specific humidity is the ratio between mass of water vapor

and the mass of air (typically expressed in g/kg). It is a similar

measure as absolute humidity (please see Supplementary Infor-

mation for a more detailed description of specific humidity). Near

surface specific humidity and temperature for all study locations

were obtained from the Global Land Data Assimilation System

(GLDAS)[33]. GLDAS is a NASA-NOAA system that utilizes

ground and satellite measurements to model global terrestrial

geophysical parameters with contiguous spatial and temporal

coverage. This dataset also had 0.25u by 0.25u spatial resolution

and 3-hourly temporal resolution. Similarly, to obtain the weekly

time series for each study region we first averaged the pixels

followed by averaging the 3-hourly data into daily data.

All daily meteorological variables were averaged over each week

and over two to four previous weeks (i.e. average from the current

week to the previous 2 weeks).

Analysis
Taking into account the influenza surveillance systems in the 3

Central American countries, we calculated the weekly proportion

of respiratory samples that were tested positive for influenza virus

to represent influenza activity. The commonly used indicator for

influenza activity, especially for developed countries in temperate

climate zone with established influenza systems, is based on the

number of pneumonia and influenza (P&I) mortality, the number

of ILI or ARI case patients, or the number of respiratory samples

tested positive for influenza viruses. However, such an indicator is

not the most suitable for the countries in this study for the

following reasons. When using mortality and morbidity data,

influenza activity is usually obtained by applying seasonal

regression, such as Serfling regression [37]. This approach is not

suitable for subtropical countries where influenza activity often

does not have a clear seasonal pattern as in the temperate regions.

Another estimate of influenza morbidity can also be obtained by

multiplying the ILI or SARI cases with the proportion of samples

tested positive for influenza. However, the total number of health

seeking ILI or SARI cases is not routinely or systematically

collected, and therefore not yet part of the surveillance practice in

all of the departments or provinces in this study. In the developed

countries, large number of ILI or ARI cases are tested for

influenza during influenza seasons, hence the number of samples

tested positive can, by itself, be used as an influenza indicator. In

the three Central American countries in this study, the surveillance

systems are nascent and evolving, and only a small proportion of

case patients were tested because of the limited throughput of

influenza laboratories. Therefore, absolute number of laboratory

confirmed influenza cases does not represent the timing of

influenza activity well. In the operational setting, influenza positive

proportion has been used to determine the influenza timing in

Central America. With scant influenza surveillance data available,

the proportion of respiratory samples tested positive for influenza

(hereafter referred as the ‘‘influenza positive proportion’’) was

considered the most suitable measure to represent influenza

activity for the 3 countries in this study. Several influenza studies

had also used influenza positive proportion as influenza indicator

[3,38–40].

We used logistic regression to model the weekly influenza

positive proportion. The logistic regression can model strictly

bounded response variable, and is commonly used to describe data

on proportions [41]. Other epidemiological studies have used

logistic regression to link the disease prevalence with climatic

variables [42,43]. We applied logit function to the influenza

positive proportion. Such a function describes a scenario where as

the meteorological conditions become more favorable for influen-

za transmission, more people will be infected, and more specimens

will likely be tested positive for influenza. Consequently the odds

(logit) for influenza-positive will increase. We performed the

logistic regression in R software [44], and we used the methods

delineated in [41] to formulate the model for count proportion

data where both the influenza positive and negative counts were

supplied to the model. More details on this method can be found

in the Supplementary Information.

The regression model was fitted individually to each study

region using the associated data from the entire study period

except for the final year (year 2013), which was reserved for

validation. The explanatory variables considered in the regression

model were the meteorological variables (temperature, specific

humidity and rainfall), positive proportion of other respiratory

viruses that co-circulated with influenza (RSV, parainfluenza

viruses and adenoviruses), lagged dependent variables (up to lag of

4 weeks), and a polynomial function of the week number (up to

degree of 3: week, week2, week3, where week = 1, 2, 3,… 52).

Several studies had found associations between the co-circulating

viruses (RSV, parainfluenza virus and adenovirus) and meteoro-

logical factors including temperature and rainfall in the tropics

[20,45]. Therefore these viruses were included to adjust for any

potential confounding associations between influenza and the

meteorological variables. The lagged dependent variable was

included since the amount of influenza activity in a particular week

depended on the previous week’s activity, and also to account for

autocorrelation. The week number was included to represent

influenza seasonality and other nonlinear relationships that were

not represented by the 3 meteorological variables. We first tested

the full model as described above. A backward selection (see Text

S1 for details) was then applied to select the polynomial order of

the week number and the lagged dependent variable, resulting in a

reduced model. Autocorrelation was assessed by inspecting the

autocorrelation function (ACF) and partial autocorrelation func-

tion (PACF) plots. Collinearity among the covariates was assessed

by calculating the variance inflation factor (VIF), which is a factor

of how much the coefficient’s standard error would increase if the

said covariate were not correlated with the others. We further

tested the full model with different meteorological lags and average

periods, resulting in 11 different models. The best model was then

selected based on the Akaike’s Information Criterion (AIC) (see

Text S1 for more details). We did not include interaction terms

between predictors because of possible multi-collinearity and lack

of clear geophysical interpretations for such terms.

In addition to presenting the Odds Ratio (OR) of the

meteorological variable, we also calculated the change in the

influenza positive proportion each week when the significant

meteorological variables were increased by one standard devia-

tion. We used this measure because it was easier to interpret in

terms of the positive proportion rather than the odds for the

positive proportion. The change in influenza positive proportion

was calculated using meteorological observations throughout the

study period. Lastly, to assess the relative contribution of each

meteorological variable, we calculated the change in the model

deviance when one meteorological variable was removed at a time

(more details in Text S1). This change in deviance is a proxy for

the relative contribution of each meteorological variable.

Seasonal Influenza in Tropical Areas
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A more detailed description of the method can be found in the

Supporting Information (Text S1). All statistical analysis was

performed using R software [44].

Results

Influenza data was collected from 2008 to 2013, except for two

locations (Table 1): El Salvador’s San Miguel Department (2010 to

2013) and Guatemala’s western departments (2009 to 2013).

During the study periods (excluding the 2009 pandemic year), the

proportion of respiratory samples that was tested positive for

influenza (influenza positive proportion) in all study locations

ranged from 9.67% to 19.85% (Table 1). Similarly, RSV positivity

ranged from 7.19% to 20.96%; whereas positivity for adenoviruses

and parainfluenza viruses was lower (1.2828.09% and 0.342

6.66% respectively).

In all locations except for Guatemala, the mean temperature

during study period was above 22uC. The mean temperature in

Guatemala’s western departments was the lowest of all study

locations (17.65uC), followed by Guatemala’s central departments

(20.38uC). Panama Province had the highest mean temperature

throughout the study period. Similarly, average specific humidity

was the lowest in Guatemala departments, and the highest in

Panama. Mean precipitation rate throughout the study period was

the highest in Panama (9.04 mm/day in Chiriquı́ Province,

6.68 mm/day in Panama Province), and the lowest in Guatema-

la’s central departments.

In the analysis, we tested the associations between influenza

positive proportion and 3 meteorological inputs (temperature,

specific humidity and rainfall), while adjusting for co-circulating

viruses (RSV, adenoviruses and parainfluenza viruses), week

number, and lagged dependent variables. Eleven models which

differed in the meteorological lags and average periods were tested

for each study location. The best models (Table 2) were selected

based on the AIC. From the best models, we found that influenza

positive proportion was significantly associated (p,0.05) with

specific humidity in all study locations, whereas significant

association with temperature and rainfall were location-specific

(Table 2). Specific humidity was positively associated with

influenza positivity in west-central departments (Odds Ratio

(OR) 1.18, 95% Confidence Interval (CI) 1.07–1.31) and San

Miguel (OR 1.32, 95% CI 1.08–1.63) of El Salvador, and Chiriqui

Province (OR 1.97, 95% CI 1.34–2.93) and Panama Province

(OR 1.44, 95% CI 1.08–1.93) of Panama, but negatively

associated with influenza activity in central (OR 0.79, 95% CI

0.69–0.91) and western (OR 0.72, 95% CI 0.60–0.86) depart-

ments of Guatemala. On the other hand, rainfall was positively

associated only with influenza positivity in Guatemala’s central

departments (OR 1.05, 95% CI 1.01–1.09) and in Panama

Province of Panama (OR 1.10, 95% CI 1.05–1.14). Temperature,

however, was only associated with influenza positivity in west-

central El Salvador departments, with a 20% reduction in the odds

of influenza observed with each degree Celsius increase in

temperature (OR 0.80, 95% CI 0.70–0.91). We found that the

best model for El Salvador’s central departments had meteoro-

logical covariates from the previous 1 week, whereas the other

locations had meteorological covariates that were averaged over

two or more weeks. The resulting polynomial function of the week

number for each study location can be found in the Supporting

Information (Text S1, Figure S1 and Figure S2).

The models were subsequently used to estimate influenza

positive proportion during the first half of 2013 (January to July

2013) (Figure 2). The blue curves in Figure 2 are the prospectively

estimated influenza activity in 2013 using actual meteorological

data and regression models trained with influenza data from

previous years. The estimated activity closely resembled the actual

activity for 4 out of the 6 study areas: Guatemala’s central

departments, El Salvador’s west-central departments, and the 2

Panama provinces. The root mean squared error (RMSE) between

the observed and estimated outputs ranged between 0.06 and 0.13,

and correlation coefficients between 0.02 and 0.90 (Table 2).

Based on the correlation coefficients, the models performed better

in El Salvador’s west-central departments and Panama provinces,

than in Guatemala departments. For Guatemala’s central

departments, although the correlation coefficient was low, the

estimated influenza activity shown in Figure 2 was able to closely

follow the actual activity.

In the second best models (with the second lowest AIC), we

found that the significant associations between influenza positive

proportion and meteorological variables remained the same,

except for rainfall in central Guatemala departments (Table S1).

Specific humidity was significantly associated with influenza

positive proportion in all locations, with inverse relationship in

Guatemala and proportional relationship in El Salvador and

Panama. Temperature was significant only in El Salvador, and

rainfall in Panama Province. In Guatemala’s departments and in

El Salvador’s San Miguel Department, the differences in the AIC

values between the best and the second best models were very

small (0.36, 0.48 and 0.98 for San Miguel Department, and

Guatemala’s western and central departments respectively).

Typically, as a rule-of-thumb, a difference less than 2 in AIC

indicates that the two models are indistinguishable. In Panama

Province, the difference in AIC value was 2.07. While larger

differences in AIC were found in Panama’s Chiriquı́ Province

(3.40) and El Salvador’s west-central departments (4.21).

We used the best model to calculate the change in the influenza

positive proportion throughout the study period when the

significant meteorological variables were increased, one at a time,

by one standard deviation (Figure 3). Here, temperature was

increased by 2.74uC, specific humidity by 2.61 g/kg, and rainfall

by 6.48 mm/day. Overall, the change in the influenza positive

proportion was relatively small, ranging from 0.001 to 0.4 (with

mean change ranging from 0.03 to 0.2). The mean change in

influenza positive proportion when specific humidity was increased

by one standard deviation ranged from 0.04 to 0.19. Largest

change in positive proportion was found in Panama’s Chiriquı́

Province, and smallest change in Guatemala’s central depart-

ments. In El Salvador’s west-central departments, increases in

both temperature and specific humidity resulted in similar change

in the influenza positive proportion (20.01 to 20.14 for

temperature, 0.01 to 0.06 for specific humidity). In Panama

Province, a one standard deviation increase in specific humidity

would result in a slightly higher change in influenza positive

proportion as compared to change in rainfall. When either rainfall

or specific humidity was increased by one standard deviation, we

observed influenza positive proportion change of 0.003 to 0.23 for

specific humidity, and 0.001 to 0.15 for rainfall.

From the deviance analysis for the meteorological covariates, we

found that the model deviances increased the most (Figure 4) when

specific humidity was removed from the models in 4 out of the 6

locations studied (Guatemala’s central and western departments,

El Salvador’s San Miguel Department and Panama’s Chiriquı́

Province). These results indicated that among the meteorological

covariates, specific humidity had the highest contribution to the

models (4.66% in Guatemala’s western provinces, 2.56% in

Guatemala’s central provinces, 4.77% in El Salvador’s San Miguel

Department, and 6.95% in Panama’s Chiriquı́ Province). In El

Salvador’s west-central provinces, both temperature and specific

Seasonal Influenza in Tropical Areas
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Table 2. Multivariable analysis of meteorological factors associated with influenza positivity.

Country and Province Adjusted Odds Ratio (95% Confidence Interval)

Meteorological
Variable Average
Period Prediction

Temperature Specific Humidity Rainfall RMSE
Corr.
Coeff

(6C) (g/kg) (mm/day)

Guatemala

Central departments 1.01 (0.88, 1.15) 0.79 (0.69, 0.91) 1.05 (1.01, 1.09) Prev. 1–3 wks ave. 0.08 0.12

Western departments 0.94 (0.80, 1.11) 0.72 (0.60, 0.86) 1.01 (0.98, 1.04) Prev. 0–1 wks ave. 0.13 0.08

El Salvador

West-central departments 0.80 (0.70, 0.91) 1.18 (1.07, 1.31) 1.00 (0.99, 1.02) Prev. 1 wk ave. 0.06 0.50

San Miguel 1.28 (0.99, 1.65) 1.32 (1.08, 1.63) 0.98 (0.92, 1.05) Prev. 1–2 wks ave. 0.13 0.02

Panama

Chiriquı́ 1.30 (0.85, 2.02) 1.97 (1.34, 2.93) 0.95 (0.87, 1.04) Prev. 0–3 wks ave. 0.11 0.73

Panama 1.13 (0.80, 1.61) 1.44 (1.08, 1.93) 1.10 (1.05, 1.14) Prev. 1–2 wks ave. 0.07 0.90

Bold font indicates a statistically significant variable (p-value,0.05). RMSE is the Root Mean Squared Error and Corr. Coeff is the correlation coefficient between the
observation and estimated influenza positive proportion in 2013.
The models were adjusted for: potentially confounding variables (RSV, parainfluenza and adeno viruses), previous weeks’ influenza positivity, seasonality and other
possible nonlinear relationships (modeled as a polynomial function, up to degree of 3, of the week number).
doi:10.1371/journal.pone.0100659.t002

Figure 2. Meteorological parameters, influenza positive proportion and regression output for the study areas. In the last row, black
curves are the observed data; grey shades indicate the 95% confidence interval; red curves are modeled results; and blue curves are the prospectively
estimated influenza activity using actual meteorological data and regression models trained with influenza data from previous years. OR is the odds
ratio from the regression for the meteorological parameters, and CI is the associated 95% Confidence Interval.
doi:10.1371/journal.pone.0100659.g002
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humidity had similar contribution (temperature 3.11%, specific

humidity 2.95%). In Panama Province, among the meteorological

variables, rainfall had the highest contribution to the model

(6.05%) followed by specific humidity (1.81%).

Discussion

In this study, we evaluated the association between influenza

activity – as measured by the proportion of respiratory samples

tested positive for influenza (influenza positive proportion) – and

meteorological variables in 6 study locations consisting of 11

departments or provinces in 3 Central American countries. After

adjusting for previous weeks’ influenza activity and other

respiratory viruses’ activities (RSV, parainfluenza viruses and

adenoviruses), we found that specific humidity was significantly

associated with influenza activity in all three countries, with

proportional relationship in El Salvador and Panama, and inverse

relationship in Guatemala. Temperature was found to be

significantly and inversely associated with influenza activity in El

Salvador’s west-central departments. Rainfall was proportionally

associated with influenza in Guatemala’s central departments and

Panama’s Panama Province. Among the meteorological covari-

ates, specific humidity had the highest contribution to the model in

4 out of the 6 locations studied. Our results emphasized the

association between influenza positive proportions and specific

humidity across tropical Central America.

Our finding on the association between influenza activity and

specific humidity in Guatemala supports results from experimental

studies which demonstrate that low humidity is linked to more

efficient aerosol-borne transmission [8] and better virus survival

[13]. This association had been largely demonstrated in the

temperate regions [3,15,16], and in a few subtropical countries,

such as Taiwan [46] and Hong Kong [35]. Although these 3

countries lie in the same tropical region in Central America and

Guatemala is located next to El Salvador, most Guatemala’s cities

are situated in highlands and have more temperate climate.

Among all the study areas, Guatemala’s departments are cooler,

with a minimum temperature of 8uC and maximum temperature

reaching 29uC. Under such conditions, one could expect that

aerosol-borne transmission would possibly become more efficient

as humidity decreases [8].

In contrast to findings from temperate regions [15] and our

result in Guatemala, our analyses of El Salvador and Panama data

suggest that there was a significant association between increasing

humidity and influenza transmission at those locations. Situated

on highlands, the Guatemala departments have a cooler and less

humid climate than the study locations in El Salvador and

Panama. Our findings in El Salvador and Panama are different

from influenza studies in the temperate regions where influenza

was inversely associated with specific humidity [15]. However, our

results are consistent with studies of other tropical countries. For

example, multivariate analysis from Indian data showed a positive

correlation between relative humidity and influenza positive

isolates. Similarly, in Dakar, Senegal, influenza activity peaked

during periods when humidity, rainfall and temperature were high

[47,48]. A time series study on influenza A incidence in

subtropical Hong Kong also showed a positive association between

humidity and influenza transmission [49]. Furthermore, a recent

study indicated that in locations with high specific humidity and

temperature, influenza epidemics were characterized by months

with highest humidity and rainfall [50]. The positive association

between humidity and influenza activity may be indirect, similar to

the crowding effect of rainfall that contributes to increased

influenza activity. In modern societies, indoor public places may

Figure 3. Change in influenza positive proportion when the indicated meteorological variable was increased by 1 standard
deviation (temperature 2.746C, specific humidity 2.61 g/kg, rainfall 6.48 mm/day).
doi:10.1371/journal.pone.0100659.g003
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provide opportunities for crowding when it rains or humidity is

high, and thus may enhance contact, aerosol and droplet

transmission.

Our study indicated that influenza positive proportion was

associated with rainfall only in Guatemala’s central departments

and in Panama Province. However, in the second best model for

Guatemala’s central departments (with an AIC indistinguishable

from the best model), rainfall was not a significant variable

although specific humidity remained significant. This result

implied that rainfall may not have as strong association with

influenza activity in central Guatemala departments. Rainfall is

often associated with influenza activity in the tropical countries,

such as Philippines, western part of India [18] and French Guiana

[51]. As previously mentioned, the association between rainfall

and influenza activity is likely to be indirect. Rainfall may lead to

indoor crowding and consequently increase the probability for

contact and other modes of transmission. A global study on

environmental predictors and influenza epidemics found that

rainfall was the best predictor for influenza peaks for locations

between 12.5uN–12.5uS [50]. Part of our result supported this

finding as Panama Province is located approximately between

8uN–9.5uN, while Guatemala and El Salvador lie between 13uN–

18uN. In addition, the deviance analysis indicated that rainfall had

highest contribution to the model in Panama Province as

compared to the other two meteorological covariates. However,

we did not find significant association between influenza positive

proportion and rainfall in Panama’s Chiriquı́ Province, which is

also located between 8uN–9.5uN.

In El Salvador’s west-central departments, we found that

influenza positive proportion was also significantly associated with

temperature in addition to specific humidity. The inverse

association with temperature is similar to what was found in the

temperate regions and in an animal study [8]. However,

temperature in El Salvador does not go as low as in the temperate

regions. At higher temperature, aerosol-borne transmission may

not be as efficient [21]. Hence our finding of an inverse association

between temperature and influenza activity in El Salvador may

not indicate a direct causal relationship between cool temperature

and influenza transmission. Temperature in El Salvador may be a

proxy for other factors which may facilitate influenza transmission

which remain unaccounted for in our regression models.

From the models’ deviance analysis, we calculated the relative

contribution of the meteorological variables to the model. Our

findings indicated that these variables could contribute at most

6.95% to the model (specific humidity in Panama’s Chiriquı́

Province). Similarly, we found that when the meteorological

variables were increased by one standard deviation, the influenza

positive proportion changed, on average, by 0.2 at most. The small

contribution of meteorological variables to influenza modeling was

also demonstrated in another study [52], albeit with a different

Figure 4. Percent change in model deviance. Change in deviance between the full model (Table 2) and the model with the indicated
meteorological variable removed.
doi:10.1371/journal.pone.0100659.g004
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model structure. The study showed that absolute humidity

accounted for approximately 3% of the influenza variance in the

Netherlands, while most variations were explained by the

depletion of susceptible population and between-season effects.

In spite of the small contribution of meteorological variable to

influenza activity, this and other studies [52,53] showed that

meteorological variables helped forecasting influenza epidemics.

When the models were used to prospectively estimate influenza

positive proportion in the first half of 2013, the models performed

best in Panama provinces and in the west central El Salvador

departments. However, the models performed poorly in the

Guatemala departments and El Salvador’s San Miguel Depart-

ment. The models’ poor performances in these locations may

indicated the dynamics that were not accounted for in the models,

such as circulating strains, herd immunity, and socioeconomic

factors that are difficult to account for mathematically. It is

interesting to note that in the locations where the models

performed better (west-central El Salvador departments, Chiriquı́

Province and Panama Province), influenza activity showed a

distinct peak each year, whereas in the other locations there were

multiple peaks in a year. Another study [50] indicated that

meteorological predictors performed especially poorly in estimat-

ing influenza peaks in the middle latitude locations (12.5uN/S to

25u N/S), where Guatemala and El Salvador lie.

There were several limitations to our study. The meteorological

data used in this study were outdoor measurements, whereas

people in modern society spend much of their time indoors. In

these 3 countries, indoor space may also be air-conditioned.

However, we could not account for the difference in time spent in

air-conditioned environments, and other social and economic

parameters which may have a role in affecting the association

between influenza activity and meteorological factors. We could

only infer associations, but not causality, between influenza activity

and temperature, specific humidity and rainfall. Consequently, the

associations we found may act only as proxies for factors not

considered in this study, as we have previously discussed in the

case of El Salvador’s west-central departments. In the analysis, we

did not account for the role of vaccination which may further

confound the association between influenza and the meteorolog-

ical parameters. During 2012, however, the Vaccine Effectiveness

Network in Latin America (known as REVELAC-I by its acronym

in Spanish) documented that influenza vaccine coverage was

typically low among persons targeted for vaccination (21-41%

depending on the target age group, unpublished data). Another

limitation to this study was the use of convenience sampling, which

may contribute to biased results and difficulties for generalization.

Lastly, we used influenza positive proportion as a proxy of

influenza activity, although it was not a direct measure of influenza

morbidity or mortality. As we have explained in the method

section, considering the nascent and still evolving influenza

surveillance systems in the 3 countries, there were scant data

alternatives. Therefore, the influenza positive proportion was at

the moment the most suitable measure to represent influenza

activity. In addition, the positive proportion has been adequate to

determine the timing of influenza activity in Central America in an

operational setting (Azziz-Baumgartner, personal communication),

and also in other studies [3,38–40]. By using the positive

proportion, we assumed that the dynamics of influenza virus

positive proportion followed the dynamics of influenza morbidity

or mortality. This assumption had mostly been corroborated in the

temperate and subtropical regions [54] [55]. The influenza

positive proportion represented the relative dynamics of influenza

activity. Therefore, results from our study cannot be used to

interpret the absolute magnitude of influenza activity.

Conclusion

Our study suggested an association between influenza activity

and specific humidity in the tropical Central American countries.

Over Guatemala’s highlands, where the climate was more

subtropical than tropical, and where the mean annual temperature

was the lowest compared to El Salvador and Panama, influenza

activity increased with decreasing specific humidity. For El

Salvador and Panama, which have a hotter and more humid

climate than Guatemala, we found that influenza activity was

associated with increased specific humidity. This opposite associ-

ation with humidity in different climates was also discovered in

other studies. It is suspected that higher humidity in the tropics

may provide uncomfortable conditions for outdoor activities,

promote indoor crowding, and increase contact and other modes

of transmission. Lower temperature was only significantly associ-

ated with influenza activity in El Salvador’s west-central depart-

ments and more rainfall was associated with increased influenza

activity in Panama Province. Such associations with temperature

and rainfall were also discovered in other studies. Further studies

may incorporate heat index to better understand how temperature

and humidity may work together to affect influenza activity.

Interpreting the exact mechanisms of the associations between

influenza and meteorological parameters is necessarily complex,

especially when imperfect surveillance data is paired with

meteorological data of finite spatiotemporal resolution, and when

socioeconomic data is minimally available. In spite of the

limitations, we demonstrated the possibility of forecasting influen-

za activity using a trained regression model and expected

meteorological conditions (from weather or climate forecast). Just

like weather forecast, the accuracy of influenza forecast may vary.

It is hoped that with further refinement and more suitable

meteorological data, such methodology may provide a sufficiently

accurate reference point for public health in preparing for and

responding to influenza epidemics.
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