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1  | INTRODUC TION

As a consequence of globalization, species movement has increased 

noticeably in the last century, spreading faster and farther from 

their native ranges (Ricciardi, 2015). Invasive species have a variable 

number of characteristics that allow them to colonize and establish 

themselves in new environments (Richardson et al., 2011). Among 

these, “being able to function in a wide range of environmental con-

ditions” (Ehrlich, 1986) might be one of the most controversial ones. 

On the one hand, it has been assumed that tolerance to a wide range 
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Abstract
The invasiveness of Corbicula largillierti has been underestimated, but this bivalve is 

currently receiving more attention. The first study of the distribution of this species 

along one of the major basins of central Argentina showed that it was completely 

absent in the major central reservoir, but was present along its tributary and efflu-

ent rivers. Ten years later, this discontinuous distribution has not changed, despite 

the bivalve's high dispersion capacity. The main environmental differences between 

the reservoir and the rivers are that the former has finer sediment grain size, higher 

temperatures, and lower oxygen concentration during summer months. This study 

aimed to evaluate whether one of these factors could be limiting the distribution of C. 

largillierti. We assessed the metabolic response and burial behavior (under different 

grain sizes) of C. largillierti over 8 weeks at 30°C against a control condition at 20°C. 

We also analyzed the oxygen consumption (vO2) as a function of environmental oxy-

gen concentration (pO2) at 25°C, estimating its metabolic regulation capacity (R). This 

showed the existence of an environmental oxygen concentration threshold (Pt) that 

could be an indicative of physiological limiting concentrations that compromise spe-

cies survival and settlement. After 8 weeks at 30°C, the metabolic rate of individu-

als of C. largillierti increased and their burial behavior was slightly compromised but 

mostly for coarser sediments. Concerning environmental oxygen availability, C. largil-

lierti is an oxyconformer with a low R (39.9%), a clear pattern of negative regulation, 

and a low Pt (48.4% air saturation). The lack of any regulation capacity of C. largillierti 

under environmental oxygen limitations and the extremely low pO2 at the bottom of 

the reservoir during summer months may explain its failure to colonize and survive 

there.
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of physical conditions allows invasive species to inhabit different en-

vironments. On the other hand, authors such as McMahon (2002) 

argue that there is a lack of evidence to indicate that invasive species 

have such a physiological capacity. However, the main limitation to 

elucidating this controversy is that the experimental knowledge of 

the physiological limits of invasive species, particularly in freshwater 

bivalve species, is still limited (Feng & Papes, 2017).

In recent decades, highly invasive bivalves, such as Limnoperna 

fortunei (DUnkER 1857), Dreissena polymorpha (Pallas 1771), Dreissena 

rostriformis bugensis (anDRUsOv 1897), and the Asian clams Corbicula 

largillierti (PhIlIPPI, 1844), Corbicula fluminalis (MüllER, 1774), and C. 

fluminea (MüllER, 1774), have invaded wide areas of America and 

Europe (Boltovskoy, ; Gallardo et al., 2013; Korniushin, 2004; Reyna 

et al., 2018). These benthic freshwater species reach high densities 

in short periods of time, altering not only the substrate but also the 

carbon and energy flux among the components of the invaded sys-

tem	 (Karatayev	et	 al.,	 2007;	McMahon,	2002;	Sousa,	Gutiérrez,	&	
Aldridge, 2009). Because of their worldwide distribution and nega-

tive ecological and economic impact, extensive knowledge has been 

gathered about the distribution, morphology, growth, reproduc-

tion, and physiology of the most problematic of these (Boltovskoy, ; 

Karatayev	 et	 al.,	 2007;	 Orlova	 et	 al.,	 2005;	 Sousa	 et	 al.,	 2008).	
However, although C. largillierti has been shown to be a potential 

invader of a variety of ecosystems (Reyna et al., 2018), there are 

almost no studies about basic aspects of its biology, reproduction, 

or physiological traits (Azevêdo et al., 2016; Ituarte, 1984; Martins 

et al., 2006; Reyna et al., 2013). Filling the gaps of fundamental phys-

iological information on this species is crucial to better understand 

its invasion capacity, predict the magnitude of its impact, and elabo-

rate suitable management policies (Blackburn et al., 2014).

Temperature and environmental oxygen concentration (pO2) are 

among the most important factors that determine bivalve distribution 

(Castañeda et al., 2018; Gama et al., 2017; Le Moullac et al., 2007; 

Pereira	 et	 al.,	 2017;	 Reyna	 et	 al.,	 2018;	 Schmidlin	 &	 Baur,	 2007).	
Temperature determines, to a large degree, the metabolic rate of 

organisms.	Such	metabolic	changes	are	likely	to	result	in	variations	
in the fitness of populations and, on a macro-ecological scale, de-

termine species distribution (Crespo et al., 2015; McMahon, 1979; 

Rosa et al., 2012; Xiao et al., 2014). Concerning oxygen concentra-

tion, many aquatic sessile animals tolerate hypoxic conditions up to 

certain limits, and this has been related to their ability to tolerate and 

invade a particular system (Lagos et al., 2017). As has been summa-

rized by Galic et al. (2019) even for tolerant species, hypoxia directly 

affects respiration, reproduction, growth, and feeding rates which, 

in the end, could result in altering population structure, biomass, and 

distribution. Determination of these specific environmental oxygen 

thresholds is fundamental to estimating the capacity of an organ-

ism	to	settle	in	a	certain	area	(Suárez-Mozo	et	al.,	2018;	Zamorano	
et al., 2007).

Corbicula largillierti and C. fluminea are two widely spread species 

in	Argentina	which	are	found	along	the	Suquía	River	basin	(Córdoba,	
central Argentina). However, in this watercourse, these two species 

do not cohabit as they do in other areas (Reyna et al., 2013). While 

a small population of C. fluminea	has	been	recorded	only	in	the	San	
Roque Reservoir (the main water body of the basin), C. largillierti has 

been found only in tributary and effluent rivers, but never in the 

reservoir itself (Figure 1). This particular distribution was observed 

for the first time by Reyna et al. (2013) in 2009 and remains the case 

to date (P.B. Reyna, unpubl. data).

Both species are usually spread accidentally by anthropogenic 

vectors, through aquaculture, in ballast waters, transported as 

bait for fishing activities or attached to recreational boats (Ilarri & 

Sousa,	2012).	Natural	spread	of	their	veliger	larvae	and	juveniles	oc-
curs by their floating downstream, or upstream by zoochory dispersal 

F I G U R E  1  Map	of	the	Suquía	River	
basin location in central Argentina. 
Shadow	areas	in	the	Argentina	map	
indicate recorded corbiculid distribution. 
The current distribution of Corbicula 

largillierti and C. fluminea in the basin is 
indicated with the corresponding valve 
shape. Main streams and water bodies 
of the basin are indicated as Cosquín 
River (CR), Las Mojarras River (LMR), 
Los	Chorrillos	brook	(LCB),	San	Antonio	
River	(SAR),	San	Roque	reservoir	(SRR),	
Suquía	River	(SR).	Diamond	indicates	
sampling	site.	Schematic	representation	
of main hydrological differences between 
reservoir and surrounding river are 
represented under the map: mean summer 
temperature	(MST),	mean	summer	oxygen	
concentration	(MSO2), and sediment 
granulometry	(SG)
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by water birds or fishes (Coughlan et al., 2017; Darrigran, 2002; Rosa 

et al., 2014). As there are no clear barriers to its dispersion, the lack of 

any record of C. largillierti in the reservoir suggests that environmental 

factors may be the main cause of this exclusion. There are clear hydro-

logical differences between this reservoir and the surrounding rivers, 

especially during summer when the reservoir has mean temperatures 

of ~27 ± 3°C and the rivers remain ~22 ± 4°C. The high temperatures 

of the reservoir during summer months are within the natural maxi-

mum temperature range described for this species’ distribution (Reyna 

et al., 2018). Nonetheless, the effect of long-term exposure to these 

temperatures may signify an increase in metabolic rate, with detrimen-

tal consequences on behavioral performance, growth, reproduction, 

and	ultimately	survival	(Hochachka	&	Somero,	2002).
Additionally, this summer temperature enhancement in the res-

ervoir, combined with anthropogenic nutrient inputs, generates a 

eutrophication process that leads to very low oxygen concentra-

tions. Oxygen levels decrease to values ranging from 4 mg/L on the 

surface, to values lower than 1 mg/L on the bottom, whereas riv-

ers maintain higher concentrations throughout the year (~8 mg/L; 

Alberto et al., 2001; Hued & Bistoni, 2005; Wunderlin, 2018; 

Wunderlin et al., 2001). In addition, water flow speed increases in 

the rivers during summer precipitations (up to 15 m3/s), but it is prac-

tically	nil	in	the	reservoir	(Vázquez	et	al.,	1979).	As	a	consequence	of	
water flow speeds, the rivers have a mix of rocky, gravel, and sandy 

patches, whereas mostly finer sediment particles settle in the reser-

voir (Hued & Bistoni, 2005; Wunderlin, 2018).

Considering the environmental differences mentioned above, 

our hypothesis is that the particular distribution of C. largillierti in the 

Suquía	River	basin	is	restricted	by	one	or	a	combination	of	these	envi-
ronmental factors. The goal of the present study was therefore to as-

sess how these factors affect metabolism and behavioral performance 

in C. largillierti, which would ultimately determine distribution of the 

species. To determine the effect of exposure to the reservoir summer 

temperature, we evaluated the metabolism and burial performance 

of individuals of C. largillierti exposed long term to high temperatures 

(30°C for 8 weeks). We also evaluated burial behavior in sediments 

of different granulometries, which could determine burrowing capac-

ity, to consider the effects of differences in sediment grain size be-

tween the reservoir and the rivers (Alexander et al., 1993; Downing 

et al., 2000). Additionally, we assessed the metabolic response of in-

dividuals of C. largillierti to different environmental oxygen concentra-

tions, to determine whether low reservoir concentrations represent a 

possible threshold for the species' settlement and survival. The results 

are discussed in the framework of previous knowledge of species of 

Corbicula and their potential invasiveness.

2  | METHODS

2.1 | Clams and sediment sampling

Sediment	 and	 individuals	 of	C. largillierti (n = 160) were manually 

collected	 from	 Los	 Chorrillos	 brook	 (31°24′S,	 64°30′W;	 Figure	 1)	

in	the	upper	part	of	the	Suquía	River	basin	during	December	2017.	
Individuals	with	a	shell	length	(SL)	of	22.25	± 3.27 mm (mean ± SD) 

were selected. For this and the following individual measurements, 

a	digital	caliper	accurate	to	0.01	mm	(Digimess	Stainless	Hardened	
DME 200) was used. Immediately after collection, all individuals and 

sediment were carefully transported to the aquarium. The experi-

mental design was approved by the Institutional Committee for the 

Care and Use of Laboratory Animals of the Instituto de Diversidad 

y Ecología Animal (CONICET-Universidad Nacional de Córdoba, 

Argentina, number 11/2019).

2.2 | Temperature exposure

Groups of individuals were randomly chosen and were placed 

in two 50-L tanks (n =	 70	 per	 tank,	mean	SL	23.3	± 2.9 mm and 

22.04 ± 3.6 mm, respectively) and acclimated for 4 weeks to 

aquarium conditions (20°C; 12:12 hr light: dark photoperiod; natu-

ral sediment and dechlorinated water [carbon-filtered tap water], 

continuously aerated). The control condition tank was kept at 20°C. 

After acclimation in the treatment tank, its temperature was gradu-

ally increased (1.5°C per day), reaching 30°C by the end of the fifth 

week. In order to test long-term responses to the temperature in-

crease, individuals were kept at each temperature for 8 weeks 

(Figure 2). The 20–30°C interval fits the temperature sensitivity co-

efficient Q10 calculation and does not correspond to lethal tempera-

tures for this species (Reyna et al., 2018).

During the acclimation and temperature exposure periods, water 

was renewed twice a week and animals were fed every other day. 

Food supply included a mix of ground TetraMin® Tropical Flakes 

(Tetra Holding GmbH) and commercial lyophilized Chlorella vulgaris 

(Organikal	S	HGL).	At	each	change	of	water,	ammonium	and	nitrate	
levels were checked with commercial tests (Tetra NH3/NH4

+ and 

Tetra NO3
−; Tetra Holding GmbH).

After 4 weeks of temperature exposure, 20 individuals were 

randomly chosen from each temperature tank and relocated to a 

different tank at its corresponding temperature, without sediment 

and with filtered and dechlorinated water (carbon and 0.1-μm mesh 

filtered	tap	water)	for	standard	metabolic	rate	(SMR)	determination.	
Immediately	after	individual	SMR	measurement,	each	individual	was	
restored to its corresponding temperature tank. The following day, 

between 56 and 64 individuals were randomly chosen from each 

temperature tank and relocated to a different tank with dechlori-

nated water at the corresponding temperature to evaluate burial 

behavior. Four weeks later (treatment week 8), this procedure was 

repeated. Mortality was recorded daily (Figure 2). At the end of each 

measurement,	each	individual's	fresh	mass,	SL,	and	volume	were	re-

corded (there were no significant differences between size ranges of 

the compared groups). At the end of the experiment, animals were 

sacrificed and dried at 60°C to obtain their constant dry mass. The 

dry mass for all previous measurements was estimated from biomet-

ric ratios calculated at the end of the experiment, resulting in the 

following equation:
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2.3 | SMR evaluation

The	SMR	is	of	functional	and	ecological	importance,	because	it	rep-

resents the basic cost of living at a certain temperature (Hochachka 

&	 Somero,	 2002).	 SMR	was	measured	 based	 on	 the	 oxygen	 con-

sumed per gram of estimated dry mass without shell per hour (mg O2 

g−1 hr−1).	For	SMR	determination,	20	individuals	were	randomly	cho-

sen from each temperature treatment tank after 4 weeks of expo-

sure and transferred to a 30-L tank at the corresponding treatment 

temperature, without sediment and with filtered (carbon and 0.1-μm 

mesh),	dechlorinated	tap	water.	In	each	SMR	tank,	specimens	were	
placed individually in 60-ml open chambers for 24 hr for chamber 

acclimation before the measurement. Each chamber and the three 

control chambers (without animals) were hermetically closed before 

starting the measurement procedure. No signs of manipulation stress 

(e.g., valves closed or syphons not observable) that could interfere 

with the respiration rate were observed during the measurements. 

After 1 hr, a 20-ml water sample was taken from each chamber and 

the oxygen concentration was determined by the Winkler spectro-

photometric method, following Labasque et al. (2004), modified by 

Torre et al. (2012), with an LKB Biochrom 4060 spectrophotometer 

(Biochrom). Oxygen consumption was estimated as the difference 

in oxygen concentration between the experimental and the control 

chambers.	 Once	 SMR	measurement	 was	 finished,	 each	 individual	
was	measured	 (SL,	 fresh	mass)	and	restored	to	 its	 treatment	 tank.	
Four weeks later (treatment week 8), this procedure was repeated 

with the same group of individuals (Figure 2).

2.4 | Burial behavior

Bivalve distribution is constrained by the grain size of the sediment 

in which they are able to burrow (Alexander et al., 1993; Downing 

et al., 2000). Burrowing is a mechanism that allows bivalves to 

continue feeding while avoiding harmful environmental factors or 

predators. Temperature influences bivalve burial behavior (Amyot 

& Downing, 1997), affecting their ability to evade predators, or 

to reestablish contact with water after burial by sediment depo-

sition (Alexander et al., 1993; Fiori & Carcedo, 2015; McKeon & 

Barshis, 2015). Evaluating burial behavior in C. largillierti may thus 

represent a good proxy for performance at different granulometries 

and temperatures.

One	day	after	SMR	evaluation,	burial	performance	in	sediments	
of different grain sizes was evaluated following the methods of Fiori 

and Carcedo (2015) and Nel et al. (2001). Because the amount and 

type of organic matter in sediments may directly influence oxy-

genation and pH, and thus affect bivalve burial behavior (Cottrell 

et al., 2016; Cummings et al., 2009), the sediment used was first 

placed in a muffle furnace for 5 hr at 450°C to remove any remaining 

(1)Estimated drymass = 0.0019e0.201× SL

F I G U R E  2  Schematic	representation	of	experimental	design	to	study	response	to	different	environmental	conditions	by	individuals	of	
Corbicula largillierti. The sequence of acclimation and treatment periods is shown, as well as number of individuals (n) and corresponding shell 
length (mean ± SD)	in	each	temperature,	and	behavioral	and	physiological	measurements,	including	standard	metabolic	rate	(SMR),	burial	
behavior (BB), and metabolic response to progressive hypoxia (pO2 evaluation). Two-way arrows indicate when individuals were returned to 
their corresponding temperature tanks once the measurement was finished. The number of deaths per individual per temperature per period 
is also included
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organic matter. The sediment was then sieved to obtain the follow-

ing granulometries: coarse sand (0.5–1 cm), thin sand (0.2–0.5 cm), 

fine sand (0.1–0.2 cm), and very fine sand (<0.1 cm). This laborato-

ry-controlled approach is usually performed to evaluate the specific 

influence of granulometry and avoids any other unpredictable char-

acteristic of natural sediments (organic matter fraction, the pres-

ence of bacteria or other small organisms, geochemical variability, 

etc; Alexander et al., 1993; De la Huz et al., 2002; Nel et al., 2001), 

which in general could be far from being homogeneously distributed 

(Béjar	et	al.,	2018).	Sediment	containers	of	250	ml,	filled	with	one	of	
the four sediment sizes, were placed into 50-L filtered water tanks 

at the corresponding temperature (20 or 30°C). Animals were taken 

from their temperature tank and immediately placed in the center 

of one of these sediment containers. Individual burial time behavior 

was evaluated for 30 min. Burial time is the period from when the bi-

valve introduces its foot in the sediment and the valve is positioned 

perpendicular to the sediment surface until the posterior end of the 

valve becomes level with the sediment surface. The measurement 

was repeated until a representative number of individuals (n = 14–

16) per grain size and temperature was tested. Each animal was al-

lowed to bury in only one size of sediment particles per test period 

(weeks 4 and 8). Because not all the specimens evaluated completed 

or even initiated burrowing, the degree to which individuals buried 

was also categorized as all buried, partially buried, or not buried. 

Bivalves were removed from the containers immediately after the 

burrowing	test,	the	SL	was	measured,	and	the	individuals	were	re-

stored to their temperature treatment tank with natural sediment. 

Four weeks later (treatment week 8), this procedure was repeated 

(Figure 2). Finally, the burial rate index (BRI) was calculated from the 

burial	time	using	the	Stanley	(1970)	equation	modified	by	Alexander	
et al. (1993):

The BRI normalizes the burial time according to the size of the 

individuals, since larger individuals take proportionally more time to 

bury completely than smaller ones.

2.5 | Metabolic response to progressive hypoxia

The amount of oxygen consumed per unit of time (vO2), plotted as 

a function of environmental oxygen levels (pO2), is one of the typi-

cal approaches to study the hypoxia tolerance of aquatic inverte-

brates to their environment. To evaluate the effect of environmental 

oxygen concentration (pO2) on performance in C. largillierti (n = 18; 

mean	SL,	21.86	± 3.04 mm), the oxygen consumption rate (vO2) of 

individual clams was measured at 25°C, using an OXY-4 channel 

PreSens	Oxygen	Ingress	Measurement	system	(Regensburg),	follow-

ing	Tremblay	 and	Abele	 (2015).	 Since	 the	number	of	 devices	 con-

nected (see below) increases water temperature, individuals used 

in this particular evaluation were acclimated from the beginning for 

4 weeks to 25°C. All the measurements were performed at that tem-

perature (Figure 2).

The system was equipped with four chambers for the simulta-

neous measurement of three animals and a control blank (to assess 

background oxygen demand from bacteria in the water). All cham-

bers were placed in a 30-L tank with constantly aerated, filtered, 

and dechlorinated water (to keep 100% air saturation). Cylindrical 

chambers	of	30	ml	were	used.	Specimens	were	placed	in	the	cham-

bers 24 hr before measurement for acclimation. Water circulation 

was maintained with pumps to achieve homogeneous conditions 

among chambers. Following the oxygen sensor instruction manual 

(Oxygen	Sensor	Spots	PSt3	 Instruction	Manual,	www.prese	ns.de),	
aeration was stopped between 10 and 20 min before starting mea-

surement to avoid oversaturation. Water circulation was stopped by 

hermetically closing each chamber. Chambers were equipped with 

a magnetic stirrer in the bottom to achieve homogeneity of oxygen 

concentration and a 1-mm mesh gauze to separate the stirrer from 

the clams. Data recording was started simultaneously in all cham-

bers while closed, at a pO2 of ~100% air saturation, and the oxygen 

concentration in each chamber was measured every minute. The du-

ration of the measurements lasted 2.5–6.5 hr, and measurements 

were stopped individually when the pO2 reached 0%. No signs of 

manipulation stress (e.g., valves closed or syphons not observable) 

that could interfere with the vO2 were observed during the mea-

surements. After measurements, the animals were sacrificed and 

weighed (with and without shell) to determine the fresh mass, and 

the	SL	was	measured.	Fresh	body	mass	without	shell	was	dried	at	
60°C to obtain the final dry mass. To analyze oxygen regulation ca-

pacity and hypoxia sensitivity, vO2 was estimated as the oxygen con-

sumed per gram of estimated dry mass without shell per hour (mg O2 

g−1 hr−1) for each pO2 (100%–0%).

2.6 | Data analysis

Normality	 and	 homoscedasticity	 were	 evaluated	 by	 the	 Shapiro–
Wilk	 and	 Levene's	 tests,	 respectively.	 For	 lack	 of	 normality,	 SMR	
and BRI were log10 (x + 1) and log10 transformed, respectively. To 

detect differences in the parameters evaluated, covariance analysis 

(ANCOVA)	was	performed	with	SMR	as	the	dependent	variable	and	
temperature and time combination as independent variables. In the 

case of BRI, temperature, time, and granulometry were considered 

as	 independent	variables.	 In	all	cases,	 individual	size	 (SL)	was	con-

sidered	 as	 a	 covariable.	 Significant	ANCOVA	differences	 (p < .05) 

were evaluated with a Bonferroni post hoc test. One of the indi-

viduals	measured	for	the	SMR	control	group	in	the	fourth	week	was	
excluded from analysis because it was much larger than the rest of 

those compared. The degree of burial among temperatures, time of 

exposure, and granulometry was analyzed with a chi-squared test. 

The degree of granulometry selectivity was determined according 

to Alexander et al. (1993), by analyzing the kurtosis of the burial rate 

profiles. All statistical analyses were performed with Infostat 2016 

(Di Rienzo et al., 2016).

(2)BRI =
Individual mass

0.33

Burial time
× 10

4
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The temperature coefficient (Q10) reflects the rate of variation 

of chemical or biological systems as a consequence of a 10°C in-

crease in temperature. In biological systems, a Q10 value ~2 means 

that the system is being evaluated within the normal temperature 

range for that system. A Q10 = 1 means that the process is not influ-

enced by temperature, whereas Q10 < 1 implies that the system is 

not	within	its	normal	temperature	range.	Smaller	Q10 values indicate 

that the system is more strongly susceptible to the effects of higher 

temperature	(Hochachka	&	Somero,	2002).	To	analyze	temperature	
sensitivity	and	thermal	compensation	in	SMR	and	BRI,	Q10 was cal-

culated as:

where T2 and T1 stand for 30 and 20°C, respectively, and r is the mea-

sured	rate	SMR	or	BRI.
The traditional method of analysis of vO2/pO2 behavior assumes 

that in an oxyconformer (a non-regulator) vO2 declines proportion-

ally with pO2, whereas in an oxyregulator vO2 remains constant, 

down to the critical pO2 (Pcrit). Because there are many cases in which 

data deviate from this traditional model of regulation, a different ap-

proach has been developed that evaluates a more general definition 

of this particular pO2, defined as threshold pO2 (Pt). Because Pt is the 

pO2 at which organisms shift their metabolic response, it is of impor-

tance	for	determining	physiological	distribution	thresholds	(Suárez-
Mozo	et	al.,	2018;	Zamorano	et	al.,	2007).

To analyze the effect of pO2 on the physiology and distribu-

tion of C. largillierti, we performed the following analysis. First, the 

regulation value (R) was calculated as the integrated area under 

the curve described by vO2 as a function of pO2 (100%–0%), ex-

pressed as a percentage of the total possible area. Values of R be-

tween 100% and 50% are indicative of oxyregulation, with higher 

values indicating greater regulatory ability, whereas R values <50% 

suggest extreme hypoxia sensitivity (Alexander & McMahon, 2004; 

Lencioni et al., 2008). This is an integrative method for estimating 

and comparing overall oxygen regulatory capacity, but does not pro-

vide information about critical or threshold oxygen tensions (Pt). To 

determine these thresholds, we calculated Pt as the pO2 at which 

there is a breaking point in the relationship between pO2 and the 

rate of vO2, with Vt being the vO2 at Pt. We used the respR package 

(Harianto et al., 2019) in R (R Core Team, 2011) to calculate Pt by clas-

sical broken-stick regression and the segmented, or nonlinear, bro-

ken-line regression. Pt are values at which there is a greater change 

in trend but may not capture important aspects of the response 

pattern. Instantaneous regulation, ρ(x), was plotted and analyzed 

in comparison with classical regulation models (ideal regulators and 

conformers) following Cobbs and Alexander (2018). Considering f'(x) 

as the function that describes the relationship between standard-

ized vO2 and pO2, ρ(x) is described by the following equation (Cobbs 

& Alexander, 2018):

In this relationship, ρ(x) < 0 indicates negative regulation, ρ(x) = 0 

indicates no regulation, and 0 < ρ(x) < (x−1)	indicates	partial	positive	
regulation. The regulation profile (a plot of ρ(x) versus x) describes 

the direction, intensity, and pattern of regulation over values of x. 

From this profile, Pt could be redesignated as Pmin, Pzero, and Pmax, 

which are the values of x for which ρ(x) is at its minimum, zero, and 

its maximum, respectively. Total positive regulation (Tpos) and total 

negative regulation (Tneg) were also estimated by integrating the ρ(x) 

function (Cobbs & Alexander, 2018).

3  | RESULTS

There	was	a	significant	relationship	between	SMR	and	temperature,	
with	a	significant	interaction	with	time	(Table	1).	At	30°C,	SMR	was	
always higher than at 20°C but only significantly greater at 30°C 

in the long term, together with greater percentage of accumulated 

mortality (~10	times	greater;	Figure	3,	Table	1).	SMRQ10 values were 

1.25 and 1.83 for four and eight weeks, respectively.

In the absence of any statistically significant effect of tempera-

ture or time on BRI, data from different temperatures and time were 

pooled together to analyze the effect of granulometry (BRIQ10 values 

at 4 and 8 weeks were ~1). BRI strongly depended on granulometry, 

indicating that C. largillierti buried faster in finer sediments (Figure 4, 

Table 1). The burial rate profile kurtosis (K =	−2.04)	 indicated	that	
clams were generalist in terms of granulometry selection, at least 

in the grain sizes chosen for this work (data not shown). At 30°C, 

(3)Q10 =

rT2

rT1

(4)
� (x) =

f (x)

x
− f

�
(x)

TA B L E  1   ANCOVA results for the effect of temperature, 
exposure time, and sediment grain size on standard metabolic rate 
(SMR)	or	burial	rate	index	(BRI),	with	size	(shell	length)	as	a	covariate

Comparison F p

SMR

Temperature 23.36 <.0001

Time 0.2 .659

Temperature × Time 4.02 <.0001

Size	(shell	length) <.0001

BRI

Temperature 0.45 .504

Time 0.1 .751

Grain size 21.28 <.0001

Temperature × Grain size 1.83 .165

Temperature × Time 2.66 .106

Temperature × Time × Grain size 1.88 .158

Size	(shell	length) <.0001

BRIa 

Grain size 47.09 <.0001

Size	(shell	length) <.0001

aIn the absence of any statistically significant effect of temperature or 

time on BRI, data from different temperatures and time were pooled 

together to analyze only the effect of grain size. 
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the proportion of clams that completed burial was significantly less 

than the proportion at 20°C (χ2 = 31.63; p < .0001) after 8 weeks 

(Figure 5).

Under progressive hypoxia, individuals of C. largillierti performed 

as oxyconformers, with an R value below 50% (39.9%), which also 

indicated negative regulation. This species did not appear to be a 

classical oxyconformer, because the respiration profile (vO2 versus 

pO2) showed two perfectly observed segments separated by an en-

vironmental pO2 threshold of Pt = 48.4% air saturation (Figure 6a). 

The relative vO2 versus pO2 profile (f(x) plot) and its related instan-

taneous regulation profile (ρ(x) plot; Figure 6b,c) showed that only 

negative regulation occurs in the first segment (from maximum 

pO2 to Pt) with a Tneg = 0.52. The rest of the profile presented no 

regulation, except when pO2 approaches 0, leading to a very small 

Tpos = 0.06. The ρ(x) plot (Figure 6c) showed that Pt is in fact a Pmin.

4  | DISCUSSION

The present study is one of the first to assess the metabolic and 

behavioral responses in individuals of C. largillierti to temperature 

increase and to evaluate its metabolic response to progressive hy-

poxia. Temperature affects organism physiology at every level, 

from molecular structures to every metabolic and physiological 

rate (i.e., filtration, respiration, excretion, growth, and reproduc-

tion;	 Christophersen	 &	 Strand,	 2003;	 Clarke,	 1998;	 Hochachka	 &	
Somero,	2002;	Pörtner,	2002;	Saucedo	et	al.,	2004).	Many	invasive	
species can survive acute thermal stress in freshwater environments, 

which is probably a key factor in their dispersion (Bates et al., 2013). 

For instance, C. fluminea can tolerate temperatures higher than 

40°C for short periods and survive for a long time between 30 and 

35°C (Cataldo & Boltovskoy, 1999; Lucy et al., 2012). Nonetheless, 

F I G U R E  3   Relationship between 
standard	metabolic	rate	(SMR)	and	
temperature in Corbicula largillierti. Plot 
shows log10	(SMR	+ 1), corrected for shell 
length as milligrams of O2 per gram of 
dry mass without shell per hour (mg O2 
g−1 hr−1), for individuals at 20 and 30°C. 
Different letters indicate significant 
differences between measurements 
(p < .05). Accumulated mortality (%) for 
individuals at 20 and 30°C is tabulated 
under	the	corresponding	SMR	box

F I G U R E  4   Burial rate at different 
sediment granulometries in Corbicula 

largillierti. The burial rate index (BRI) 
normalizes burial time to dry mass 
(calculated from shell length). Plot shows 
log10 BRI at different granulometries 
(very fine, fine, thin, coarse). Different 
letters indicate significant differences 
(p < .05)
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adaptation over the long term is one of the major challenges for 

these species to colonize and invade a wider environmental range 

(Frankham,	2005;	Lee	et	al.,	2005;	Roman	&	Darling,	2007;	Stapley	
et al., 2015). It is generally accepted that a Q10 value around 2 indi-

cates no compensation at all and complete temperature dependence 

(Lurman et al., 2014). Our results show that C. largillierti is not a per-

fect	compensator.	The	SMRQ10 during the exposure indicates that C. 

largillierti is not able to compensate for temperature effects. Indeed, 

mortality in long-term exposure to 30°C was 10 times higher than at 

20°C, indicating that, at least for a small fraction of the population, 

this temperature is unbearable.

We also observed a temperature effect on burial behavior that is 

not evident by BRI analysis (which only takes into consideration indi-

viduals that completed burial). As has been observed in other bivalve 

species	exposed	to	high	temperatures	(Savage,	1976),	individuals	of	
C. largillierti were progressively less able to complete burial at 30°C. 

The inability to bury negatively affects population establishment, 

because it increases exposure to predators or to other adverse envi-

ronmental	conditions	(Bowers	et	al.,	2005;	Saloom	&	Duncan,	2005;	
Tallqvist, 2001). Thus, even when the temperatures tested are in 

the range of the maximum temperature for this species’ distribution 

record, there seems to be an impact when the exposure to these 

higher temperatures is prolonged. The summer conditions described 

for the reservoir are more or less constant throughout the summer 

months (Wunderling, 2018). Thus, even when our results show that 

exposure to 30°C has no massive lethal effect, it has an energy cost 

that	is	reflected	in	a	higher	SMR.	This	physiological	cost	is	then	evi-
denced in mortality and burial failure.

Regarding granulometry differences between the reservoir 

and the rivers, our results indicate that the thinner sediments that 

characterize the reservoir bottom would not be a limiting factor for 

corbiculid settlement. Contrary to expectations, BRI differences be-

tween granulometries indicate some preference for the finer ones, 

but not strong enough for C. largillierti to be considered a specialist 

(Alexander et al., 1993). The burial profile analysis classifies them as 

generalists, meaning they can bury at all granulometries tested. This 

matches the distribution of C. largillierti	along	the	Suquía	basin	rivers,	
where it can be found inhabiting coarse and sandy sediments (Reyna 

et al., 2013). This may also be the case for C. fluminea, a species in 

which preference for fine sediments has been shown experimentally, 

but which is almost equally distributed along the fine and coarse 

sandbanks	of	the	River	Rhine	(Schmidlin	&	Baur,	2007)	and	of	the	St.	
Lawrence River (Castañeda et al., 2018). In fact, it has been assumed 

that the presence of C. fluminea on higher grain size sediments is 

indeed related to the degree of oxygenation, which is always higher 

in coarse sediments (Castañeda et al., 2018; McMahon, 1999). Our 

results are consistent with the latest study of Pereira et al. (2017), 

which suggests that sediment characteristics are weaker predictors 

of corbiculid distribution per se.

Oxygen availability is another limiting factor of aquatic envi-

ronments,	 particularly	 in	 the	 San	 Roque	 Reservoir,	 as	 explained	
above. Our results show that in C. largillierti, metabolic demands 

are not able to be sustained under progressive hypoxia, when 

individuals are completely dependent on pO2. The R value and a 

vO2/pO2 profile that passes below the perfect oxyconformer line, 

even at very high pO2, is a pattern that has been previously de-

scribed for hypoxia-sensitive species by Alexander and McMahon 

(2004).	 Significantly	 reduced	 respiration	 rates	 could	 also	 be	 an	
indication of metabolic suppression (Herreid, 1980; Tremblay 

et al., 2020). Low levels of negative regulation are quite common 

in aquatic invertebrates, as in this case (Cobbs & Alexander, 2018). 

Probably, the capacity to reduce energy expenditure during low 

oxygen events is a primary mechanism facilitating low oxygen tol-

erance	 (Seibel	 et	 al.,	 2016).	 This	mechanism	 could	 be	 important	
for surviving emersion events, especially during the dry season. 

It has been described that other corbiculids survive emersion by 

alternating longer periods of valve closure with very reduced ox-

ygen uptake rates and very short periods of higher aerial oxygen 

F I G U R E  5   Burial behavior associated 
with sediment type and temperature in 
Corbicula largillierti. The degree to which 
individuals buried themselves in sediment 
was classified into three categories: 
not buried (NB), partially buried (PB), 
and completely buried (CB). Plots show 
the relative frequency of each of these 
categories when clams were placed in 
sediment of different grain sizes (very 
fine, fine, medium, or coarse) at two 
different temperatures. A,B. Exposure 
to 20°C after 4 (A) and 8 (B) weeks. C,D. 
Exposure to 30°C after 4 (C) and 8 (D) 
weeks
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exchange (McMahon & Williams, 1984). Because pO2 is the lim-

iting factor under environmental hypoxic or anoxic conditions, 

adjusting vO2 through opening and closing of the valves makes 

no difference in these cases. In fact, C. fluminea is better at sur-

viving short periods of anoxic than of hypoxic conditions (Johnson 

& McMahon, 1998; Mathews & McMahon, 1995). The positive 

regulation seen in C. largillierti at very low pO2 could be related 

to these minimum vO2 levels that corbiculids could sustain during 

valve closure (McMahon & Williams, 1984). As in the case of 

most oxyconformers, the general performance of C. largillierti is 

heavily dependent on environmental oxygen tension (Crocker & 

Cech,	1997;	Pörtner,	2010;	Pörtner	&	Grieshaber,	1992).	Therefore,	
inhabiting poorly oxygenated environments will compromise their 

biological functioning (i.e., growth and reproduction) and probably 

their survival (Galic et al., 2019). Additionally, if the limited hypoxic 

or anoxic tolerance in this species has evolved to survive during 

dry (cold) season emersion events, it is probable that individuals 

could	not	survive	the	San	Roque	Reservoir	summer	eutrophication	
events (27°C on average during summer months).

This may be one of the reasons for the absence of C. largillierti in 

the	San	Roque	Reservoir.	The	presence	of	C. fluminea in the reservoir 

seems to indicate that, even though it is also a very hypoxia-sensi-

tive species (McMahon, 1996, 1999), it is at least more tolerant than 

C. largillierti. Corbicula fluminea is also distributed at a higher range of 

temperatures than C. largillierti (Crespo et al., 2015; Gama et al., 2016; 

Lucy et al., 2012; Reyna et al., 2018), indicating better temperature 

tolerance. Given that the conditions of the reservoir are more extreme 

and that both species are able to coexist in other water bodies (Callil 

& Mansur, 2002; Martins et al., 2004; Reshaid et al., 2017), the ab-

sence of C. fluminea in the rest of the basin may be the result of a 

more recent invasion event. Nonetheless, the reservoir conditions are 

difficult enough to prevent colonization of C. largillierti and apparently 

dispersion of C. fluminea, presumably because these conditions affect 

growth and reproduction in these clams (Belanger, 1991). In conclu-

sion, sediment granulometry seems not to be a determining factor in 

C. largillierti	distribution	in	the	Suquía	River	basin	per	se.	Temperature	
may be a limiting factor but is not determinant, whereas oxygen avail-

ability seems to be the most important factor. Additionally, a combina-

tion of high temperatures and extremely low oxygen concentrations in 

the reservoir during summer eutrophication events may together act 

as a critical factor preventing the settlement of C. largillierti.

The results obtained in the present study contribute to fill-

ing the gaps of some biological aspects associated with the still 

poorly known and underestimated invasive species, C. largillierti. 

Knowledge of the physiological constraints that affect and restrict 

the establishment of species of Corbicula in freshwaters may help 

to better understand their invasiveness as well as to predict their 

distribution patterns. This may also aid the design of control strat-

egies for mitigating species impact through efficient management 

policies.
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