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+e transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is
closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is
complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing
apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, an-
giogenesis, and immune escape. +is review summarizes the recent findings on molecular mechanisms of TGF-β signaling.
Specifically, this review evaluates TGF-β′s therapeutic potential as a target by the following perspectives: ligands, receptors, and
downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related
to the TGF-β signaling pathway.

1. Introduction

+e transforming growth factor-β (TGF-β) was first
discovered in 1978 by JE de Larco and GJ Todaro in
mouse fibroblasts transformed with murine sarcoma
virus. TGF-β is a member of the cell growth factor su-
perfamily; it is involved in the regulation of various
biological processes, including cell growth, differentia-
tion, autophagy, apoptosis, epithelial-mesenchymal
transition (EMT), angiogenesis, inflammation, and im-
munity [1–5]. TGF-β mainly exerts multiple biological
functions in the body through two pathways: the classic
SMAD-dependent pathway and the non-SMAD-depen-
dent pathway. In the SMAD-dependent classical path-
way, there are two transmembrane Ser/+r kinase
receptors in the cell membrane, namely, TGF-β receptor I
(TβR I) and TGF-β receptor II (TβR II). +e combination
of TGF-β and TβR II can activate the kinase activity of

TβR I and induce the phosphorylation of TβR
I. Subsequently, the activated TβR I can recruit and
phosphorylate downstream SMAD proteins, SMAD2 and
SMAD3. Once phosphorylated, SMAD2 and SMAD3
bind to the chaperone protein SMAD4 and are
cotransported to the nucleus, where they can regulate the
expression of TGF-β target genes [6, 7] (Figure 1). Here,
we mainly discuss the related role of TGF-β in tumors and
its potential as a therapeutic target. We first introduce the
related role of this signaling pathway in tumorigenesis
and development. +en, using the classic TGF-β signaling
pathway as a framework, we discuss the molecules and
mechanisms that cause the abnormal activation or in-
activation of TGF-β from three perspectives. Finally, we
summarize the current TGF-β-targeted tumor therapy
drugs from these three perspectives. We hope that
readers can expand the idea of designing new TGF-β
tumor treatment drugs.
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2. Introduction to the Related Mechanisms and
Functions of TGF-β Signaling Pathway in
Tumorigenesis and Development

For the tumor, TGF-β is a double-edged sword, as it can
achieve inhibition and promotion of tumors through various
mechanisms (Figure 2). TGF-β has a strong cellular in-
hibitory ability and is a prominent antiproliferation agent. It
can inhibit cell cycle progression by blocking the G1 phase
and exert its antiproliferation ability by inhibiting prolif-
eration drivers such as C-MYC and ID [8, 9]. TGF-β can also
induce apoptosis to inhibit tumor growth [10]. In addition to
acting directly on epithelial tumor cells, TGF-β can further
control tumor development by regulating the production of
growth factors in the surrounding stroma and the tumor
microenvironment [8]. Furthermore, TGF-β inhibits in-
flammatory and immune processes [11]. However, when the
immunosuppressive action of TGF-β becomes significant, it
will eventually start promoting tumor progression. TGF-β
inhibits the transcription of proapoptotic and lysogenic
cytokines in cytotoxic T lymphocytes (CTLs), such as per-
forin, Granzyme A (GZMA), Granzyme B (GZMB), por-
phyrin interferon g

, and factor-associated suicide (FAS) ligands [12, 13].
TGF-β inhibits certain functions of CTLs, CD8+ Tcells, and
natural killer cells, resulting in a tumorigenic effect [14, 15].
TGF-β also enhances tumor invasiveness and angiogenesis
by promoting the production and secretion of matrix
metalloproteases proteinase-2 (MMP-2) and matrix metal-
loproteinase-2 (MMP-9) and downregulating the expression

of tissue inhibitors of metalloproteases (TIMP) [8, 16–18].
TGF-β also induces EMT, which supports tumor invasion
and spread by releasing tumor cells into the environment
and promoting their movement [16].

2.1. Tumor Inhibition by TGF-β

2.1.1. TGF-β Inhibits Tumors by Regulating Cell Proliferation.
TGF-β inhibits cell proliferation primarily through two
transcriptional events: the induction of cyclin-dependent
kinase (CDK) inhibitors and C-MYC expression inhibition
[19]. In neuronal, epithelial, and hematopoietic cells, TGF-β
inhibits cell growth by targeting CDKs and their inhibitors
(CDK-IS), responsible for controlling cell cycle progression
beyond G1 during proliferation. P15INK4B, P21CIP1, and
P27KIP1 are three CDK-IS whose expression is promoted by
TGF-β, which also inhibits the cyclin-CDK complex, leading
to cell cycle arrest of G1 phase [19–22]. P15 mainly blocks
the interaction between CDK4/6 and cyclin D, thus inhib-
iting the cell cycle process in the late G1 phase [23]. As a
CDK inhibitor, P27 can be removed from the cyclin
D-CDK4 complex, then interact with the cyclin E-CDK2
complex, and inhibit the cyclin E-CDK2 complex. P21 can
also inhibit the activity of the cyclin E-CDK2 complex
[9, 23]. When these CDK complexes are inactive, retino-
blastoma protein (pRb) phosphorylation is inhibited, and
pRb phosphorylation is the main switch in cell cycle pro-
gression, thus preventing G1 cells from moving into the S
phase. Simultaneously, TGF-β can downregulate C-MYC
oncogene expression, thereby inhibiting cell proliferation.
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Figure 1: Mature TGF-β ligand, LAP, and LTBP together form a large latency complex that keeps the TGF-β ligand in a latent state at this
time.When the TGF-β ligand is released from the complex, it changes from a latent to an active state.+e released TGF-β ligand can directly
bind to TβR II, thereby further binding to TβR I, but TGF-β ligand cannot directly bind to TβR I.+e combination of TGF-β ligand, TβR II,
and TβR I can further transmit signals to downstreammediators. After phosphorylation and activation of SMAD2 and SMAD3, they further
bind to SMAD4 and transmit the signal to the nucleus.

2 Evidence-Based Complementary and Alternative Medicine



C-MYC allows cells to multiply indefinitely and promotes
cell division. In epithelial cells, the TGF-β-induced SMAD
complexes synergistically regulate C-MYC expression’s
downregulation with transcription factors P107, E2F4/E2F5,
and CCAAT/enhancer-binding protein (C/EBP) [24]. In
addition, TGF-β inhibits Id1, Id2, and Id3 expression, which
are nuclear factors associated with the G1 to S cell cycle
transition. Inhibition of Id family proteins by TGF-β leads to
decreased proliferation [25, 26]. +e SMAD-dependent
pathway of TGF-β is also associated with antiproliferative
responses [27]. For example, TGF-β inhibits P70 S6 kinase
by protein phosphatase 2A (PP2A) and induces G1 phase
cell cycle arrest [28].

2.1.2. TGF-β Inhibits Tumors by Promoting Apoptosis.
TGF-β can trigger apoptosis of various cell types to inhibit
tumor growth; there are two main pathways: the SMAD-
dependent pathway and the independent pathway. However,
the molecular mechanisms are still less clear. +e SMAD-
dependent pathway involves proapoptotic proteins such as
death-related protein kinases (DAPK), Src homology ino-
sitol phosphatase (SHIP), and TGF-β induced early gene

1(TIEG1). Among them, DAPK can promote the release of
cytochrome C and mediate TGF-β-dependent cell apoptosis
by associating SMADs with mitochondrial proapoptotic
events [29]. SHIP inhibits the PI3K-Akt pathway leading to
cell death before cell survival [30]. TIEG1 can induce oxi-
dative stress and produce reactive oxygen species (ROS)
[31, 32]. +ese all promote apoptosis and thus inhibit tumor
growth, and the expression of these proapoptotic proteins is
regulated by TGF-β-mediated SMAD signaling. +e DPC4-
induced SAPK/JNK signaling pathway is also involved in
TGF-β signaling, which leads to apoptosis [33]. In the TGF-β
independent pathway, TGF-β-mediated apoptosis is in-
volved in the activation of caspase. TGF-β inhibits the ex-
pression of antiapoptotic genes such as BCL-2 family
members, BCL-XL, and X-linked inhibitor of apoptosis
(XLAP) and promotes the expression of some proapoptotic
genes such as caspase 3, caspase 8, and Bcl-2-interacting
killer (BIK) [34–36]. Death domain-associated protein
(DAXX) is a protein associated with the FAS receptor and is
associated with the apoptotic signal of TGF-β. DAXX is
involved in TGF-β-mediated JNK activation, thereby me-
diating programmed cell death [37]. TGF-β has been re-
ported to increase the expression of the death-related
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Figure 2: Dual effects of TGF-β on tumors. As a double-edged sword, TGF-β can promote and inhibit tumors through various mechanisms.
TGF-β exerts its tumor inhibition mainly by inhibiting cell proliferation and inducing apoptosis. TGF-β can upregulate CDK-IS expression
(P15, P21, and P27) to inhibit CDK and downregulate the expression of the C-MYC and ID family to inhibit cell proliferation. Si-
multaneously, TGF-β can also inhibit the expression of antiapoptotic genes such as BCL-X, BCL-2, and KIF5 and promote the expression of
proapoptotic genes such as BIK, Caspase 3, and Caspase 8 to induce apoptosis and thus inhibit tumor growth. However, TGF-β can also
promote cancer through several mechanisms. TGF-β can enhance EMT and metastasis to play its protumor role by upregulating Snail, E-
cadherin, and N-cadherin or downregulating miR-124. It can also evade the immune system by inhibiting Granzyme AB, perforin, FAS
ligands, and IFN-c to achieve its tumor-promoting effects. TGF-β also triggers tumor growth by promoting angiogenesis by activating
MMP2, MMP9, VEGF, and CTCT.
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protein kinase DAPK in liver cancer cells and signal
transduction factors 45β for growth stagnation and DNA
damage (GADD45beta) in the liver cells [38]. In hepatocytes,
TGF-β induces cell death by producing ROS [39]. +e
production of TGF-β-induced ROS promotes apoptosis by
regulating various members of the BCL-2 family, such as
BCL-2 modifying factor (BMF) and BCL-2 interacting
mediator (BIM) [40]. In gastric cancer cell lines, TGF-β
mediates physiological apoptosis of gastric epithelial cells by
activating apoptotic molecules BIM and Caspase 9 [41]. In
pancreatic ductal adenocarcinoma (PDAC), TGF-β inhibits
the expression of major gastrointestinal spectrum regulator,
Krüppel-like Factor 5 (KLF5). However, KLF5 and SRY-
related hug box 4 (SOX4) have synergistic effects, and the
inhibition of KLF5 promotes apoptosis in the SOX4 program
[42]. +e mechanism by which TGF-β promotes the apo-
ptotic responses that inhibit the tumors remains to be in-
vestigated. Further insights could provide new strategies for
tumor inhibition and treatment.

2.2. Tumor Promotion by TGF-β

2.2.1. Tumor Promoter Role of TGF-β in EMT. +e EMT of
tumor cells is a crucial step in tumor metastasis. EMT is
essential in wound healing, fibrosis, cancer progression, and
embryonic development [43]. TGF-β induces EMT during
average growth and development. TGF-β-induced EMT
supports tumor invasion and spread by releasing tumor cells
into the environment and promoting their movement. In
many cancers, TGF-β induces EMTwith the transcriptional
regulation of E-cadherin, N-cadherin, Snail, and vimentin
[44, 45]. TGF-β and adhesion-dependent signaling are re-
quired for stable expression of myofibroblast phenotypes to
induce cytoskeletal recombination [46]. After EMT, epi-
thelial cells lose their polarity, tight junctions, and adhesion
between cells, thus gaining the ability to migrate. +is
phenotypic change leads to reduced intercellular adhesion
and enhanced migration and invasion ability of tumor cells,
thus promoting cancer metastasis [47]. In breast cancer, the
developmental transcription factor SOX4 can mediate TGF-
β-induced action and promote EMT, tumor progression,
and metastasis in breast cancer [48]. Moreover, the ex-
pression of TGF-β can also induce double mouse minute 2
(MDM2) expression, which makes p53 unstable, leading to
EMT and tumor progression [49]. In p53-mutated cancers,
TGF-β induces the assembly of the mutant p53, p63 protein
complex, and SMADs. In this ternary complex, the tumor-
suppressive function of P63 is antagonized, and the inac-
tivation of P63 enabled both the mutant p53 and TGF-β to
initiate EMT [50]. In addition, various studies have shown
that TGF-β is involved in the EMT of tumor cells and the
invasion and metastasis of a tumor cell. TGF-β promotes
prostate cancer migration by inducing stress fiber aggre-
gation and cytoskeletal rearrangement through the cell di-
vision cycle 42 (Cdc42), Rho A, and SMAD proteins [51].
TGF-β also induces the expression of dedicated for cyto-
kinesis 4 (DOCK4) protein through the SAMD pathway,
enhancing the exudation of lung cancer tumor cells and

increasing the motility metastasis of tumor cells [52]. In
non-small-cell lung cancer, activation of the TGF-β pathway
leads to a severe loss of miR-124, enhancing EMT and
metastasis [53]. TGF-β-driven EMT gives cancer cell mo-
tility, metastasis, and progenitor cell-like characteristics, all
of which enable TGF-β to play its tumor-promoting role.

2.2.2. Tumor Promoter Role of TGF-β in Angiogenesis.
During tumor growth, the vascular network’s development
is essential because the proliferation and metastasis of tumor
cells require nutrition and oxygen, which requires more
angiogenesis. +e expression level of angiogenic factors also
reflects the invasion ability of the tumor [54]. Endothelial
cells (EC) play a crucial role in angiogenesis. EC showed
higher cell proliferation, migration, and invasion during
neovasculature, and TGF-β signaling complexly correlates
with EC ability and activity [55]. TGF-β also induces
proangiogenic growth factors, such as vascular endothelial
growth factor (VEGF) and connective tissue growth factor
(CTGF), through fibroblasts and epithelial cells. +ese
factors directly stimulate EC to form capillaries and play an
essential role in inducing and maintaining tumor angio-
genesis, thus accelerating cancer progression [56, 57]. Si-
multaneously, TGF-β can induce endothelial migration,
which is necessary for angiogenesis [58, 59]. In liver cancer,
prostate cancer, and renal cell carcinoma, high plasma levels
of TGF-β are also associated with increased tumor angio-
genesis and poor prognosis in these cancers [60, 61]. In non-
small-cell lung cancer, the higher level of TGF-β in the
tumor microenvironment is associated with increased an-
giogenesis, tumor progression, and poor prognosis [62]. In
human breast cancer, the high mRNA levels of TGF-β are
associated with increased microvascular density and these
parameters are related to patients’ poor prognosis [63]. TGF-
β/SMAD4 signaling can upregulate the expression of miR-
29a, which can target phosphatase and tensin homolog
(PTEN) and activate the AKT pathway, thereby promoting
the generation of new blood vessels [64]. In addition to TGF-
β ligand action, TGF-β receptors are also critical for an-
giogenesis. TGF-β can enhance the expression of MMP9 and
promote the formation of new blood vessels through one of
its type I receptors, ALK5. TGF-β-ALK5 signal transduction
can enhance the angiogenesis and invasiveness of breast
cancer cells and prostate cancer cells [65, 66].

2.2.3. Tumor Promoter Role of TGF-β in Immunologic
Surveillance. TGF-β plays a systemic immune role and can
significantly inhibit tumor immune surveillance of the host.
TGF-β inhibits cytotoxic T cells, dendritic cells, and natural
killer (NK) cells and produces a proinflammatory envi-
ronment [67]. Cytotoxic CD8+T cells produce many cyto-
kines, including perforin, GZMA, GZMB, IFN-c, and FASL,
which induce apoptosis of cancer cells. However, TGF-β can
inhibit the expression of these cytotoxic genes through
SMADs and ATF1. +e neutralization of TGF-β in vivo
restores the expression of critical cytotoxic genes involved in
tumor clearance, thereby promoting the removal of antigen-
specific tumors in vivo. +ese all suggest that TGF-β directly
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targets cytotoxic T cells to play its prooncogenic role during
tumor evade immune surveillance [13]. Dendritic cells
(DCs) are antigen-presenting cells responsible for inducing
adaptive T cell response, and their activity has essential
significance in antitumor immunity [68, 69]. TGF-β upre-
gulates the differentiation inhibitor of TGF-β, Id1, and the
overexpression of Id1 downregulates key factors of DC
differentiation, leading to systemic immunosuppression
[70]. NK cells also play an essential role in immune sur-
veillance by directly recognizing tumor cells and initiating
cytotoxic reactions [71]. TGF-β inhibits NK cell activation
by diminishing the production of IL-15 and downregulating
its active receptor natural killer group 2, member D
(NKG2D) [72, 73]. In human glioma, TGF-β reduces the
expression of NKG2D in CD8+ T and NK cells and inhibits
the expression of the MICA, which is the ligand of NKG2D
[74]. In addition to lymphocytes, TGF-β also has significant
effects on some myeloid cells, which mainly consist of two
myeloid cell types, namely, tumor-associated macrophages
(TAM) and tumor-associated neutrophils (TAN). +ere are
two phenotypes of TAM. +e classically activated M1
phenotype can inhibit tumor growth, while the nonclassi-
cally activated M2 phenotype can promote tumor growth.
TGF-β primarily drives the differentiation of the M2 phe-
notype of macrophages. +ey produce many different cy-
tokines, such as MMP9, C-X-C motif ligand 8 (CXCL8), and
IL-10, which can induce tumor growth and development
[75]. Like TAM, TAN also has two phenotypes: antitumor
phenotype (N1) and tumorigenic phenotype (N2). It has
been shown that in the presence of TGF-β, neutrophils
develop into an N2 phenotype that is not cytotoxic to the
tumor. In the N2 phenotype, TAN’s ability to secrete an-
titumor cytokines and activate cytotoxic T cells decreases,
contributing to tumor growth and immunosuppression [76].

3. Introduction to the Molecules and
Mechanisms That Regulate the TGF-β
Signaling Pathway

As mentioned above, TGF-β can inhibit tumor occurrence
by inhibiting cell proliferation and promoting cell apoptosis
and tumor invasion and metastasis by inducing EMT, in-
ducing angiogenesis, and inhibiting immunity. +e TGF-β
signaling pathway is precisely regulated under normal
physiological conditions. +erefore, once the TGF-β sig-
naling pathway is abnormally activated or blocked, this
balance will be struck, aiding in the development of tumors.
Next, we discuss some molecules and mechanisms that can
activate or inhibit the TGF-β signaling pathway. We divide
the molecules and mechanisms that regulate the TGF-β
signaling pathway into the following three perspectives.

3.1. Regulation of the TGF-β Signaling Pathway at the Levels of
the Ligands. Most TGF-β ligands exist in a latent state in the
body, and the latent TGF-β binds noncovalently to the
C-terminal prodomain latency-related peptide (LAP) to
form a small latency complex (SLC). +is small complex can
further bind to the incubation period TGF-β binding protein

1 (LTBP1), and the three form a large latent complex (LLC)
[77]. While being part of this structure, TGF-β cannot bind
to its receptor and cannot exert its biological activity. It can
only be connected to the extracellular matrix’s binding site
through LTBP [78]; in other words, TGF-β is latent. +e
process of transforming TGF-β from a latent state to an
active state is called ligand activation. +e TGF-β ligand
must undergo activation to exert its biological activity. +is
feature also makes the regulation of the TGF-β activation
process a critical point in regulating the TGF-β signaling
pathway from the perspective of the ligand. +e TGF-β li-
gand in the large latency complex cannot bind to the cor-
responding receptor. +erefore, the TGF-β ligand must be
released from the large latency complex to make TGF-β
active.+e TGF-β ligand can be removed and activated from
the complex in the following four ways.

(1) Exposure to specific physical or chemical conditions,
such as heat shock, extreme pH changes, ionizing
radiation, and physical shearing force, can promote
the separation of large complexes and activate TGF-β
ligands [79–84].

(2) Activation by enzymatic forms, including many
different types of proteases, such as aspartic, cysteine,
metalloproteinases, serine proteases, and neur-
aminidase expressed on the viral particles’ surface,
can release TGF-β ligands by inducing conforma-
tional changes in the latent complex [81, 85–89].

(3) Some factors mainly act on LAP to activate TGF-β,
such as ROS, thrombospondin 1 (TSP1) and
members of the αv integrin family (including αvβ1,
αvβ3, αvβ5, and αvβ6); these substances can release
the noncovalent binding between LAP and TGF-β by
acting on LAP, thereby releasing mature TGF-β
[90–92].

(4) Some substances can act on LTBP to activate TGF-β.
From the previous description of the latent state of
TGF-β, we can see that to release TGF-β from the
complex, one way is to act on LAP, and the other is to
act on LTBP. Most substances promote the activa-
tion of TGF-β by working on LAP. +e three
pathways wementioned above can be summarized as
using LAP as the point of action to activate TGF-β
and LTBP as the trigger of TGF-β activation is
relatively rare. Still, bone morphogenetic protein 1-
(BMP1-) like protease can activate TGF-β by directly
cleaving LTBP1 [93]. +e substances that regulate
the TGF-β signaling pathway at the level of the li-
gands include the ligands that activate TGF-β and
the ligands that can inhibit the activation of the latent
state TGF-β, such as the LSKL peptide, which is a
competitive antagonist. +e LSKL peptide inhibits
the activation of TGF-β by preventing the interaction
of TSP1 with the LAP of potential TGF-β [94], such
as Emilin1, a cysteine-rich secreted glycoprotein
expressed in the vascular tree. Emilin1 can inhibit
TGF-β signaling by specifically binding to TGF-β to
prevent TGF-β maturation [95]. Another example is
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Cripto, a developmental cancer protein that can
prevent the TGF-β ligand from binding to the re-
ceptor by binding to the TGF-β ligand, thereby
inhibiting TGF-β signaling [96].

3.2. Regulation of the TGF-β Signaling Pathway at the Level of
theReceptors. All TGF-β ligands can bind to and activate the
heterologous cell surface complex of their receptors. +ese
receptors can be divided into TβR I and TβR II based on
sequence similarity. Both TβR I and TβR II contain a serine/
threonine kinase active transmembrane receptor [97]; the
receptor structure can be divided into the extracellular
domain and a transmembrane intracytoplasmic domain. In
the intracytoplasmic region of TβR I, a highly conserved GS
region (an area rich in glycine and serine residues) is the
active region of TβR I kinase. +is region can be phos-
phorylated by TβR II [98]. Although TβR II and TβR I are
structurally similar, TβR II does not have a GS region but a
short tail rich in serine and threonine at the hydroxyl end of
the intracytoplasmic part. +e TGF-β ligand itself cannot
bind to TβR I. It can only attract TβR I to the cell surface
after binding to TβR II and promote the phosphorylation of
TβR I through TβR II. +is staged process is essential for the
smooth transmission of TGF-β signals. +erefore, the reg-
ulation from the receptors’ perspective is another vital entry
point for regulating TGF-β signaling pathways. Here,
according to the regulatory mechanism, the TGF-β signaling
pathway regulation from the receptor’s perspective is di-
vided into the following two ways.

3.2.1. Regulatory Pathways Associated with Posttranslational
Modification of Receptors. As mentioned above, the com-
bination of TβR II and TβR I can promote the phosphor-
ylation of TβR I. Phosphorylation of TβR I is an essential
basis for TGF-β signal transduction. Only phosphorylation
of TβR I can further activate downstream signaling medi-
ators of the TGF-β signaling pathway, SMAD2, and SMAD3.
+erefore, substances that affect receptor phosphorylation
can activate or inhibit the TGF-β signaling pathway. For
example, protein phosphatase 1 (PP1) can dephosphorylate
TβR I to inhibit TGF-β signaling, SMAD anchor for receptor
activation protein (SARA) can recruit the catalytic subunit of
PP1 to dephosphorylate the receptor to inhibit the TGF-β
signaling pathway [99], and 12 kDa FK506-binding protein
(FKBP12) can bind to the GS domain of TβR I, thereby
inhibiting the phosphorylation of TβR I [100]. Interestingly,
SMAD7 can act on two posttranslational modification
regulatory pathways. It can dephosphorylate and inactivate
the receptor, and it can also induce receptor degradation by
recruiting an E3 ubiquitin ligase. Eventually, the receptor is
inactivated by dephosphorylation and is degraded by
ubiquitination [101]. In addition to phosphorylation,
ubiquitination is also a common posttranslational modifi-
cation of TGF-β receptors. +erefore, substances that affect
receptor ubiquitination can also regulate the TGF-β sig-
naling pathway. SMAD7, FKBP12, and neural precursor cell
expressed developmentally downregulated 4-like (NEDD4-
2) also degrade the receptor by promoting its ubiquitination

[102]. In contrast, C-CBL, heat shock protein 90 (Hsp90),
transforming growth factor-beta stimulated clone 22 (TSC-
22), tumor necrosis factor receptor-associated factor 4
(TRAF4), ubiquitin-specific protease 4 (USP4), ubiquitin-
specific protease 11 (USP11), ubiquitin-specific protease 15
(USP15), and UCH37 can stabilize the receptor by blocking
the ubiquitination of the receptor [103–110], thereby acti-
vating the TGF-β signaling pathway.

3.2.2. Other Regulations besides the Posttranslational
Modification. Regarding the regulation of the TGF-β sig-
naling pathway at the level of the receptor, in addition to the
posttranslational modification of the receptor, there are
some factors or proteins that can directly interact with the
receptor, causing the receptor to degrade and block signal
transduction or after binding to the receptor, thus pre-
venting the binding between the receptor and receptor, the
binding between the receptor and ligand, and the binding
between the receptor and the downstream players. Among
others, these factors include toll-interacting protein
(TOLLIP), salt-inducible kinases (SIK), caveolin-1 (CAV-1),
Dapper 2 (dvl-associated proteins), and protein interacting
with c-kinase 1 (PICK1). +eir binding to the TGF-β re-
ceptor promotes receptor degradation, thereby inhibiting
the TGF-β signaling pathway [111–115]. Other examples are
BMP and activin membrane-bound inhibitor (BAMBI),
FKBP12, serine-threonine kinase receptor-associated pro-
tein (STRAP), C-SKI (a transcriptional corepressor of
SMAD-dependent TGF-βsignaling), DRAK2 (A serine/
threonine kinase belonging to the death-associated protein
kinase family), ventricular zone-expressed pH domain-
containing 1 (VEPH1), and additional substances that can
bind to TGF-β receptors, thereby interfering with the
binding of receptors to factors required for normal signal
pathway transduction [116–120]. Of course, in addition to
these factors (or proteins) that bind to receptors that can
antagonize TGF-β signaling, some factors (or proteins) can
interact with receptors to promote signaling. For example,
14-3-3ε, 14-3-3ε is the first protein other than SMADs that
has been confirmed to interact with TGF-β receptors and
activate signal transduction. It can interact with TβR I to
induce TGF-β-induced signal transduction [121, 122]. For
instance, the Bα subunit of protein phosphatase 2A, the Bα
regulatory subunit, can interact with the cytoplasmic do-
main of TβR I to promote signal transduction [123]. Another
example is disintegrin andmetalloproteinase 12 (ADAM12).
ADAM12 can bind to TβR II and stabilize the receptor by
controlling the localization of the TGF-β receptor to the
early endosome, thereby enhancing TGF-β signaling [124].

3.3. Regulation of the TGF-β Signaling Pathway at the Level of
the Downstream Signaling. SMADs are crucial downstream
signaling mediators of the TGF-β signaling pathway. +e
primary function is to transmit TGF-β signals from the cell
membrane to the nucleus, thereby regulating the corre-
sponding target genes’ transcription and expression. Based
on functional differences in the classic TGF-β signaling
pathways, the SMAD proteins can be divided into three
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types. +e first type includes the receptor-regulated SMADs,
SMAD2, and SMAD3, which can be activated by TβR
I-induced phosphorylation. +e second is the universal
SMAD, that is, SMAD4. SMAD4 can interact with SMAD2
and SMAD3 to help both transmit signals to the nucleus.+e
third includes the inhibitory SMADs, SMAD6, and SMAD7.
+e inhibitory SMAD proteins can negatively regulate the
TGF-β signaling pathway through various mechanisms of
action. Regardless of the SMAD protein, its activation or
inhibition can affect TGF-β signal transduction, which is of
great significance for TGF-β signal transduction.

3.3.1. Regulatory Pathways Related to Posttranslational
Modification of SMADs Protein. +e posttranslational
modification of the SMADs protein is the same as the post-
translational modification of the receptor, i.e., phosphorylation
and ubiquitination. SMAD2 and SMAD3 can be phosphory-
lated and be further activated by TβR I, which means that the
phosphorylation of SMAD2 and SMAD3 is necessary for the
smooth transmission of the TGF-β signaling pathway. +us,
some factors or proteins that regulate the phosphorylation of
SMAD2 and SMAD3 may influence the TGF-β signaling
pathway, such as liver fibrosis-associated lncRNA1 (lnc-
LFAR1) and lysyl oxidase-like 1 (LOXL1) [125, 126], both of
which bind to SMAD2 and SMAD3 and promote their
phosphorylation in the cytoplasm to activate the TGF-β sig-
naling pathway, thereby stimulating the development of liver
fibrosis. Some substances can inhibit the phosphorylation of
these two SMADs by interacting with SMAD2 and SMAD3,
such as protein phosphatase, Mg2+/Mn2+-dependent 1A
(PPM1A), protocadherin gamma-A9 (PCDHGA9), heat shock
protein 70 (Hsp70), and calcium-sensitive receptor (CaSR),
ultimately inhibiting the conduction of the TGF-β signaling
pathway by inhibiting the phosphorylation of SMAD2 and
SMAD3 [127–130]. +e phosphorylation of SMAD2 and
SMAD3 activates TGF-β signaling, whereas ubiquitination and
degradation of SMAD2 and SMAD3 inhibit TGF-β signaling
transduction. For example, AXIN, DREB, and EAR motif
protein 1 (DEAR1) can inhibit the TGF-β signaling pathway’s
conduction by promoting the degradation of SMAD3 ubiq-
uitination [131, 132]. In contrast, OTU domain, ubiquitin
aldehyde binding 1 (OTUB1), B-cell lymphoma-3 (BCL-3),
ubiquitin carboxyl-terminal hydrolase 1 (UCHL1), and
UCHL5 contribute to the deubiquitination of SMAD2 or
SMAD3, making them more stable and less easily degradable
and promoting TGF-β signaling [133–136]. +e regulation of
the TGF-β signaling pathway from the perspective of down-
stream signaling mediators includes not only SMAD2 or
SMAD3 but also the regulation of universal SMAD and in-
hibitory SMAD, such as the wild-type p53-induced phos-
phatase 1 (Wip1), which selectively binds SMAD4 and
dephosphorylates it, thereby inhibiting TGF-β signaling [137].
Examples include ubiquitin-specific protease 10 (USP10),
which can act on SMAD4 to make it deubiquitinated and
stable, further promoting TGF-β signaling [138], and USP26,
which promotes SMAD7 deubiquitination, thereby amplifying
the inhibitory effect of SMAD7 and strengthening the inhi-
bition of the TGF-β signaling pathway [139].

3.3.2. Regulatory Mechanisms beyond Posttranslational
Modifications. In this section, in addition to the regulation
of downstream media through posttranslational modifica-
tion, we discuss two forms of regulation that enhance or
hinder the synergism between SMADs by binding to SMADs
to affect the entry of SMADs into the nucleus.

By affecting SMAD proteins’ entry into the nucleus,
players such as miR-26a, IL-6 (interleukin-6), and HSP72
can block the downstream signaling events of TGF-β by
inhibiting the nuclear translocation of phosphorylated
SMAD proteins [140–142]. Another example is PCDHGA9,
a member of the cadherin family that inhibits not only the
phosphorylation of SMAD2/3 but also the nuclear trans-
location of pSMAD2/3, inhibiting downstream signaling
events of TGF-β through a dual-action. Compared to the
number of substances that inhibit nuclear translocation,
relatively few substances promote the nuclear translocation
of SMAD proteins. +ese include importin 7 and importin 8
(Imp7 and Imp8) and the mammalian orthologues of Mask,
which enhance the TGF-β signaling pathway transmission
by assisting the nuclear translocation of SMAD proteins
[143].

Besides these substances that can regulate the nuclear
translocation of SMAD proteins, many other substances
regulate SMADs protein in various ways. Examples include
hepatocyte growth factor-regulated tyrosine kinase substrate
(Hrs/Hgs) and SARA, both of which can promote TGF-β
signaling by activating SMAD2 and SMAD3. Another ex-
ample is endosome-associated FYVE-domain protein
(Endofin), which promotes TGF-β signaling by promoting
the binding of SMAD4 to SMAD2. One final example is
CXXC-type zinc finger protein 5 (CXXC5), which associates
with the SMAD2/3 inhibitor histone deacetylase HDAC1
and competes with HDAC1 to bind to SMAD2/3, thereby
eliminating the inhibitory effect of HDAC1 on TGF-β signal
transduction and ultimately promoting TGF-β signal
transduction [144–147]. In addition, miR-326, SKI, or
SNON (members of the protooncoprotein family) can
negatively regulate TGF-β signal transduction by inhibiting
SMAD2, SMAD3, or SMAD4 [148, 149]. Transmembrane
prostate androgen-induced protein (TMEPAI) and its ho-
mologs C18 ORF1, and ERBB2/Her2 receptor-interacting
protein (ERBIN), among others, can also inhibit signal
transduction by competing with SARA for binding to
SMAD2/3 [150–152]. Interestingly, some substances can
have a dual effect on SMAD proteins, both inhibiting and
activating them. As a member of the GTPase Rho family
(Rac1), Rac1 can inhibit TGF-β induced growth inhibition
by inhibiting SMAD3 and promoting SMAD2 to enhance
TGF-β-induced cell migration [153]. Nevertheless, how
Rac1 coordinates the regulation of SMAD2 and SMAD3 in
different cells is unknown.

4. Therapeutic Targeting of TGF-β
Signaling Pathway

In the previous part of this article, we divided the molecules
and mechanisms that regulate the TGF-β signaling pathway
into three perspectives: the ligand; the receptor; and the
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downstream conduction media. Similarly, here, we sum-
marize these three perspectives and divide the molecular
compounds that target TGF-β tumor therapy into three
categories: (1) tumor therapy targeting TGF-β ligand; (2)
tumor therapy targeting TGF-β receptor; (3) tumor therapy
targeting the downstream mediator of TGF-β (Table 1).

4.1. Tumor #erapy Targeting TGF-β Ligand. Antisense ol-
igonucleotides (ASO) are short strands of deoxyribonucle-
otide analogs that can be hybridized with complementary
mRNA to cause mRNA degradation or interfere with mRNA
maturation, thereby downregulating the target gene ex-
pression [154]. AP12009 (trabedersen) is a TGF-β2-specific
ASO. Trabedersen inhibits the proliferation andmigration of
pancreatic cancer cells and reverses the immunosuppressive
effect mediated by TGF-β2, thereby exerting its antitumor
activity in vivo [155]. Clinical I/II studies have confirmed
that using AP12009 can prolong patient survival time with
malignant glioma [156]. +ese results indicate that AP12009
can become an effective treatment for malignant tumors.
AP11014 is a specific ASO for TGF-β1. Ongoing preclinical
research is studying the efficacy of AP11014 in non-small-
cell lung cancer, colorectal cancer, and prostate cancer [157].

TGF-β is expressed in most cells as the latent form (L-
TGF-β). TGF-β must be activated to exert its cell prolifer-
ation and invasion functions, immune regulation, and an-
giogenesis. +e combination with integrin can activate TGF-
β [158]. +erefore, blocking integrin-mediated TGF-β ac-
tivation has also become a new strategy to target TGF-β
signaling. In breast cancer models, the use of 264RAD, an
antibody that blocks integrin αvβ6, prevents tumor growth
effectively [159]. However, in a trial using the antibody
EMD121974 (cilengitide), which selectively inhibits αvβ3
and αvβ5 integrins, to treat head and neck squamous cell
carcinoma (stages I and II, NCT00705016), cilengitide did
not improve the median survival time of patients compared
with standard chemotherapy [160]. Similarly, a phase III
clinical trial of glioblastoma found that adding cilengitide to
temozolomide chemoradiotherapy did not improve the
treatment effect [161].

A monoclonal antibody is an effective tool to inhibit
TGF-β signal transduction, which exerts antitumor activity
in various tumor models by blocking TGF-β binding to its
receptor. In the 4T1 syngeneic mouse model of metastatic
breast cancer, the treatment of mice with 1D11 can sig-
nificantly inhibit breast cancer’s lung metastasis, related to
the salivary bone protein (Bsp) in the metastasis [162]. +e
same researcher found that 1D11 can also inhibit lung
metastasis in a mouse model of metastatic breast cancer by
increasing CD8+ T cells [163]. Another monoclonal anti-
body, 2G7, also exhibited a similar effect on inhibiting breast
cancer metastasis by increasing NK cells’ activity [164].
GC1008 (fresolimumab) is a high-affinity human mono-
clonal antibody that can neutralize the three active forms of
TGF-β (TGF-β1, TGF-β2, and TGF-β3). Phase I studies have
shown that GC1008 has significant antitumor activity in
patients with advanced malignant melanoma and renal cell
carcinoma [165]. In patients with metastatic breast cancer,

fresolimumab combined with radiotherapy can improve
patient median survival, which may be related to the en-
hanced systemic immune response. XPA-42-068, XPA-42-
681, and XPA-42-089 are all human monoclonal antibodies
with a high affinity that can neutralize various TGF-β iso-
forms. In a xenograft model of pharyngeal carcinoma, these
antibodies can inhibit tumor growth [166]. At present, the
pan-neutralizing antibody NIS793, which can block the
three isotypes of TGF-β, is being used in the phase I/Ib study
of patients with advanced malignant tumors combined with
PD-1 antibody (PDR001) (NCT02947165).

4.2. Tumor #erapy Targeting TGF-β Receptors. With the
participation of TβR III, activated TGF-β binds to TβR II with
high affinity to recruit TβR I to the TGF-β/TβR II complex,
phosphorylate SMAD2 and SMAD3, and initiate the signal
transduction pathway. +e TGF-β receptor plays a vital role in
this pathway. +erefore, research on TGF-β receptor kinase
inhibitors has also become a hot spot. At present, many TβR I
(ALK5) inhibitors have been developed, most of which target
the kinase domain of TβR I, thereby affecting the TGF-β signal
transduction pathway. In many preclinical experiments, TβR I
inhibitors have shown significant antitumor activity. As a small
molecule selective inhibitor of ALK-5, SB431542 inhibits TGF-
β-induced cell proliferation and migration in human glioma
cells. It inhibits myeloma growth by restoring the terminal
osteogenesis cell differentiation in a myeloma mouse model
[167, 168]. SB431542 also inhibits the vasculogenic mimicry
(VM) formation in xenografts in mouse models of breast
cancer and inhibits tumor growth [169]. +is discovery pro-
vides a new strategy for breast cancer treatment. Other studies
have shown that SB431542 blocks HCC cell proliferation
mediated by TGF-β signaling in vivo and in vitro related to the
decrease of KLF6 expression in HCC cells [170]. SB505124 is
another TβR I inhibitor that inhibits the activation of fibro-
blasts induced by TGF-β, thereby preventing esophageal
squamous cell carcinoma- (ESCC-) induced neoangiogenesis
[171]. In the pancreatic ductal adenocarcinoma mouse model,
SB505124 significantly reduces pancreatic cancer cell prolif-
eration, tumor growth, and metastasis [172]. SD208 is an oral
TβR I inhibitor. In mouse models of pancreatic cancer and
melanoma, SD208 inhibits pancreatic adenocarcinoma pro-
gression and reduces the development of melanoma bone
metastasis and osteolytic lesions [173, 174]. In SW-48 colon
adenocarcinoma cells, SD208 can also significantly down-
regulate the expression of oncogene miR-135b and reduce the
occurrence of colon tumors [175]. LY2109761 is a small-
molecule inhibitor that has stable pharmacokinetic charac-
teristics that can inhibit TβR I and TβR II dually. In the mouse
colon cancer cell CT26, LY2109761 reduces TGF-β-mediated
cell migration and invasion. In vivo experiments have found
that LY2109761 can reduce colon cancer liver metastasis and
prolong the survival period of mice [176]. Similarly, in animal
models of pancreatic cancer, LY2109761 inhibits abdominal
organ metastasis of pancreatic cancer, especially liver metas-
tasis, and improves its mortality [177]. In HCC cells,
LY2109761 prevents HCC cell migration and invasion by
upregulating E-cadherin [178] and can also exert antitumor
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activity by inhibiting HCC neoangiogenesis [179]. LY2109761
can also reduce themigration and invasion of glioblastoma cells
and inhibit new vessel formation [180]. Galunisertib
(LY2157299 monohydrate) is an oral small-molecule inhibitor
(SMI) of TβR I kinase, which can block the conduction of the
TGF-β/ALK5 signaling pathway by downregulating the level of
SMAD2 phosphorylation [181]. Studies have found that
galunisertib inhibits TGF-β1-mediated EMT and tumor cell
migration, reverses TGF-β1-mediated CD8+ Tcell and NK cell
immunosuppression, and exerts a potent antitumor effect in
various tumormodels (includingMX1 human xenograft breast
cancer model, Calu6 human xenograft lung cancer model, and
4T1 breast tumor model) [182]. Phase II clinical trials have
shown that galunisertib, combined with gemcitabine, can
prolong patient median survival with unresectable pancreatic
cancer and good safety [183]. Similarly, in a clinical phase IB
study conducted in Japan, galunisertib, along with sorafenib,
showed good safety and tolerability for treating patients with
unresectable hepatocellular carcinoma [184]. However, in the
phase II trial of recurrent glioblastoma, compared with
lomustine plus placebo, the combined treatment of nilotinib
and lomustine did not significantly improve patient overall
survival [185]. At present, the second-generation ALK5 in-
hibitor LY3200882 has been developed. Compared with the
LY2157299 compound, LY3200882 ismore specific and potent.
However, it is still in phase I clinical trial for treating patients
with solid tumors, and its safety needs to be further verified
(NCT02937272).

Many new TβR I small-molecule inhibitors have been
developed recently, such as EW-7203 and EW-7195. +ese
small-molecule inhibitors reduce the phosphorylation level of
SMAD2 in vivo effectively and inhibit SMAD signaling and
EMT induced by TGF-β1. In a mouse model of xenograft

breast cancer, both EW-7203 and EW-7195 inhibit breast
cancer lung metastasis [186, 187]. +e study has found that
compared with treatment with tyrosine kinase inhibitor (TKI)
alone, the combined use of EW-7197 and TKI can delay the
recurrence of the disease significantly in chronic myeloid
leukemia (CML) mice, increase their survival period, and
eliminate CML leukemia-initiating cells effectively [188]. Phase
I/II clinical trials of EW-7197 (vactosertib) combined with
other drugs for treating malignant tumors are currently un-
derway, including metastatic gastric cancer (VAC+paclitaxel),
advanced NSCLC (VAC+durvalumab), metastatic colorectal
cancer, and gastric cancer (VAC+pembrolizumab), and
progressive glioma (VAC+ imatinib) [11]. +e use of TβRI
inhibitors inhibits most TGF-β signal transduction, but these
kinase inhibitors usually lack specificity. At present, researchers
have developed a small-molecule inhibitor CJJ300 that targets
TβR II, which disrupts the formation of TGF-β-TβR I-TβR II
signaling complex to inhibit the phosphorylation of SMADand
EMT induced by TGF-β. It is a novel mechanism to inhibit
TGF-β signaling [189].

A new type of immunotherapeutic strategy has recently
been developed for targeted TGF-β signal transduction, the
bifunctional antibody-ligand trap. +e antibody trap com-
bines an antibody targeting CTLA-4 or PD-L1 and then
fuses with the extracellular domain sequence of TβR II to
disable TGF-β in the tumor microenvironment. Compared
with standard anti-CTLA4 monotherapy, anti-CTLA4-TβR
II molecules show more robust antitumor activity in human
melanoma mouse models [190]. M7824 is an anti-PD-L1/
TβR II fusion protein. Preclinical studies have found that
M7824 can inhibit the EMT induced by TGF-β and exert
antitumor activity in various antitumor models [191]. Phase
I studies have shown thatM7824 has good antitumor activity

Table 1: Summary of targeted TGF-β drugs.

+erapy Target Drug Phase

Targeting TGF-β ligand

TGF-β2mRNA AP12009 (trabedersen) I/II/IIb
TGF-β1mRNA AP11014 Preclinical

TGF-β1, β2, β3

1D11 Preclinical
2G7 Preclinical

XPA-42-068, XPA-42-681 Preclinical
GC1008 (fresolimumab) I/II

NIS793 I/Ib
TGF-β1, β2 XPA-42-089 Preclinical

αvβ6 Integrins 264RAD Preclinical
αvβ3, αvβ5 Integrins EMD121974 (cilengitide) I/II/III

Targeting TGF-β receptor

TβR I

SB431542 Preclinical
SB505124 Preclinical
SD208 Preclinical

LY2157299 (galunisertib) I/II
LY3200882 I

EW-7203, EW-7195 Preclinical
EW-7197 I/II

TβR I/II LY2109761 Preclinical
TβR II CJJ300 Preclinical

Chimeric antibody-TGF-β traps
CTLA4-TβR II Preclinical

PDL1-TβR II (M7824) I/Ib/II/III

Targeting the downstream mediator of TGF-β
Smads Trx-SARA Preclinical
pSmad3 TAT-SNX9 Preclinical
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in patients with advanced solid tumors and has stable safety
[192]. Several phase II/III trials are underway to evaluate the
effect of M7824 for treating malignant tumors currently,
such as metastatic colorectal cancer or advanced solid tu-
mors with microsatellite instability, locally advanced or
metastatic biliary tract cancer, and advanced non-small-cell
lung cancer (NCT03436563; NCT03833661; NCT03631706).

4.3. Tumor #erapy Targeting TGF-β Downstream
Transducers. As an important downstream mediator of the
TGF-β signaling pathway, the SMAD protein plays an
important role in TGF-β signaling. +erefore, interference
with SMAD expression will also affect TGF-β signaling. +e
peptide aptamer is a good example. It is a small-molecule
protein that can bind to protein targets [193]. According to
research reports, in NMuMG mouse mammary epithelial
cells expressing the peptide aptamer Trx-SARA, Trx-SARA
binds explicitly to SMAD2 and SMAD3, reducing the level of
SMAD2-SMAD4 and SMAD3-SMAD4 complexes while
inhibiting TGF-β-induced EMT [194]. Recently, a small-
molecule peptide TAT-SNX9 that can specifically target
phosphorylated SMAD3 (pSMAD3) was discovered. In a
mouse lung fibrosis model, TAT-SNX9 inhibits TGF-
β-mediated fibers by targeting pSMAD3 [195].

5. Conclusions and Perspectives

+e members of the TGF-β family are highly conserved cell
signaling proteins with multiple functions. +ey play an
irreplaceable role in human body homeostasis by regulating
cell proliferation, movement, differentiation, and apoptosis.
+e role of TGF-β in tumorigenesis and development is
complex and contradictory. In the early stage of cancer,
TGF-β suppresses cancer by inducing cell cycle arrest and
apoptosis. However, in the later stages of cancer, TGF-β
turns into a tumor promoter, which induces EMT and
angiogenesis and inhibits immune cell activity, thereby
evading immune surveillance and promoting tumor growth
and invasion. TGF-β signaling is under fine regulation in the
body. Once abnormally activated or inactivated, it may break
the body’s homeostasis, cause dynamic imbalance, and
further promote tumor occurrence and development. Al-
though researchers are developing or have developed many
tumoricidal agents targeting TGF-β, the ideal clinical ap-
plication of TGF-β targeted therapeutic drugs in oncology
has not been achieved. Is this related to the dual, contra-
dictory role of TGF-β in the tumor? Might some TGF-
β-targeted antagonists not only inhibit the tumor-promot-
ing effect of TGF-β but also inhibit the tumor inhibitory
effect of TGF-β. Or is it related to cell specificity and tissue
characteristics? Different tissues, different cells, and different
tumor microenvironments have different responses to dif-
ferent antagonists. Some factors activate TGF-β in a certain
tissue but may not or even have a negative effect on TGF-β in
other tissues. +is may also be a new challenge for devel-
oping TGF-β targeted therapy drugs. In the future, how
should we make full use of the anticancer effect of TGF-β?
Should we avoid or even limit the role of TGF-β in

promoting cancer? How to combine cell specificity and
tissue specificity to restrict the use of TGF-β targeted drugs
in different diseases? +ese questions require further ex-
ploration and discovery.
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