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THE ROLE OF THE AHLFORS FIVE ISLANDS THEOREM
IN COMPLEX DYNAMICS

WALTER BERGWEILER

ABSTRACT. The Ahlfors five islands theorem has become an important tool
in complex dynamics. We discuss its role there, describing how it can be used
to deal with a variety of problems. This includes questions concerning the
Hausdorff dimension of Julia sets, the existence of singleton components of
Julia sets, and the existence of repelling periodic points. We point out that
for many applications a simplified version of the Ahlfors five islands theorem
suffices, and we give an elementary proof of this version.

1. INTRODUCTION

We shall discuss the role of the Ahlfors theory of covering surfaces in complex
dynamics. That the Ahlfors theory may be potentially useful in complex dynamics
had been realised as early as 1939 by Topfer [49, p. 69]. It turned out, however,
that his way to apply it was not quite correct; cf. [3, p. 34]. The first successful
application of the Ahlfors theory of covering surfaces to complex dynamics was
then given by Baker [2] in 1968, who used the five islands theorem — one of the
main results of the Ahlfors theory — to prove that repelling periodic points are
dense in the Julia set of an entire function; see §6.21 below. Since then the Ahlfors
five islands theorem has found various other applications in complex dynamics; see
[8, T M3) 4], [15] 22) 25, 26, [46, 47]. Here we discuss some of them. We point out
that for many applications a primitive version of the Ahlfors five islands theorem
suffices, and we supply a simple proof of this primitive version. This provides a
more elementary approach to certain results in complex dynamics.

To state the Ahlfors five islands theorem, let Dy, ..., D5 be Jordan domains on
the Riemann sphere C with pairwise disjoint closures. Let D C C be a domain
and denote by F (D, {Dj}?zl) the family of all meromorphic functions f: D — C
with the property that no subdomain of D is mapped conformally onto one of the
domains D; by f. (If there is such a subdomain, then it is called a simple island
over D;.)

We state three versions of the Ahlfors five islands theorem.

Theorem A.1. F (D,{D;}?_,) is normal.

Theorem A.2. F ((C, {D; }?zl) contains only the constant functions.
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Theorem A.3. If f € }"(D\{f},{Dj}?zl) for some € € D, then f has a mero-
morphic extension to D.

These three results are of course closely related, see §§2H3l below. They were
proved by Ahlfors using his theory of covering surfaces, see [1], [30, Chapter 5],
[42, Chapter XIII] or [50, Chapter VI]. A new proof was given in [I6]. (Actually
[16] was only concerned with Theorems A.1 and A.2, but we shall see in §3] that
Theorem A.3 can easily be deduced from them.) The proof in [16] breaks into two
parts. In the first part it is shown that the conclusion of Theorem A.2 holds if
the D; are small disks, and in the second part it is shown how the case of general
Jordan domains D; can be reduced to the case of small disks D;.

While the second part uses quasiconformal mappings, and in particular the ex-
istence theorem for solutions of the Beltrami equation, the first part is much more
elementary. It uses only a rescaling lemma for normal families, see Lemma [[] below,
whose proof is short and elementary. The rescaling lemma also allows us to deduce
Theorems A.1 and A.3 from Theorem A.2.

The rescaling lemma and the methods of [16] thus lead to a simple proof of weak
versions of the Ahlfors five islands theorem where the domains D; are replaced by
small disks. To state these versions formally, we use the notation D(a,r) := {z €
C:lz—a| <r}forae€ Candr > 0. In the following, let ay,...,as € C be distinct.

Theorem B.1. There exists € > 0 such that F (D,{D(a;,e)}>_,) is normal.

Theorem B.2. There exists ¢ > 0 such that F (C, {D(aj,e)}?zl) contains only
the constant functions.

Theorem B.3. There exists € > 0 such that if f € F (D\{¢}, {D(aj,e)}?zl) for
some £ € D, then f has a meromorphic extension to D.

For completeness we shall give a proof of these results in §§2H3] and we shall
indicate in §4 how Theorems A.1-A.3 can be deduced from them.

We note that the number “five” in Theorems A.1-A.3 and B.1-B.3 can be re-
placed by “three” for families of holomorphic functions (provided oo ¢ E in The-
orems A.1-A.3).

2. A PROOF OF THEOREMS B.1 AND B.2

We denote the spherical derivative of a meromorphic function f by f#. The
rescaling lemma referred to in the introduction is the following.

Lemma 1. Let D C C be a domain and let F be a family of functions meromorphic
in D. If F is not normal, then there exists a sequence (zi) in D, a sequence (py)
of positive real numbers, a sequence (fi) in F, a point zo € D and a non-constant
meromorphic function f: C — C such that 2k — 20, pr — 0 and fr(zk + prz) —
f(2) locally uniformly in C. Moreover, f can be chosen such that f#(z) < 1 =
f#(0) for all z € C.

This lemma is due to Zalcman [51]. The corresponding result for normal func-
tions had been proved earlier by Lohwater and Pommerenke [38]. For a discussion
of the various applications of this lemma we refer to [44] Chapter 4] and [52]. For
a proof of Lemma [Il we also refer, besides the papers mentioned, to [16] §4].

The statement about f# is often not included in the formulation of the result,
but follows immediately from the proof. While we could do without this statement
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for the present purposes by suitably modifying our arguments, the boundedness of
f7 is essential for some applications; see [I6, §3] and [52].
The proof of Theorem B.1 also requires the following result.

Lemma 2. Let ay,...,a5 € C be distinct and let f:C— C be a non-constant
meromorphic function. Then there exists j € {1,...,5} such that f has a simple
a;j-point.

This result was proved by Nevanlinna using his theory on the distribution of
values, see [41], p. 102] or [42] §X.3]. A different proof was given by Robinson [43].
For a proof of Lemma [2] based on Lemma [l we refer to [16], §3].

Proof of Theorem B.1. We assume that the conclusion is false. Applying Lemmal[]l
to F=F (D, {D(aj,¢) ?:1) we obtain a meromorphic function f. : C — C with
f#(z) <1= f#(0) for all z € C. It is easy to see that f. € F (C,{D(a;,¢’) ?:1) if
¢’ > e. By Marty’s theorem, {f-}.>0 is normal. Thus there exists a sequence (ex)
tending to zero such that f., — f for some meromorphic function f : C — C. Since
f#(0) =1 for all € > 0 we have f#(0) = 1 so that f is non-constant. Moreover, we
see that f has no simple a;-points for j € {1,...,5}, contradicting Lemma @ O

Proof of Theorem B.2. We note that if f: C — C is non-constant and meromor-
phic, then {f(nz)},en is not normal at 0. Thus Theorem B.2 follows immediately
from Theorem B.1. O

We note that Lemmal[l] can in turn be used to deduce Theorem B.1 from Theorem
B.2. Similarly Theorem A.1 follows from Theorem A.2 and vice versa.

3. A PROOF OoF THEOREM B.3

We shall deduce Theorem B.3 from Theorem B.1 and Theorem B.2. In order
to do this, we also need the following result. Here and in the following we use the
notation A(r) := {z € C: |z| > r} for r > 0.

Lemma 3. Let f be meromorphic in A(r) for some r > 0. If f has an essential
singularity at oo, then

limsup |z|f# () >

|z]—o0

N | =

This result is due to Lehto [36]. Earlier, Lehto and Virtanen [37] had shown that
limsup|,| ., [2/#(z) > k for some absolute constant k > 0. This weaker result
would suffice for our purposes.

Proof of Theorem B.3. We assume that f € F (D\{¢},{D(a;,)}3_,) has an es-
sential singularity at £. Without loss of generality we may assume that D =
A(1)U{oo} and £ = co. By Lemma Blthere exists a sequence (¢,,) in A(1) such that
cn — 00 and |cu|f#(c,) > 1/4. We put 7, := 1/|c,| and define g, : A(r,) — C
by gn(z) := f(cnz). Then r, — 0 and g, € F (A(ry), {D(a;,€)}3_,). By Theorem
B.1 the g, forln a normal family and we may thus assume that g, — ¢ for some
g : C\{0} — C. Since g7 (1) = c,f#(cn) > 1/4 we have g#(1) > 1/4 so that g
is non-constant. We also have g € F (C\{0}, {D(a;,&")}>_,) if &’ > . We define
h:C — C by h(z) = g(e?). Then h is non-constant and meromorphic. Moreover,
if h had a simple island V over some D(a;,¢’), then U := exp V would be a simple
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island of g over D(aj,¢’). (Note that if A is univalent in V', then exp is univalent in
V and g is univalent in U.) Thus h has no simple islands over any D(a;,¢’) which
means that h € F ((C, {D(aj,&’) ?:1) , contradicting Theorem B.2 for sufficiently
small &’. O

We remark that the same argument can be used to deduce Theorem A.3 from
Theorems A.1 and A.2. Similarly, the argument can be used to deduce the great
Picard theorem from the little Picard theorem and Montel’s theorem. (This is
usually done by a different method, cf., e.g., [23, pp. 59-60], [24, pp. 300-301] or
[44, p. 60], but I have not been able to modify the argument given there for the
present case. Andreas Sauer has (independently) found another way to deduce (a
version of) Theorem A.3 from Theorem A.2. Although some of the underlying
ideas such as the use of Lemma [ are similar, his method is somewhat different
from ours.)

There are many other cases where the above method can be used to obtain
results for functions with isolated singularities from results about normal families
and functions in the plane. The context is as follows: a heuristic principle attributed
to Bloch says that the family of functions meromorphic in domain and having a
certain property P is normal if there is no non-constant function meromorphic in
the plane which has property P. Examples are Theorem A.1 versus Theorem A.2, or
Montel’s theorem versus the little Picard theorem, and many others, but there are
also some counterexamples; see [44 Chapter 4] or [52] for a thorough discussion of
Bloch’s principle. Zaleman [51] introduced Lemma [ in order to make the heuristic
principle rigorous for certain properties.

A modification of the heuristic principle says that for a property P as above there
should not be a meromorphic function having the property P in the neighborhood
of an essential singularity. (The results corresponding to the previous examples are
Theorem A.3 and the great Picard theorem, of course.) Minda [40)] gives a discussion
of this modification of the heuristic principle, and he shows that for holomorphic
families the modified heuristic principle holds whenever Zalcman’s formalization
of the heuristic principle applies. However, Minda also points out that there are
meromorphic families where Zalcman’s rigorous version of the heuristic principle
applies, but where the modified heuristic principle does not hold.

The above reasoning shows that the modified heuristic principle holds if besides
Zalcman’s hypotheses the following condition is satisfied: if g satisfies P in C\{0},
then g o exp satisfies P in C. This additional condition can be compared with one
of the hypotheses of Zalcman which says that if g has property P in a domain D,
and if ¢(z) = az + 3, a # 0, then g o ¢ has property P in ¢~(D).

4. A SKETCH OF THE PROOF OF THEOREMS A.1, A.2 AND A.3

As already mentioned in §§2H3] Theorems A.1 and A.3 can be deduced from
Theorem A.2 using Lemmas [l and B. Thus it suffices to prove Theorem A.2.

Proof of Theorem A.2. Let f € F ((C, {Dj}?:1)~ Let aq,...,a5 € C be distinct and
choose € > 0 according to Theorem B.2. Now there exists a quasiconformal map
¢ : C— Cwith ¢(D;) C D(aj,¢) for j € {1,...,5}, and the quasiregular map ¢o f
can be factored as ¢ o f = g o1 with a meromorphic function g : C — C and a
quasiconformal map v : C — C. It follows that g € F ((C, {D(aj, 6)}?:1), and thus
g is constant by Theorem B.2. Hence f is constant. O
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5. COMPLEX DYNAMICS

For sets X,Y and a map f : X — Y we define the iterates f™ of f by f%(z) =z
and f"(z) = f(f"!(x)) for n € N. Note that f"(x) is defined only for those
x € X for which all fJ(x) with j < n — 1 are defined and for which in addition
f*Yx) € X. Thus in general f" is defined only on a subset of X. A point
xr € X is called a periodic point of period n of f if f*(x) = x, but f¥(z) # x for
1<k<n-—1. Aset ZC X is called forward invariant it f(Z) C Z and backward
invariant if f~1(Z) C Z. A set is called completely invariant if it is both forward
and backward invariant.

We now consider functions f for which there exists a countable compact set
A(f) c C such that f is meromorphic in @\A(f), but not in any larger subset of
C. We denote the class of all such functions which are not Mébius transformations
or constants by M. The iteration of functions in the class M seems to have been
considered first by Bolsch [19] and Herring [32].

We recall some of the basic definitions and results. First we note that if f € M,
then f* € M for all n € N, with A(f") = A(f*"Hu f=YHA(f"1)). If A(f) = 0,
then f is rational. The iteration theory of rational functions is well developed,
see [12), 211 B9, 48] for an introduction. The case of transcendental meromorphic
functions f : C — C, that is, A(f) = {oo}, is treated in [15},[33]. This includes the
case of entire functions f: C — C.

For f € M, let B(f) = U, A(f") and D(f) = C\B(f). Then all iterates of
f are defined in D(f). (The case D(f) = 0 is possible.) The Fatou set F(f) is
defined as the set of all z € D(f) such that the family {f"},en is normal at z. The
Julia set J(f) is defined as the complement of F(f); that is, J(f) = C\F(f). We
consider four cases, depending on the cardinality |B(f)| of B(f).

(i) B(f) =0. Then f is rational.
(ii) |B(f)| = 1. We may assume that B(f) = {oo}. Then f is transcendental
entire.
(iii) |B(f)] = 2. We may assume that B(f) = {0,00}. Then f is a holomorphic
self-map of the punctured plane C* := C\{0}.
(iv) |B(f)| > 2. Then |B(f)| = oo by the great Picard theorem.

In case (iv) we have F(f) = D(f) and J(f) = B(f) by Montel’s theorem. So in
this case the Fatou set is simply the largest open set where all iterates are defined.
In cases (i)—(iii) the situation is quite the opposite one: it is clear where the iterates
are defined; what matters is where they are normal. In all cases it turns out that
J(f) is a perfect set; that is, J(f) is non-empty, compact, and without isolated
points. In particular, this implies that J(f) is uncountable.

We also mention that F(f) is completely invariant. (With a slightly extended
definition of complete invariance this property also holds for J(f).) Finally we note
that F'(f) = F(f™) and J(f) = J(f") for all n € N.

6. APPLICATIONS OF THE FIVE ISLANDS THEOREM IN COMPLEX DYNAMICS

6.1. Some consequences of the five islands theorem. We begin with a simple
corollary of Theorems A.1 and A.3, respectively B.1 and B.3.

Proposition A.1. Let Dy,...,D5 C C be Jordan domains with pairwise disjoint
closures. If f € M and if D C C is a domain such that D N J(f) # 0, then there



THE ROLE OF THE AHLFORS FIVE ISLANDS THEOREM IN COMPLEX DYNAMICS 27

exists v € {1,...,5}, n € N and a domain U C D such that f* : U — D, is
conformal.

Proposition B.1. Let ay,...,a5 € C be distinct. Then there exists € > 0 with the
following property: if f € M and if D C C is a domain such that DNJ(f) # 0, then
there existsv € {1,...,5}, n € N and a domain U C D such that f™ : U — D(a,,¢)
is conformal.

These results follow immediately from Theorems A.1 and B.1 in cases (i)—(iii).
In case (iv) D contains an essential singularity of some f™, and thus the results
follow from Theorems A.3 and B.3 in this case.

Proposition A.2. Let f € M and let Dy,...,D5 C C be Jordan domains with
pairwise disjoint closures. Let Vi, ..., Vs be domains satisfying V; N J(f) # 0 and
V; € Dj for j € {1,...,5}. Then there exist p € {1,...,5}, n € N and a domain
U cV, such that f* : U — D, is conformal.

Proposition B.2. Let f € M, a1,...,a5 € C and € as in Proposition B.1. Let
0<d<eandletVi,..., Vs be domains satisfying V; N J(f) # 0 and V; C D(a;,0)
for j € {1,...,5}. Then there exist p € {1,...,5}, n € N and a domain U C V,,
such that f* : U — D(a,d) is conformal.

Proof of Proposition B.2. Proposition B.1 implies that for each j € {1,...,5} there
exist v(j) € {1,...,5}, n(j) € N and a domain U; € V; such that () : U; —
D(a,(;),0) is conformal. Now the map v : {1,...,5} — {1,...,5} defined this way
has a periodic point, say vP(u) = pu. The conclusion follows with this value of u
and n = n(u)n(v(w)) - n(wP=1(u)) for some U C U,. O

The proof of Proposition A.2 is analogous, using Proposition A.1 instead of
Proposition B.1.

The point of Proposition A.2 and B.2 is that one can find a domain D such that
a proper subdomain U of D is mapped conformally onto D by some iterate of f.
For some applications it is important that one can even find a domain D which has
two such subdomains.

Proposition B.3. Let f € M, a1,...,a5 € J(f) NC, and € as in Proposition
B.l. Let 0 < v < § < e. Then there exist v € {1,...,5}, n € N and domains
U1,Usy C D(ay,v) with Uy NUs = 0 such that ™ : Uy, — D(ay,d) is conformal for
m € {1,2}.

Proof of Proposition B.3. As J(f) is perfect there exist for each j € {1,...,5}
six distinct points b, 1,...,b;6 € J(f) N D(a;,v). Choose n > 0 such that the
disks D(bjk,n) are disjoint and contained in D(a;,y). Proposition B.2 implies
that for each k € {1,...,6} there exist u(k) € {1,...,5}, n(k) € N and domains
Vi € D(bpu(ky,esm) € D(ayky,y) such that e v — D(au(k),0) is conformal.
There exists k1 # ko with p(k1) = p(ke). With v = p(k1) = u(ks) and
n := n(k1)n(ke) we then find domains U,, C Vj, C D(a,,v) with the required
properties. O

There is a corresponding consequence of Proposition A.2, the proof being anal-
ogous. Since we do not need this result here, we omit it.
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6.2. The density of repelling periodic points in the Julia set. Let f € M
and let zg be a periodic point of period n of f. Then X := (f™)'(29) is called the
multiplier of zg, with a slight modification if z5 = oo. The periodic point zq is
called repelling, indifferent, or attracting depending on whether |[A| > 1, |A\| =1 or
Al < 1.

A basic result in complex dynamics is the following.

Theorem 1. Let f € M. Then J(f) is the closure of the set of repelling periodic
points.

Proof. We note that repelling periodic points are easily seen to be in J(f) and thus
we only have to show that if D C C is a domain intersecting J(f), then D contains
a repelling periodic point.

As J(f) is perfect, D N J(f) contains five points a1,...,a5 € C. Let ¢ be
as in Proposition B.1, and choose ¢ such that 0 < § < ¢ and D(a;,d) C D for
je{l,...,5}. By Proposition B.2 there exists p € {1,...,5}, n € N and a domain
U with U C D(ay,d) such that f* : U — D(a,,d) is conformal. This implies
that the branch of the inverse function of f™ which maps D(a,,d) onto U has an
attracting fixed point zy € D(a,,d) C D. It follows that zo is a repelling periodic
point of f. O

Remarks. For rational functions, Theorem [I] is due to Fatou [28, §30, p. 69] and
Julia [34, p. 99, p. 118]. For entire functions the result was first proved by Baker
[2], with essentially the above proof (using Theorem A.l instead of Theorem B.1).
The result was extended to meromorphic function f : C — Cin [8, Theorem 1],
and to class M in [I8, [19,[32]. The argument in [8] used Theorem A.3.

Even though the proof of Theorems B.1-B.3 is considerably simpler than that
of Theorems A.1-A.3, and thus the above proof of Theorem [I] is more elementary
than the proofs in [2] and [§], the above approach is not the shortest way towards
Theorem [[] - and it is included here mainly for completeness.

In fact, Schwick [45] has given a proof of Theorem[dl for entire functions which
does not use any covering theorems like the ones used here. Instead Schwick’s
proof uses Lemmas [I] and [ directly. His proof has subsequently been simplified
by Bargmann [I0] and by Berteloot and Duval [17]. Their arguments still have
Lemma[J] as the main tool, but they do not require Lemma [2] Bolsch [18, [19] has
used Lemma Bl to carry over Schwick’s argument to class M.

6.3. Existence of periodic points of given period. The following result, which
confirmed a conjecture of Baker [31] Problem 2.20], was proved in [14].

Theorem 2. Let f be an entire transcendental function and let n > 2. Then f has
infinitely many repelling periodic points of period n.

One of the tools used in the proof is Theorem A.l. (Actually this result is
used for holomorphic families, so “five” can be replaced by “three”, but this is not
essential.) We do not attempt to sketch a proof of Theorem Bl but we point out
that instead of Theorem A.l the weaker Theorem B.1 suffices for the argument
given in [14]. In fact, what is needed in [I4] §4] is that if » > 0, then there exists
N € N such that the conclusion of Theorem A.1 holds for D; = D(2mijN,r). This
is the case, however, if and only if it holds for D; = D(2wij,r/N), and Theorem
B.1 implies that this is true for sufficiently large V.
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It is shown in [I5] p. 161] how Theorem A.3 can be used to obtain the conclusion
of Theorem [2 for transcendental meromorphic functions f : C — C having more
than two poles. Again it turns out that Theorem B.3 suffices for the argument
given there.

6.4. Hausdorff dimenEion of Julia sets. We denote by dim X the Hausdorff
dimension of a set X C C. The following result is due to Stallard [47].

Theorem 3. Let f € M. Then dim J(f) > 0.

Actually Stallard was only concerned with meromorphic functions f : C — (E,
but her argument (which is the one given below) extends to the case that f € M.
For rational functions, Theorem Blis due to Garber [29]. For transcendental entire
functions and analytic self-maps of the punctured plane, i.e., in cases (ii) and (iii),
it follows from results of Baker ([4, Corollary to Theorem 1] and [6, Theorem 1])
and Keen [35, Theorem 3.1] that J(f) contains non-degenerate continua, and thus
dim J(f) > 1 in these cases.

Proof of Theorem 3. We only sketch the argument, concentrating on the part where
the Ahlfors five islands theorem comes into play, and referring to 7] for further
details. We take five points a1, ...,a5 € J(f) N C and apply Proposition B.3 with
v = /96 to obtain v, n, Uy and Us. We put a := a, and W := D(a,d/2). For
m € {1,2} we define V,,, := U, N (")~ (W) and denote the branch of (f")~! that
maps W onto V,, by ¢n,. Because ¢, extends univalently to D(a,d) the Koebe
distortion theorem yields |¢,,(z)] < 12|¢),(a)| for z € W. By Schwarz’s lemma,
applied to the function z — (¢ (a + 02/2) — Pm(a))/2v, we have d|¢), (a)]/4y < 1
and thus |¢), (z)| < 12-47v/8 = 3 for € W. This implies that |¢y, (21) — ¢ (22)] <
%|zl — zg| for z1,29 € W. On the other hand, it is clear that there exist ¢1,co > 0
such that |, (21) — dm(22)] > cm|21 — 22| for 21,20 € W and m € {1,2}.

The functions ¢1, ¢2 are thus contractions, and they form an iterated function
scheme (also called iterated function system) as defined in [27, §9.1]. It follows
from the theory of iterated function schemes that there exists a unique non-empty
compact set K C W which is invariant for ¢; and ¢o; see [27, Theorem 9.1].
Moreover, if s is defined by ¢ + ¢§ = 1, then dim K > s by [27) Proposition 9.7].
Finally, it is not difficult to show that K C J(f); see [A7] and §6.5] below. Thus
dimJ(f) > s> 0. O

6.5. Conjugacy to the shift map. Let
Y ={(x1,22,23,...) 1z, € {0,1} for all n € N},

equipped with the product topology of discrete topologies. Let S : ¥ — X be the
shift map defined by S((x1, z2,x3,...)) = (2, 3,24, ...). Christensen and Fischer
[22] have shown the following result. (Actually Christensen and Fischer stated their
result only for transcendental entire functions, but the proof extends to functions

in M.)

Theorem 4. Let f € M and let D C C a domain with D N J(f) # 0. Then
there exist n € N, a compact, invariant set K C J(f) N D and a homeomorphism
P:% — K such that PoS = f"o P.

The homeomorphism P thus conjugates f™|x to the shift S. Hence shift-
invariant measures on X give rise to f"-invariant measures on J(f). The con-
struction of certain invariant measures was in fact the main motivation in [22]. The
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lower bound for the Hausdorff dimension given in [27] is also obtained by consid-
ering certain measures, and thus it is not surprising that the underlying idea in
Theorems Bl and [ is essentially the same.

Proof of Theorem 4. We proceed as in the proof of Theorem [3 and we see that if
W, K, ¢1 and ¢o are defined as there, and if ¢ = (z1,22,23,...) € ¥ and z € W,
then P(z) := limp oo (Pry41 © Puyt1 © -+ © ¢po41)(2) exists, is independent of z,
and is contained in K. One checks that the function P : ¥ — K defined this way
has all the required properties. O

6.6. Singleton components of Julia sets. Dominguez [25| [26] has used the
Ahlfors theory of covering surfaces to show that under certain conditions the Julia
set of transcendental entire or meromorphic functions contains singleton compo-
nents. One of her results is as follows [25], Theorem 8.1].

Theorem 5. Let f be an entire transcendental function. Suppose that F(f) has
a multiply-connected component. Then J(f) has singleton components, and such
components are dense in J(f).

Proof. Let D be a multiply-connected component of F(f). Then f"|p — oo. It
follows from results of Baker [4, 5] that D is bounded and that if o is a curve which
is not homotopic to zero in D, then for large n € N the winding number of the
curve f™(o) with respect to the origin is non-zero.

These results imply that if 7 > 0, then f~!(D(0,7)) consists of infinitely many
components D1, Dy, ... which are all bounded. By the maximum principle, each
Dj is simply-connected and in fact a Jordan domain. We choose r such that DcC
D(0,r). Let now j € N. As f: D; — D(0,r) is a proper map we see that D;
contains a domain W; such that f : W; — D is a proper map. The Riemann-
Hurwitz formula (see, e.g., [48, p. 7]) implies that W; is multiply-connected. Since
F(f) is completely invariant we see that W; is also a component of F(f). We can
thus find a domain V; C C such that V; intersects J(f), but does not intersect the
unbounded component of C\W;.

We may assume that Dy, ..., D5 have pairwise disjoint closures. Applying Propo-
sition A.2 we obtain p € {1,...,5}, n € Nand U C V, such that f* : U — D,
is conformal. Let ¢ be the branch of (f™)~! which maps D, onto U. Then ¢ has
an attracting fixed point 29 € U C V,, and ¢*(z) — zy as k — oo, uniformly for
zeD,.

Furthermore, ¢*(W),,) is a component of F(f) for each k € N, and 2 is contained
in a bounded component of the complement of ¢*(W,). This implies that {zo} is
a singleton component of J(f). O

The point zg constructed in the above proof is a repelling periodic point of f.
Moreover, 2 is a buried point of J(f); that is, there is no component G of F(f) with
zo € OG. While it is also shown in [25] that J(f) has buried singleton components,
the argument used there does not seem to give whether there are repelling periodic
points which are singleton components. On the other hand, it is shown in [7
Theorem G] that there exists an entire function f for which every periodic point is
repelling and forms a buried singleton component of J(f).
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7. CONCLUDING REMARKS

7.1. In the proof of Theorem [{ we have used Proposition A.2. We thus require
the Ahlfors five islands theorem in the form given in Theorem A.1. I have not seen
how to obtain Theorem [ from the weaker Theorem B.1.

Theorems [IH4, however, do not require the Ahlfors five islands theorem in its
strong form given by Theorems A.1-A.3, but the weaker Theorems B.1-B.3 suffice.

7.2. In this paper we have concentrated on applications of the Ahlfors five islands
theorem in complex dynamics. Actually the Ahlfors five islands theorem is only a
special case of a more general result called “Scheibensatz” by Ahlfors [1 p. 190].
To state this result, let D C C be a domain and f:D— C be meromorphic. We
say that f has an island (of multiplicity p € N) over a Jordan domain Dy C C
if there exists a simply-connected domain U C D such that f : U — Dy is a
proper map (of degree p). Let now ¢ € N and pq,...,uy € N, and let Dy,..., D,
be Jordan domains on C with pairwise disjoint closures. Let F(D,{(Dj, 115)}3-1)

be the family of all meromorphic functions f : D — C which have no islands of
multiplicity less than p; over D;, for j € {1,...,q}. Ahlfors’s Scheibensatz says
that if

1
> (1 - —_) > 2,
=1 K
then the conclusion of Theorems A.1-A.3 holds with F(-,{D;}?_,) replaced by
F(,{(Dj, uy) ;1-:1). The five islands theorem is the special case ¢ = 5 and pu; =
o= = 2.

The method used in §§2H4| (except for §3lit is the one used in [16]) applies in
the more general situation of the Scheibensatz, and thus also yields a proof of
this result. (This was already pointed out in [16l §5.1].) Again the situation is
particularly simple in the case where the D; are small disks so that we obtain short
and elementary proofs of the corresponding generalizations of Theorems B.1-B.3.

Another important special case of the Scheibensatz is the case ¢ = 3, with p;
so large that the hypothesis of the Scheibensatz is satisfied. (The choice p; = 4
suffices.) The result corresponding to Theorem A.2 now says that a non-constant
meromorphic function f: C — C has an island (of multiplicity less than 4) over at
least one of three Jordan domain D, Do, D3 with pairwise disjoint closures. This
result has been used by Dominguez [26, Theorems A and B] to extend Theorem [5]
to a large class of meromorphic functions.

This version of the Scheibensatz has also been used in [11] §4] to give a new proof
of the result that an entire transcendental function has infinitely many periodic
points of period n for all n > 2. While this result is weaker than Theorem B it
suffices to prove Baker’s conjecture [31, Problem 2.20]. For this latter application
the version where the D; are small disks (i.e., the result corresponding to Theorem
B.2) suffices. This is not the case for Dominguez’s application.

7.3.  The Ahlfors theory not only yields the five islands theorem and the Scheiben-
satz in the form stated here, but it gives stronger, quantitative forms of these results
by giving lower bounds for the number of islands of a function in subdomains of its
domain of definition. I do not see how to obtain such quantitative estimates with
the method of [16].
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While these quantitative aspects are irrelevant for the applications considered
here, this more precise theory of Ahlfors is essential for other applications. In
fact, Bolsch ([I9) Chapter 3] and [20]) has used the Ahlfors theory to prove that
if f € M, then periodic components of F(f) have connectivity 1,2, or oco. For
invariant components of meromorphic functions f : C — C this had been proved
before in [9] Theorem 3.1] by a different method.

7.4. This survey of applications of the Ahlfors theory in complex dynamics is
incomplete. Among further applications we only mention the work of Stallard [46]
on the measure of Julia sets and that of Bedford, Lyubich and Smillie [T3, §7] on
polynomial diffeomorphisms of C2. There is no doubt that the Ahlfors theory will
continue to have interesting applications in complex dynamics.
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