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The microenvironment encompasses all components of a tumor other than the

cancer cells themselves. It is highly heterogenous, comprising a cellular component

that includes immune cells, fibroblasts, adipocytes, and endothelial cells, and a

non-cellular component, which is a meshwork of polymeric proteins and accessory

molecules, termed the extracellular matrix (ECM). The ECM provides both a biochemical

and biomechanical context within which cancer cells exist. Cancer progression is

dependent on the ability of cancer cells to traverse the ECM barrier, access the

circulation and establish distal metastases. Communication between cancer cells

and the microenvironment is therefore an important aspect of tumor progression.

Significant progress has been made in identifying the molecular mechanisms that

enable cancer cells to subvert the immune component of the microenvironment to

facilitate tumor growth and spread. While much less is known about how the tumor

cells adapt to changes in the ECM nor indeed how they influence ECM structure and

composition, the importance of the ECM to cancer progression is now well established.

Plasticity refers to the ability of cancer cells to modify their physiological characteristics,

permitting them to survive hostile microenvironments and resist therapy. Examples

include the acquisition of stemness characteristics and the epithelial-mesenchymal and

mesenchymal-epithelial transitions. There is emerging evidence that the biochemical and

biomechanical properties of the ECM influence cancer cell plasticity and vice versa.

Outstanding challenges for the field remain the identification of the cellular mechanisms

by which cancer cells establish tumor-promoting ECM characteristics and delineating

the key molecular mechanisms underlying ECM-induced cancer cell plasticity. Here we

summarize the current state of understanding about the relationships between cancer

cells and the main stromal cell types of the microenvironment that determine ECM

characteristics, and the key molecular pathways that govern this three-way interaction

to regulate cancer cell plasticity. We postulate that a comprehensive understanding of

this dynamic system will be required to fully exploit opportunities for targeting the ECM

regulators of cancer cell plasticity.

Keywords: extracellular matrix, stroma, plasticity, cancer associated fibroblasts (CAF), tumor associated

macrophages, tumor microenvironment, signaling pathways, cancer
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INTRODUCTION

Metastasis is the primary cause of cancer-related mortality (1)
and results in a catastrophic disruption to an organ function
through the lodgment and unrestrained growth of exogenous
tumor cells within normal tissue. For a tumor cell to migrate
to a new location within the body, it needs to adapt to survive
and thrive within an environment that is distinct from that of
the tissue in which it arose. Functional adaptations acquired
by cancer cells to survive altered environments is termed
cancer cell phenotypic plasticity. Of these, the epithelial to
mesenchymal transition (EMT) is the best studied and its reverse,
the mesenchymal to epithelial transition (MET) is rather less
well understood. Another key aspect of phenotypic cancer cell
plasticity is the acquisition of stem-like characteristics, resulting
from so-called de-differentiation, which permits the cancer cells
to remain dormant for long periods of time, evading both the
immune system and therapeutic agents. The pathophysiological
processes of metastasis that require phenotypic cancer cell
plasticity and the major cellular players that bring this about are
summarized in Figure 1.

Normal interactions between the parenchyma and the stroma
are characterized by (1) A two-way communication by molecular
messengers that are secreted into the microenvironment, (2)
biochemical and biophysical cues exerted by the ECM, and
(3) direct cell-cell contact permitting reciprocal signaling
between the two cell types. These interactions direct
tissue homeostasis and the establishment of niches bearing
distinct microenvironmental characteristics that facilitate the
maintenance of specialized cell types including stem cells.
Under abnormal conditions in which the parenchymal cells
acquire tumor-causing genetic lesions, the microenvironment—
its cellular and ECM components—is remodeled under the
influence of the growing tumor as well as the organism, resulting
in aberrant tissue homeostasis and disruption of the specialized
niches. These microenvironment changes strongly influence the
progression of the disease (2).

In cancer progression, epithelial-mesenchymal transition

is associated with invasiveness and metastasis. Acquisition
of a mesenchymal phenotype is characterized by increased

motility, expression of ECM remodeling enzymes such as

matrix metalloproteases (MMPs), and enhanced survival—all
key adaptations that are required for traversing the basement
membrane, promoting abnormal interactions between cancer
cells and the extracellular matrix (ECM), intravasation and
survival within the circulation. Conversely, MET is associated
with integration into epithelia at sites of distal metastasis. EMT
has long been associated with acquisition and maintenance of
cancer stem cells (CSCs) (3).

The CSC hypothesis takes its origins from the observations
made in the hematopoietic system, where a pluripotent
progenitor gives rise to all hierarchical lineages of the system by
a stepwise process of differentiation (4). Analogously, CSCs are
thought to constitute a reserve pool of a limited number of cells
that maintain the proliferative potential of the primary cancer or
migrate out of the primary site to seed new secondary tumors
at the metastatic sites. Recent observations have permitted a

more nuanced understanding of CSCs. It has been reported
that like bulk cancer cells, CSCs exhibit phenotypic plasticity in
response to signals from the microenvironment environment (5).
Another important addition to the emerging CSC model is that
the microenvironment plays a crucial role for the maintenance of
the CSC pool, just as it does for the maintenance of normal stem
cells (6). However, context-specific differences between tumor
types exist; for instance, while CSCs of colorectal cancer may
be generated from non-CSC cells via a process regulated by
Wnt signaling, a strictly hierarchical system is characteristic of
glioblastomas, where, CSCs are maintained by self-renewal (7).
There is strong circumstantial evidence that ECM provides an
important stem cell niche given the dependence of normal stem
cells on signaling through ECM receptors such as the laminin
receptor, α6β1 integrin (8), the vitronectin receptor αV (9), and
collagen receptors (10) and emerging evidence that the cancer-
associated ECM is an important aspect of the cancer stem cell
niche (11).

Cancer plasticity is driven by reciprocal interactions between a
cancer cell and its microenvironment, which permits this cell to,
on the one hand, calibrate its response to the altered environment
and on the other, actively remodel the microenvironment to
facilitate its survival and proliferation. In this review, we will
discuss how the ECM influences cancer cell plasticity and
conversely how cancer cells directly or indirectly influence
changes in ECM structure and composition.

The extracellular matrix is a scaffold of fibrillar proteins,
accessory proteins and molecules that provides structural and
biochemical support for cells. The predominant component of
the ECM is fibrillar collagen, the structure and mechanical
properties of which strongly influence cellular phenotype (12).
Based on biochemical and structural characteristics, the ECM
consists of a basement membrane (located at the basal aspect
of epithelial or endothelial cells in normal tissues) and the
interstitial (stromal) ECM. In most tissues, the basement
membrane consists largely of collagen IV, together with laminin,
fibronectin, and several types of proteoglycans. The main role of
the basement membrane is to provide a physical barrier between
the epithelial cells and the connective tissue (stroma) of the
organ, whilst still allowing the diffusion of gases and transport
of signaling molecules. The interstitial ECM, mainly produced
by mesenchymal cells (discussed further in section Cellular
Mediators of Cancer Cell Plasticity via the ECM), consists largely
of collagens I and III, fibronectin, and proteoglycans. In cancer,
rupture of the basement membrane permits epithelial cells to
undergo an EMT and migrate into the surrounding stroma and
invade through the interstitial ECM. Epithelial cells that have
undergone EMT can cause activation of stromal cells to yield pro-
tumorigenic stromal cells that can remodel the ECM to create
a tumor-permissive environment (13). Among the components
of the ECM, glycosaminoglycans such as hyaluronan (HA) play
important roles during cancer progression. High levels of HA
have been documented in tumors and are associated with poor
prognosis and chemotherapy resistance (14). HA has been shown
to be able to induce EMT by binding to CD44 and activating
the EMT transcription factor TWIST-1 (15). Increased HA
levels have also been shown to compromise vascular integrity

Frontiers in Oncology | www.frontiersin.org 2 October 2018 | Volume 8 | Article 431

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Poltavets et al. The ECM and Cancer Cell Plasticity

FIGURE 1 | Schematic illustrating the pathophysiological processes that exploit cancer cell plasticity during tumor progression, invasion, and metastasis.

in tumors which has important implications for metastasis (16).
Furthermore, HA breakdown products have been implicated
in inflammatory responses that precipitate extracellular matrix
remodeling (17).

The normal ECM is highly remodeled after it has been
initially set down and exhibits tissue-specific composition and
organization. In pathological conditions such as desmoplasia, the
appearance of linear ECM fibers correlates with poor patient
outcomes. Linear fibers have been observed to provide tracks that
migratory cancer cells can use to their advantage (18), to enhance
migratory capability. The main regulators of ECM remodeling
during tumorigenesis are cancer-associated fibroblasts (CAFs),
which produce large quantities of collagen I, fibronectin, and
periostin (13). Analysis of the ECM using techniques such
as second harmonic generation (SHG) microscopy, atomic
force microscopy and mass spectrometry has revealed tissue-
specific composition and configuration of its components, which
underlie tissue phenotype, and also the tumor phenotype (19).
The ECM is a source of biochemical and biomechanical signals
that promote tumor progression, and it is in turn strongly
influenced by the cancer in a reciprocal relationship that is driven
by the cytoskeleton of cancer cells (20).

Cell-ECM interactions in both normal and pathologic
conditions are principally mediated via integrins, which
constitute a large family of cell-surface receptors. Integrins also
regulate cytoskeleton organization and activate intracellular
signaling pathways, conveying both mechanical and chemical
signaling (21). Besides their roles in cell adhesion and migration,

they also transmit signals for cell proliferation and survival.
The majority of integrins activate focal adhesion kinase (FAK).
This in turn promotes directional cell motility of both tumor
and stromal cells, and generates signals to further modify ECM
organization, thereby altering the mechanical properties of the
tumor microenvironment (13, 21).

CELLULAR MEDIATORS OF CANCER
CELL PLASTICITY VIA THE ECM

Normal tissue homeostasis is strongly influenced by the ECM
and a key example of this is the process of wound healing.
One of the steps for the re-establishment of normal tissue
homeostasis following wounding is the migration of fibroblasts
into the wound space in order to break down the thrombus and
regenerate the ECM (22). The mechanical properties of the newly
synthesized ECM are an important determinant of how quickly
the wound heals (23). Similarly, the ECM is set down early
in embryonic development and influences the delamination,
migration and differentiation at their destination of diverse cell
types (24, 25). Since the physiological functions and behaviors of
normal cell types and strongly influenced by the normal ECM,
it is no surprise that similarly the tumor ECM exerts a strong
influence on the behavior or cancer cells. The influence of the
ECM on cancer cell plasticity is modulated by a variety of cell
types that reside within the tumor stroma. Under the influence of
systemic regulators as well as cancer cells, these stromal cells not
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only produce tumor ECM, which qualitatively and quantitatively
differs from a normal ECM, but also an array of cytokines
and other secreted and membrane-bound factors that influence
cancer cell plasticity. In this section, we discuss the key cellular
mediators of cancer cell plasticity that regulate the biochemical
and biomechanical properties of the ECM.

Cancer-Associated Fibroblasts (CAFs)
Fibroblasts, a cell type of spindle-like morphology and
mesenchymal lineage, constitute the major cell type of the
normal tissue stroma. Stroma-resident fibroblasts that are not
actively engaged in ECM production or turnover are termed
“resting” or “quiescent.” Resting fibroblasts are mostly observed
within fibrillar ECM and have the potential to be “activated.”
Activated fibroblasts are morphologically and metabolically
different to their resting counterparts, and activation can be
caused by acute or chronic inflammatory responses such as
wound healing or fibrosis. Pro-inflammatory factors such as
TGF-β, IL-6, platelet-derived growth factor (PDGF), hypoxia,
and reactive oxygen species (ROS) can activate quiescent
fibroblasts. Once activated, fibroblasts synthesize and deposit
ECM components, release chemokines and cytokines into
the stroma and generate tissue-level tensile forces via their
actomyosin cytoskeletons, all key requirements for tissue
remodeling. Activated fibroblasts are therefore essential for
epithelial cell differentiation, control of immune responses and
the maintenance of tissue homeostasis (26, 27).

A long-standing concept tumor as “wounds that do not heal”
(28) hinges on the ability of cancers to commandeer fibroblast
function normally associated with wound healing to promote
disease progression. Accumulation of tumor cells within the
tissue can trigger chronic wound healing responses from normal
tissue fibroblasts, leading to desmoplastic tissue remodeling
characterized by the appearance of aberrantly organized ECM
fibers and increased tissue stiffness, which in turn creates a
favorable environment for tumor progression (29).

Activated fibroblasts in the tumor microenvironment are
termed cancer-associated fibroblasts (CAFs). CAFs are among
the main cellular contributors to cancer-associated changes in
ECM architecture and may arise from normal fibroblasts. CAFs
are thought to be recruited via growth factors secreted by
tumor and immune cells (such as TGFβ, PDGF, and FGF2),
and subsequent proliferation and expansion of these cells may
be auto-regulated by paracrine/autocrine mechanisms governed
by other CAF populations (27). There is an ongoing discussion
regarding the classification of CAF populations based on cell
morphology, markers, secretory profiles, and location within the
tumor. These complex issues and the debate around the pro-
vs. anti-tumorigenic properties of CAFs are dealt with in detail
elsewhere (26, 27, 30). Here, we discuss mechanistic aspects of
the contribution of CAFs and other stromal cells to the ECM
properties that regulate cancer cell plasticity.

CAFs are among the few stromal cell types that have been
conclusively shown to promote an EMT program in cancer
cells. Using stromal fibroblasts isolated from breast cancer
patients in co-culturing experiments with a panel of breast
cancer cell lines, CAFs were demonstrated to promote cancer cell

EMT via TGF-β secretion and induction of the TGF-β/SMAD
signaling pathway in the cancer cells (31). Another study found
that activated fibroblasts secrete carbonic anhydrase IX (CA
IX), which enhances the production by CAFs of MMP2 and
MMP9, which are well-known to degrade and remodel the ECM.
Acidification of the microenvironment by CA IX can also directly
promote an EMT program in prostate carcinoma cells (32).
Furthermore, IL-6 from prostate carcinoma cells generates a CAF
phenotype and leads to increased MMP2 and MMP9 levels in
fibroblasts. This can in turn induce an EMT program in cancer
cells. This reciprocal cancer cell-CAF interaction sustains tumor
progression via cancer cell plasticity (33).

Recent evidence suggests that ECM remodeling components
secreted by CAFs play a role in the maintenance of the
cancer stem cell niche (34, 35). For example, mammary
cancer cells can induce ECM periostin production by stromal
fibroblasts, essential for CSC maintenance by promoting Wnt
signaling (36). More recently, it has become clear that
CAF phenotype changes induced by tumor-initiated hedgehog
signaling promotes stemness in breast cancers in both mouse
models and human patients and that inhibiting hedgehog
signaling in fibroblasts may be a useful therapeutic modality to
reverse breast cancer cell plasticity (37). These CAF functions are
dependent on their role in regulating the ECM and these ECM
changes occur at the site of the stem cell niche (37). Fibroblasts
lacking Tissue Inhibitor of Metalloproteinases (TIMPs) exhibit
a CAF-like phenotype and release extracellular vesicles packed
with factors that enhance cancer cell motility and upregulate
CSC markers. These vesicles contained high levels of A
Disintegrin andMetalloproteinase domain containing protein 10
(ADAM10), which promotes cell motility via activation of RhoA
and Notch signaling (38). CAF-derived growth factors were also
shown to play a role in stem cell niche formation. CAF-derived
HGF is proposed to promote the formation of the CSC niche
and tumorigenicity by activating the Wnt signaling pathway in
differentiated colon cancer cells (39). Another report suggests
that CAFs promote growth and stemness in lung CSCs. Paracrine
signaling between CAF-derived insulin-like growth factor-II
(IGF-II) and IGF1R on CSCs, and the subsequent induction of
Nanog, induced expression of CSC markers. The importance
of this signaling axis was also confirmed in samples from non-
small cell lung cancer (NSCLC) patients (40). Taken together,
these observations establish a key role for CAF-mediated ECM
production and remodeling in cancer cell plasticity that promotes
tumor progression.

It is now well-accepted that cancer cell motility is enhanced by
the tumor ECM (41). It has been shown that TGF-β-stimulated
colon CAFs are able to secrete scatter factor/hepatocyte
growth factor (SF/HGF) and tenascin C, and thereby promote
invasiveness of colon cancer cells (42). Using fibroblasts isolated
from different stages of mouse mammary tumors it has been
shown that activation of Yes-associated protein 1 (YAP1)
in CAFs promotes matrix stiffening, cancer cell invasion,
and angiogenesis. YAP1 is known to regulate cytoskeletal
components including the regulatorymyosin light chain (MLC2),
which controls actomyosin contractility. A feed-forward loop is
therefore established via the activation of YAP1 in response to
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mechanical cues from the ECM upon CAFs, which further stiffen
of the ECM (43). Consistent with these observations, ROCK
inhibition upstream of YAP1 reversed the CAF phenotype to
normal (43). However, there are multiple pathways contributing
to this feed-forward loop as ROCK-dependent actomyosin
contractility downstream of GP130-IL6 JAK1/STAT pathway
activation also enhanced ECM remodeling by CAFs, which in
turn promoted melanoma cell migration in vitro (44). Therefore,
the ability of fibroblasts to promote tumor cell migration while
also enhancing tumor cell plasticity establishes a key role for this
versatile cell-type in tumor progression.

Fibroblasts therefore exhibit key properties that are
exploitable by cancer cells to promote tumor progression
via cellular plasticity and interfering with CAF function therefore
represents an attractive possibility for anti-cancer therapy.
Nevertheless, evidence that at least a sub-population of CAFs
has anti-tumor functions sounds a note of caution, raising the
possibility that directly targeting CAFs may have unintended
consequences. These observations highlight that more work
needs to be done to dissect out the mechanisms by which
CAFs contribute to cancer, with tissue- and context-dependent
implications being likely to arise.

Tumor-Associated Macrophages (TAMs)
Macrophages are phagocytic cells of the immune system that
are distributed throughout virtually all tissues. They are highly
adaptable cells that exhibit a high degree of plasticity depending
on the signals in their immediate environment (45). In response
to infection or injury, macrophages can secrete pro-inflammatory
factors (TNF-α, IL-1, and nitric oxide) that trigger host defense
responses and tissue remodeling. In tissue repair responses, an
important switch occurs between pro-inflammatory and anti-
inflammatory macrophage sub-populations. If not checked, the
pro-inflammatory responses can lead to chronic inflammation or
auto-immune disease (46). Not only are macrophages important
contributors to innate immunity, but they also play essential roles
in various developmental processes such as bone morphogenesis,
neuronal patterning, angiogenesis, branching morphogenesis,
and adipogenesis (47). These functions are co-opted by tumor
cells as a feature of many cancers.

An important concept in macrophage biology is polarization;
the phenotyping of macrophages based upon the expression
of distinct suites of surface markers induced by specific
environmental stimuli (48). While there has been a consensus
on a two category “M1-M2” classification, it is now commonly
accepted that macrophages exist on a continuum in disease
and tissue specific contexts, of which the M1 and M2 states
represent two extremes (45, 49). Macrophages polarized toward
the M1 state are referred to as “classically” activated. This
population produces pro-inflammatory agents that contribute
to host defense and their anti-tumor properties. Macrophages
polarized toward the M2 state are said to be “alternatively”
activated. They secrete anti-inflammatory cytokines that
largely suppress inflammatory responses. This population
suppresses tumor immunity, enhances tumor angiogenesis, and
extracellular matrix remodeling, and is associated with wound
healing (47). Tumor-associated macrophages are also sometimes

referred to as M2 polarized, although even in this context,
heterogeneous populations of TAMs can exist within the M1-M2
continuum (50).

The specific location of TAMs within a tumor has been
established as an important indicator of their pro-tumor activity,
and they are mainly localized to perivascular regions or at the
tumor invasive front. Monocytes are recruited to the invasive
front and differentiate into macrophages in response to signals
from tumor and stromal cells. An array of cytokines (IL-4, IL-
10, IL-13), chemokines (CCL2, CXCL12), and growth factors
(CSF-1, TGF-β, VEFG-A, PDGF, angiopoietin-2) produced at the
invasive margin stimulate monocyte recruitment, differentiation
and survival (51–54). We have previously demonstrated that
the chemokine receptor CCR6 is expressed on TAMs and
facilitates their migration to the cancer site in a mouse model
of mammary cancer. Deletion of this chemokine receptor
significantly decreases the population of TAMs, in particular M2
TAMs, as well as tumor burden (55).

TAMs play important roles in cancer cell proliferation
(56), invasion (57), angiogenesis (58), and metastasis (45).
TAMs secrete EGF, FGFs, and VEGFs that promote tumor cell
proliferation, fibroblast activation and angiogenesis (59, 60).
TAMs also produce IL-10 and TGF-β, which contribute to
their immune-suppressive properties, assisting tumor cells in
immune evasion (51, 61, 62). Chemotaxis-based experiments
and intravital imaging revealed that reciprocal signaling between
tumor cell-derived CSF-1 and TAM-derived EGF is essential
for the promotion of tumor cell migration. This interaction
is important for EGF receptor-mediated mammary tumor cell
invasion in primary tumors (51). Furthermore, direct physical
interaction between mammary cancer cells and TAMs has been
observed using multiphoton intravital imaging, demonstrating
that these reciprocal interactions may not only be biochemical
in nature. The observation that tumor cells intravasate into areas
where perivascular macrophages are numerous in mammary
tumors, suggests that macrophages may also enhance cancer cell
intravasation (63).

Along with their important roles in initiating growth and
immune-suppressive signals directly, TAMs have been shown
to play a significant role in contributing to the tumor ECM
by producing several important matrix and matrix-associated
proteins such as collagens, fibronectin, osteopontin, and periostin
(64). Utilizing an orthotopic colorectal cancer (CRC) model, Afik
and colleagues demonstrated that TAMs are capable of collagen
synthesis and deposition, particularly collagen types I, VI,
and XIV. Confocal, second harmonic generation and scanning
electron microscopy of ex vivo mouse colorectal tumor tissues
has revealed that TAMs are capable of initiating deposition,
cross-linking, and linearization of collagen fibers during tumor
development, particularly at the invasive front (65).

TAMs support tumor cell migration, invasion and metastasis
via ECM remodeling (64, 66). Responding to cytokine signals
from tumor cells, TAMs are known to secrete a cocktail of ECM
remodeling enzymes including MMPs (1, 9, 12, and 14), serine
proteases, cathepsins (B, S, C, L, Z), lysosomal enzymes, and
ADAMs. These proteolytic enzymes disrupt integrin-mediated
cell-cell adhesions and are essential for cancer cell invasion. In
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another study, TAMs isolated from breast cancers were observed
to secrete CCL18, which signals via the breast cancer cell-specific
PITPNM3 receptor. This signaling cascade activates integrin
clustering on tumor cells, promoting integrin-ECM interactions
and adhesion, thereby promoting invasiveness and metastasis
(67). This study provides evidence for an orchestrated sequence
of events whereby proteases released by TAMs remodel the ECM
to facilitate tumor cell interaction while also releasing CCL18 that
causes integrin clustering on tumor cells, strengthening cell-ECM
interactions and facilitating cancer cell plasticity, migration, and
dissemination.

Another important role for matrix remodeling enzymes
secreted by TAMs is their ability to liberate the ECM-bound
growth factors and signaling molecules that can influence tumor
cell growth, plasticity, and motility (64). Liberation of bioactive
fragments of ECM proteins (such as endostatin from type XVIII
collagen) (68) that exhibit biological activities that are distinct
from their parent ECM molecule was also demonstrated to be
brought about by TAMs. Whilst this is an emerging area of
TAM biology, it is one that is likely to increase in interest and
significance.

There is a substantial evidence for a role for TAMs in
promoting EMT in tumor cells through multiple mechanisms.
Exposure of either mouse F9-teratocarcinoma or mammary
epithelial cells to TAM-conditioned medium reduces E-cadherin
expression, activates the Wnt/β-catenin pathway, induces the
expression of mesenchymal markers and increases invasiveness
of epithelial cells. It is also suggested that TAM-produced TGF-β
may induce an EMT program in cancer cells (62). TAMS have
been shown to induce an EMT program in pancreatic cancer cells
in response to TLR4 signaling by producing IL-10 (69), and in
a breast cancer model, TAMs induced EMT in cancer cells via
upregulation of CCL18 (70). Even though the evidence points to
a role for TAMs in EMT, it is becoming increasingly apparent that
TAM-mediated EMT induction is context dependent and that
microenvironmental factors determine themechanisms by which
TAMs induce cancer EMT programs. Analogous to this process,
there is some evidence that TAMs are involved in cancer stem cell
maintenance. Multiple studies have shown that growth factors
and cytokines secreted by TAMs can promote and maintain
the CSC populations within various tumors (71). Interestingly,
in hepatocellular carcinoma, TAM-derived TGF-β1 promoted
cancer cell stemness (72). Taken together, these observations
provide evidence for a role for TAMs in ECM-dependent and
ECM-independent regulation of tumor cell plasticity.

Tumor-Associated Neutrophils (TANs)
Neutrophils, the most abundant leukocyte type in the blood, are
produced in the bone marrow from hematopoietic stem cells and
are released into circulation as fully mature cells. The generation
and maturation of neutrophils is a complex process (73, 74) and
is primarily regulated by granulocyte-colony stimulating factor
(G-CSF). Other factors, such as granulocyte–macrophage-colony
stimulating factor (GM-CSF), interleukin 6 (IL-6), and KIT
ligand (KITL) also contribute to the production of neutrophils.
In cancer, tumor cells secrete G-CSF which causes neutrophil

overproduction, contributing to immunosuppressive responses
at the early stages of tumorigenesis (75).

In the process of neutrophil maturation, primary, secondary,
and tertiary cytoplasmic granules are formed. These pre-formed
granules contain a wide variety of proteins and enzymes that
are essential for anti-microbial defense and the resolution of
inflammation. MMPs and neutrophil elastase contained within
these granules are of interest as they are proteolytic enzymes
that promote tumor progression by remodeling the cancer ECM
(76–78).

Like fibroblasts and macrophages, neutrophils also exhibit
polarization. Anti-tumor neutrophil populations are designated
“N1” and pro-tumor as “N2.” Polarization toward the N2
form is induced by elevated levels of TGF-β, and N2-
polarized neutrophils express high levels of CXCR4, VEGF, and
MMP9. Blocking TGF-β in the microenvironment stimulates
upregulation of TNFα and IFNγ in N1 neutrophils and causes
CXCL2, CXCL5, and CCL3 production that leads to further
recruitment of neutrophils to the tumor site (79). It was
also shown that keratinocyte-derived TNF-α is an important
contributor to early recruitment of neutrophils in a mouse
cutaneous carcinoma model (80). Factors secreted by tumor
cells also mediate recruitment of neutrophils. Using orthotropic
transplantation of human hepatocellular carcinoma (HCC) cell
lines into nude mice, Zhou et al. identified that CXCL5 secreted
by cancer cells promotes neutrophil recruitment. Importantly,
correlation between the levels of CXCL5 and neutrophil
infiltration was confirmed in three independent clinical HCC
patient cohorts (81).

Tumor-promoting properties of neutrophils have been
documented and several of these functions involve ECM
remodeling and cancer cell plasticity. Neutrophil-derived MMP9
enables keratinocyte hyperproliferation and invasiveness in a
virus-induced cutaneous carcinoma model (82). In orthotopic
xenograft transplantation systems of human fibrosarcoma and
prostate carcinoma cell lines, tumor-recruited neutrophils release
MMP9 that remodels the ECM to induce angiogenesis and
promote metastasis (83).

Neutrophils have also been implicated in cancer cell EMT.
Neutrophil-derived elastase has been shown to cleave E-
cadherin and induce an EMT program in pancreatic ductal
adenocarcinoma (PDAC) cells in co-culture with macrophages.
Accordingly, in human PDAC tissue samples, EMT correlated
with the presence of infiltrating neutrophils (84). In a zebrafish
model, oncogene-transformed keratinocytes were shown to
recruit neutrophils to enhance their EMT program. This process
was mediated by signaling through CXCR2 in neutrophils (85),
consistent with the observation that neutrophil recruitment
and tumor progression are impaired in Cxcr2-deficient mice
in several models of carcinoma (86). In a zebrafish xenograft
model of tumorigenesis in vivo, neutrophil migration enhanced
tumor cell invasion due to the establishment of collagen tracks
that were exploited by cancer cells for their migration (87).
Several lines of evidence therefore suggest that neutrophils
modify the ECM to promote tumor progression with at
least a proportion of these functions mediated by tumor cell
plasticity.
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Emerging evidence suggests that neutrophil-mediated
ECM remodeling augments tumor invasiveness. Co-culture
experiments of oral squamous cell carcinoma (OSCC) cell lines
with neutrophils revealed that neutrophils increase the formation
of invadopodia and collagenous matrix degradation by cancer
cells. This process was induced via IL-8-mediated recruitment
of neutrophils and subsequent release of TNF-α by neutrophils
into the surrounding microenvironment (88). Consistent with
these observations, a transgenic mouse mammary cancer model
exhibited distinct cytokine profiles in collagen-dense tumors
compared to low collagen-density tumors and these cytokine
profiles were associated with neutrophil maturation in collagen-
dense cancer tissues. Accordingly, depletion of neutrophils in
collagen-dense mammary tumors reduced tumor progression in
collagen-dense tumors (89).

Another intriguing field that has recently emerged is the study
of neutrophil extracellular traps (NETs) and their contribution
to tumor progression. NETs are three-dimensional networks
of extruded DNA packed with cytosolic and granule proteins.
NETs were first described as contributors to the innate immune
response, with an ability to trap extracellular pathogens. It has
since been shown that inflammatory responses can trigger NET
formation (or NETosis). Comprehensive reviews on the roles of
NETs in tumorigenesis have been recently published (90, 91).
For the purposes of this review we will focus our attention
on the potential contribution of NETs to regulation of ECM
composition in the tumor microenvironment. NET components
MMP9, cathepsin G and neutrophil elastase are all known to
contribute to extracellular matrix remodeling as well as provide
signals for tumor cell proliferation, migration and tumor-
associated angiogenesis (91). While it is yet to be determined
whether these proteins contribute to ECM remodeling in the
cancer microenvironment while associated with NETs, there is
in vitro evidence that they may. One study has demonstrated
the ability of NETs to trap cancer cells under static and
dynamic conditions, raising speculation that NETs produced
during inflammation could assist in the colonization of secondary
tissues by circulating cancer cells (92). Another recent study has
demonstrated that cell lines generated from chronicmyelogenous
leukemia use integrins to adhere to the fibronectin in NETs. It is
therefore possible that NETs provide cancer cells with a platform
for interaction with other cells and can induce key signaling
pathways required for their survival and proliferation (93).
Further investigation into the role of NETs in ECM remodeling,
and contribution of NET formations to desmoplastic response
in cancers, is therefore warranted. Taken together these studies
suggest that new roles for neutrophils in ECM biology are likely
to be uncovered, and thereby a role in regulating cancer cell
plasticity.

Cancer-Associated Adipocytes (CAAs)
Adipocytes are the lipid-storing cells of adipose tissues (AT)
that regulate energy storage and metabolism within the body.
Adipocytes secrete hormones and other molecules, collectively
termed adipokines, which exert paracrine and endocrine
regulatory roles in obesity, adipose tissue fibrosis, inflammation,
tumorigenesis, and cancer metabolism (94–96). Many studies

indicate a clear phenotypic difference between CAAs and normal
adipocytes, but most studies investigating the roles of adipokines
in cancer rely on mature (differentiated) adipocyte co-culture
experiments with cancer cells. In the context of the tumor
microenvironment, the role of adipokines is more complex than
simple reciprocal interactions between adipocyte and tumor
cells—even though tumor cells express corresponding receptors
for adipokines—and is likely to also be strongly influenced by the
inflammatory milieu.

Adipocytes mainly arise frommesenchymal stem cells (MSCs)
or undifferentiated adipocyte precursors within adipose tissue
stroma (97, 98). A small proportion of adipocytes can also
be derived from hematopoietic stem cells (HSCs) (99, 100).
Adipocytes constitute an essential cellular component of the
tumor microenvironment in breast, ovarian, prostate, renal,
gastric, and colon cancers (96). Tumor cells can “activate”
adipocytes and subvert their cellular programs to facilitate
tumor-promotion. Such activated cancer-associated adipocytes
are distinct from normal adipocytes in morphology and
function. Adipocytes co-cultured with cancer cells exhibit de-
lipidation, decreased expression of adipocyte markers such as
Ap2 and FABP4, increased expression of MMP11, and enhanced
release of inflammation-promoting cytokines IL-6 and IL-1β.
Importantly, presence of CAAs expressing IL-6 was confirmed
ex vivo using primary breast cancer samples (101). Co-culture
of cancer cells with mature adipocytes can induce adipocyte
dedifferentiation via the Wnt/β-catenin pathway. Adipocytes
shrink, significantly lose their lipid content, and may acquire
fibroblast-like properties. These cells, termed adipocyte derived
fibroblasts (ADFs), express the fibroblast marker S100A4/FSP-
1 but not α-SMA. ADFs acquire migratory capacity and move
toward the tumor core to promote cancer cell invasion (102).

There is evidence that mature adipocytes, CAAs and ADFs
contribute to tumor cell plasticity. Mature human breast
adipocytes increase in vitro cell motility of both pre-malignant
and malignant breast cancer cell lines (103). Through lipolysis
and direct lipid transfer from adipocytes to cancer cells,
adipocytes may serve as energy reservoirs for cancer cells and
sustain tumor growth (104). In vitro studies show that paracrine
signaling from cancer cells induces the release of free fatty
acids from CAAs resulting in CAA de-lipidation and increased
secretion of inflammatory cytokines and proteases that promote
tumor cell invasiveness (105).

An intriguing discussion is now underway regarding the role
of obesity-mediated changes in the tumor microenvironment
and cancer progression (106). Obesity has been implicated
in the promotion of inflammation and fibrosis, particularly
through the engagement of hypoxia-induced transcriptional
programs in adipocytes and the subsequent recruitment of
immune cells. In mouse models of spontaneous pancreatic
ductal adenocarcinoma (PDAC) it was shown that adipocyte-
mediated inflammation contributed to a desmoplastic response
through the recruitment of TANs, which enhanced tumor
formation in obese animals (107). It has also been demonstrated
that mammary adipose tissue in obese mice contained larger
myofibroblast populations than in lean counterparts and that
these myofibroblast populations contributed to ECM stiffness by
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synthesizing ECM components, promoting collagen alignment
and fibronectin unfolding, enhancing invasive behaviors of
malignant and pre-malignant human breast cancer cells (108).
This study provided a link between obesity and the increased
myofibroblast populations observed in mammary adipose tissue,
with the consequent increased ECM stiffness and tumor
promotion.

However, there is also emerging evidence that CAAs influence
tumor ECM remodeling. Adipocytes derived from human
peri-prostatic adipose tissue primed by prostate carcinoma
cells were found to upregulate TNF-α, osteopontin, and
MMP9, which are known to regulate ECM architecture
(109). Furthermore, adipocytes secrete and process collagen
VI, which provides pro-survival signals at the early stages
of tumor growth in murine mammary ductal carcinoma
(also consistent with observations in human breast cancer
tissues), and its cleavage product endotrophin, promotes
mammary tumor growth via recruitment of endothelial cells
and macrophages that subsequently stimulate angiogenesis,
fibrosis and an inflammatory environment (110). CAA-derived
endotrophin induced TGF-β mediated EMT in mammary
cancer cells (111) and CAAs also promoted tumor cell
invasiveness by upregulation of versican and leptin in renal
cell carcinoma cell lines (112). Overall, these observations
provide circumstantial evidence for a role for CAA in the
microenvironment and particularly the formation of a tumor-
permissive ECM, suggesting that more work using in vivomodels
is warranted.

Tumor Infiltrating Lymphocytes (TILs)
Tumor infiltrating lymphocytes (TILs) which include CD8+
cytotoxic T lymphocytes (CTLs), CD4+ T helper lymphocytes
(Th), CD4+ regulatory T lymphocytes (Treg), γδT cells, and B-
cells. Tumor-suppressing roles of T helper and cytotoxic T cells
have been widely studied (113, 114). However, TILs can also
contribute to the tumor-promotion through the interplay with
other stromal components, such as macrophages or neutrophils
and the cytokines they secrete. In response to IL-23, IL-6, and
TGF-β in the tumor microenvironment, γδT cells secrete IL-
17 and induce angiogenesis in a transplantable sarcoma model
in mice (115) and in response to tumor-derived IL-1β, they
produce IL-17 and induce systemic, G-CSF-mediated activation
of neutrophils in mammary tumors to promote cancer-cell
metastasis to the lungs (116). It has also been observed that IL-
4 secreting CD4+ T lymphocytes were able to indirectly promote
tumor invasiveness and pulmonary metastasis of mammary
tumors via enhancing pro-tumor properties of tumor associated
macrophages (117).

Tregs, on the other hand, are thought to exert
an immunosuppressive influence within the tumor
microenvironment and are able to induce apoptosis of NK
cells via direct cell-to-cell contact as well as through TGF-β
secretion (118), but under some circumstances may promote
tumor angiogenesis via the production of VEGFA, as has
been demonstrated in an ovarian cancer murine xenograft
model (119).

Activated B-cells contribute to pre-malignant inflammatory
responses and to enhance tumor growth in the HPV-16-
driven multistage epidermal carcinogenesis model (120). In
castration resistant prostate cancer, tumor infiltrating B-cells
secrete lymphotoxin (LT) α:β which engages with LTβR on
cancer cells and activates the STAT3 pathway to promote
androgen-independent cancer cell growth (121). Interestingly
upon STAT3 activation in B-cells there has been observed an
increased angiogenesis in B16 melanoma and Lewis lung cancer
models, however a direct role of B-cells in angiogenesis is still
unclear (122).

TILs have not been directly implicated in the production of
ECM. Nevertheless, they are important regulators of the cellular
composition of the tumor microenvironment and play indirect
roles in the establishment of a tumor-promoting matrix via their
role in ECM remodeling. Lymphocytes express ECM modifying
enzymes such as MMPs and the urokinase plasminogen activator
system in order to traverse basement membrane (123). It has
been demonstrated that ex vivo purified peripheral lymphocytes
respond to chemokine and cytokine stimulation by increased
MMP-9 production (124). Furthermore, fibronectin-mediated
activation of focal adhesion kinase (FAK) regulates the expression
and release of MMP-2 and MMP-9 by T lymphocytes in vitro
(125). T lymphocytes isolated from the spleens of mammary
tumor-bearing mice exhibit elevated production of MMP-9
at both the mRNA and protein level (126). Besides MMP
production human T-cells are capable of inducing MMP-9,
MMP-1, and MMP-3 expression ex vivo in human endothelial
cells through CD40/CD40 ligand interaction (127). Another
study has demonstrated that lymphoma cells were able to induce
MMP-9 expression in fibroblasts and macrophages (128). While
the foregoing demonstrates that lymphocytes can produce ECM
remodeling enzymes, there is as yet no evidence to suggest that
this is a feature of tumor growth and progression in vivo. More
work is therefore required to determine whether lymphocyte-
mediated ECM remodeling has a direct function in tumor
progression and cancer cell plasticity.

Cancer Cells
While much of the aberrant ECM production and remodeling
in cancer is initiated within the stroma (129), cancer cells
themselves can produce some ECM proteins. Proteomics-based
analysis of xenografted breast cancers revealed that highly
aggressive and metastatic cancer cell lines produced ECM
components such as fibronectin, fibrinogen, laminins, periostin,
collagens I, III, IV, V, andVI, transglutaminase 2, and hyaluronan.
Of note, production of certain components of the ECM is
associated with increased metastatic potential of cancer cells—
particularly LTBP3, SNED1, EGLN1, and S100A2. LTBP3 has
been previously implicated in the regulation of TGF-β secretion
and promotion of tumor invasion and metastasis. S100A2
overexpression has been shown to promote lung metastasis of
non-small-cell lung carcinoma cells (130, 131).

The best documented and arguably principal path to the
ECM conditioning by cancer cells is through deregulation
and/or increased production of ECM-modifying enzymes.
Uncontrolled tumor cell proliferation and limited tissue blood
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supply induces intra-tumoral hypoxia, which in turn induces
expression of the gene encoding the collagen and elastin cross-
linking enzyme lysyl oxidase (LOX) in human tumor cells
(132). LOX-mediated collagen and elastin crosslinking leads to
stiffening of the ECM and enhances invasive migration of human
breast and cervical cancer cells lines under hypoxic conditions
(133). Furthermore, ECM stiffening activates integrin signaling,
promote focal adhesion assembly and enhance PI3 Kinase (PI3K)
activity that leads to tumor progression and invasion (20, 134).
ECM stiffening also promotes growth, survival, migration, and
proliferation of cancer cells via integrin ligation and engagement
of the Rho-ROCK, PI3K, and MAP/ERK signaling pathways
(135) and acute compressive stress such as that encountered in
the microenvironment during early stages of epithelial tumor
growth can activate Rho-ROCK signaling and downstream
actomyosin tension to enhance proliferation and generate an
EMT profile (136).

Interestingly, hypoxia also affects the ability of tumor
cells to produce collagen-modifying enzymes [reviewed in
(137)]. Hypoxia-mediated upregulation of collagen prolyl 4-
hydroxylases (P4H) in breast cancer cells has been found to be
an important contributor to cancer cell invasion and metastasis
(138). Another collagen-modifying enzyme, procollagen-lysine
2-oxyglutarate 5-dioxygenase 2 (PLOD2), was implicated in
fibrillar collagen formation by breast cancer cells and as a result
enhanced breast cancer cell metastasis to lymph nodes and
lung (139).

Another class of ECM-modifying enzymes produced by
cancer cells are matrix metalloproteinases. It has been observed
that hypoxia-induced upregulation of MMP2 and MMP9 in
breast and colon cancer cells contributed to tumor cell invasion
(140, 141) and a membrane-bound form of MMP—MT1-MMP
(MMP-14) is also induced via hypoxia in breast and renal
carcinoma cells (141). MMP14 is required for multicellular
invasion of breast cancer cells (142) and is key to breakdown
of the basement membrane prior to invasion (143). Induction of
an EMT program in breast cancer cells causes MMP production,
and increased expression of MMP3, MMP10, and MMP13 was
observed upon TGF-β stimulation of human breast cancer cell
lines. Upon induction of EMT via hydrogen peroxide treatment
in murine mammary epithelial cells, production of MMP2,
MMP12, and MMP13 was observed (144).

In another example, enforced activation of Rho kinase
signaling in pancreatic ductal adenocarcinomas (PDAC) in mice
caused increased production of Mmp10 and Mmp13, which
were released in micro-vesicles. This enabled efficient collagen
degradation within close vicinity of the cancer cells and as a
result enhanced PDAC cell proliferation and collective invasion
(145). These observations add to emerging evidence that tumor
epithelial cells release micro-vesicles that induce extracellular
matrix remodeling (146–148).

Actin-rich membrane structures such as focal adhesions and
invadopodia have also been implicated in ECM remodeling
by cancer cells. These structures contain an assembly of
scaffolding proteins (WASP, N-WASP, and VASP) paired with
actin-remodeling proteins (such as cortactin and gelsolin).
These structures are able to incorporate integrin-mediated

signaling and recruit Rho GTPases, myosins, Src kinases, and
dynamin (149). Focal adhesions and invadopodia are essential
for cell migratory behavior in vitro and for actomyosin-based
contractility (150).

Focal adhesions are known to integrate multiple signaling
inputs and transduce them across the cell (151). However, a
recent study showed that cancer cells are also able to degrade
the ECM at focal adhesion sites via recruitment of MMP14
(152). An important characteristic of migrating cancer cells
is the formation of actin-rich membrane extensions termed
invadopodia. In cancer cells, mature invadopodia are enriched in
MMP2, MMP9, and MMP14. It is important to note that MMP2
and 9 are particularly essential for type IV collagen remodeling
and subsequent breaching of the basement membrane (153).
Invadopodia are also important for the extravasation of
squamous carcinoma, breast cancer, and bladder cancer cells
as well as melanoma cells (154). Whilst in vitro studies have
shown that invadopodia formation is important for basement
membrane penetration, conclusive in vivo evidence is lacking
regarding the physiological roles of invadopodia.

In this section and summarized in Table 1, we have provided
snapshots of the biology of the many cell types and discussed
what is known about how they influence tumor cell plasticity in
the context of ECM, to regulate EMT and stemness. In Section
Molecular Regulators of the ECM That Influence Cancer Cell
Plasticity below, we will discuss the molecular regulators that
are employed across these various cell types to carry out cellular
processes and promote tumor progression.

MOLECULAR REGULATORS OF THE ECM
THAT INFLUENCE CANCER CELL
PLASTICITY

The microenvironment is precisely regulated by several
molecular players that have evolved to return this system
to its steady state in the shortest possible time following
perturbation, while also permitting it to adapt quickly to changed
circumstances such as injury or disease. This ability to quickly
adapt to circumstances and resilience under injury can be
co-opted by disease states such as cancer and accounts for a
significant component of the plasticity exhibited by cancer
cells. Changes in the mechanical and biochemical properties
of the ECM have been linked to cancer cell plasticity that
promotes increased invasiveness and metastatic potential (159).
Furthermore, tumor cells that have undergone EMT, TAMs,
TANs, and CAFs are all capable of producing ECM components
and degrading and remodeling the ECM to facilitate tumor cell
plasticity and disease progression as we have discussed above.
Below, we discuss some of the molecular players that mediate
ECM production and re-modeling by these cell types, to promote
tumor progression and cancer cell plasticity.

Tumor and stromal cells employ several signaling pathways
that regulate the biochemical and biomechanical interactions
between the parenchyma and the microenvironment to establish,
remodel and maintain the ECM. Whereas normal epithelial
cells produce only small amounts of ECM, fibroblasts, tumor
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TABLE 1 | Cellular regulators of the ECM and cancer cell plasticity.

Cell type ECM changes Influence on cancer cells and their plasticity References

Cancer associated

fibroblasts (CAFs)

Collagen production, fiber alignment and increased

ECM stiffness

Growth and motility, invasion, angiogenesis, increased

metastatic potency

(26, 29, 41, 43, 155)

Establishing actomyosin tracks Migration, invasion (44, 156)

MMP-1 secretion Motility, invasiveness (157)

MMP-2 and MMP-9 secretion EMT (33)

Tenascin C production Invasiveness (42)

Periostin production Stem cell niche maintenance (36)

Production of collagens, fibronectin, osteopontin and

periostin leading to desmoplasia

Proliferation (64, 65)

Tumor associated

macrophages (TAMs)

Production of MMPs (1, 9, 12 and 14), serine

proteases, cathepsins (B, S, C, L, Z), lysosomal

enzymes and ADAMs

Invasion (64, 66, 158)

Secretion of ECM remodeling enzymes and liberation

of ECM-bound growth factors

Proliferation, motility (64, 68)

Tumor associated

neutrophils (TANs)

Secretion of MMP9 Proliferation, invasiveness, angiogenesis,

extravasation, metastasis

(82, 83)

Elastase production EMT (84)

NETosis, upregulation of MMP9, cathepsin G and

neutrophil elastase

Proliferation, migration and angiogenesis (91)

Establishment of collagen tracks Invasion (87)

Cancer associated

adipocytes (CAAs)

Secretion of MMP9 and osteopontin proliferation, motility (109)

Production and processing of collagen VI Survival, growth, angiogenesis, EMT (110, 111)

Secretion of versican Invasion, progression (112)

Cancer cells (CSs) Secretion of LOX that crosslinks collagen and elastin,

increasing ECM stiffness

Proliferation, survival, invasion (132, 133)

Secretion of ECM-modifying enzymes: collagen prolyl

4-hydroxylases (P4H), procollagen-lysine

2-oxyglutarate 5-dioxygenase 2 (PLOD2)

Invasion, metastasis (138, 139)

MMP2 and MMP9, Mmp10 and Mmp13, Mmp14

secretion and expression leading to collagen

remodeling

Invasion, proliferation, cell migration, collective invasion (140, 141, 145)

cells, and certain immune cells like macrophages have the
capacity to produce vast quantities of the proteins that form
this meshwork scaffold and are largely responsible for its
production and maintenance. Nevertheless, they do not perform
this task independently, but are regulated by biochemical and
biomechanical cues from the parenchyma.

Established molecular pathways that regulate ECM properties
include TGF-β, CTGF, andWnt signaling axes and the mediators
of the YAP signaling system, which are discussed here.

TGF-β Signaling
TGF-β family members are multifunctional cytokines with
roles in wound healing, tissue repair, and cancer, and regulate
a signaling cascade largely involved in the transcriptional
regulation of genes that control EMT and stemness (160).
Activation of this signaling cascade is initiated by the binding of
a TGF-β ligand to a Type II receptor serine/threonine kinase on
the cell surface, resulting in recruitment of the type I receptor
to the complex. The Type II receptor trans-phosphorylates the

Type I receptor at serine and threonine residues in the highly
conserved juxta-membrane GS domain, and the phosphorylated
Type I receptor propagates signaling by phosphorylating the
SMAD signal transducer proteins. SMAD proteins are latent
transcription factors and once phosphorylated can translocate
into the nucleus and regulate transcription of target genes
in cooperation with nuclear cofactors and the transcription
machinery (161).

The numerous TGF-β superfamily of ligands (at least 42
in humans, 9 in fly, and 6 in worm) comprise two major
subfamilies based on structure and function. These are the
TGF-β/Activin/Nodal subfamily and the bone morphogenetic
protein/growth and differentiation factor/Müllerian inhibiting
substance subfamily (BMP/GDF/MIS) (162). While each of these
cytokines can elicit a different set of responses via the TGF-β
signaling pathway underlying the highly pleiotropic nature of
this pathway, they share several common features of sequence,
structure and function, namely, six conserved cysteine residues
which generate a cysteine knot structure via three disulfide
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TABLE 2 | Molecular regulators of the ECM and cancer cell plasticity.

Pathway Effects on the ECM Plasticity-dependent cellular processes

influenced

References

TGF-β Upregulation of collagen, lysil oxydase expression in

cancer cells and stiffening of ECM

Motility and proliferation (172, 173)

Upregulation of tenascin C in CAFs Invasiveness (42)

Rho/ROCK Remodeling of focal adhesions Cell migration and adhesion (214)

Activation in tumor epithelial cells induces production of

collagen, fibronectin, tenascin C, periostin by fibroblasts,

increases ECM stiffness

Tumor progression, enhanced wound healing (20, 23)

Notch Indirect - influencing ECM sensing by integrin;

maintenance of stemness

Normal stem cell maintenance; acquisition of CSC

phenotype

(222, 223)

FGF Influences hedgehog-induced ECM production by CAFs;

cooperates with TGF-β in EMT

Acquisition of stem cell phenotype; EMT (37, 224)

HGF Mediates fibroblast-tumor cell communication; indirectly

facilitates ECM degradation

EMT (225)

bonds (163) and the ability to act only in the dimerized form.
Furthermore, there are 7 type I and 5 type II receptor Ser/Thr
kinases in humans. Both receptor types have an N-terminal
ligand-binding domain, a transmembrane domain and a C-
terminal Ser/Thr kinase domain. Type I (but not type II)
receptors also contain a characteristic SGSGSG sequence, the
“GS domain,” which is phosphorylated by the Type II receptor.
SMAD proteins are divided into three functional classes: the
receptor-regulated SMADs (R-SMADs), the co-mediator SMAD
(Co-SMAD), and the inhibitory SMADs (I-SMADs). R-SMADs
are directly serine-phosphorylated at a conserved C-terminal
SSXS motif by the Type I receptor. R-SMADs comprise the
BMP-receptor-regulated SMADs (1, 5, and 8), and the TGF-
β/Activin receptor-regulated SMADs (2 and 3). The Co-SMAD,
SMAD4, can hetero-dimerize with phosphorylated R-SMADs
and is involved in mediating their translocation into the nucleus.
I-SMADs (6 and 7) negatively regulate signaling by competing
with R-SMADs for receptor and Co-SMAD binding. They are
also able to target receptors for degradation, thereby regulating
signal flux through this pathway. Therefore, the high level
of redundancy present within this signaling pathway has the
potential to greatly influence context-specific outcomes mediated
by the activation of diverse and distinct transcriptional profiles.

TGF-β is secreted by many cell types, including those
abundant within the tumor microenvironment such as activated
macrophages (164), endothelial cells (165), and fibroblasts (166).
Tumor cells also secrete TGF-β, which can elicit context-
dependent responses that suppress tumor growth at early stages
of the disease, but promote tumor progression at later stages
(167). Nevertheless, two key functions of TGF-β signaling in the
cancer microenvironment are regulation of immune evasion and
ECM remodeling. TGF-β signaling has been demonstrated to
regulate phenotypic plasticity of cancer cells arising in diverse
tissues including the skin (168), intestine (169), breast (170), and
lung (171).

TGF-β signaling controls the transcription of a suite
of genes, including those encoding ECM proteins such as
collagen, and ECM remodeling enzymes such as lysyl oxidase

(172, 173), via regulation of the transcription factor MYC.
This signaling pathway is therefore associated with increased
ECM stiffness, which induces proliferation and mesenchymal
behavior in resident tumor cells by promoting integrin
ligation and downstream signaling pathways. Interestingly, local
concentrations of TGF-β are enhanced and its spatial activity
regulated by its immobilization onto the ECM (174), which
results in the capacity to influence cancer cell plasticity at specific
regions of the tumor.

Given the high level of reciprocal crosstalk between TGF-β,
the ECM and cellular plasticity as detailed above, this signaling
pathway is well-established as a key target in cancer therapy.
However, the pleiotropic and context-dependent functions of the
pathway have hampered the development of tractable agents that
reliably target TGF-β-regulated tumor cell plasticity.

CTGF Signaling
The Connective Tissue Growth Factor (CTGF, sometimes
referred to as CCN2) is a member of the CCN family of non-
structural ECM proteins and is therefore most appropriately
termed a matricellular protein. It can interact with a large
array of signaling molecules, including bone morphogenetic
proteins (BMP), TGF-β, VEGF, IGF, and Wnt ligands as
well as directly bind trans-membrane receptors such as
integrins, Notch receptors, TGF-β receptors, and lipoprotein
receptor-related proteins (LRPs) to elicit the corresponding
signaling cascades (175, 176). In cancer, a key function
of CTGF is to mediate fibronectin production by stromal
cells downstream of TGF-β signaling, which transcriptionally
regulates CTGF. Fibronectin in turn determines the biosynthesis
and fibrillogenesis of collagen 1, the main component of the
cancer ECM.

CTGF has been shown to regulate the MET of head and
neck cancer cells (177) and drug resistance in glioblastoma
(178), both via a mechanism involving the re-expression of
pluripotency genes. Furthermore, CTGF inhibition reduces
the growth of metastatic melanoma in an animal model
(179). These data suggest that CTGF plays a role in the
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metastatic colonization by cancers of distal sites by enhancing
pluripotency and MET. It is not clear whether these two
functions are linked and to what extent they are also
mediated by crosstalk with other, closely regulated, CCN family
proteins.

Wnt/β-Catenin Signaling
Wnt ligands are a large family of secreted glycoproteins that can
activate three distinct intracellular signaling pathways—
the β-catenin pathway (also known as the canonical
Wnt signaling pathway), the planar cell polarity pathway
(involving Jun N-terminal kinase [JNK]-mediated cytoskeleton
rearrangements) and theWnt/Ca2+ pathway, by interacting with
cell surface bound Frizzled receptors. Critical to Wnt signaling
are low density lipoprotein (LDL) receptor-related proteins,
which act as co-receptors of the Wnt signal (180). Transduction
of the signal via Frizzled is mediated by the intracellular protein
Disheveled (181), which acts to inhibit the kinase GSK3B
through its interaction with Axin (182–184).

GSK3B exists in a large multi-protein complex containing
Axin, β-catenin, and the adenomatous polyposis coli (APC)
protein (185–188). In the absence of Wnt ligands, β-catenin
is maintained in the phosphorylated state at its amino-
terminal Ser/Thr residues by GSK3B. Phosphorylated β-catenin
is ubiquitinated by β-TRCP and thereby targeted for degradation
via the proteasome pathway (189, 190). Wnt ligand binding
to Frizzled receptors causes GSK3B inactivation by Disheveled,
resulting in the accumulation of non-phosphorylated β-catenin,
which cannot be ubiquitinated and is therefore protected
from proteasome mediated degradation. β-catenin associates
with the T cell factor/lymphocyte enhancer factor (Tcf/LEF)
family of transcription factors and functions as a co-activator
of transcription upon translocation of the β-catenin/Tcf/LEF
complex to the nucleus (191). In the absence of Wnt ligand,
non-phosphorylated β-catenin levels are low and Tcf proteins
are bound to various inhibitory molecules (including Groucho
proteins, CtBP, and in Drosophila, CBP), preventing the
transcription of target genes (192–195).

The role of Wnt/β-catenin signaling in EMT has been well
known for some time. Wnt signaling was first demonstrated
to stabilize and thereby control the turnover of the EMT
regulator Snail1 (196) and increase the expression of two
further EMT regulators, Slug (197) and Twist (198). In vivo
evidence for the role of Wnt signaling in regulating EMT
and metastasis has been provided in breast cancer (199) and
pancreatic cancer (200). It is also becoming clear that that non-
canonical Wnt signaling initiated by Wnt5b regulates metastasis
via EMT (201).

The Wnt signaling pathway has also been demonstrated
as a regulator of stemness, both in stem cell maintenance and
renewal, for example in the intestine (202), as well as in stem
cell differentiation and fate determination via transcriptional
targets such as Sox9 (203). This can be brought about by
the activation of distinct subsets of transcriptional targets
and by signaling crosstalk between this signaling pathway
and others. For instance, crosstalk between prostaglandin
signaling and Wnt signaling is required for the developmental

specification of stem cell populations in the hematopoietic
system as well as in the liver and other organs (204),
and also in the de-differentiation process that gives rise
to stem-like cells in cancers such as cutaneous squamous
cell carcinoma (20). Taken together, these observations
firmly place the Wnt/β-catenin signaling pathway as a key
regulator of cell plasticity in normal development, but also in
cancer.

Functional interactions between the Wnt signaling pathway
and the extracellular matrix are being uncovered, most
prominently in normal development of bone, where it is
emerging that mechanotransduction signaling initiated by ECM
stiffness regulates Wnt secretion (205). These observations have
obvious implications for the cancer context in which enhanced
mechanotransduction is a well-established pathology.

Rho/ROCK Signaling
The 22-member RHO family of small GTPases are named
for their homology to the Ras proto-oncogenes. Of these,
the best characterized are RHOA, RAC1, and CDC42, which
have distinct roles in regulating actin polymerization and
turnover, and myosin contractility (206). These small GTPases
are co-opted by many signaling pathways to modify the
actomyosin cytoskeleton and thereby underpin most cellular
processes. ROCK kinases 1 and 2 (207) are key effectors
of signaling through RHOA and are activated by direct
binding of GTP-bound active RHOA (208–210). Active ROCK
kinases signal via a collection of context-dependent downstream
pathways that are mainly involved in regulation of actomyosin
cytoskeleton properties including actin polymerization and
cytoskeletal contractility. Key mediators of ROCK signaling
are the LIM kinases, whose major role is to phosphorylate
and inhibit the actin severing Cofilins, thereby stabilizing
the actin cytoskeleton and promoting invasiveness through
generation of a tumor-permissive network (211). LIMK2
has also been shown to integrate RHO signaling and p53
functions, thereby mediating cell survival functions in cancer
cells, with implications for tumor plasticity and progression
(212). Signaling downstream of ROCK also regulates myosin
contractility via ROCK-mediated phosphorylation and activation
of the regulatory myosin light chain MLC2, as well as
phosphorylation and inactivation of the myosin binding
subunit of the myosin phosphatase MYPT1 (213). These two
signaling arms, resulting in actin cytoskeleton stabilization
and myosin contractility, therefore have a major role in
regulating intracellular tension and thereby integrate several
mechanotransduction pathways within the cell, including the
Wnt and YAP pathways.

A key role for RHO-ROCK signaling has been delineated
in the tissue and tumor microenvironments, to complement its
well-established function in cell migration and adhesion (214).
The pathway accomplishes this via the increased production
of ECM components to balance intracellular tension, thereby
maintaining mechano-reciprocity (20). This recent appreciation
that ROCK activity regulates ECM production and remodeling
[reviewed in (135)] highlighted the possibility of novel negative
regulators of this pathway that may be of therapeutic utility.
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Accordingly, 14-3-3ζ, which belongs to the 14-3-3 family
of molecular adaptors and chaperones, has been shown to
bind to and promote the activity of the myosin phosphatase
targeting subunit Mypt1, thereby increasing signaling flux
through the RHO-ROCK pathway (23). Interestingly, a family of
sphingosine mimetics, which had been previously demonstrated
to inhibit 14-3-3 by disrupting dimer formation (215), accelerates
the production of ECM components required to normalize
the cutaneous microenvironment thereby hastening wound
healing. However, this mechanism is hijacked by cancers
such as cutaneous squamous cell carcinoma, where 14-3-3ζ
is downregulated frequently and is associated with tumor
progression (23). These observations suggest that as in the
case of M2 polarized “wound healing type” macrophages,
cancers can exploit mechanisms that have evolved to facilitate
wound healing, to assist with tumor progression. Further work
is required to determine whether this phenomenon may be
exploited in cancer therapy or indeed whether other mechanisms
mediating ECM re-establishment may be similarly engaged
to target the tumor microenvironment as a novel therapy
approach.

Hippo Signaling
The still rather enigmatic Salvador/Warts/Hippo pathway is a
highly conserved signaling pathway and acts as a controller
of organ size in animals by regulating the balance between
cell proliferation and death (216). The pathway has evolved to
control the activity of the transcriptional regulators YAP and
its paralog TAZ, which promote proliferation by associating
with the TEAD transcription factors (217). In its activated
state, the pathway consists of a Ser/Thr kinase cascade
initiated by the transmembrane cadherin FAT that results in
the phosphorylation of YAP/TAZ to create a binding site
for 14-3-3 proteins. Upon binding of 14-3-3, YAP/TAZ is
sequestered in the cytoplasm and is therefore not available
in the nucleus to induce the transcription of target genes.
The YAP/TAZ inhibitory kinase cascade is regulated by a
variety of different inputs, including hormone and growth
factor signaling. However, YAP has also been reported to be
regulated by RHO GTPase activity mediated by ROCK, in
a Hippo pathway-independent mechanism (218) and thereby
links mechanotransduction to the transcription of genes that
promote cell proliferation (219). More recently, it has been
revealed that TEAD2 regulates the expression of EMT genes
by directly controlling the sub-cellular localization of YAP/TAZ
(220). As such, it is a key mediator of cancer cell plasticity and
neoplastic progression downstream of changes in ECM stiffness.
The Hippo signaling pathway has also demonstrated to engage in
crosstalk with the Wnt/β-catenin signaling pathway and Notch
pathway in the context of hepatocellular cancers (221), suggesting
that the three mechanotransduction pathways are capable of
cooperating to promote tumor progression via the regulation of
plasticity, suggesting that Hippo signaling could contribute to the
mechano-reciprocal feed forward loop that we have previously
proposed (135).

These and other signaling molecules that regulate ECM
structure and function to influence cancer cell plasticity both
directly and indirectly are summarized in Table 2.

IMPLICATIONS FOR CANCER THERAPY

As we have discussed above, cancer cell plasticity permits tumors

to adopt shifting identities that allow them to adapt to changing
environments, modify their microenvironment to suit their

needs and evade the immune system. In this effort, cancers
can co-opt and deftly commandeer many of the body’s own

normal homeostatic processes such as wound healing, immune

surveillance and maintenance of the stem cell niche. While this
poses a significant challenge to cancer therapy, it also provides

us with an opportunity to target the aberrant microenvironment
that has been built around the tumor. A key vulnerability of
tumors exhibiting plasticity is their need to subvert the activities
of genetically normal stromal cells for their own purposes by
biochemical and biomechanical means. This provides us with
an opportunity to block signals traveling between cancers and
their stroma pharmacologically, using antibody therapy or by
modifying the mechanical environment of the tumors; or indeed
a combination of all three. Coupled with precision therapies
tailored to the tumor genotype, a multi-pronged approach
targeting the tumor as well as its microenvironment has the
potential to revolutionize cancer therapy.

As a note of caution however, it is important to appreciate
that plasticity may also provide tumors with the means to
evade such combination therapies. It is therefore imperative
that the core set of principles driving cancer cell plasticity be
soundly researched and fully appreciated. Given the plethora
of autochthonous animal models of human cancers and more
recently the patient-derived xenograft models being propagated
in immunologically humanized animals, we believe the tools are
being rapidly assembled to make this a reality.
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