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As the most diverse vertebrate group and a major component of a growing

global aquaculture industry, teleosts continue to attract significant scientific

attention. The growth in global aquaculture, driven by declines in wild

stocks, has provided additional empirical demand, and thus opportunities,

to explore teleost diversity. Among key developments is the recent growth

in microbiome exploration, facilitated by advances in high-throughput

sequencing technologies. Here, we consider studies on teleost gut micro-

biomes in the context of sustainable aquaculture, which we have discussed

in four themes: diet, immunity, artificial selection and closed-loop systems.

We demonstrate the influence aquaculture has had on gut microbiome

research, while also providing a road map for the main deterministic forces

that influence the gut microbiome, with topical applications to aquaculture.

Functional significance is considered within an aquaculture context with

reference to impacts on nutrition and immunity. Finally, we identify key

knowledge gaps, both methodological and conceptual, and propose pro-

mising applications of gut microbiome manipulation to aquaculture, and

future priorities in microbiome research. These include insect-based feeds,

vaccination, mechanism of pro- and prebiotics, artificial selection on the holo-

genome, in-water bacteriophages in recirculating aquaculture systems (RAS),

physiochemical properties of water and dysbiosis as a biomarker.

1. Introduction
Since its conception in the 1980s describing soil ecology [1], the termmicrobiome

has evolved into an intensely studied area of research. In recent decades, this area

has begun expanding from an anthropocentric and medically dominated field,

into a taxonomically broad field, examining research questions in non-model

species, from trees [2] to frogs [3], and increasingly, fish. The diversification in

microbiome studies has been driven by increased access to next generation

sequencing (NGS), a tool that is not reliant upon culture-based techniques,

which often require previous knowledge of target microbes.

Currently, gut bacterial communities have been assessed in over 145 species of

teleosts from 111 genera, representing a diverse range of physiology and ecology

(figure 1a), often with similarities in bacterial phyla composition between fish

species, dominated by Bacteroidetes and Firmicutes [5,6]. Non-model taxa from

an array of aquatic ecosystems have had their gut microbiomes sequenced

using NGS, with studies extending beyond species identification, into hypothesis

testing which was once only feasible in model systems. Examples of studies on

non-model teleost gut microbiomes range from those demonstrating rapid gut

microbiome restructuring after feeding in clownfish (Premnas biaculeatus) [7] to

the effect of differing environmental conditions, such as dissolved oxygen con-

tent, on the gut microbial diversity of blind cave fish (Astyanax mexicanus) [8].
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Interest in the gut microbiome of fish has accelerated for many

reasons, as not only do teleosts represent the most diverse

vertebrate group [9], they are also of significant economic

importance, including in aquaculture [10]. Aquaculture now

provides over 45% of fish-based food products globally [11],

and influence of the aquaculture industry on teleost gut micro-

biome research is demonstrated by the research questions

tackled, with a clear bias towards salmonids (genera:

Oncorhynchus and Salmo), carp (genera: Hypophthalmichthys,

Carassius, Cyprinus and Ctenopharyngodon) and tilapia (genus:

Oreochromis) (figure 2).

Rapid growth of the aquaculture industry has led to

mounting pressure to make it more sustainable [13], and here

we discuss four key components relevant to its sustainability

in the context of the teleost gut microbiome: diet, immunity,

artificial selection and closed-loop systems. We highlight

some key deterministic factors important to aquaculture,

although as shown in figure 3, there are numerous interacting

ecological processes. More in-depth reviews focusing on these

specific interactions are available, for example, interactions

between the gut microbiome and the immune system [14],

energy homeostasis [15] and physiology [16]. Understanding

and manipulating microbial–host–environmental interactions

(figure 3a) and associated functional capacity in these areas

could contribute substantially towards achieving a more

sustainable aquaculture industry. We identify potential for

future research, both methodological and conceptual. Other

microbiomes are known to impact host function, in particular,

the skin microbiome and its relationship to immunity [17],

however, due to their differing ecology [18] and aquaculture

applications [19], the gut microbiome will remain our

focus here.

2. Diet
The gut microbiome has long been linked with diet, yielding

insights into the commensal relationship between certain

microbes and host. It has been shown that the teleost gutmicro-

biome produces a range of enzymes (carbohydrases, cellulases,

phosphatases, esterases, lipases and proteases) which con-

tribute to digestion [10,20]. More intimate relationships also

exist, for example, anaerobic bacteria in the teleost gut have a

role in supplying the host with volatile fatty acids [21], an

end product of anaerobic fermentation that provides energy

for intestinal epithelial cells [22]. Gut microbes also synthesize

vitamins and amino acids in the gut of aquatic vertebrates

[23,24]. For example, the amount of vitamin B12 positively

correlated with the abundance of anaerobic bacteria belonging

to the genera Bacteroides and Clostridium, in Nile tilapia

(Oreochromis niloticus) [25]. Here, we discuss this host–microbe

relationship in the context of contemporary aquaculture, with a

focus on two timely issues: fishmeal and starvation.

(a) Fishmeal
Fishmeal is an efficient energy source containing high-quality

protein, as well as highly digestible essential amino and fatty

acids [26], which is included in feed for a range of teleost

species. Fish used in fishmeal production is, however,
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Figure 1. (a) Number of studies on the gut microbiome using NGS broken down by the genus of fish that the study was conducted on, as well as the environment
those fish same from. Asterisk represents salmonid, carp and talapia. (b) The number of studies that assessed the water microbial communities. Gut microbiome
studies were compiled using Web of Science [4] and only include studies that implemented NGS. It is acknowledged that total microbiome research extends further
than this. Further information on search terms and filtering can be found in the electronic supplementary material. (Online version in colour.)
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predominantly sourced from capture fisheries, putting

pressure on already overfished stocks [13]. Despite a global

decrease in fishmeal production, from an average of 6.0

million tonnes between 2001 and 2005 to 4.9 million tonnes

between 2006 and 2010 [27], and growth in plant-based sub-

stitutes (e.g. wheat gluten, soya bean protein and pea

protein), some aquaculture species still require a proportion

of fish-sourced amino acids and proteins [28].

As dietary changes can alter the fish gut microbiome [29],

there has been a considerable rise in the number of studies

investigating the influence of alternative plant-protein sources

on host–microbe interactions. Plant-protein sources have been

shown to disturb the gut microbiota of some fish, with the pro-

duction of antinutritional factors (factors that reduce the

availability of nutrients) and antigens, impeding host resilience

to stress [30], metabolism [31] and immune functioning [32].

Fish fed plant-protein-based diets can exhibit alterations in

their intestinal morphology including disruption to the

lamina propria and mucosal folds [33], which may modify

attachment sites for commensal bacteria [34], and can therefore

impact microbial composition [32,35].

Insect meal is increasingly used in aquafeed as a protein

source with a high nutritional value [36], and several studies

have demonstrated its potential use in manipulating the gut

microbiome in fish [37,38]. As insects are chitin rich, these

diets have been associated with prebiotic effects, through

increased representation of beneficial commensal bacteria

such as Pseudomonas sp. and Lactobacillus sp., which in

turn improves performance and health in some fish [37].

Despite this, however, the beneficial effects of chitin are

species specific, with Atlantic cod (Gadus morhua) and several

cyprinid species demonstrating increased growth rates on

diets with varying levels of chitin, whereas tilapia hybrids

(O. niloticus ×O. aureus) and rainbow trout (Oncorhynchus

mykiss) both display decreased growth rates [39]. Chitin can

therefore not be described as a probiotic for all species. The

influence of insect meal on microbial-mediated functions also

remains underexplored, with little known about the extent

to which species-specific responses to a chitin-rich diet are

microbially mediated [40], offering scope for future research.

(b) Starvation
Starvation is common in the production of valuable species

such as salmon [41], sea bream [42], halibut [43] and cod

[44], prior to handling, transportation and harvest, but is also

used as amethod to improve fillet quality. However, starvation

is likely to have a substantial impact on host–microbe inter-

actions (figure 3b). Gut microbial communities of the Asian

seabass (Lates calcarifer), for example, shifted markedly in

response to an 8-day starvation period, causing enrichment

of the phylum Bacteroidetes, but a reduction of Betaproteo-

bacteria, resulting in transcriptional changes in both host and

microbial genes [45]. Perturbation to the gut microbiome

could lead to the opening of niches for other commensal or

even pathogenic bacteria [46], especially if this is combined

with the compromised immune system of a stressed host [47]

(figure 3d ). Even if all fish are terminated shortly after star-

vation, gut microbial community changes before termination

could cause long-term impacts to the microbial composition

of water and biofilters in closed recirculating aquaculture sys-

tems (RAS). RAS systems will be discussed in greater detail

later in this review.

3. Immunity
Gutmicrobial communities have strong links to immunity [48],

which is pertinent in fish as they are in constant contact with

water, a source of pathogenic and opportunistic commensal

microbes [49]. In addition to this, fish cultured intensively are

often stocked at high densities, allowing for easier transmission

of microbes. Therefore, a microbially diverse gut microbiome

in aquaculture is important to prevent unfavourable microbial

colonization [50], and although the mechanisms are not fully
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understood, some key processes have been identified. For

example, Bacillus and Lactobacillus, two common probiotic

genera of bacteria used in aquaculture, are able to stimulate

expression of inflammatory cytokines in the fish gut [51],

increase the number of mucus layer producing goblet cells

[52] and increase phagocytic activity [53]. Furthermore, com-

parison in gene expression between gnotobiotic zebrafish

(Danio rerio) and conventionally reared zebrafish has shown

bacteria induced expression of myeloperoxidase, an enzyme

that allows neutrophil granulocytes to carry out antimicrobial

activity [54]. Colonizing microbes can also modulate host

gene expression to create favourable gut environments, thereby

constraining invasion by pathogens [23], while also promoting

expression of proinflammatory and antiviral mediators genes,

leading to higher viral resistance [55]. Reducing viral and bac-

terial pathogens, such as Vibrio sp. and Aeromonas sp., is

important for fish health in aquaculture, and will be discussed

further in the context of closed-loop systems later in the review.

The interaction between the gut microbiome and the

immune system is bilateral, for example, secretory immuno-

globulins in fish recognize and coat intestinal bacteria to

prevent them from invading the gut epithelium [56]. Similarly,

in wild three-spined stickleback (Gasterosteus aculeatus), a

causal chain (diet→ immunity→microbiome)was discovered,

demonstrating the impact of diet on fish immunity and thus

the microbial composition of the gut [57]. Understand-

ing microbial–host–environmental interactions like this are

crucial for aquaculture, where, as previously discussed, diet

is often manipulated.

(a) Antibiotics
As most antibiotics used in aquaculture display broad-

spectrum activity, they can affect both pathogens and

non-target commensal microbes [58]. Oxytetracycline is one of

the most widely used veterinary antibiotics, with 1500 metric

tonnes applied between 2000 and 2008 to salmon aquaculture

in Chile [59]. However, oxytetracycline was seen to reduce

gut microbial diversity in Atlantic salmon (Salmo salar), while

enriching possible opportunistic pathogens belonging to the

genus Aeromonas, and leading to a high prevalence of multiple

tetracycline resistance-encoding bacterial genes [60]. Long-term

exposure to oxytetracycline has also been reported to negatively

affect growth, immunity and nutrient digestion/metabolism in

Nile tilapia (O. niloticus) through antibiotic-induced disruption

to the microbiota [61], causing considerable changes in the

representation of Bacteroidetes and Firmicutes.

Vaccination has become a widespread prophylactic

measure applied in aquaculture to improve immune function-

ing and disease resilience in farmed fish [62]. One study

attempted to identify potential alterations in the microbiota

structure and localized immune responses caused by a novel

recombinant vaccine against Aeromonas hydrophila in grass

carp (Ctenopharyngodon idella) [63]. Results from their study

suggest that oral vaccines can target Aeromonas sp. through

activation of innate and adaptive immune defences within

the intestine without causing large disturbances in non-target

microbiota populations. Given the importance of the immune

response in regulating the gut microbiome [64], only a small

number of studies have investigated the influence of vaccines

on the resident microbiota composition and function in fish,

providing grounds for future study.

(b) Pro- and prebiotic supplementation
In view of the challenges associated with antibiotics, studies

have examined the impact of alternative, prophylacticmeasures

such as pro- and prebiotics (figure 4a). As literature on the types

of pro- and prebiotics used in aquaculture have been reviewed

elsewhere [65,66], as well as their effectiveness [67,68], we focus

here on the ability of these compounds to induce changes

in host physiology and function through shifts in the gut
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microbiome. As has already been discussed, Bacillus sp.

and Lactobacillus sp. have a beneficial effect on immunity

and are suggested to provide an alternative approach to

controlling disease in aquaculture. Targeted microbiota

manipulation using these samebacteria have also been reported

to exert beneficial effects on fish growth through (i) alterations

in gut morphology [69], leading to improved digestion

and metabolism [70] and (ii) microbial-mediated regulation of

the genetic components involved in growth and appetite

control [71,72]. Recently, the establishment of Lactobacillus

probiotic bacteriawithin the gut microbiotawas also associated

with improved learning/memory capacity and changes in

shoaling of zebrafish [73,74], indicating a potential gut–brain

interaction pathway similar to what is described in higher

vertebrates [75].

Research into themodulation of gutmicrobial communities

using prebiotic compounds has expanded also. Certain dietary

components have been reported to induce changes in gut

morphology within the fish host, including vacuolation of

enterocytes [76] and enhancing mucosal barrier integrity [77].

Improved mucosal protection and disease resilience are

thought to be driven by microbes and associated microbial

metabolites. Several prebiotics have been reported to manip-

ulate the resident microbiota community of a host in favour

of Firmicutes and short-chain fatty acid producing commu-

nities [78]. Mechanistic pathways remain elusive, however,

with additional research required.

4. Artificial selection
Within aquaculture, selection has been applied routinely to

increase production by enhancing desirable traits such as

growth and disease resilience [79,80]. Recent evidence suggests,

however, that host genetics plays a fundamental role in deter-

mining the gut microbiota in fish [81]. The ‘hologenome’

concept proposes that the host organism, along with their com-

mensal microbial community, form one unit of selection [82].

Host physiology, for example, is determined in part by the

host’s genome and has the ability to shift gut microbiome com-

position, as demonstrated in zebrafish, whereby host neural

activity and subsequent gut motility is able to destabilize

microbial communities [46] (figure 3c). Although not described

in teleosts, the reverse has also been seen, whereby microbial

communities are able to regulate the host’s gut through:

(i) serotonin signalling [83,84], (ii) macrophages and enteric

neurons interactions [85], (iii) metabolism of bile salts [86] and

possibly, (iv) metabolism of short-chain fatty acids such as

butyrate [87]. The host–microbe relationship means that

traits selected during breeding programmes may be traits

from the hologenome. Pyrosequencing studies have also

shown significant changes in the microbial community compo-

sition of genetically improved fish comparedwith domesticated

individuals [88,89]. Artificial selection has also been demon-

strated on single species of bacteria, with Aeromonas veronii

selected to exhibit greater colonization success in gnotobiotic

zebrafish [90]. Environmental filtering of the reservoir of

bacteria surrounding the fish generates the potential for

improving colonization success of commensal bacteria.

Currently, bacterial communities selected by breeding pro-

grammes could be neutral, sympathetic or antagonistic to the

goals of artificial selection, and understanding this relationship

will be vital in manipulating the hologenome.

5. Closed aquaculture systems
Many environmental problems plague current aquaculture

practices. In addition to those already discussed, there are also

issues with parasite transmission to wild fish [91], interactions

between wild and escaped farmed fish [92], and release of

faeces and excess feed into the environment [93]. One way to

better control these problems is to remove aquaculture from

ecosystems and bring it into a land-based setting [94].

(a) Manipulating environmental microbiota
RAS and biofloc technology (BFT) are forms of aquaculture

which use microbial communities to minimize excess nutrients

and pathogens in rearing water (figure 4). In these systems,

microbial reconditioning of the rearing water is vital as fish

are stocked at high densities, resulting in elevated levels of

organic material, which can promote microbial growth [95].

Selection of competitive, slow-growing K-strategist bacteria

shifts the community from autotrophy to heterotrophy activity.

Such shifts allow for a microbial community which maintains

both water quality, through nutrient recycling, and inhibits

the growth of fast-growing, opportunistic r-strategists, which

include many bacterial pathogens such as Aeromonas sp.

[96,97]. RAS and BFT could therefore be combined with vacci-

nation against bacterial pathogens such as Aeromonas sp., as

previously discussed, to reduce infections. The selection of

K-strategist microbial communities differ between RAS and

BFT. In RAS; K-selection is achieved by passing rearing water

through heterotrophic biofilters [98], whereas in BFT, a high

carbon to nitrogen ratio within rearing water is conditioned

by the addition of carbohydrate sources, favouring hetero-

trophic K-strategist bacteria [99]. High-carbon conditions in

BFT systems also promote nitrogen uptake into microbial

biomass, which forms protein-rich bacterial ‘flocs’ that

supplement feed [100].

Manipulation ofmicrobes associatedwith live feed cultures

is critical to the production of fish larvae as live feeds often con-

tain opportunistic pathogens (figure 4a), resulting in stochastic

mortality [64]. While traditional approaches involve non-selec-

tive, temporary methods (i.e. physical/chemical disinfection

[101]), more recent efforts have shifted towards targeted

manipulation through probiotics, for example, the successful

use of Phenylobacterium sp., Gluconobacter sp. and Paracoccus

denitrificans in rotifer (Brachionus plicatilis) production [102].

Lytic bacteriophages have also proven somewhat successful

in reducing the prevalence of opportunistic pathogens, such

as Vibrio sp. [103–105]. Live feed also appears to play a critical

role in the delivery and establishment of colonizing gut micro-

biota in fish larvae upon first feeding [106]. Supplementation of

live feed cultures with beneficial microbes, such as the pre-

viously mentioned Lactobacillus spp. and Pediococcus sp., has

become common practice in hatcheries, with beneficial effects

on growth, mucosal immunity and stress tolerance of larvae

[17,107,108]. Bacteriophages and probiotics have also been

applied directly to tank water (figure 4b); probiotics such as

Bacillus spp. preventing fish mortality from Vibrio spp. infec-

tions [109] and Flavobacterium columnare-infecting phages

have been shown to persist in RAS for up to 21 days [110].

Far less is known about the application of probiotics directly

to tankwaterwhen comparedwith feed application [111]; how-

ever, and the use of bacteriophages is still in its infancy,

providing potential for future research.
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(b) Controlling environmental variables
Changes in abiotic conditions in the water column propagate

into the gut, as seen with dissolved oxygen concentration [8].

Such parameters are hard to controlwithin the natural environ-

ment, but closed-loop systems provide consistent abiotic

conditions, and allow for other variables, such as hologenome

(figure 4c), to be manipulated with greater ease. The effect

of many important physiochemical water properties (e.g.

nitrate, ammonia and phosphate) on the teleost gut micro-

biome has not been studied, however, let alone how these

properties interact [112]. Salinity is another important

physiochemical property for the gut microbiome in many

aquaculture species. When Atlantic salmon transition

from freshwater to saltwater, individuals can experience a

100-fold increase in gut bacteria, combined with a shift in

dominant microbial taxa [113]. Increasing salinity in RAS

systems can, however, negatively impact nitrate removal in bio-

reactors [114], highlighting the importance of understanding

interacting physiochemical properties.

(c) Dysbiosis as a stress biomarker
The use of closed-loop systems is a progression to amore inten-

sive method of aquaculture, mirroring the progression seen

in animal agriculture, and a crucial element to sustainable

intensification is welfare. It is possible to measure fish welfare

through physiological and behavioural indicators, with a

current focus on identifying stress. The microbiome has been

identified as another potential biomarker [64] due to its inter-

action with the host immune system, and its responsive

nature to stressors [115,116]. Therefore, identifying imbalances

in the gut microbiome, or dysbiosis, could be a useful pre-

dictor of stress-related syndromes, which could ultimately

lead to mortality. Using non-invasive faecal samples could

complement other non-invasive stress biomarkers, such as

water cortisol [117], allowing for the optimization of husban-

dry, alerting operators to chemical (e.g. poor water quality,

diet composition imbalance, accumulation of wastes), biologi-

cal (e.g. overcrowding, social dominance, pathogens), physical

(e.g. temperature, light, sounds, dissolved gases) or procedural

(e.g. handling, transportation, grading, disease treatment)

stressors [118]. More research is needed, however, in assessing

the reliability and accuracy of faecal microbiome sampling in

identifying stress.

6. Conclusion and future applications
The teleost gut microbiome has a clear role in the future of

aquaculture, and although research has come a long way in

recent decades, there are still many areas of gut microbiome

research that require further development. As highlighted in

figure 1b, there are still key elements lacking from many

studies, particularly those assessing metacommunity compo-

sition, with the lack of water samples being particularly

glaring. The ability to sample the environmental metacommu-

nity with ease is one of the strengths of using a teleost model.

Another methodological problem that will hinder comparabil-

ity, reproducibility and metanalysis of fish gut microbiome

datasets is the varying degree of sequencing platforms and

markers (figure 5). A solution to this problem would be to

focus on one marker, and one sequencing platform, with

many metabarcoding microbiome studies adopting the V3

and V4 regions, sequenced on Illumina platforms. It is noted,

however, that different markers and sequencing platforms

work better in some systems with no simple fit-all approach.

Therefore, tools that incorporate differences in taxonomic

n
o
. 
st

u
d
ie

s

60

40

marker

cpn60

V1-V2

V1-V3

V1-V9

V2-V3,V4,V6-7,V8,V9

V2-V3

V3

V3 (nested)

V4 (nested)

V3-V4

V4-V5

V6-V8

total DNA

whole 16S

V6

V3-V6

V4

20

0

sequencing

il
lu

m
in

a 
H

is
eq

il
lu

m
in

a 
N

es
tS

eq

p
h
y
lo

ch
ip

T
M

il
lu

m
in

a 
M

is
eq

io
n
 t

o
rr

en
t 

P
G

M

4
5
4
 p

y
ro

se
q
u
en

ci
n
g

Figure 5. Methodological approaches used in high-throughput sequencing of fish gut microbiomes, broken down by the type of sequencing platform and genetic
marker. Marker types are predominantly variable regions (V) within the 16S ribosomal RNA gene. Further information on search terms and filtering can be found in
the electronic supplementary material. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.

R.
Soc.

B
287:20200184

6



identification that arise through using differentmethodological

approaches will be vital in comparing datasets.

Current findings, as summarized here, show that the teleost

gutmicrobiomeplays an important role inaquaculture, however,

the literature is dominatedwith studies performedonmammals,

leading to limited data on functional capacity of fish gut micro-

biomes [64]. Furthermore, a knowledge gap exists between

ascertaining the compositionof themicrobiomeandunderstand-

ing its function, partly due to the complexity and variability in

the ecology of teleost gastrointestinal tracts [119] and unknown

bacterial taxa. More specifically, however, it has been caused by

the lack of synthesis between multiple cutting-edge molecular

techniques. Progression in teleost gut microbiome research will

depend on combining function (RNA sequencing), composition

(metabarcoding and metagenomics) and spatial distribution

(fluorescence in situ hybridization). Understanding host genetic

diversity (population genomics) and expression (RNA sequen-

cing) of that diversity, all while incorporating environmental

variation, will also be vital.

Finally, there are many areas in which synergies between

gut microbiomes and aquaculture can be made. These have

been highlighted through the review, but, in summary, include

a better understanding of the gut microbiome with respect to

insect-based feeds, vaccination, mechanism of pro- and prebio-

tics, artificial selection on the hologenome, in-water

bacteriophages in RAS/BFT, physiochemical properties of

water and dysbiosis as a biomarker.
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