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Abstract: Diabetes mellitus is a significant clinical and therapeutic problem because it can lead to
serious long-term complications. Its pathogenesis is not fully understood, but there are indications
that dysbiosis can play a role in the development of diabetes, or that it appears during the course
of the disease. Changes in microbiota composition are observed in both type 1 diabetes (T1D) and
type 2 diabetes (T2D) patients. These modifications are associated with pro-inflammation, increased
intestinal permeability, endotoxemia, impaired β-cell function and development of insulin resistance.
This review summarizes the role of the gut microbiota in healthy individuals and the changes in
bacterial composition that can be associated with T1D or T2D. It also presents new developments in
diabetes therapy based on influencing the gut microbiota as a promising method to alter the course
of diabetes. Moreover, it highlights the lacking data and suggests future directions needed to prove
the causal relationship between dysbiosis and diabetes, both T1D and T2D.
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1. Introduction

Diabetes is a group of metabolic diseases characterized by hyperglycemia caused by
the direct or indirect deficiency of insulin. Type 1 diabetes (T1D) is an autoimmune disease
in which antibodies are produced against various elements of pancreatic β-cells; the islets
producing insulin become deteriorated and, eventually, are completely destroyed, which
causes a lack of insulin [1]. Type 2 diabetes (T2D) is triggered by insulin resistance (IR),
which leads to an increased demand of peripheral tissues for insulin and, as a consequence,
causes the functional failure of β-cells [2]. Inadequate metabolic management of diabetes
can lead to serious long-term complications, including retinopathy, chronic kidney disease,
neuropathy and cardiovascular disease, and increased mortality [3–5]. In 2019, the Interna-
tional Diabetes Federation reported that the number of people with diabetes was estimated
to be 463 million and would increase to 700 million by 2045 [6]. This great number of
people who are at the risk of diabetes, indicates the need to search for further explanations
for diabetes pathogenesis, which, as a consequence, can lead to the development of new
strategies aimed at preventing the disease or alleviating its course.

The gut microbiota contribute to the proper functioning of human organisms [7]. They
create a dynamic ecosystem that is modulated by internal and external factors. Altered
composition of intestinal bacteria can participate in the pathogenesis of disorders, such as
obesity, diabetes and heart failure [8–10], the prevalence of which is still increasing in the
world. Thus, it is of great importance to discover whether the bacteria contribute to the
development of these diseases of civilization. It can not only help to modify their course
or to delay the appearance of complications, but also to prevent the onset of the disorders.
In this review, we describe the differences in the gut microbiota in patients with T1D and
T2D in comparison to healthy individuals, explain the probable impact of altered bacterial
composition on the host organism and indicate potential therapeutic targets aimed at the
microbiota, which can influence the course of diabetes. Moreover, we focus on lacking data
in the area concerning the gut microbiota, point out the weak points of studies conducted so
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far and suggest future directions needed to prove the causal relationship between dysbiosis
and diabetes, both T1D and T2D.

2. The Gut Microbiota—Role in Host Homeostasis

The term “the gut microbiota” refers to more than 1014 bacteria that settle in the
gastrointestinal tract, in which they perform a variety of functions, not all yet fully un-
derstood. The “microbiome” is considered as the genome of the whole microbiota. The
number of bacterial cells was estimated to be about 10 times higher than the number of
human cells [11], but nowadays it is known that the numbers of bacterial and human
cells are similar [12]. The microbiota of healthy adults consist of six phyla—Firmicutes and
Bacteroidetes, which are the major groups of bacteria, but also Proteobacteria, Actinobacteria,
Fusobacteria and Verrucomicrobia. The microbiota of adults include a wide range of species
(about 500–1000) belonging to two main phyla—Firmicutes and Bacteroidetes—which makes
the bacterial community in every individual specific and unique [13,14]. Maintaining this
diversity and tight homeostasis between bacteria is supposed to be essential to keep human
health in good condition, and dysbiosis can contribute to the development of metabolic
diseases, such as obesity or diabetes [8,15,16].

The intestinal microbiota contribute to carbohydrate metabolism by hydrolyzing and
fermenting polysaccharides delivered with food. As a consequence, monosaccharides
and short-chain fatty acids (SCFAs) are produced, which can influence the colon locally,
but can also be absorbed by the host into the circulation and influence the metabolism
of different organs [17]. SCFAs, consisting predominantly of acetate, propionate and bu-
tyrate, act through G protein-coupled receptors—GPR41, GPR43, and GPR109A—and
histone deacetylase [18–22]. These receptors are expressed in various tissues; for instance,
adipose tissue, distal ileum, colon, lymph nodes and immune cells—neutrophiles and
monocytes [19–21]. Bacteroidetes mainly generate acetate and propionate, and Firmicutes
produce butyrate [23]. Species of the genus Bifidobacterium, belonging to Actinobacteria,
directly produce a great amount of the SCFA acetate, but they also produce lactate, which
is metabolized by other bacteria to butyrate [24,25]. SCFAs regulate the proper function,
motility and integrity of the gastrointestinal tract. They probably improve glucose home-
ostasis and strengthen satiety by increasing the production of the glucagon-like peptide-1
(GLP-1) in the intestine [26]. They influence insulin sensitivity and glucose tolerance by
mediating the glycemic response, help to maintain the integrity of the gut epithelium via
inducing mucin synthesis and improve the intestinal barrier by facilitating tight junction
assembly [27,28]. They can also lead to the increased secretion of peptide YY and leptin,
affecting satiety [29]. Moreover, SCFAs support the host immune system, influencing
the functions of macrophages, dendritic cells, T cells and B cells, and, as a consequence,
prevent the invasion of pathogens, such as Shigella and entero-hemorrhagic Escherichia
coli [24,30–32]. The gut microbiota are crucial for proper intestinal barrier functioning.
They provide adequate energy for the proliferation of epithelial cells, as butyrate is the
main energy source for colonocytes, as well as stimulating the immune system to properly
respond to pathogens [33–35]. Actinobacteria contribute to the maintenance of intestinal
barrier homeostasis [36].

The gut microbiota are able to synthesize branched-chain amino acids (BCAAs)—leucine,
isoleucine and valine [37]. These molecules can be considered as indicators of IR and
predictors of diabetes mellitus development, because the serum metabolomes of patients
suffering from IR or T2D contain an increased amount of BCAAs [38,39]. It has been
proved that the main species positively associated with IR are Prevotella copri and Bacteroides
vulgatus. In turn, the leading species negatively associated with IR are Butyrivibrio crossotus
and Eubacterium siraeum [38]. The increased intake of BCAAs in food is associated with a
higher risk of IR appearance, and decreased consumption can cause an improvement of
postprandial insulin sensitivity [40,41].

The primary bile acids (Bas) are synthesized from cholesterol in the liver and secreted
with bile into the gut lumen. Further, they are metabolized by the microbiota to secondary
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Bas and mostly reabsorbed into circulation, influencing different host processes [42]. Their
main role is the participation in the process of digestion and absorption of lipids and
vitamins soluble in lipids. They contribute to the proper regulation of carbohydrate and
lipid metabolism, as well as to the regulation of energy expenditure via the farnesoid X
receptor (FXR) and TGR5 [42,43]. Depending on the localization of activation of FXR (in the
intestine or in the liver), they can show features that are either protective from or conductive
to steatosis and obesity [44–46]. Moreover, these receptors play a role in the production
and release of GLP-1 by L cells [47,48]. The microbiota not only produce secondary BAs,
but also regulate their uptake and participate in the synthesis of primary BAs by regulating
the crucial enzymes [49].

The gut microbiota play a crucial role in preventing infectious diseases by occupying
host niches, which can make the host resistant to colonization by pathogens [50].

The gut microbiota also participate in the proper functions of the immune system,
which is a complicated mechanism consisting of a variety of different actions. For instance,
they take part in the process of inflammatory cytokine production or stimulate the prolifera-
tion of group 3 innate lymphoid cells in the colon [51,52]. Moreover, they affect CD8+ T cell
memory and macrophages through one of the SCFAs, butyrate [53,54]. The gut microbiota
also synthesize and metabolize vitamin K and B group vitamins, as well as metabolizing
drugs and toxins [55].

Bacteria belonging to the phyla Proteobacteria and Actinobacteria are less abundant
than Firmicutes and Bacteroidetes [56]. A temporary dominance of Proteobacteria, especially
Enterobacteriaceae, has been found in newborn mice [57]. By consuming oxygen and altering
the pH, Proteobacteria species, facultative anaerobes, play a key role in preparing the suitable
habitat of the infant gut for colonization by strict anaerobes [58]. Vaughn et al. have shown
that mice fed with a high-fat diet are characterized by microbiota changes, especially
an increase in the level of Proteobacteria, which are probably directly associated with the
reorganization of vagal afferents and microglia activation in the nucleus of the solitary
tract [59]. A short summary of the role of the gut microbiota is presented in Figure 1.
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3. Changes in the Composition of the Gut Microbiota in Patients with T1D

The stability, connectivity, abundance and composition of the intestinal microbiota
are probably associated with the development of T1D [60]. Several studies have provided
information about an altered gut microbiota in T1D-affected patients. Giongo et al. indi-
cated that a high Firmicutes/Bacteroidetes ratio and the instability of the microbiota can be
one of the early diagnostic markers of developing autoimmune disorders, such as T1D [61].
De Goffau et al. examined the composition of the gut microbiota at the onset of T1D in
young children. In diabetic children, there was an increased level of Bacteroidetes and
Streptococcus mitis, while in healthy controls there was a higher prevalence of the butyrate
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producers Lactobacillus plantarum and Clostridium clusters IV and XIVa [62]. Similar conclu-
sions were drawn by Mejía-León et al. At diagnosis, T1D-affected patients had a dominance
of Bacteroides and controls had a higher level of Prevotella, but after 2 years of treatment with
insulin, the gut microbiota of patients and of controls were similar [63]. The fecal microbiota
in early-onset T1D were also analyzed by metagenomic sequencing in the TEDDY longitu-
dinal study. Vatanen et al. indicated that in stool samples from children diagnosed with
T1D, the levels of Roseburia hominis, Alistipes shahii and Bifidobacterium pseudocatenulatum
were higher, whereas in controls without T1D, levels of Lactococcus lactis and Streptococcus
thermophilus were raised. The control group of children not only had more species common
in dairy products, but also their microbiota consisted of more genera associated with the
biosynthesis of SCFAs and fermentation. This finding supports the theory of the protective
effects of SCFAs in T1D [64]. Pellegrini et al. showed a characteristic inflammatory profile
and microbiota in the duodenal mucosa of patients with T1D. In the samples of mucosa,
increased inflammation and monocyte/macrophage lineage infiltration were observed. In
patients with T1D, the level of Firmicutes and the Firmicutes/Bacteroidetes ratio were raised
and the levels of Proteobacteria and Bacteroidetes were reduced [65]. Moreover, in the study
of Siljander et al., the pro-inflammatory environment in the gut in children developing T1D
was related to a decreased level of Firmicutes and increased amount of Bacteroidetes [66].
Dissimilar conclusions between studies can result from the distinct methods used in the
research, but also from the differences in the gut microbiota between individuals as a
consequence of their geographical location [67]. A short comparison of these changes in
the gut microbiota in individuals with diabetes is presented in Table 1.

Table 1. A comparison of changes in the gut microbiota occurring in individuals with type 1 diabetes
or type 2 diabetes in comparison to healthy individuals. A description is given in the text above.
↑—increased level, ↓—decreased level.

Individuals with Type 1 Diabetes in Comparison to Healthy Ones Individuals with Type 2 Diabetes in Comparison to Healthy Ones

Giongo et al. (2011) [61]
↑ Firmicutes/Bacteroidetes ratio and instability of microbiota are early diagnostic

markers of developing autoimmune disorders, such as T1D

De Goffau et al. (2014) [62]
↑ Bacteroidetes

↑ Streptococcus mitis
↓ Lactobacillus plantarum

↓ Clostridium clusters IV and XIVa

Mejía-León et al. (2014) [63]
↑ Bacteroides
↓ Prevotella

After 2 years of insulin treatment, no significant differences

Vatanen et al. (2018) [64]
↑ Roseburia hominis
↑ Alistipes shahii

↑ Bifidobacterium pseudocatenulatum
↓ Lactococcus lactis

↓ Streptococcus thermophilus
↓ Lactobacillus rhamnosus
↓ Bifidobacterium dentium

↓ Genes associated with SCFA production and fermentation

Pellegrini et al. (2017) [65]
Characteristic inflammatory profile

↑ Firmicutes
↑ Firmicutes/Bacteroidetes ratio

↓ Proteobacteria
↓ Bacteroidetes

Siljander et al. (2019) [66]
↑ Bacteroidetes
↓ Firmicutes

Larsen et al. (2010) [68]
↑ Bacteroidetes

↑ Bacteroidetes/Firmicutes ratio and Bacteroidetes-Prevotella/
C. coccoides-E. rectal ratio
↑ Class Betaproteobacteria
↓ Phylum Firmicutes
↓ Class Clostridia

Qin et al. (2012) [69]
↑ Opportunistic pathogens
↑ Akkermansia muciniphila

↑ Desulfovibrio
↓ Faecalibacterium

↓ Roseburia

Karlsson et al. (2013) [70]
↑ Four Lactobacillus species
↓ Five Clostridium species
↓ Roseburia intestinalis

↓ Faecalibacterium prausnitzii

Zhang et al. (2013) [71]
↓ Akkermansia muciniphila

Allin et al. (2018) [72]
↓ Genus Clostridium

↓ Akkermansia muciniphila

Sedighi et al. (2017) [73] and Zhao et al. (2019) [74]
↑ Firmicutes

↑ Proteobacteria
↑ Firmicutes/Bacteroidetes ratio

↓ Bacteroidetes

4. The Potential Role of the Gut Microbiota in the Development of T1D

T1D is defined as a β-cell-mediated pro-inflammatory state, induced by both innate
and adaptive immunity [75]. Specific human leucocyte antigen (HLA) genotypes, such as
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DQ2, DQ8, DR3 and some DR4 alleles, are the main factors of a genetic predisposition to
T1D development [76]. However, in family and twin studies, it has been proved that only
20–30% of genetically predisposed individuals carrying these alleles will develop T1D [77].
In disease onset, equally important is the impact of environmental factors, such as the
way of feeding, diet or exposure to viruses in early childhood [78]. Furthermore, altered
gut bacterial composition can be associated with the pathogenesis of insulin dysfunction
and T1D [53]. Nevertheless, most studies investigating the concept that gut microbiota
affect the pathogenesis of T1D are performed on mouse models, while there are still an
insufficient number of human studies to prove it.

During early childhood, such processes occur as the development of the immune
system, maturation of the gut microbiota and appearance of the first autoantibodies bound
to T1D [65]. Among the factors that can modify the composition of the intestinal micro-
biota are breastfeeding, nutrition, route of delivery, use of antibiotics and exposure to the
microbes in the environment [79,80]. Their action can result in intestinal barrier disruption
and defective maturation of the immune response, eventually leading to T1D progression
later in life [81]. Moreover, the genetic set-up of the host can interact with the intestinal
microbiota, causing changes in the microbial composition, activation of immunity and
susceptibility to T1D [82,83].

Dysbiosis, defined as the repetitive or prolonged deviation from optimal microbial
homeostasis, can cause the loss of self-tolerance and the spread of effector cells and pro-
inflammatory signals in the organism [65]. These processes coincide with the increased
permeability of the intestinal wall, translocation of microbial material through the epithe-
lium and enhanced presentation of antigens, as well as autoantigens [65]. This leads to the
activation of the pro-inflammatory pathway in the intestine, lymph nodes and pancreas [65].
Furthermore, the exocrine function of the pancreas, quality of the mucosal barrier and
adhesion of the microvilli are depleted in patients with T1D [84,85]. Some members of
Bifidobacterium, Bacteroides and Ruminococcus can cause mucin degradation and impair the
integrity of the mucosal barrier [86]. Intestinal inflammation and the reduction of SCFAs
caused by dysbiosis can be crucial to the pathogenesis of T1D [87]. The clinical onset
of T1D is probably preceded by heightened gut permeability [88]. An adequate amount
of butyrate, produced mainly by Firmicutes, leads to appropriate mucin synthesis and
enhances tight junctions in the intestine [89,90]. Butyrate also shows anti-inflammatory
properties and decreases bacterial transport through the epithelial cells [91]. A butyrate diet
helped to increase the amount and function of regulatory T cells [92], whereas acetate- and
butyrate-yielding diets decreased serum concentrations of diabetogenic cytokines, such as
IL-21, and enhanced gut integrity. This type of diet allowed a reduction in the incidence
of diabetes in NOD (non-obese diabetic) mice. Moreover, female NOD mice had a larger
number of pancreatic islets with no infiltration [93].

The alteration of intestinal microbes can induce the leakage of fatty acids and lipopolysac-
charides (LPSs) by destroying the intestinal mucosal barrier. This causes the activation of
toll-like receptor 4 (TLR4), which results in metabolic inflammation [94]. TLRs are engaged
in maturation of dendritic cells and recognizing pathogen-associated molecular patterns de-
rived from microbiota [95]. They contribute to protecting the host from infectious microbes.
MyD88 is an adaptor not only for TLRs and interleukin 1, but also other innate immune
receptors. A defect of MyD88 can alter the composition of microflora in the distal part of
the intestine [92]. Moreover, in NOD mice, the knockout of MyD88 protected against T1D
development [93]. LPS is a bacterial endotoxin and one of the components of the outer mem-
brane of Gram-negative bacterial species, and probably acts as a molecular link between gut
microbiota, inflammation and T1D [53]. In a case-control study, it was proved that patients
with T1D have higher circulating LPS levels than those without diabetes [96]. LPSs can be
involved in diabetes development, because they lead to the impairment of pancreatic β-cell
function and increase the level of pro-inflammatory cytokines [97]. In mouse models, an
oral injection of E. coli LPS improved local immunity, while an intraperitoneal injection of
E. coli LPS improved the autoimmune response and decreased the incidence of T1D [98,99].
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However, it is difficult to conclude whether microbial alteration is causal or consequential
for T1D development. The possible influence of dysbiosis on T1D development is presented
in Figure 2. Most current studies mainly show the involvement of intestinal microbiota
in the β-cell autoimmunity process, and do not focus on an explanation of whether gut
microbiota activate T1D. On the one hand, the state of dysbiosis during the maturation of
the immune system can destroy self-tolerance and control of the inflammatory response,
which can eventually lead to increased susceptibility to immune-mediated diseases, such
as T1D. However, on the other hand, pro-inflammatory intestinal dysbiosis and changed
microbial diversity can cause T1D activation after seroconversion. How the mechanisms
of relatively local intestinal inflammation spread to an autoimmune process of the whole
organism is not clear enough [66]. It is necessary to perform new interventional studies
and not only observational ones. There exists a strong need to prove the causal relationship
between T1D and intestinal microbiota, and the exact mechanisms that participate in the
processes described above.
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in the text above.

5. Changes in the Composition of the Gut Microbiota in Patients with T2D

Similarly to T1D, the microbiota in patients with T2D differ from those occurring in
healthy individuals [16]. The main change seen in various research is an increase in the
amount of opportunistic pathogens and a decrease in bacteria producing butyrate, one of
the SCFAs [97]. One of the first studies on the microbiota of subjects with T2D, conducted by
Larsen et al., showed decreased levels of the phylum Firmicutes and class Clostridia. More-
over, the Bacteroidetes/Firmicutes ratio, as well as the Bacteroidetes-Prevotella/C. coccoides-
E. rectal ratio, was positively correlated with plasma glucose concentration. Moreover, the
class Betaproteobacteria was increased and positively correlated with reduced glucose toler-
ance [68,100]. Qin et al. and Karlsson et al. indicated that the gut microbiota of individuals
suffering from T2D are characterized by increased amounts of opportunistic pathogens
and decreased levels of Faecalibacterium and Roseburia, butyrate producers [69,70]. Qin et al.
also reported an increased level of Akkermansia muciniphila, which shows mucin-degrading
properties and plays an important role in gut barrier functions, and the sulphate-reducing
species Desulfovibrio [69]. Moreover, Karlsson et al. showed an increased level of four
Lactobacillus species and a decreased amount of five Clostridium species [70]. Zhang et al.
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indicated a decreased level of Akkermansia muciniphila in patients with T2D [71]. A similar
observation was also made by Allin et al.—in individuals with prediabetes, there are fewer
species of the genus Clostridium and Akkermansia muciniphila, in comparison to healthy
people [72]. Conversely to Larsen et al., Sedighi et al. indicated a decreased level of
Bacteroidetes and increased level of Firmicutes and Proteobacteria, which results in a higher
Firmicutes/Bacteroidetes ratio [73]. These conclusions were confirmed later by Zhao et al., but
they also elucidated that the enhanced Firmicutes/Bacteroidetes ratio was definitely higher
in T2D-affected patients with complications of the disease than in individuals without
complications [74].

The results of various studies differ from one another, but, in general, the genera
negatively associated with T2D are Bacteroides, Bifidobacterium, Faecalibacterium, Akkermansia
and Roseburia, and the genera Fusobacteria, Ruminococcus and Blautia are positively con-
nected with this disease [101]. The inconsistent findings are the results of the inconsistency
between studies. The DNA extraction protocols are not comparable between studies, nor
are the sampling of specimens and the procedures using bioinformatic methods. Insuffi-
cient sample sizes and the interpersonal variation or environmental factors, such as the
geographical locations, ages or gender, type of diet and medicaments, can be responsible
for the discrepancies. Different methods, for instance microarrays, fluorescence in in situ
hybridization or next-generation sequencing, lead to conflicting findings. Early studies
were based on rRNA gene amplification by PCR, then on multiple sequence alignment
and phylogenetic reconstruction. These studies were limited by the costs and time, which
caused a problem in the exact estimation of the abundance of the microbiota corresponding
to the sequences [102]. Moreover, research based on rodent microbiomes is more reliable
when demonstrating probable mechanisms existing in human biology, rather than identify-
ing exact taxa or species, because mouse microbiota are apparently different from human
microbiota. Despite Firmicutes and Bacteroidetes being the dominant phyla, the composition
at genus level is utterly different [103]. The protocols should be unified to enable definition
of the exact changes of the gut microbiota in patients with T2D.

Bacteroides, belonging to the phylum Bacteroidetes, were negatively associated with
T2D in the research [104–106]. Taking into consideration specific species, B. intestinalis,
Bacteroides sp. 20_3 and B. vulgatus were decreased in T2D-affected patients [70,107,108].
In obese patients with T2D who had a laparoscopic sleeve gastrectomy and, subsequently,
experienced diabetes remission, the level of B. stercoris was increased [109]. In animal
studies, the administration of B. acidifaciens and B. uniformis favourably affected the glucose
tolerance and IR in diabetic rodents [110,111]. Studies indicate a potentially beneficial
effect of Bacteroides on glucose metabolism and suggest an explanation for the negative
correlation between Bacteroides and T2D.

The genera Roseburia, Faecalibacterium, Lactobacillus, Ruminococcus and Blautia belong
to the phylum Firmicutes. Generally, a decrease in the Roseburia level has been found in
T2D-affected patients, in comparison to healthy individuals [68,104,108,112]. Consider-
ing specific species, R. intestinalis was positively and R. inulinivorans and Roseburia_272
were negatively associated with diabetes [70,108,109]. Faecalibacterium were found to be
decreased in T2D-affected patients, but, at species level, F. prausnitzii was negatively corre-
lated with the disease [70,108,112,113]. Lactobacillus species are rather positively associated
with T2D, for instance L. acidophilus or L. salivarius, but some species, such as L. amylovorus,
are negatively associated with diabetes [70,104,107,114,115].

Species of the genus Bifidobacterium, belonging to Actinobacteria, are strongly negatively
associated with T2D [73,104,107,113]. In animal studies, the administration of Bifidobac-
terium spp. Improved glucose tolerance in diabetic mice, suggesting a protective role of
bifidobacterial in T2D [116,117].

A short comparison of these changes in the gut microbiota in individuals with diabetes
is presented in Table 1.
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6. The Potential Role of the Gut Microbiota in the Development of T2D

The development of T2D is mainly caused by insufficient insulin secretion by β-cells
localized in the pancreas and the state called “insulin resistance”, which is the inability of
insulin-sensitive tissues to respond to insulin properly [118]. The dysfunction of β-cells
leads to a reduction in insulin secretion, resulting in accelerated glucose plasma levels. IR
stimulates the production of glucose in the liver and impairs glucose uptake in the liver,
muscle and adipose tissue, which increases glycemia as well. This situation leads to chronic
hyperglycemia, affecting various organs and tissues, and resulting in detrimental micro-
and macrovascular complications [119]. Chronic low-grade inflammation contributes to
the development of IR and, consequently, of T2D [120]. Risk factors for T2D are genetic
predisposition, ethnicity and family history of diabetes, as well as metabolic and environ-
mental factors, such as obesity, low-grade physical activity and diet. The strongest risk
factor is obesity, which is connected with metabolic changes leading to IR [121–123].

Much of our understanding of the exact role of the intestinal microbiota is based on
studies focused on germ-free animals, which are born and kept without any contact with
bacteria and can be exposed to specific microbes in the course of the research. Studies have
shown that these rodents are resistant to obesity induced by diet [124,125], and exposure to
Enterobacter cloacae, a bacterium linked to obesity, or bacteria received from obese donors
leads to the increased capacity for energy harvest, weight gain and impaired glucose
tolerance [126–128]. These studies suggest probable causality between the gut microbiota
and obesity.

T2D is characterized by the decreased production of butyrate [97], one of the SCFAs
that supports proper function of β-cells in the pancreas, especially after food intake [129].
Butyrate contributes to the modulation of immune system functions and protection against
pathogen invasion [130]. It affects the functions of intestinal macrophages and downreg-
ulates pro-inflammatory mediators induced by LPSs, for instance IL-6, IL-12 and nitric
oxide, as well as promoting regulatory T cell differentiation [131–133]. It also activates
intestinal gluconeogenesis and, as a result, favorably affects glucose homeostasis [134].
Sanna et al. have shown that a host genetic-driven increase in the gut production of butyrate
is associated with an improved insulin response following an oral glucose test, and that
abnormalities in production or absorption of propionate are causally related to increased
risk of T2D [129]. This state leads to low-grade inflammation [135,136]. In recent studies,
it has been shown that dysbiosis occurring in NOD mice is associated with a reduction
in butyrate levels, which leads to increased activity of histone deacetylase 3 (HDAC3),
changed colon permeability, increased reactive oxygen species (ROS) production and a
rise in IL-1β levels, as well as a decrease in amounts of IL-10 and IL-17α [137]. Moreover,
it has been indicated that butyrate supplementation restores homeostatic levels of the
inflammatory markers and reduces ROS production [137]. In an obese/prediabetic mouse
model, butyrate intake has been proved to protect against the detrimental effects of high-fat
diet, such as weight gain, body adiposity, IR, hyperglycemia and hyperinsulinemia [138].

Moreover, it is suggested that patients who will develop T2D in the future show
a reduction in BCAA catabolism, as well as changes in lysophospholipid metabolism
and in the BA pool [139]. Additionally, individuals with IR have an enhanced potential
for biosynthesis of BCAAs [32]. As mentioned before, an increased BCAA level can be
associated with a higher risk of developing IR [38]. Studies suggest that modifications of
the BA pool by sequestrants can improve glycemic control in T2D-affected patients, but the
mechanisms underlying these changes remain unknown [140].

Similar to T1D, T2D is probably associated with LPSs, which trigger the develop-
ment of inflammation and IR acting through TLR4 [141,142]. TLR4 belongs to a family of
pattern-recognition receptors, toll-like receptors, which contribute to the activation of pro-
inflammatory signaling pathways, and cytokine expression and secretion in the presence
of bacterial pathogens [143,144]. In vitro and in vivo studies have shown that free fatty
acids can influence macrophages and adipocytes through TLR4, inducing inflammation.
As a result, they are able to suppress insulin signaling through serine phosphorylation of
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insulin receptor substrate 1 (IRS-1) and influence glucose homeostasis [143,145]. This IRS-1
modification is considered to be a marker of the IR state [146]. It has been indicated that in-
dividuals with diabetes are characterized by higher fasting and postprandial concentrations
of LPSs, in comparison to non-diabetic individuals, which can be caused by an increased
permeability of the intestine and enhanced LPS absorption [141]. Increased circulating LPSs
enhance the expression of inducible nitric oxide synthase (iNOS) through the activation
of TLR4, which, as a consequence, induces protein S-nitrosation/S-nitrosylation of the
insulin receptor, IRS-1 and Akt, and alters their proper functions [147–151]. Moreover, it
has been suggested that metabolic endotoxemia dysregulates the inflammatory tone and
triggers body weight gain and diabetes [141]. Probably, the gut microbiota have properties
to modify this state of inflammation and endotoxemia due to their ability to affect the
permeability of the intestine [152,153]. Endotoxemia in obesity and T2D becomes apparent,
but there is still a lack of human studies that would show increased intestinal permeability
and changed tight junction expression evidently. The possible influence of dysbiosis on
T2D development is presented in Figure 3.
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7. The Role of Roseburia Hominis, Faecalibacterium Prausnitzii and
Akkermansia Muciniphila

The intestinal abundance of Roseburia_272 and Faecalibacterium prausnitzii is lower in
T2D-affected individuals than in healthy ones [70,154]. The presence of the strictly anaerobic
flagellated bacterium Roseburia hominis, belonging to the phylum Firmicutes, can contribute
to the induction of genes involved in the promotion of gut barrier functioning and innate
immunity, as well as in the promotion of mucosal T-cell expansion and differentiation of T
cells [155]. Moreover, it is able to penetrate the mucous layer and adhere to the epithelial
cells, which enhances its probiotic properties [156,157]. Hereby, R. hominis promotes and
regulates the immune system.

Faecalibacterium prausnitzii, a representative of the phylum Firmicutes, has been shown
to be one of the crucial producers of butyrate [158,159]. It is the most abundant bacterium
in the intestinal microbiota occurring in healthy individuals [160]. It has proven anti-
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inflammatory properties, as it is able to induce a tolerogenic cytokine profile, decreasing
acute, chronic and low-grade inflammation [161–164]. It is also one of the main butyrate
producers [91,161]. Moreover, F. prausnitzii has an ability to produce salicylic acid, which
has anti-inflammatory properties through the reduction of IL-8 levels [165]. It also synthe-
sizes a protein called microbial anti-inflammatory molecule (MAM), which has been shown
to have positive effects on gut inflammation and epithelial mucosa when supplemented in
inflammatory bowel disease [166]. MAM probably regulates tight junction proteins and
restores cell permeability, and thus influences the integrity of mucous intestinal cells [167].
It has been proved that the transplantation of F. prausnitzii can result in positive effects in
the treatment of diabetes and its complications [168].

Akkermansia muciniphila is a bacterium belonging to the phylum Verrucomicrobiota and
is responsible for mucin degradation in the gut lining, which, as a result, contributes to
the syntropic interactions and stimulation of the metabolite pool in the intestine [169].
Moreover, it stimulates mucin synthesis, probably in an autocatalytic process [170,171]. In
rodent studies, the colonization of the intestine by A. muciniphila has been shown to exert
transcriptional changes manifesting as an increase in the expression of genes connected
with immune processes and the metabolism of lipids [172,173].

8. Preventive and Therapeutic Perspectives including the Gut Microbiota

Diabetes worsens the quality of life of affected patients, leads to many early and late
complications, burdens the health care system by increasing treatment costs and causes
prolonged absence from work [174]; therefore, it is of great importance to create methods
for alleviating the course of the disease. A promising approach is the modification of the
amount and composition of the gut microbiota. A healthy diet and physical activity are
among the factors that can influence the gut microbial ecosystem. In active women, in
comparison to sedentary ones, an increased abundance of Roseburia hominis, Akkermansia
muciniphila and Faecalibacterium prausnitzii [175] was observed. The Mediterranean diet
and consumption of food substances, such as green tea, caffeine or omega-3 polyunsat-
urated fatty acids, help to restore the changed intestinal bacterial composition [176,177].
A carbohydrate-restricted or fat-restricted low-calorie diet used by obese patients has led
to a renewed change in the Firmicutes/Bacteroidetes ratio [178,179]. Moreover, a fiber-rich
diet is associated with increased amounts of Prevotella, while a protein-rich diet is related
to an increased abundance of Bacteroides [180]. After 1 month of a strict vegetarian diet,
6 obese patients with T2D and/or hypertension had significantly reduced HbA1c and
triglyceride levels, decreased body weight and improved levels of fasting and postpran-
dial glucose. Such a diet is associated with a reduced Firmicutes/Bacteroidetes ratio and
increased amounts of Clostridium and Bacteroides fragilis, which lead to diminished intestinal
inflammation and SCFA levels [181].

Prebiotics are fermentable, non-digestible food components that promote the growth
of bacteria in the intestine [182]. The most popular prebiotics are inulin, lactulose, galac-
tooligosaccharides and fructooligosaccharides, and they can alter the composition of the
gut microbiota [182]. Two weeks of treatment with inulin-type fructans in healthy volun-
teers led to increased satiety, decreased postprandial glycemia and increased postprandial
release of incretins [183]. According to a meta-analysis of 20 randomized controlled trials,
the supplementation of inulin-type fructans correlates positively with decreased fasting
insulin levels [184]. The arabinoxylans, a new class of prebiotics, are non-digestible car-
bohydrates appearing in wheat and that also have potential beneficial effects on glucose
metabolism [185].

Probiotics are live microorganisms, either in the form of food or supplement, which
can alter the gut microbiota [182]. Lactobacillus species are the major probiotics with a
glucose-lowering potential [182]. In people without altered glucose tolerance, a daily intake
of Lactobacillus reuteri enhances the secretion of insulin and incretin, but the effect can be
bound with an improvement of β-cell function [186]. Moreover, in another study, it was
indicated that in children carrying the high-risk HLA DR3/4, a genotype bound with T1D
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susceptibility, the risk of islet autoimmunity can be decreased by the early oral exposure to
probiotics [187]. In patients with metabolic syndrome, levels of uric acid were significantly
decreased and the total antioxidant capacity was significantly increased after consuming
probiotic yoghurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 for
8 weeks at a dose of 300 g/day [188].

Synbiotics are a combination of prebiotics and probiotics. Synbiotic supplementation
has the potential to decrease the serum concentration of IL-6, TNF-α and hs-CRP, which are
risk factors for inflammation-dependent cardiometabolic diseases, such as T2D [189]. In
patients with T2D, a diet supplemented with either prebiotics or synbiotics has the potential
to preserve glucose homeostasis and improve lipid metabolism [190]. Furthermore, the
administration of symbiotics can cause a decrease in body weight and diminish anti-
inflammatory activity [191].

Gluten intake affects the development of T1D via altering the gut microbial compo-
sition and the immune response [192]. This effect is modified by the amount, timing and
mode of gluten intake [193–195]. A gluten-free diet can help to protect β-cell function
by influencing the gut microbiota, which can be associated with the incidence of dia-
betes [192]. Furthermore, a high-fat diet can also change the composition of the intestinal
microbiota, mainly by decreasing the amount of Bifidobacterium and. Administration of
specific prebiotics can prevent the development of high-fat diet-induced diabetes and
result in improved glucose tolerance, restored insulin secretion, decreased intestinal en-
dotoxin levels and alleviated inflammatory response [196]. A deficiency of vitamin A
increases the Firmicutes/Bacteroidetes ratio and decreases the level of bacteria producing bu-
tyrate [197]. Moreover, retinoic acid, a vitamin A metabolite, can inhibit the differentiation
of pro-inflammatory Th17 cells and promote the differentiation of anti-inflammatory Treg
cells [198]. These mechanisms protect against the development of T1D. Furthermore, zinc
deficiency influences the inflammatory response and metabolic control, which can promote
T1D incidence [199].

Another therapeutic strategy is fecal transplant. Six weeks after the infusion of the
gut microbiota from lean donors to male recipients with metabolic syndrome, the levels of
butyrate-producing intestinal microbiota and the insulin sensitivity of the recipients were
significantly increased [168]. De Groot at al. showed that, in patients recently diagnosed
with T1D, fecal microbiota transplantation in the 12 months after disease onset can halt
the decline in endogenous insulin production, probably by the preservation of residual
β-cell function [200]. Moreover, 3 weeks after the oral transfer of fecal bacteria in another
study, the abundance of Lachnospiraceae and Clostridiaceae was increased and the amount of
Lactobacillaceae was decreased, which indicates a possible improvement in insulin sensitivity
in diabetic patients [201].

9. Lacking Data and Future Directions

Although much research about diabetes and the gut microbiota has already been
performed, we are still at the beginning of the way to show the exact role of the intestinal
microbiota in T1D or T2D. Until now, we have frequently based our theories on studies
with rodents, but mouse microbiota differ significantly from those in humans. Moreover,
the germ-free animals used in experiments are born and kept without any contact with
bacteria, and are exposed to selected microbes during the research process. Retrospective
and observational research has been performed that does not exactly allow the analysis
of the causal relationship between gut microbiota and diabetes development. We still do
not know whether the intestinal microbiota are solely involved in β-cell autoimmunity
or can also activate T1D. Verification of this hypothesis will require the performance of
longitudinal, interventional and prospective studies with adequate methodology and
the use of human stool sample processing. Additionally, standardized and reproducible
methods of analyzing genetic material are needed. Furthermore, we do not possess enough
evidence to definitively prove that dysbiosis can cause T2D, or whether it just appears
during the course of diabetes as a consequence of metabolic changes connected with the
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disease. Further efforts should be directed to creating such studies, which will allow
the demonstration of a causal relationship between the changes in intestinal microbiota
and diabetes.

10. Conclusions

It is of great importance to understand the exact mechanisms underlying the diseases of
civilization, as their prevalence is still rising. Diabetes is one of the most common metabolic
disorders and leads to serious complications and consequences. The gut microbiota is an
inseparable part of human beings, and understanding its exact role in the functioning of
living organisms is necessary. It is of great importance to prove whether there exists the
causal relationship between diabetes development and the gut bacteria. Further research is
needed, particularly unified studies that can clearly indicate exactly how the microbiota
change and how they influence the host, to make the most of the potential included in the
gut microbiota.
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