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Abstract: Nowadays, exploring dibaryon candidates has attracted much attention, both theoretically
and experimentally. It is important to find a reasonable model to predict the possible dibaryon
candidates. The chiral SU(3) quark model is just one of the most successful models, with which we
can reasonably explain the experimental binding energies of baryon’s ground state and the properties
of deuteron, NN and YN scattering processes. By utilizing the same set of model parameters, we
predicted the nonstrange d∗ dibaryon with a binding energy of 84 MeV, which is consistent with a
recent experiment in which we also found that the hidden color (CC) channel plays an important
role in forming this bound state. Due to the theoretical investigation of the CC channel being scarce
for dibaryons, we explore other possible and interesting dibaryon candidates in the present work.
According to the symmetry properties, we chose six interesting candidates, including strangeness
0,−1,−5,−6 systems. All the hidden color wave functions were built, and the spin-flavor-color
matrix elements were systematically evaluated. Then, we applied these obtained matrix elements
to further dynamically solve the corresponding resonating group method’s equation in a coupled-
channel calculation. The results show that the coupling to the CC channel plays an significant
role in forming each spin S = 3 state, where tensor coupling is also included and has an obvious
effect in forming each S = 0 state. The present work is significant in helping us to acquire deeper
understanding of the effects of the hidden color channel and QCD phenomenology.

Keywords: quark model; chiral Lagrangian; dibaryon; hidden color channel; resonating group
method

1. Introduction

The exciting story started in 2014, when the WASA-at-COSY collaboration found
a peak in the pn → dπ0π0 fusion reaction that was associated with a d∗ dibaryon [1],
corresponding to a nonstrange ∆∆ dibaryon, its spin S = 3 and isospin T = 0. The binding
energy is 84 MeV, indicating a deeply bound state. Since then, the exploration of other
possible dibaryon states has again attracted extensive attention both theoretically and
experimentally [2–15]. As is well known, the first and the most famous state is the deuteron,
which was discovered in 1932 [16]. It is composed of a proton–neutron system (pn) with
S = 1 and T = 0. The deuteron is a loosely bound state with a binding energy of only
2.2 MeV. After that, no any other possible dibaryons were ever found in experiments for
many years till 2014 [1].

Dibaryon is an important way to study the non-perturbative effect of quantum chro-
modynamics (QCD), which is the underlying theory of the strong interaction. Back in 1964,
firstly, Gell–Mann proposed the existence of dibaryons [17]. Since then, many predictions
on the existence of possible dibaryon candidates have been found. Triggered by the predic-
tion of the H dibaryon [18], many other predictions later appeared: the potential model,
bag model and string and flux tube models for the dibaryon systems [19–38].

Before 2014, there were actually many theoretical investigations on nonstrange d∗

structure [32–39]; the predicted binding energies ranged from about 10 to 390 MeV. Among
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these models, it should be noted that the predictions in [38,39] are fairly consistent with the
experiments [1], in which the chiral and extended SU(3) quark models were utilized, and
importantly, the effect of the hidden-color channel (CC) is under consideration. We found
that the CC channel plays an important role in the binding behavior of the d∗ system.

After 2014, there were also many theoretical studies on the properties of the d∗ state,
reporting it as a compact hexaquark, such as the extended Gürsey–Radicati model [40], the
QCD sum rules [41], Lattice QCD [11], the quark delocalization color screening model [42]
and the chiral SU(3) quark model [43–45].

The extended chiral SU(3) quark model [46] was proposed based on the chiral SU(3)
quark model [47]. This model is one of the most successful QCD-inspired models. We can
reasonably explain the binding energies of baryon ground states, the properties of deuteron,
the nucleon–nucleon (NN) and hyperon–nucleon (YN) scattering processes by dynamically
solving the resonating group method (RGM) equation. When extending this model to d∗

investigations, no additional parameters are required, and surprisingly, we found that our
predictions are in good agreement with an experiment [1].

Naturally, we would like to extend to some other possible and interesting dibaryon can-
didates with different strangeness, further exploring the effects from different CC channels.

Here, we would like to add some remarks on our proposed chiral SU(3) and extended
chiral SU(3) quark models [46,47]. The above two models have been proposed based on
the two pioneering works where the quark model made its great leap of being able to
describe NN scattering data based on quark degrees of freedom [48,49]. It was the first time
that the one sigma exchange was considered at the quark level, and hadronic potentials
were not used at long range due to the mentioned pioneer works. Therefore, the exchange
mechanism from sigma meson is important in our chiral quark models [46,47].

As we know, a baryon is composed of three quarks in a quark model, and it is
described by a fully antisymmetric wave function including the spatial degree and the
internal degrees of freedom, which contain flavor, spin and color parts. The flavor degree
of freedom is taken to be the three light flavors of u, d and s. The spin degree of freedom is
taken to be the two spin components ↑, ↓. The color degree of freedom is taken to be the
three colors of r, g and b.

Let us come back to the question of the dibaryon. In a summary work of dibaryon [31],
the authors performed an analysis telling us that two major factors will affect the binding
behavior. The first is the symmetry property, and the second is the interactions between
quarks, especially the quark chiral field-induced interactions. They used the following
matrix element to characterize the symmetry property:

〈Asfc〉 = 〈1−
3

∑
i=1

6

∑
j=4

Psfc
ij 〉 = 〈1− 9Psfc

36 〉

where quarks 1, 2 and 3 are inside cluster A; quarks 4, 5 and 6 are inside cluster B; and sfc
denotes the operator that acts within the spin-flavor-color space; thus, Psfc

36 denotes how the
permutation operator acts in sfc space, and 36 represents the exchange operation between
the 3rd and 6th quarks of cluster A(123) and B(456), respectively. For the baryon-baryon
state, the 〈Asfc〉 is important to measure the action of the Pauli principle. It is shown that six
interesting candidates belong to 〈Asfc〉 = 2. These systems would be enormously beneficial
to form a state due to highly symmetric character of [6]O in orbital space. This is exactly
the reason why we decided to study these six dibaryon candidates in the present work.

We have mentioned above that in our works of [38,39], the predictions of d∗ structure
are very consistent with the recent experiment. This finding is surprising, and more
importantly, the CC channel was found to play an important role in this system. It is of
interest to investigate the effect from CC channel on different systems. An earlier discussion
can be found in [50,51], and a later one in [52–55], based on group theory. In refs. [50,51], the
author constructed the CC state by using the expansion coefficients of fractional parentage
(cfp) method. Based upon this work, Zongye Zhang derived the relation of symmetry basis
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and physical basis for the ∆∆ system, in which she found a new method to construct the CC
state. In her method, the complicated calculations in group theory can be avoided, and she
constructed the CC wave function and further computed all the sfc matrix elements. Then,
these sfc matrix elements were firstly applied into the dynamical calculation for studying
the d∗ structure [38], where the sfc matrix elements are also tabulated. We can see that
〈CC|λc

1 · λc
2|CC〉 = − 2

3 , which is consistent with the calculation in [50], verifying that the
constructed CC wave function is correct.

As the theoretical investigation of CC channel on dibaryon system is scarce, in the
present work we would like to develop the method proposed by Zongye Zhang for other
interesting dibaryon candidates with different strangeness, further exploring the effect
of CC channel in the binding behavior of the dibaryon. We systematically investigated
the six interesting dibaryon candidates, showing the reader how to obtain the CC wave
function and evaluate the needed sfc elements for each candidates. Finally, we performed
the dynamical calculations in our chiral SU(3) quark model within the framework of the
resonating group method.

The paper is arranged as follows: Firstly, we briefly introduce the chiral SU(3) quark
model in Section 2, and then we discuss the calculated results in the single-channel case
in Section 3, in which we also analyze the symmetry characters of the six systems. An
extension to include the CC channel, how to construct the CC wave function and the
obtained sfc matrix elements are presented in Section 4. Finally, we come to the concluding
remarks in Section 5.

2. Formalism
2.1. The Chiral SU(3) Quark Model

Although QCD is believed to be the basis theory of the strong interaction, one has to
develop some QCD-inspired models due to the complexity of the non-perturbative QCD at
the lower energy region. Among these models, the constituent quark model (CQM) has
been quite successful in dynamically studying the NN interaction [56–60]. The short-range
repulsive feature can be explained by both the quark-exchange effect and the one-gluon-
exchange (OGE) interaction in this model. However, the source of the constituent quark
mass is not clear, and as long as the quark carries constituent mass (about several hundred
MeV), the chiral symmetry of the Lagrangian, which is very important in hadron physics,
is broken. Therefore, one should restore the chiral symmetry of the model, such as in the
work of [48]. Actually we ever proposed another method to restore the chiral symmetry in
the flavor SU(2) case [61]; then, we further generalized to the flavor SU(3) case, proposing
the chiral SU(3) quark model [47]. In this model, by using the linear realization of the
Lagrangian, we derive the quark–quark potential. This Lagrangian is proven invariant
under the chiral transformation, and the interaction Lagrangian is written as

LI = −gch(ψ̄LΣψR − ψ̄RΣ+ψL) , (1)

with ψL and ψR being the quark-left and right spinors, respectively, and gch being the
quark-chiral field coupling constant. Generalizing the linear realization of Σ, one obtains

LI = −gchψ̄

(
i

8

∑
a=0

πaλaγ5 +
8

∑
a=0

σaλa

)
ψ , (2)

where ψ is the quark field; πa denotes the pseudoscalar nonet chiral fields π, K, η, η′; σa
is the scalar nonet field; σ′, κ, ε, σ and λa are the generators of the flavor SU(3) group.
Consequently, the interactive Hamiltonian becomes

Hch = gchF(q2)ψ̄

(
+i

8

∑
a=0

πaλaγ5 +
8

∑
a=0

σaλa

)
ψ . (3)
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where we have inserted a form factor F(q2) to describe the chiral field’s structure, which,
as usual, is taken as

F(q2) =

(
Λ2

Λ2 + q2

)1/2

, (4)

where we use the cutoff mass Λ to indicate the chiral-symmetry-breaking scale.
Now, the total Hamiltonian can be written as

H =
6

∑
i=1

Ti − TG +
6

∑
j>i=1

Vij, (5)

where Ti denotes the ith quark kinetic energy, TG is kinetic energy of center of mass motion
and

Vij = Vconf
ij + VOGE

ij + Vch
ij . (6)

It includes three parts: Vconf
ij is the confinement potential, which describes the long-distance

effect; VOGE
ij is one-gluon-exchange (OGE) potential, which describes the short-range

effect; Vch
ij is the quark chiral SU(3) field-induced interaction, including the pseudoscalar

exchanges and the scalar exchanges between two quarks. The explicit expressions are
listed below:

Vconf
ij = −

(
λc

i · λc
j

)(
ac

ijr
2
ij − ac0

ij

)
(7)

VOGE
ij =

1
4

gigj(λ
c
i · λc

j )

{
1
rij
− π

2
δ(rij)

(
1

m2
qi

+
1

m2
qj

+
4
3

σi · σj

mqi mqj

)
− 1

4mqi mqj r
3
ij

Sij

}
(8)

Vch
ij =

8

∑
a=0

Vπa
ij +

8

∑
a=0

Vσa
ij ,

Vσa
ij = −C(gch, mσa , Λ)(λa(i)λa(j))X1(mσa , Λ, rij), (9)

Vπa
ij = C(gch, mπa , Λ)(λa(i)λa(j))

m2
πa

12mqi mqj

×
{

X2(mπa , Λ, rij)(σi · σj) +

(
H(mπa rij)− (

Λ
mπa

)3H(Λrij)

)
Sij

}
,

where mq is the mass of quark and rij is the relative distance between two quarks, and

Sij = 3(σi · r̂)(σj · r̂)− (σi · σj) ,

C(gch, m, Λ) =
g2

ch
4π

Λ2

Λ2 −m2 m,

X1(m, Λ, r) = Y(mr)− Λ
m

Y(Λr), (10)

X2(m, Λ, r) = Y(mr)− Λ3

m3 Y(Λr) ,

Y(x) =
1
x

e−x , H(x) = (1 +
3
x
+

3
x2 )Y(x) .

and more details can be found in ref. [47].
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2.2. Baryon Octet

We use a totally antisymmetric wave function to describe a baryon octet with spin 1/2,
including orbit (O), flavor (F), spin (S) and color (C) spaces, and it can be written using the
Young tableaux method:

OFSC = OFS ⊗ C (11)

=
1√
2


MS

OF ⊗
MS

S ⊕
MA

OF ⊗
MA

S

⊗ C ,

where the MS and MA label a mixed symmetric and a mixed antisymmetric state, respec-
tively. The orbital flavor (OF) parts of wave function mean that the orbital part has a
flavor index, which cannot be separated from the flavor part. The nucleon wave functions
used in the calculation for deuteron in flavor and spin spaces are listed in Tables 1 and 2,
respectively.

Table 1. The flavor wave function for nucleon.

|T , MT〉 [21]MS
F [21]MA

F Octet

| 12 , 1
2 〉 −

√
1
6 |udu + duu− 2uud〉

√
1
2 |udu− duu〉 p

| 12 ,− 1
2 〉

√
1
6 |udd + dud− 2ddu〉

√
1
2 |udd− dud〉 n

Table 2. The spin wave function for baryon with spin S = 1
2 .

|S, Ms〉 [21]MS
S [21]MA

S

| 12 , 1
2 〉 −

√
1
6 | ↑↓↑ + ↓↑↑ −2 ↑↑↓〉

√
1
2 | ↑↓l − ↓↑↑〉

| 12 ,− 1
2 〉

√
1
6 | ↑↓↓ + ↓↑↓ −2 ↓↓↑〉

√
1
2 | ↑↓↓ − ↓↑↓〉

Baryon is considered as a color singlet with |[111]〉C symmetry in color space; thus,
the color singlet can be written as

|[111]〉C =

√
1
6
|rgb + gbr + brg− rbg− grb− bgr〉 . (12)

We should stress that for an orbital flavor wave function of baryon octet A, the explicit
expression is

|A〉MX
OF[21] = ∑

f1 f2 f3

ACMX
[21]( f1 f2 f3) | f1 f2 f3〉OF (13)

= ∑
f1 f2 f3

ACMX
[21]( f1 f2 f3) | f1 f2 f3〉F ×ΦA

3q(r1, f1; r2, f2; r3, f3) ,

where the coefficients ACMX
[21]( f1 f2 f3) are the standard SU(3) Clebsch–Gordan coefficients,

and MX denotes the MS or MA components [62].
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2.3. Baryon Decuplet

We also used a totally antisymmetric wave function to describe a baryon decuplet
state with spin 3/2 which can be written using the similar Young tableaux method:

OFSC = OFS ⊗ C = OF ⊗ S ⊗ C . (14)

It is noted again that the orbit wave function will depend on the different quark
masses; thus, it has a flavor index which cannot be separated from the flavor part.

|A〉OF[3] = ∑
f1 f2 f3

AC[3]( f1 f2 f3) | f1 f2 f3〉OF

= ∑
f1 f2 f3

AC[3]( f1 f2 f3) | f1 f2 f3〉F ×ΦA
3q(r1, f1; r2, f2; r3, f3) . (15)

The wave functions for baryon decuplet with spin S = 3
2 used in the present calculation

in flavor and spin spaces are listed in Tables 3 and 4, respectively.

Table 3. The spin wave function for baryon with spin S = 3
2 .

Spin |S, Ms〉 [3]S

| 32 , 3
2 〉 | ↑↑↑〉

S = 3
2 | 32 , 1

2 〉
√

1
3 | ↑↑↓ + ↑↓↑ + ↓↑↑〉

| 32 ,− 1
2 〉

√
1
3 | ↑↓↓ + ↓↑↓ + ↓↓↑〉

| 32 ,− 3
2 〉 | ↓↓↓〉

Table 4. The flavor wave function for the baryon decuplet.

Isospin |T , MT〉 [3]F Decuplet

| 32 , 3
2 〉 |uuu〉 ∆++

T = 3
2 | 32 , 1

2 〉
√

1
3 |uud + udu + duu〉 ∆+

| 32 ,− 1
2 〉

√
1
3 |udd + dud + ddu〉 ∆0

| 32 ,− 3
2 〉 |ddd〉 ∆−

|1, 1〉
√

1
3 |uus + usu + suu〉 Σ∗+

T = 1 |1, 0〉
√

1
6 |uds + dus + usd + sud + dsu + sdu〉 Σ∗0

|1,−1〉
√

1
3 |dds + dsd + sdd〉 Σ∗−

T = 1
2 | 12 , 1

2 〉
√

1
3 |uss + sus + ssu〉 Ξ∗0

| 12 ,− 1
2 〉

√
1
3 |dss + sds + ssd〉 Ξ∗−

T = 0 |0, 0〉 sss Ω−

2.4. Resonating Group Method

We employ the resonating group method to study the property of the two-cluster
system, which is a standard method used in nuclear physics. As usual, the generating
coordinate method (GCM), which is equivalent to RGM, was employed in the actual
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calculation. The the unknown relative orbital wave function is expanded by using the
locally peaked Gaussian basis function [62–65], which is written as

Ψ6q =
N

∑
i=1

ciAΦ6q(123, 456, si) , (16)

with

Φ6q(123, 456, si) = ∑
f1 f2 f3

3

∏
k=1

Φ(rk,
µAB
MA

si)χ
sfc(123) ∑

f4 f5 f6

6

∏
n=4

Φ(rn,−µAB
MB

si)χ
sfc(456) , (17)

where

Φ(rk,
µAB
MA

si) =
(mkω

π

)3/4
exp

[
−1

2
mkω

(
rk −

µAB
MA

si

)2
]

(18)

and ω is the oscillator frequency; si (i = 1, · · · , N) is the generator coordinate, which
qualitatively describes the distance between two interacting clusters; MA and MB are the
masses of cluster A and B, respectively; the reduced mass µAB = MA MB

MA+MB
; and χsfc is the

wave function in sfc space.
We define the antisymmetrizing operator of Equation (16) between clusters A and B:

A = 1−
3

∑
i=1

6

∑
j=4

Posfc
ij , (19)

where Posfc
ij is the permutation operator between the ith quark (inside cluster A) and the

jth quark (inside cluster B) in orbital, spin, flavor and color space. Due to the permutation
symmetry [66], the above equation can be further written as

A = 1− 9Posfc
36 , (20)

and that is why we only need to compute the interaction RGM matrix elements shown in
Figure 1, which include the limited direct and exchange terms. Finally, we can dynamically
solve the variational equation:

〈δΨ6q|H − E|Ψ6q〉 = 0 (21)

for the bound state problem, and then obtain the binding energy and wave function. Actu-
ally, similarly to our previous work [47], a secular equation is deduced from Equation (21)
in the calculation:

10

∑
j=1

[Hij − ENij] cj = 0 (i = 1, 2, · · · , 10)

Then, we further project it to partial waves as

10

∑
j=1

[HL
ij − ENL

ij ] cj = 0 , (i = 1, 2, · · · , 10) , (22)
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where{
HL

ij
NL

ij

}
=

∫
Y∗LM(Ŝi)

{
Hij
Nij

}
YLM(Ŝj)dŜidŜj, (23)

{
Hij
Nij

}
=

∫
Φ6q(r1, r2, · · · , r6, Si)

{
H
1

}
A Φ6q(r1, r2, · · · , r6, Sj)

6

∏
k=1

drk.

1 2 3 6 5 4 1 2 3 6 5 4 1 2 3 6 5 4 1 2 3 6 5 4

V EX
36 V EX

13 V EX
16 V EX

14

• • • • • • • •

1 2 3 6 5 4 1 2 3 6 5 4 1 2 3 6 5 4 1 2 3 6 5 4

TEX
3 V D

12 V D
36 V EX

12

• • • • • • •

1 2 3 6 5 4 1 2 3 6 5 4 1 2 3 6 5 4 1 2 3 6 5 4

ND NEX TD
1 TEX

1

• •

Figure 1. The diagram of RGM matrix elements, including the direct and exchange terms of norm,
kinematic and interaction, and the dot denoting the position of quark.

When we further consider the CC channel, Equation (22) is extended into the coupled-
channel RGM case:

20

∑
j=1

[HL
ij − ENL

ij ] cj = 0 (i = 1, · · · , 20), (24)

with i, j = 1, 2, · · · , 10 for the single-channel calculation, and i, j = 11, 12, · · · , 20 for the
coupled-channel calculation.

2.5. Model Parameters

In the calculation, only three initial input parameters are actually needed. They are the
harmonic oscillator width of an up quark, bu; the mass of an up quark, mu; and the mass of
a strange quark, ms.
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For the pseudoscalar chiral fields, the masses are taken from [46,47], which correspond
the experimental values. For the scalar chiral fields, σ′, ε, their masses are taken to be
980 MeV, which correspond to the experimental a0(980) and f0(980) mesons. The mass
of sigma is decided by fitting the binding energy of deuteron and adopted to be 595 MeV
in the present calculation, and the mass of kappa is determined by fitting the nucleon–
hyperon scattering processes [46,47]. The cut-off mass Λ is taken to be the value close to the
chiral symmetry-breaking-scale [67–69], and we take 1.1 GeV for all chiral fields in order to
reduce the number of parameters, as in [46]. It should be mentioned that the effects of SU(2)
and SU(3) scalars are not discussed in the present work, or in any of our previous works.

For a strange quark, the harmonic oscillator width is

b2
i =

1
miω

⇒ bs = bu

√
mu

ms
. (25)

The coupling constant between the quark and chiral fields is taken to be

g2
ch

4π
=

(
3
5

)2 m2
u

M2
N

g2
NNπ

4π
(26)

with the empirical value g2
NNπ/4π = 13.67 used.

Finally, the one-gluon coupling constants and confinement strengths will be deter-
mined by the experimental information in the following way. The experimental energies of
the baryon ground states we used are listed in Table 5 for baryons.

Table 5. The experimental energies of the baryon ground states.

N Σ Ξ Λ ∆ Σ∗ Ξ∗ Ω

Exp (MeV) 939 1194 1319 1116 1232 1385 1530 1672

The quark gluon coupling constants in Equation (8) are flavor-dependent and can be
determined by the following mass split.

M∆ −MN = 293 MeV ⇒ gu , (27)

MΣ −MΛ = 78 MeV ⇒ gs .

The confinement strengths are fixed by the stability conditions of N, Λ, and Ξ.

∂MN
∂ω

= 0 ⇒ ac
uu ,

∂MΛ

∂ω
= 0 ⇒ ac

us , (28)

∂MΞ

∂ω
= 0 ⇒ ac

ss .

The zero point energies can be determined by fitting the masses of N, Σ, and Ξ + Ω: [47].

MN = 939 MeV ⇒ ac0
uu ,

MΣ = 1194 MeV ⇒ ac0
us , (29)

MΞ + MΩ = 2991 MeV ⇒ ac0
ss .

We list the obtained model parameters in Table 6, and we can see that these parameters
are not arbitrarily adjusted.
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Table 6. The model parameters and the binding energy of a deuteron. The masses of pseudoscalar
chiral fields are mπ = 138 MeV, mK = 495 MeV, mη = 549 MeV, and mη′ = 958 MeV; the masses of
scalar chiral fields mσ′ = mε = mκ = 980 MeV; the cutoff mass Λ = 1100 MeV.

bu mu ms mσ gu

0.5 fm 313 MeV 470 MeV 595 MeV 0.886

gs gch ac
uu ac

us ac
ss

0.917 2.621 48.1 MeV/ fm2 60.7 MeV/ fm2 101.2 MeV/ fm2

ac0
uu ac0

us ac0
ss Bdeu

−43.6 MeV −38.2 MeV −36.1 MeV 2.15 MeV

3. In the Single-Channel Calculation

We wanted to dynamically investigate the baryon–baryon interactions in the chiral
SU(3) quark model by solving the resonating group method equation, as depicted in
Section 2.4. First, we discuss the deuteron structure and compare with the experimental
data. Second, the symmetry structure of each dibaryon is analyzed. Then, the dynamical
calculations for the single channel are shown for the six chosen dibaryon candidates.

The binding energy and corresponding root-mean-square (RMS) are defined, respec-
tively, just same as in [70]:

Eb = −[MAB − (MA + MB)] , (30)

R =

√√√√1
6

6

∑
i=1
〈(ri − Rc.m.)2〉 .

3.1. Deuteron

The deuteron, (NN)ST=10, is an interesting state. The resultant binding energy, scat-
tering length, and corresponding experimental data [71] are given in Table 7. It is seen that
the binding energy is 2.15 MeV and scattering length is 5.49 fm, which are consistent with
the experiment.

Table 7. The calculated binding energy and scattering length of the deuteron.

Theory Exp

binding energy (MeV) 2.15 2.20

scattering length (fm) 5.49 5.42

As discussed in [31], if 〈Asfc〉 ∼ 1, whether this system can be bound depends on the
contributions from chiral fields. For the deuteron, the (NN)ST=10 state, its 〈Asfc〉 = 10/9,
which just belongs to this case. It is thus very interesting to see which chiral field interactions
are important in forming the deuteron. We print out the diagonal GCM matrix elements
for the deuteron, of which only the central force from chiral field interactions are shown
in Figure 2, where s denotes the generator coordinate with si = sj = s (i = 1, · · · , 10), the
left side of Figure 2 shows the contributions from the pseudoscalar chiral fields, and the
right side shows the contributions from the scalar chiral fields. It is seen in Figure 2 that
the pseudoscalar pion meson mainly provides the repulsive contribution and the sigma
meson mainly provides the attractive contribution, showing clearly that all other chiral
field exchanges can be negligible. We should stress that the analysis in Figure 2 is only
from central interaction, indicating that the sigma meson exchange mechanism is very



Symmetry 2023, 15, 446 11 of 25

important in helping to form the final deuteron structure, since it provides the attractive
interaction. This can be obviously seen from the following calculation for NN scattering
process related to the deuteron. In Figure 3, we further show the calculated 3S1 phase shift
of the NN interaction, in which the dashed curve denotes the result of closing both sigma
meson exchange and tensor coupling; the dashdotted curve shows the result with sigma
meson exchange and without tensor coupling; the solid curve represents the result of the
full calculation, which means that both the sigma meson exchange and tensor coupling are
included. The experimental data were adopted from [72]. From Figure 3, we can see clearly
that both contributions from sigma meson exchange and from tensor coupling of 3S1-3D1
are important in forming the deuteron structure; in particular, the sigma meson exchange
largely provides the attractive contribution. Actually, similar results were obtained in [73],
in which we also showed the relative wave functions of the deuteron in the chiral SU(3)
quark model, including 3S1 and 3D1 in Figure 1.

1 2 3
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100

200

300

s (fm)
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)
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)

(NN)ST=10

π
K
η

η′

1 2 3
−300

−200

−100

0

100

s (fm)

(NN)ST=10

σ′
κ
σ
ε

Figure 2. The GCM matrix elements of central force from chiral field interactions.
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Figure 3. The 3S1 phase shift of the NN scattering.

3.2. Symmetry Property

As discussed in [31], there are two important factors to deciding on whether a baryon-
baryon system is bound or not. The first is the symmetry structure, which is characterized by
the expectation value of the antisymmetrizer in the sfc space. The second is the interactions
of two baryons, which mainly form the quark chiral SU(3) field interactions. The expectation
value of 〈Asfc〉 for deuteron and the six interesting states are tabulated in Table 8. We also list
the corresponding quantum numbers of spin S and isospin T for the two coupled baryons.
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If 〈Asfc〉 ∼ 0, it means that this state is almost forbidden and struggles to become a
bound state; if 〈Asfc〉 ∼ 1, it means that the contributions from chiral fields are important
in forming a bound state; if 〈Asfc〉 ∼ 2, it means that this state is the mostly antisymmetric
and symmetric in the sfc space and in orbital space, respectively. Hence, it is very possible
to become a bound state in this case. Except the deuteron, it is shown in Table 8 that there
are six candidates which belong to this case.

We wanted to understand how the symmetry property affects the binding energy.
We drew the diagonal GCM matrix elements for the kinetic energy part in Figure 4. As
the kinetic energy itself is spin-flavor-color independent, it is interesting to see the at-
traction arising from the quark exchange. We performed a systematic analysis for all the
interesting systems, including the ∆∆, Σ∗∆, Ξ∗Ω and ΩΩ systems, which are spin and
isospin-independent. For a clear comparison, we also show the deuteron case in the same
figure. The expectation value of the antisymmetrizer is 〈Asfc〉 = 10/9 for the deuteron,
〈Asfc〉 = 2 for ∆∆, in Σ∗∆, Ξ∗Ω and ΩΩ systems. Taking an example, for the ΩΩ with
strangeness -6 case, it is shown from Figure 4 that there is strong attraction in the short-
range part arising from the quark exchange in the kinetic energy part, and the attraction is
small in the relatively long-range part in the deuteron case, which demonstrates clearly
that the quantum mechanical effect alone has played a decisive role in binding the two
clusters. Similar curves also occur for ∆∆, Σ∗∆ and Ξ∗Ω, corresponding to strangeness 0,
−1 and −5 cases, respectively.
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Figure 4. The GCM matrix elements of kinetic energy part for different dibaryon states and deuteron
states.
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Table 8. The symmetry structure.

〈Psfc
36 〉 〈Asfc〉

deuteron − 1
81

10
9

(∆∆)ST=03 − 1
9 2

(∆∆)ST=30 − 1
9 2

(Σ∗∆)ST=0 5
2

− 1
9 2

(Σ∗∆)ST=3 1
2

− 1
9 2

(Ξ∗Ω)ST=0 1
2

− 1
9 2

(ΩΩ)ST=00 − 1
9 2

3.3. Explanation of the deuteron

We provide some explanatory parts of why the deuteron would form in our chiral
quark model. As mentioned above, according to the traditional quark model, a baryon is
composed of three quarks. The proton and neutron are shown in Figure 5.

Figure 5. The proton (left) and neutron (right).

It is shown that the proton has two u quarks and one d quark, and the neutron has
two d quarks and one u quark; the corresponding flavor wave functions are given in
Table 1. Both protons and neutrons are color singlets; the color wave function is shown
in Equation (12). Naturally, one may ask what will happen when a proton and neutron
meet together. The experiment has told us that when a proton and a neutron meet together,
they become a loosely bound state with a small binding energy, that is, the deuteron, a well
established molecular state. We have provided the perfect explanation of why deuteron
would be formed within the chiral SU(3) quark model in Section 3.1. It is noted that both
contributions—from sigma meson exchange and tensor coupling—are important in forming
the deuteron structure. In particular, the sigma meson exchange is largely responsible for
the attractive interaction.

3.4. Dibayons

Exploring dibaryon candidates has attracted much attention both theoretically and
experimentally. This is a good place to investigate the quark behavior in the short-distance
range, since all six quarks would be in a small region where the one gluon exchange and
quark exchange play significant roles. The chiral SU(3) quark model is one of the most
successful models, in which we can reasonably explain the binding energies of baryon
ground states and deuteron; we can also reproduce the NN scattering phase shifts and YN
cross-sections [47]. No doubt, predicting possible dibaryon candidates using the same set
of parameters in the chiral SU(3) quark model is quite reasonable and meaningful.

We dynamically solved the RGM equation in the chiral SU(3) quark model, and the
final results are shown in Table 9, including the binding energy and RMS.
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Table 9. The binding energy and RMS in the single-channel case.

Eb (MeV) R (fm)

(∆∆)ST=30 28.9 0.96

(∆∆)ST=03 22.6 1.03

(Σ∗∆)ST=3 1
2

34.0 0.90

(Σ∗∆)ST=0 5
2

32.3 0.94

(Ξ∗Ω)ST=0 1
2

100.9 0.70

(ΩΩ)ST=00 122.8 0.66

It is seen in Table 9 that all these six candidates would become bound states in the
single-channel calculation. We should mention the two reasons of why they all become
bound states. One is the symmetry property: they all belong to the 〈Asfc〉 = 2 case. Another
reason is that the scalar meson exchanges mainly dominate the binding behavior. The
obtained results are similar to those in [31].

We have noticed that the recent HAL QCD Collaboration reported the (ΩΩ)ST=00
interaction potential by the lattice QCD simulations. The authors predict that this state
would be bound, but with the binding energy of a few MeV [7]. However, we predict that
this state would be deeply bound in the chiral SU(3) quark model [29–31], as shown in
Table 9, with a binding energy of a hundred MeV. Undoubtedly, this involves the question
of interaction mechanism. It is also very interesting to see which chiral field interactions
is important in forming the (ΩΩ)ST=00 dibaryon. We drew the diagonal GCM matrix
elements in Figure 6, including the contributions from the pseudoscalar chiral fields and
from the scalar chiral fields. It is noticed that the contributions from the scalar sigma and
epsilon chiral fields, especially the sigma field, are very important in forming this deeply
bound state.
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η
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−400

−300

−200

−100

0

100

s (fm)

(ΩΩ)ST=00

σ′
κ
σ
ε

Figure 6. The GCM matrix elements of chiral field interactions for (ΩΩ)ST=00 dibaryon.

4. In the Coupled-Channel Calculation

We wanted to extend the dynamical calculations in the coupled-channel case. The CC
channel was included to investigate other interesting candidates, since we found that CC
channel plays an important role in the binding behavior of the d∗ system [38,39]. Further
exploring the effect from CC channel is surely interesting and important.

It is rather complicated to construct the CC wave function and evaluate the coefficients
by using cfp method in group theory. In this section, we develop the method, which is
used in studying the ∆∆ system, into systems with different strangeness. With this method,
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it is relatively easy to construct the CC wave function. By using this method, we further
evaluate all the sfc matrix elements needed in the dynamical calculations.

It should be specially emphasized that in the present calculations, we only consider
the following configuration for each state: (∆∆+CC), (Σ∗∆+CC), (Ξ∗Ω+CC), or (ΩΩ+CC),
respectively.

4.1. (∆∆)ST=30

The CC wave function can be written as

|CC〉ST=30 = −1
2
|∆∆〉ST=30 +

5
2
Asfc|∆∆〉ST=30 (31)

Then according to Equation (31) all the sfc matrix elements for the (∆∆)ST=30 state are
computed and listed in Table 10, including 〈∆∆|Ôij|∆∆〉, 〈∆∆|Ôij|CC〉 and 〈CC|Ôij|CC〉.
These results are similar to those in [38]. We can see that the 〈CC|λc

1 · λc
2|CC〉 = − 2

3 ,
indicating that the CC state is correct and consistent with those in group theory [50].

Table 10. The matrix elements of the (∆∆)ST=30 state in sfc space.

∆∆ ∆∆ CC ∆∆ ∆∆ CC

∆∆ CC CC ∆∆ CC CC

1 1 0 1

P36 − 1
9 − 4

9 − 7
9

λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8

27
32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27

σi · σj λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8

27
32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27

σi · σj ∑3
a=1 λa(i)λa(j) Ô12 1 0 −1 Ô36 − 5

3 0 − 1
3

Ô12P36 − 1
9 − 4

9
11
9 Ô36P36

7
9

4
9

1
9

Ô13P36 − 1
9 − 4

9
5
9 Ô16P36 − 1

9
8
9

5
9

Ô14P36
1
3

2
3 0

σi · σj ∑7
a=4 λa(i)λa(j) Ô12 0 0 0 Ô36 0 0 0

Ô12P36 0 0 0 Ô36P36 0 0 0

Ô13P36 0 0 0 Ô16P36 0 0 0

Ô14P36 0 0 0

After including the CC channel, we dynamically solve the corresponding coupled-
channel equation in the chiral SU(3) quark model; the results of the coupled-channel
calculation are shown in Table 11. We notice that the couplings from tensor interaction and
from CC channel add increments of about 6.2 MeV and 17.4 MeV to the binding energy,
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respectively. Both couplings make the binding energy increase from 22.7 MeV to 47.4 MeV,
and the RMS decreases from 0.98 fm to 0.88 fm.

Table 11. The binding energy and RMS in the coupled-channel case for the (∆∆)ST=30 state.

L = 0 L = 0 + 2

∆∆ ∆∆ + CC ∆∆ ∆∆ + CC

Eb (MeV) 22.7 40.1 28.9 47.7

R (fm) 0.98 0.89 0.96 0.88

We present the results calculated in the extended chiral SU(3) quark model [39] in
Table 12. We can see that the binding energy increases from 56.1 MeV to 84 MeV, and
RMS decreases from 0.84 fm to 0.78 fm, indicating that this state is deeply bound and the
coupling to the CC channel plays a significant role. It can also be seen that the mass of this
state is higher than the mass of N∆π and lower than the threshold of the ∆∆ channel.

Table 12. The same as Table 11 but in the extended chiral SU(3)quark model.

L = 0 L = 0 + 2

∆∆ ∆∆ + CC ∆∆ ∆∆ + CC

Eb (MeV) 56.1 62.4 78.2 84.0

R (fm) 0.84 0.84 0.78 0.78

The width was further evaluated by using the above obtained CC wave function in
the extended chiral SU(3) quark model. The results show that the resultant total width for
this state is about 69 MeV [44], which is compatible with the experimental observation of
about 75 MeV [1].

4.2. (∆∆)ST=03

The obtained CC wave function is

|CC〉ST=03 = −1
2
|∆∆〉ST=03 +

5
2
Asfc|∆∆〉ST=03 (32)

Then according to Equation (32) all the sfc matrix elements for the (∆∆)ST=03 state are
computed and listed in Table 13. These results are similar to those in [10]. It is noted that
the 〈CC|λc

1 · λc
2|CC〉 = − 2

3 , verifying again that the CC is correct.
Similarly, we performed the corresponding coupled-channel calculation dynamically

in the chiral SU(3) quark model. The calculated results are given in Table 14. There is no
tensor force in this case, due to its S = 0 state. It is noticed that the coupling from CC
channel increases the binding energy from 22.6 MeV to 31.6 MeV, and the RMS decreases
from 1.03 fm to 0.97 fm, which indicates that the CC channel coupling has a large effect on
the (∆∆)ST=03 state. The mass of this state is higher than the mass of N∆π and lower than
the threshold of the ∆∆ channel.
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Table 13. The same as Table 10 but for the (∆∆)ST=03 state.

∆∆ ∆∆ CC ∆∆ ∆∆ CC

∆∆ CC CC ∆∆ CC CC

1 1 0 1

P36 − 1
9 − 4

9 − 7
9

λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8

27
32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27

σi · σj λc
i · λc

j Ô12 − 8
3 0 − 10

3 Ô36 0 − 16
9 − 20

9

Ô12P36
8

27
32
27

74
27 Ô36P36

112
27 − 8

27
88
27

Ô13P36
8

27
32
27

68
27 Ô16P36

8
27

44
27

68
27

Ô14P36
4
9

14
9

7
3

σi · σj ∑3
a=1 λa(i)λa(j) Ô12 1 0 -1 Ô36 − 5

3 0 − 1
3

Ô12P36 − 1
9 − 4

9
11
9 Ô36P36

7
9

4
9

1
9

Ô13P36 − 1
9 − 4

9
5
9 Ô16P36 − 1

9
8
9

5
9

Ô14P36
1
3

2
3 0

σi · σj ∑7
a=4 λa(i)λa(j) Ô12 0 0 0 Ô36 0 0 0

Ô12P36 0 0 0 Ô36P36 0 0 0

Ô13P36 0 0 0 Ô16P36 0 0 0

Ô14P36 0 0 0

Table 14. The same as Table 11 but for the (∆∆)ST=03 state.

L = 0

∆∆ ∆∆ + CC

Eb (MeV) 22.6 31.6

R (fm) 1.03 0.97

4.3. (Σ∗∆)ST=3 1
2

Now we move to the system with strangeness -1, choosing Σ∗∆ with spin S = 3 case.
The Σ∗ baryon has a strange quark. As in [38], a method was developed to build the CC
wave function for Σ∗∆ system, which is written as

|CC〉ST=3 1
2
= a |Σ∗∆〉ST=3 1

2
+ b Asfc|Σ∗∆〉ST=3 1

2
, (33)
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and by utilizing the orthogonality 〈Σ∗∆|CC〉 = 0, 〈CC|CC〉 = 1, we obtain a = − 1
2 ,

b = 5
2 ; thus,

|CC〉ST=3 1
2
= −1

2
|Σ∗∆〉ST=3 1

2
+

5
2
Asfc|Σ∗∆〉ST=3 1

2
. (34)

Then according to Equation (34) all the sfc matrix elements are evaluated and tabulated in
Table 15, including 〈Σ∗∆|Ôij|Σ∗∆〉, 〈Σ∗∆|Ôij|CC〉 and 〈CC|Ôij|CC〉. It is noticed again that
in this extended system with strangeness −1, the 〈CC|λc

1 · λc
2|CC〉 = − 2

3 , indicating the
correctness of constructed CC wave function.

Table 15. The same as Table 10 but for the (Σ∗∆)ST=3 1
2

state.

Σ∗∆ Σ∗∆ CC Σ∗∆ Σ∗∆ CC

Σ∗∆ CC CC Σ∗∆ CC CC

1 1 0 1

P36 − 1
9 − 4

9 − 7
9

λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8

27
32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27

σi · σj λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8

27
32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27

σi · σj ∑3
a=1 λa(i)λa(j) Ô12

2
3 0 − 2

3 Ô36 − 10
9 0 − 2

9

Ô12P36 − 2
27 − 8

27
22
27 Ô36P36

14
27

8
27

2
27

Ô13P36 − 2
27 − 8

27
10
27 Ô16P36 − 2

27
16
27

10
27

Ô14P36
2
9

4
9 0

σi · σj ∑7
a=4 λa(i)λa(j) Ô12

2
3 0 0 Ô36 − 2

9 0 2
9

Ô12P36 − 2
27 − 8

27
4

27 Ô36P36
2
9 0 − 2

9

Ô13P36 − 2
27 − 8

27 − 2
27 Ô16P36 − 2

27
4

27 − 2
27

Ô14P36
2

27
2

27 − 2
27

By applying these sfc matrix elements, we dynamically solved the corresponding
coupled-channel equation. The calculated results are given in Table 16. We see again that
the coupling from tensor interaction and from the CC channel resulted in increments of
about 3.6 MeV and 14.8 MeV to the binding energy, respectively. Both couplings make the
binding energy increase from 30.4 MeV to 50.4 MeV and RMS decrease from 0.91 fm to
0.84 fm, showing this state is deeply bound, and the coupling to the CC channel plays a
significant role. We can see that the mass of this state is higher than the mass of Λπ∆ and
lower than the threshold of the Σ∗∆ channel.



Symmetry 2023, 15, 446 19 of 25

Table 16. The same as Table 11 but for the (Σ∗∆)ST=3 1
2

state.

L = 0 L = 0 + 2

Σ∗∆ Σ∗∆+CC Σ∗∆ Σ∗∆ + CC

Eb (MeV) 30.4 45.2 34.0 50.4

R (fm) 0.91 0.85 0.90 0.84

4.4. (Σ∗∆)ST=0 5
2

There is another Σ∗∆ state, but for it, S = 0; thus, there is no contribution from tensor
force to this state. A similar method to that above was utilized to build the CC wave
function, and finally, we obtained

|CC〉ST=0 5
2
= −1

2
|Σ∗∆〉ST=0 5

2
+

5
2
Asfc|Σ∗∆〉ST=0 5

2
, (35)

and according to Equation (35) all the sfc matrix elements were computed and listed in
Table 17. It can be noted again that 〈CC|λc

1 · λc
2|CC〉 = − 2

3 , indicating the correctness of CC
wave function in this case.

Table 17. The same as Table 10 but for the (Σ∗∆)ST=0 5
2

state.

Σ∗∆ Σ∗∆ CC Σ∗∆ Σ∗∆ CC

Σ∗∆ CC CC Σ∗∆ CC CC

1 1 0 1

P36 − 1
9 − 4

9 − 7
9

λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8

27
32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27

σi · σj λc
i λc

j Ô12 − 8
3 0 − 10

3 Ô36 0 - 16
9 − 20

9

Ô12P36
8

27
32
27

74
27 Ô36P36

112
27 - 8

27
88
27

Ô13P36
8

27
32
27

68
27 Ô16P36

8
27

44
27

68
27

Ô14P36
4
9

14
9

7
3

σi · σj ∑3
a=1 λa(i)λa(j) Ô12

2
3 0 − 2

3 Ô36 − 10
9 0 − 2

9

Ô12P36 − 2
27 − 8

27
22
27 Ô36P36

14
27

8
27

2
27

Ô13P36 − 2
27 − 8

27
10
27 Ô16P36 − 2

27
16
27

10
27

Ô14P36
2
9

4
9 0

σi · σj ∑7
a=4 λa(i)λa(j) Ô12

2
3 0 − 2

3 Ô36 − 10
9 0 − 2

9

Ô12P36 − 2
27 − 8

27
22
27 Ô36P36

14
27

8
27

2
27

Ô13P36 − 2
27 − 8

27
10
27 Ô16P36 − 2

27
16
27

10
27

Ô14P36
2
9

4
9 0



Symmetry 2023, 15, 446 20 of 25

The corresponding coupled-channel equation was dynamically solved in the chiral
SU(3) quark model. The calculated results are given in Table 18. We can see that, due to
the coupling from CC channel, the binding energy increases from 32.3 MeV 41.5 MeV, and
the RMS decreases from 0.94 fm to 0.90 fm. This indicates that this state is bound, and the
coupling to the CC channel has an obvious influence on this state. Again, We can also see
that the mass of this state is higher than the mass of Λπ∆ and lower than the threshold of
Σ∗∆ channel.

Table 18. The same as Table 11 but for the (Σ∗∆)ST=0 5
2

state.

L = 0

Σ∗∆ Σ∗∆ + CC

Eb (MeV) 32.3 41.5

R (fm) 0.94 0.90

4.5. (Ξ∗Ω)ST=0 1
2

Now, we continue to move to a high strangeness( −5) system, Ξ∗Ω with S = 0 and
T = 1/2, in which there are two strange quarks in the Ξ∗ baryon and three strange quarks
in the Ω baryon. We adopted a similar method as in [38] and employed the orthogonality
〈Ξ∗Ω|CC〉 = 0, 〈CC|CC〉 = 1; finally, the CC wave function was obtained:

|CC〉ST=0 1
2
= −1

2
|Ξ∗Ω〉ST=0 1

2
+

5
2
Asfc|Ξ∗Ω〉ST=0 1

2
. (36)

Then according to Equation (36) all the sfc matrix elements are evaluated and listed
in Table 19, including 〈Ξ∗Ω|Ôij|Ξ∗Ω〉, 〈Ξ∗Ω|Ôij|CC〉 and 〈CC|Ôij|CC〉. It is seen that in
this case with high strangeness, 〈CC|λc

1 · λc
2|CC〉 = − 2

3 , indicating the correctness of
constructed CC wave function.

Table 19. The same as Table 10 but for the (Ξ∗Ω)ST=0 1
2

state.

Ξ∗Ω Ξ∗Ω CC Ξ∗Ω Ξ∗Ω CC

Ξ∗Ω CC CC Ξ∗Ω CC CC

1 1 0 1

P36 − 1
9 − 4

9 − 7
9

λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8
27

32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27

σi · σj λc
i · λc

j Ô12 − 8
3 0 − 10

3 Ô36 0 − 16
9 − 20

9

Ô12P36
8

27
32
27

74
27 Ô36P36

112
27 − 8

27
88
27

Ô13P36
8

27
32
27

68
27 Ô16P36

8
27

44
27

68
27

Ô14P36
4
9

4
9

7
3
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Table 19. Cont.

σi · σj ∑3
a=1 λa(i)λa(j) Ô12 0 0 0 Ô36 0 0 0

Ô12P36 0 0 0 Ô36P36 0 0 0
Ô13P36 0 0 0 Ô16P36 0 0 0
Ô14P36 0 0 0

σi · σj ∑7
a=4 λa(i)λa(j) Ô12

2
3 0 − 2

3 Ô36 − 10
9 0 − 2

9
Ô12P36 − 2

27 − 8
27

22
27 Ô36P36

14
27

8
27

2
27

Ô13P36 − 2
27 − 8

27
10
27 Ô16P36 − 2

27
16
27

10
27

Ô14P36
2
9

4
9 0

For dynamically solving the corresponding coupled-channel equation, the results are
given in Table 20. We notice that no matter whether single-channel or coupled-channel
calculations are used, this state will be deeply bound. It is shown that the coupling to the
CC channel has some influence in forming this bound state, which results in an increment
of about 4.8 MeV to the binding energy, and the RMS decreases from 0.70 fm to 0.69 fm.

Table 20. The same as Table 11 but for the (Ξ∗Ω)ST=0 1
2

state.

L = 0

Ξ∗Ω Ξ∗Ω + CC

Eb (MeV) 100.9 105.7

R (fm) 0.70 0.69

4.6. (ΩΩ)ST=00

We continue to extend system with high strangeness, -6; ΩΩ with S = 0, T = 0.
Similarly, we adopted the method utilized in [38] to build the CC wave function. Again the
similar orthogonality 〈ΩΩ|CC〉 = 0, 〈CC|CC〉 = 1 was employed. Finally, the CC wave
function becomes

|CC〉ST=00 = −1
2
|ΩΩ〉ST=00 +

5
2
Asfc|ΩΩ〉ST=00 . (37)

Then according to Equation (37) all the sfc matrix elements, including 〈ΩΩ|Ôij|ΩΩ〉,
〈ΩΩ|Ôij|CC〉, and 〈CC|Ôij|CC〉, are further evaluated and tabulated in Table 21. It is no-
ticed that the 〈CC|λc

1 ·λc
2|CC〉 = − 2

3 , again indicating that in this case with high strangeness,
the constructed CC wave function is correct.

Table 21. The same as Table 10 but for the (ΩΩ)ST=00 state.

ΩΩ ΩΩ CC ΩΩ ΩΩ CC

ΩΩ CC CC ΩΩ CC CC

1 1 0 1

P36 − 1
9 − 4

9 − 7
9

λc
i · λc

j Ô12 − 8
3 0 − 2

3 Ô36 0 0 − 4
3

Ô12P36
8

27
32
27

2
27 Ô36P36 − 16

27
8

27
32
27

Ô13P36
8

27
32
27

20
27 Ô16P36

8
27 − 4

27
20
27

Ô14P36 − 4
27

2
27

35
27
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Table 21. Cont.

σi · σj λc
i · λc

j Ô12 − 8
3 0 − 10

3 Ô36 0 − 16
9 − 20

9
Ô12P36

8
27

32
27

74
27 Ô36P36

112
27 − 8

27
88
27

Ô13P36
8
27

32
27

68
27 Ô16P36

8
27

44
27

68
27

Ô14P36
4
9

14
9

7
3

σi · σj ∑3
a=1 λa(i)λa(j) Ô12 0 0 0 Ô36 0 0 0

Ô12P36 0 0 0 Ô36P36 0 0 0
Ô13P36 0 0 0 Ô16P36 0 0 0
Ô14P36 0 0 0

σi · σj ∑7
a=4 λa(i)λa(j) Ô12 0 0 0 Ô36 0 0 0

Ô12P36 0 0 0 Ô36P36 0 0 0
Ô13P36 0 0 0 Ô16P36 0 0 0
Ô14P36 0 0 0

By applying these sfc matrix elements for the ΩΩ system, we dynamically solved the
corresponding coupled-channel equation. The results are given in Table 22. We can see
that no matter whether the calculations are single-channel or coupled-channel, this state
would be deeply bound. It is noticed that due to the coupling from CC channel, the binding
energy increases from 122.8 MeV to 129.7 MeV, and the RMS decreases from 0.66 fm to
0.65 fm, indicating that the coupling to the CC channel has some influence on forming this
bound state.

Table 22. The same as Table 11 but for the (ΩΩ)ST=00 state.

L = 0

ΩΩ ΩΩ + CC

Eb (MeV) 122.8 129.7

R (fm) 0.66 0.65

5. Conclusions

It is of importance to find a reasonable model to predict the possible dibaryon can-
didates. The chiral SU(3) quark model is just one of the most successful models, with
which we can reasonably explain the experimental binding energies of baryon’s ground
state and deuteron, NN and YN scattering processes. By utilizing the same set of model
parameters, we predicted the nonstrange d∗ dibaryon with a binding energy of 84 MeV,
which is consistent with the recent experimental data. We also found that the CC channel
plays an important role in forming the bound d∗ state.

Naturally, we would like to extend our study to some other interesting systems with
different strangeness, due to the theoretical investigations of the CC channel on dibaryon
candidates currently being scarce.

(1) In the single-channel calculation
According to the symmetry property, we firstly chose six interesting dibaryon candi-
dates with different strangeness. They all belong to 〈Asfc〉 ∼ 2. This kind of symmetry
property will be most favorable in forming a bound structure, and thus, it is worth
further performing the dynamical calculation. Then, we performed the dynamical
investigation in the chiral SU(3) quark model by solving the resonating group method
equation in the single-channel case. Indeed, the results indicate that all six dibaryon
candidates become bound due to the symmetry property, and the interaction mecha-
nism in scalar chiral fields, in particular, the sigma meson exchange, dominates the
binding behavior.
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(2) In the coupled-channel calculation
We extended it to include the CC channel. An easy and systematical method was
utilized to work out the CC wave function for all six dibaryon candidates with different
strangeness; then, all the sfc matrix elements were evaluated and nicely tabulated.
By applying all these computed sfc matrix elements for different dibayon cases, we
dynamically solved the corresponding coupled-channel equation for each case in the
chiral SU(3)quark model. The calculated results are shown below.

(a) For the S = 3 case, we consider the coupling from the CC channel; thus, the con-
figuration includes (∆∆+CC) or (Σ∗∆+CC), where there are tensor couplings from
both OGE and pseudoscalar chiral field exchanges for each state. For (∆∆)ST=30
and (Σ∗∆)ST=3 1

2
states, we found that both couplings, the CC coupling and tensor

coupling, increment the binding energies by about 25 MeV and 20 MeV, respec-
tively. The results clearly indicate that both states would become bound. The
coupling to the CC channel plays an significant role in forming each state.

(b) Similarly, for the S = 0 case, the configuration includes (∆∆+CC), (Σ∗∆+CC),
(Ξ∗Ω+CC), or (ΩΩ+CC), in which there is no tensor coupling for each state. For
(∆∆)ST=03, (Σ∗∆)ST=0 5

2
, (Ξ∗Ω)ST=0 1

2
, (ΩΩ)ST=00 states with different strangeness

(0, -1, -5 or -6), the calculated results show that the different CC channels incre-
ment by less than 10 MeV the corresponding binding energies. The CC channel
has an obvious effect in the formation of each S = 0 dibaryon candidate.

Due to the theoretical investigations of the effect of the CC channel on each dibaryon
candidate being currently scarce, we performed a systematical exploration on the possible
and interesting dibaryon candidates with different strangeness. The obtained results are
significant for helping us to acquire deeper understanding of the effect from the hidden
color channel.

Here it should be mentioned that a quadratic potential for confinement was used in
the calculations. Since the CC channel could be sensitive to the confinement potential, we
would like to further investigate the linear potential for confinement in the future. Explor-
ing in this direction will be of great interest and significant in helping us to profoundly
understand QCD phenomenology.
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