
SOUTHWEST RESEARCH INSTITUTE

Post Office Drawer 28510, 6220 Culebra Road

San Antonio, Texas 78228-0510

THE ROLE OF THE HOST IN A

COOPERATING MAINFRAME AND

WORKSTATION ENVIRONMENT

FINAL REPORT

VOLUMES I AND II

NASA Grant No. NAG 9-341

SwRI Project No. 05-2769

Prepared by:

Antone Kusmanoff, Ph.D.

Nancy L. Martin

Prepared for:

NASA

Johnson Space Center

Houston, TX 77058

October 12, 1989

(NASA-C;_,-! 65_(,3-Vo!-1/2)

HC_ST IN A CITC;PERATING MttINF+_AM_ A,*4u

']R'STATI{_N t[NV[i3._NM[-N[, VJLU_L - 7. A;,4i_ ?

Final _,_(;+ort (South.es+ __ese,Jrc.f_ [ns_ o)

l&Z_ u f'qCl

Approved:

Melvin A. Schrader, Director

Data Systems Science and

Technology Department

]t4L_ _-_TL c QF T_ N_O--13_9_

Onc | _t £

THE ROLE OF THE HOST IN A COOPERATING
MAINFRAME AND WORKSTATION ENVIRONMENT

Volume I

NASA Grant Number NAG 9-341

SwRI Project No. 05-2769

Submitted to:

NASA-Johnson Space Center

Houston, Texas

Prepared by:

Antone Kusmanoff, Ph.D.

Nancy L. Martin

Southwest Research Institute

6220 Culebra Rd., P.O. Box 28510

San Antonio, TX 78228-0510

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 Purpose

1.2 Research Focus

1.3 Document Organization

2.0 EXISTING CONCEPTS

2.1 Task Partitioning

2.2 Task Allocation

3.0 HARDWARE SYSTEM PERFORMANCE FACTORS

3.1 Standard Benchmarks for Computer Performance Measurement

3.2 Independent Hardware Performance Capabilities

3.2.1 Instruction Execution Speed

3.2.2 Computer Organization

3.2.3 Storage Organization

3.3 System Performance Hardware Criteria

3.3.1 Measurable Quantities of Speed

3.3.2 Measurable Quantities of Capacities and

Thresholds

3.3.3 CPU Rating

3.3.4 Robustness of Computing Power

4.0 SOFTWARE DEVELOPMENT

4.1 Understandability and Maintainability

4.1.1 Structured Programming

4.1.2 Reuse of Code/Library

4.1.3 Configuration Management

4.2 Level of User Interaction

4.3 Universal Need For an Application

4.4 Program Performance

5.0 CONTROLS

5.1 System Resources

5.1.1 Operating System Control

5.1.2 Load Distribution

5.2 Interprocess Communication

5.3 Shared Data Access

1

1

1

2

6

ii

15

16

17

18

19

23

25

26

27

27

28

3O

30

30

35

35

37

40

41

43

43

44

46

47

50

i

v

TABLE OF CONTENTS (Cont'd.)

6.0 NETWORKING DELAYS 54

6.1 Demand For a Network 54

6.2 Network Transmission Speed _ . . . 55
6.3 Protocols and Communication Procedures 55

6.4 Network Error and Congestion 57

6.4.1 Transmission Errors 57

6.4.2 Communication Network Congestion 57

7.0 CONCLUSIONS 60

7.1 Summary 60

7.2 General Criteria Questions 61

7.2.1 System Considerations 61

7.2.2 Computing Power 61

7.2.3 Software Deveiopment Issues 63

7.2.4 Control Considerations 64

7.2.5 Networking Delay Impact 64

7.3 Methods For Applying The Criteria 65

APPENDIX A: ACRONYMS & DEFINITIONS 68

APPENDIX B: REFERENCES 69

ii

1.0 INTRODUCTION

i.i Purpose

In recent years, advancements made in computer systems have prompted a

move from centralized computing based on timesharing a large mainframe

computer to distributed computing based on a connected set of engineering

workstations. A major factor in this advancement is the increased

performance and lower cost of engineering workstations. Because of this,

workstations have gradually moved from the research lab into the

operational rooms as supplements to the user environment. Many complex

systems which were previously dependent on the mainframe to do all of the

computation and display of information are now using the mainframe as a

data acquisition unit and have moved several of the computation and

display demands to workstations connected to the mainframe (host) over a

Local Area Network (LAN).

The shift to distributed computing from centralized computing has led to

challenges associated with the residency of application programs within

the system. When there is only one centralized mainframe computer, it

handles all data and processing requests for the users. With the advent

of engineering workstations, there are now multiple processing units

connected together, each accountable for handling their own user

requirements. In a combined system of multiple engineering workstations

attached to a mainframe host, the question arises as to how does a system

designer assign applications between the larger mainframe host and the

smaller, yet powerful, workstation. In order to answer this question and

develop an effective distributed processing system, a system designer must

know the requirements for the types of operations which are to be

performed. That is, the designer must know each application's operational

requirements for memory, timing, communication, software development

features, reliability, the level of user interaction, and coupling.

The purpose of this document is to analyze the concepts related to real-

time data processing and display systems which use a host mainframe and

a number of engineering workstations interconnected by a LAN. In most

cases, distributed systems can be classified as having a single function

or multiple functions and as executing programs in real-time or nonreal-

time. In a system of multiple computers, the degree of autonomy of the

computers is important; a system with one master control computer

generally differs in reliability, performance, and complexity from a

system in which all computers share the control. This research is

concerned with generating general criteria principles for software

residency decisions (host or workstation) for a diverse yet coupled group

of users (the clustered workstations) which may need the use of a shared

resource (the mainframe) to perform their functions.

1.2 Research Focus

The focus of this research is to develop a set of general questions which

should be used as guidelines when attempting to determine the residency

1

of application programs in a distributed computing system. For this
research, characteristics of a system containing oEe mainframe computer
connected to numerous engineering workstations will be investigated.
Although processing systems included in a distributed system are typically
designated as "hosts", the mainframe computer will be the only computer
in this document referred to as a host. An additional characterization
of the system is that the workstations maybe further clustered to perform
a particular function. Eachworkstation cluster acts independently of the
other clusters to perform the functions specific to its role in the
overall goal of the system. The only coordination necessary for this
scenario is in the access of data which is filtered through the host
mainframe computer.

The results of this mesearch will provide criteria which will help a
system designer make residency decisions in the following areas:

| Application distribution: Determine where newly conceptualized

applications will be most efficiently developed and executed.

Many factors will have to be carefully evaluated (e.g. user

interface requirements, data requirements, etc.) in order to

make such decisions.

| Application migration: Investigate which applications in an

already functioning mainframe system should be migrated to the

workstation environment and which applications should remain on

the host.

| Global functions: Investigate which global functions (e.g. data

archival, configuration management, etc.) should be provided by

the host and which should be supplied in the workstation

environment.

1.3 Document Organization

The results of the research into the determination of application

residency will be presented in the following chapters. This document has

been broken down into this introductory chapter, one chapter of existing

concepts, four functional chapters, and a concluding chapter.

The next chapter concerns the existing concepts and contains a discussion

on two methods used to assign software processes to a decentralized

distributed system's various processors. The task partitioning and task

allocation approaches are used together to effectively assign applications

while efficiently utilizing system resources. These models provide the

parameters and constraints to be considered when attacking the application

residency problem. The methods and considerations proposed in these areas

can be modified and expanded to apply to the configuration of one

mainframe connected to multiple workstations.

The third chapter contains the hardware elements that need to be

considered when looking at overall system performance. The computing

power evidenced in executing a solution to a problem is directly related

2

to the computer hardware being applied. The computing power of the
system, however, can be defined as an integrate_ combination of the
hardware performance factors and the software correlation to the hardware
factors. This hardware chapter discusses the significance of the
performance of the basic computer hardware componentsin relationship to
the computing power. The hardware characteristics to be analyzed are
offered; however, the combined mainframe/workstation performance is a
conclusion of the combination of the hardware, its organization, and
architectures interacting dynamically with the software operating system,
and applications programs. Detailed hardware knowledge, based on fair and
impartial educated specification information is necessary to separate
reality from rumor and manufacturer marketing promises of performance.
Hence, Chapter Three will distinguish somehardware componentsto lead the
decision maker to a somewhatobjective consideration. These components
are provided as the ideal measure of computing power, and are to be taken
as a theoretical operational limit. Using the Chapter Three hardware
criteria against an available computer characterizes the theoretical
maximumamountof computing power accessible. In contrast, as in the case

at hand, if hardware criteria is used against a set of computer program

requirements the theoretical minimum amount of computing power that is

required, in these basic criteria hardware terms, can be determined. With

the two separate sets of system knowledge, the residency question can be

further addressed.

The fourth chapter covers important concerns in the development of

software for operation on a distributed processing system. This topic

encompasses the many facets of software engineering: functional

decomposition; hierarchical decomposition; reusability of code; and

configuration management. It also discusses the importance of an

application's interaction with the user, as well as with other

applications. The final topics covered in Chapter Four are the timing

requirements and response time impacts on program performance. In all of

these areas an attempt is made to indicate the importance of

maintainability and understandability of software in a cooperating system

environment.

In Chapter Five, the considerations associated with the control of various

system elements in a distributed computing system are discussed. These

elements consist of general resources, interprocess communication and

data access. The area of control is an important topic in a distributed

processing system because all entities in the system need to cooperate to

some degree in order to perform their designated function. In order for

all systems to cooperate, there has to be some level of control to

coordinate the operation. The selected implementation of an operating

system and load distribution and its impact on the applications of a

distributed processing system is an important resource control topic

covered in this chapter. The other topics discussed in this chapter

include the concerns related to interprocess communications and shared

data access. Both of these topics concern the acquisition of data quickly

and the type of controls necessary to prevent the loss of data and the

retrieval of incorrect data.

3

Chapter Six provides the guidelines which should be applied to the
communications requirements to continue the directfon for the selection
of software residency toward the most efficient hardware support
environment. The advent of intelligent workstations for the lowest level
of users that have high computing capacities at a relatively lower cost
leads to the difficult prospect of coupling a large number of small
inexpensive systems to deliver the performance of a large transaction
processing system. There are several communications related trade-offs
required with coupling N systems, but key problem areas considered are
the network transmission speed, coupling protocol overhead, and network
errors. The balance between the software functional requirements for
network coupling, the network structure available, and the level of
overhead interference will be examined.

In the final chapter, conclusions of earlier chapters will be collected

to furnish the system manager with a question checklist type of criteria.

This criteria will provide guidance in application allocation on a general

real-time distributed processing system consisting of a mainframe

connected to multiple workstations with numerous multiple functions to

perform. Following the list of criteria, methods of using this criteria

for determining the distribution and migration of application programs in

the system and the residency of global functions will be discussed.

4

2.0 EXISTINGCONCEPTS

There is no clear definition for a distributed computing system. To some,
a distributed system is one that allows various users to share resources
such as printers, disk drives, and tape units. To others, the processing

components must be executing a common application. Another

characterization of distributed processing applies to the distribution of

processing hardware. A distributed computing system may be-composed of

a global network of computing facilities, or nodes. A formal definition

would include, but not be restricted to, the following characteristics:

each node may contain connected computing systems; each computing system

may be an interconnection of computers; each computer may be an

interconnection of elements; and each element may contain interconnected

modules.

The degree of distribution in a system will greatly affect the eventual

design and control complexity of the system. At one extreme, systems will

be composed of multiple components, each of which operates autonomously.

At the other extreme, component-level decisions will be made

cooperatively. The degree of cooperation among components may vary from

only occasional information exchange to the exchange of information after

each decision. The implementation of a system composed of cooperating

components, regardless of the degree of this cooperation, immediately

complicates the design process. The complication arises in the

distribution of functions and data, the communications network

architecture design and protocols employed, and the tradeoff between

excess hardware and control software.

There were no studies found which specifically tackled the problem of

application residency on either a mainframe or an engineering workstation.

However, strategies have been developed to assign software processes to

a decentralized distributed system's various processors. A considerable

number of published works can be found on the use of partitioning and

allocation of tasks. These two methods are used together to effectively

assign applications while efficiently utilizing system resources. These

models provide the parameters and constraints to be considered when

attacking the application residency problem. The results of some of those

studies will be discussed here. The methods and considerations proposed

in these areas can be modified and expanded to apply to the configuration

of one mainframe connected to multiple workstations.

Task partitioning is the first step toward assigning tasks to a particular

processor in order to maximize resource utilization. The second step is

the actual allocation of tasks. These two steps combined can be very

helpful in making the decision of whether an application should reside

on a workstation or on the mainframe. The next two sections present some

of the current approaches to implementing these methods in an effective

and reliable manner.

5

2.1 Task Partitioning

Task partitioning is the process of decomposing software requirements

into a set of functional modules and data files (see the discussion on

functional decomposition in Chapter Four for more information on possible

methods). Once the requirements have been decomposed into modules, all

modules are mapped into physical tasks according to intrinsic

commonalities, for example, common database-accessing patterns. During

partitioning, the sizes of partitions may be constrained in terms of

execution time and data storage requirements. Any approach to

partitioning must take into account necessary system constraints,

including timing requirements, the order of module execution, and limited

capacities of different resource types such as CPU throughput, available

memory space, and communication link bandwidth. These items are covered

in Chapter Three of this document. This partitioning reduces the number

of options to be considered during the allocation step (covered in the

next section), thereby reducing the overall complexity of computer

selection for applications in the distributed-software design problem

(Shatz, 1989).

By using task partitioning, the efficiency of resource utilization can be

maximized. The objectives of partitioning include minimizing intertask

communication, exploiting potential concurrency, and limiting the size of

tasks (Shatz, 1989). Some system goals achieved by task partitioning are

load balance, minimization of response time, maximization of reliability,

and potential for system growth. These objectives will most often need

to be considered collectively when trying to assign a task to either a

workstation or the mainframe. In order to effectively partition tasks,

the necessary response time and potential for concurrent execution needs

to be taken into account. Concurrent execution means that two or more

modules can execute in parallel if they are partitioned into different

tasks.

One problem associated with the partitioning of tasks is the difficulty

in measuring its effectiveness. Since partitioning is an earlier design

step than allocation, it is difficult to measure the effectiveness of a

partition before all processes have been allocated. The other problem is

that conflicting partitioning criteria often support the same system

requirement.

For example, many distributed real-time applications have critical

response time requirements. To meet these requirements, two common

partitioning objectives are minimizing intertask communication cost and

maximizing potential parallelism. To minimize intertask communication

cost, the entire system could be partitioned into just one task and

treated as if it were centralized. The intertask communication cost in

this case would be zero - there is only one task in the system, so there

is no intertask con_nunication. Unfortunately, this strategy does not

allow you to exploit any potential parallelism because two computations

are eligible to execute in parallel only if they reside in different

tasks. The inability to exploit this parallelism may mean that the design

does not meet the response time requirement.

6

At the other extreme, if the system is partitioned so that each module is
a task, all potential parallelism can be exploited. But if these tasks
are allocated to different processors, all intertask communication becomes
remote. In this case, the heavy communication traffic could degrade
system response time.

The process of software partitioning ks part of the overa/1 software
engineering methodology for system development and, as such, it should
support the system objectives. One of the most critical system
performance goals of a real-time application is to satisfy the response
time requirement. Therefore, an important objective of software
partitioning should also be established as such. Nonetheless, the
response time performance is the product of many interrelated design
decisions on issues such as task allocation, node-to-node communication

channel bandwidth, node throughput capability, and operating system

design. It is extremely difficult to try to measure the quality of

software partitioning solutions by means of their potentially achievable

response time performance without the tasks being allocated. Before the

tasks can be allocated, they are to be defined first through software

partitioning. The difficulty in evaluating software partitioning schemes

can be circumvented by approaching the problem from another direction -

efficient resource utilization. That is, during the process of software

partitioning, one can strive to minimize the amount of task dispatching

and task communications. The degree of that minimization can

appropriately serve as a measurable objective for software partitioning.

If the most significant overhead cost is related to task communications,

then the above objective is reduced to the minimization of intertask

communications cost.

An important factor in minimizing overhead cost is the order of module

execution. It can be properly addressed through an understanding of the

module precedence relation, which is discussed in detail in the paper

"Modeling of Software Partition for Distributed Real-Time Applications"

(Huang, 1985). The precedence relation of modules reflects the sequence

of module execution. In grouping modules into tasks, it is desirable to

maintain the sequence of module execution in order to minimize the

overhead expenditure (i.e., delay in response time waiting for a module

to execute before executing another module).

To illustrate the module precedence relation, assume that four modules

(i, 2, 3, 4) are to be partitioned into two tasks (A, B) with no task

containing more than three modules. Let the cost of each module execution

be 5 ms, the cost of each task dispatch be 1 ms, the cost of intertask

conm_unications (communication between modules in different tasks) be 1 ms

for each transmit and each receive operation, and the cost of intratask

con_nunication (communication between modules in the same task) be

negligible.
modules:

Consider the following relationships between the four

Module i passes input to both modules 2 and 3;
Modules 2 and 3 pass input to module 4; and
Modules 2 and 3 can execute in parallel.

Consider the following two solutions:

Solution i: Task A contains modules i, 3, and 4
Task B contains module 2

Solution 2: Task A contains modules i, 2, and 3
Task B contains module 4

Suppose that for these two candidate solutions, both tasks are allocated
to the samenode and Task A is activated before Task B. The response
time performance of these two candidate solutions can be compared as
follows.

With solution I, Task A execution must be temporarily halted, and the
task-generated temporary results stored away after module 3 is executed
and prior to the initiation of module 4. It will be reactivated after
Task B has completed its execution (of module 2) and made the results
available to module 4. In this solution, two intertask communications
(sending and receiving) are required betweenmodulepairs (1,2) and (2,4).
Thus, the response time using solution i is:

T = 5 ms X 4 + i ms X 4 + i ms X 3 + d
Task Task Task Temporary
Execution Comm. Dispatch Storage

= 27 + d (ms)

With solution 2, both defined tasks are completely executable and there
will be only one intertask communication required after the completion of
Task A. Thus, the response time using solution 2 is:

T = 5 ms X 4 + i ms X 2 + I ms X 2
Task Task Task
Execution Comm. Dispatch

= 24 (ms)

Since solution 2 has less communications requirement and, once executed,
both of its tasks can execute to completion, it yields a better response
time performance than solution i. By comparing solution i to solution 2,
it is noted that by maintaining the order of module execution one can
reduce the intertask communication cost, the task scheduling/dispatch
cost, the temporary result storage cost, and hence the delay in task
completion. Thus, module execution order is an important consideration
in software partitioning. Without the module execution relation being

considered, modules within one task were waiting for modules in the other
task to complete.

In order to use the module precedence relation to maintain the module
execution order, the following definitions and rules must be applied.

| The four possible types of precedence relation are:

i.

2.

3.

4.

One module precedes another

One module succeeds another

One module parallels another

One module precedes as well as succeeds another i.e.,

neither of these two modules can complete its execution

before receiving needed data and information from the other

module.

Two directly connected modules are said to be adjacent

neighbors.

The preceding adjacent neighbors of a module A are its adjacent

neighbors which precede the module A.

| A module is said to be completely executable if it is provided

with all needed data and information.

| A module is said to be completely executed if it has made

available all data and information to be generated by itself for

other modules.

| A module is guaranteed to be completely executable if, and only

if, all its preceding adjacent neighbors have been completely

executed.

| A module is guaranteed to be completely executable if, and only

if, all its preceding modules have been completely executed.

| The hierarchical level of a module in a functional diagram is

its logical ordering position relative to other modules in the

hierarchy of that functional diagram.

|

|

|

|

A module with no preceding module has a hierarchical level

of i.

For a module with a single preceding adjacent neighbor, its

hierarchical level is one level higher than its preceding

adjacent neighbor.

For a module A with multiple preceding adjacent neighbors,

its hierarchical level is one level higher than its

preceding adjacent neighbor which has the highest

hierarchical level among all preceding adjacent neighbors

of A.

A pair of preceding as well as succeeding modules have the

same hierarchical level and that level is the highest one

9

found by applying the previous three rules to each one of
them.

Keeping the above considerations in mind, the model set forth by Huang
will be used as a guideline for task partitioning (Huang, 1985). This
model states that the objective of task partitioning is to define an
unspecified set of K tasks (for a given set of N modules) so that the
software partitioning efficiency is maximized. The task _artitioning
efficiency is defined as the ratio of total task-direct execution cost to
the sum of total task-direct execution cost plus total overhead cost.
Hence, the problem is reduced to the minimization of the total overhead
cost.

The above objective will be accomplished by observing the following six
constraints:

Constraint i) All N modules considered are included by the K tasks.

Constraint 2) The CPUthroughput requirement of any defined task
must not exceed either the workstation or the
mainframe CPUthroughput capability.

Constraint 3) The memoryrequirement of any defined task must not
exceed the local memoryspace capacity.

Constraint 4) The total execution cost of any defined task cannot
bemore than the maximally allowed task response time.

Constraint 5) Each pair of modules that precede as well as succeed
each other must be included in the sametask.

Constraint 6) For a module Pnto be included in a task Tk, one of
the following three conditions must be satisfied:

i) Module Pn is the module with the lowest
hierarchical level amongall modules within the
task Tk;

ii) All preceding adjacent neighbors of module Pnare
also included in task Tk; or

iii) For each Tk noninclusive module qn which is a

preceding adjacent module of Pn, qn must precede

P'(Tk), which is the module with the lowest

hierarchical level in T k.

If it is known that an individual module within a task will not make

available its output before the entire task is completely executed, then

one needs to replace the third condition of the precedence relation

constraint (6) with:

iii) For a module Pn to be included in T k, each of its

Tk noninclusive preceding adjacent neighbors is

i0

included in a task Ti which contains a preceding
module of P'(T k).

The model presented above uses the maximum software partitioning
efficiency as the criterion to determine the quality of the candidate
partitioning solution; instead of using the response time performance.
The response time performance is the ultimate criterion in evaluating the
performance of real-time systems. The reason for this substitution is due
to an inability to analytically estimate the resultant response time
performance at the software partitioning stage.

The problem of software partitioning can be modeled as one that maximizes
the partitioning efficiency while observing the CPUconstraint, the memory
constraint, the maximally allowed task execution time constraint, and the
module execution order constraint. The CPUand memoryconstraints are
implementation dependent. The time constraint on task execution is due
to considerations on the response time performance. The constraint on
module execution order is a logical one, and it has been properly
incorporated into the model by employing module precedence relations.

If there arises a case where modules are executing in a loop, it can lead
to an unfortunate solution if Constraint 5 is observed. This constraint
would require each module pair with the preceding as well as succeeding
precedence relation to be included in the same task. This problem could

be alleviated by augmenting the given software partitioning models to

include a proper consideration of the precedence relation of modules

within a loop. Short of adding that consideration, one suggested approach

is to simply ignore the feedback link of a loop, and treat the data and

information to be fed back as coming from sources external to the

function, or system. This suggestion is inspired by the observation that

the feedback link of a loop does not alter the logical execution order

of modules within the loop. Under the above arrangement, the presence

of feedback data and information can be treated as part of the sufficient

condition for a proper task activation and complete task execution, not

as part of the necessary condition.

2.2 Task Allocation

Allocation is the step to be taken after task partitioning when assigning

tasks to different processors within a distributed processing system. The

main difference between partitioning and allocation is that allocation

relates characteristics of partitions to characteristics of resources,

whereas partitioning looks at commonalities of processing entities with

only incidental concern for potential resource characteristics.

Allocation binds partitions to physical resources. During the allocation

operation, each task defined in the partitioning stage is assigned to one

or more system processors. Task allocation complicates distributed-

software design because when you assign m tasks onto n processing nodes,

there are n m different possible assignments. In practice, the situation

is even worse because you must also consider data allocation and the

potential for both data and process replication. Optimal allocation is

a problem of exponential complexity (Shatz, 1989).

ii

The key to task allocation is to establish a model in terms of costs and
constraints which deal with performance, fault-tolerance, and growth. The
goal is to find a solution that minimizes the cost function within the
constraints. There are many examples of performance-oriented cost

functions, but cost functions that explicitly quantify fault-tolerance and

growth properties have not yet emerged. Examples of performance-oriented

cost functions are:

| Total interprocessor communication (IPC) cost: Interprocessor

communication cost occurs when processes residing in different

processors must communicate or when a process must access a

remote file. Interprocessor communication cost is a function

of the amount of data transferred and of network properties such

as topology and link capacity. This topic is discussed further

in Chapter Six.

Total execution and interprocessor communication cost: This is

the sum of the total computation cost for each process and the

total interprocessor communication cost.

Completion time: This is the total execution and interprocessor

communication cost incurred by that processor whose cost is

greater than all other processors.

| Load balancing: This measures how evenly the workload (process

execution time) is distributed across the processors. One

reason to seek load balancing is to maximize system stability.

If a system's workload is unbalanced, there may be a processor

responsible for substantially more processing than the other

processors. In a sense, this processor represents a weak link

("bottleneck") in the system. (Shatz, 1989)

System constraints which should be considered during the allocation step

include the following:

Limited memory size and processing capacity of each processor

| Dependence of some processes on certain processors, requiring

the processes be allocated'to those processors

| Limits on the number of processes on all processors (this is

one way to approximate load balancing)

The choice of a cost function for a particular system heavily depends on

the nature of the application and the underlying hardware. For instance,

response time is a critical cost consideration for real-time applications,

and minimization of total interprocessor communication cost is more

difficult for networks in which processors are geographically dispersed

than for local, fully connected networks. For geographically dispersed

networks, there is a significant increase in communication time and

probability of message loss or corruption.

12

A fundamental need in task allocation is the development of a strategy
for assigning costs to intertask communication. According to one study,
the three important parameters that influence task allocation are the
accumulative execution time (AET) of each module, intermodule
communication (IMC), and precedence relationship (PR) among program
modules (Chu, 1989). This study states that the load of a processor
consists of AET and IMC. It then proposes an objective function for task

allocation that is based on minimizing the load on the most heavily loaded

processor ("bottleneck"). A task-allocation algorithm should minimize

interprocessor communication by assigning heavily communicating tasks to

the same processor unless this would overburden a particular processor and

cause a bottleneck.

The task-allocation algorithm set forth in this study describes

accumulative execution time (AET) for a module Mj during time interval (t_,

th÷l) as the total execution time incurred for this module during that time

interval, i.e.,

Tj(th, th+I) = Nj(t h, t,,_)yj(t,, th+I)

where Nj(th, t,+1) = number of times module Mj executes during (t h, th÷1),

and yj(t h, th÷I) = average execution time of Mj during (t h, th+1). Both the

yj and the AET, Tj, can be expressed in units of machine language

instructions (MLI). Although the execution time of a machine language

instruction varies from one instruction to another, based on a given

instruction mix, the mean instruction execution time can be used.

IMC is the communication between program tasks through a shared file or

message communication on another processor. When a program task on a

processor writes to or reads from a shared file on another processor, IMC

becomes interprocessor communication (IPC) which requires extra processing

and communication overhead. IPC can be reduced by assigning a pair of

heavily communicating modules to the same processor.

The precedence relation (PR) among program modules is another important

factor that needs to be considered in task allocation. The PR specifies

the execution sequence of the modules. Due to PR, a program module cannot

be enabled before its predecessor(s) finish executing. The following

observations were made regarding the module-size ratio of two consecutive

modules and how it affects task response time.

i) Assigning two consecutive modules to a same processor

yields good response times if the execution time of the

second module is much larger than that of the first;

2) If the second module is much smaller than the first one,

the two consecutive modules should be separated and

assigned to two different processors.

13

The task-allocation algorithm proposed by Chu and Lan assumesthat:

i) There are J modules, Ml, M2..... Mj, and S processors, PI,
P2, Ps;

2)

3)

The AET Can average during the peak-load period) for each module

Mj, Tj, (j = i J) is given;

The IMC (an average during the peak-load period) between each

module pair M i and Mj, IMCIj, (i = I J; j = 1 J) is given.

Each IMCIj can be derived from the communication volume of data

sent between the module pair. (Chu, 1984).

The algorithm consists of two phases. Phase I reduces J modules to G

groups (G < J) which corresponds to a much smaller allocation task for

Phase II. This first phase of grouping can be done with very little

computation. Each subgroup generated at the end of Phase I is a set of

tasks which will be assigned as a single unit to a processor. In Phase

II these groups are assigned to the processors such that the bottleneck

(in the most heavily utilized processor) is minimized.

The grouping of modules in Phase I is based on several factors. To reduce

IPC, heavily communicating modules may be combined into groups. To do

this, communicating module pairs are listed in descending order of the IMC

volume. Module pairs with large IMC are considered first.

Next, the PR effects are considered. The decision of whether to group

two consecutive modules should be based on the two possibly conflicting

factors: IMC volume and the effect of PR. For a module pair (Mr, Mj),

the IMC index and the PR index are used to evaluate these conflicting

factors. The IMC index indicates the relative IMC size normalized by the

average module size in terms of the execution. The PR-index indicates the

wait-time ratio of two assignments.

Another factor to be considered is the size of a new group. If the new

group, resulting from combining previous subgroups, becomes too large, it

would be impossible to obtain a balanced-load assignment during Phase II.

Therefore, the concept of processor-load threshold (PL x B) is introduced,

where PL is the average processor load and B is a scale constant. If the

size of a candidate new group is greater than the threshold, the two

subgroups should not be combined.

The two phases of this allocation algorithm generate a minimum-bottleneck

assignment. If several assignments yield the same smallest minimum-

bottleneck value, then the one with the smallest total processor load

should be selected. Chu and Lan propose a function with the objective of

minimizing the bottleneck processor load (consisting of IMC and AET) for

task allocation. They claim this function generates load-balanced

assignments with small IPC.

14

3.0 HARDWARESYSTEMPERFORMANCEFACTORS

In the introduction it was pointed out that the computer performance in
executing a solution to a problem is a direct result of the computer
hardware being applied. The computing powerwas defined as an integrated
combination of the hardware performance factors and the software
correlation to the hardware factors. This chapter will highlight the
significance of the performance of the basic computer hardware components
in their relationship to the overall computing power. The result of this
chapter is to provide computer hardware decision criteria to contrast
between a mainframe and a networked engineering workstation system when
considering the residency of a software application.

The hardware concentration of this chapter is not an indication that there
is no tethering of the operational software programs to the hardware
specifications. On the contrary, during these hardware discussions
operational software considerations will be paramount in all of the final
determinations. What is to be realized in this hardware analysis is that
a combination of multiple coupled workstations may have some kind of
equivalence to the mainframe computer. Further, that engineering
workstations have sufficient hardware performance to support the mainframe
by executing many of the operational programs independently, off-loading
that burden from the mainframe. To what extent these things are true (or
even necessary), is very important when determining the overall system
computing power. For certain, it is not possible to simply linearly add
the individual hardware computer performance metrics for the workstations
and the mainframe and assumethe total system can support that level of
computational need.

Of course, knowing the computational demand, to assess the amount of
computing power needed, is the driving issue. The first question is
always: how much computing power does the application program, with all
of the operational programs interacting, require? The criteria developed
in this chapter tries to answer that question and also how muchcomputing
power is available at the engineering workstation and at the mainframe.

An additional problem, not covered here, is that a balance must be struck
in a combined system of engineering workstations and mainframes. This is
because coupling protocol overhead and intersystem interference between
programs running on the workstations, but waiting on the mainframe or each
other, can slow the execution more than having the basic program directly
operating only on a mainframe. Later chapters will examine coupling,
controls, data access, communication protocols, and communication systems
that influence this relationship and the final estimate of computing

power. These factors also influence the resulting criteria principles.

This chapter completes the task of providing basic computer hardware

criteria guidelines to estimate the hardware computing power available

and the computing power needed by the applications programs. The last

section of this chapter will compile the metrics of the various hardware

15

computer performance elements identified throughout the chapter to build

simple models to facilitate this relationship to th_ residency question.

3.1 Standard Benchmarks for Computer Performance Measurement

The standard method for comparing the performance of two different systems

is to execute a selected set of programs in both systems and compare the

actual times required for the execution. The ideal case would be to

develop the operational program for each computer system that is being

considered, and simply compare total execution times. This is obviously

an impractical situation, in that the development effort would be

overwhelming, and this would still not consider performance of future

programs. A more reasonable choice would be to obtain an universal

program that can already execute on each of the machines and then compare

the execution times to get the relative performance indications.

A program used in this manner is referred to as a benchmark, and analysis

of published benchmark execution times (BET) is a reasonable approach at

obtaining the actual relative execution times between different systems.

Benchmark performance is also reported as the maximum rate of computation

(MRC) attained while operating the benchmark program.

Relating the BET or MRC to computing power or even computer hardware

performance is yet another problem. Separating the true operational

system performance from the performance claims that go along with

traditional manufacturer marketing hype is necessary to make correct
decisions.

It is always recommended to consider benchmark information on a system

before purchase. Rarely is a system purchased without some benchmark

reference. Unfortunately, the state of benchmarking is confusing and can

often provide inconsistent projections (Dongarra, 1987). Benchmarking

difficulties arise as the overall performance is improved through

optimized hardware system organization. The advancement of the hardware

technology causes most complex architectures to do extremely well on one

kind of a benchmark problem, while doing poorly on another seemingly

equally valid benchmark program.

The mainframe area of the supercomputer domain shows the greatest swings

in performance capabilities between various benchmarks on the same

hardware. For example, the CRAY-2 has a top performance conjectural peak

MRC at roughly 1951 million floating-point operations per second (MFLOPS).

This peak theoretical performance is what the manufacturer guarantees that

programs will not exceed, similar to a "speed of light" for a given

computer (Dongarra, 1988). However, when solving a system of linear equa-

tions with i000 unknowns, the performance using a tailored algorithm by

the manufacturer shows the CRAY-2 actual MRC to be only 346 MFLOPS. The

performance is even further degraded when the task is to solve a set of

linear equations with only 100 unknowns using a standard software package

such as LINPACK, and not fully exploiting the vector capabilities or

special hardware features of the machine. With these limitations the

CRAY-2 was capable of a MRC performance level of only 21 MFLOPS in an

16

actual test (Dongarra, 1988). Also note that the difference between the

two actual cases is influenced by the fact that the _xecution speeds have

not reached their asymptotic rates in the latter case.

There is significant difference seen in the performance capacities of the

CKAY-2 depending on which of the three windows the performance is viewed.

In operational applications, similar swings in performance will be seen

between the theoretical maximum, the tailored optimized, andthe generic

situations. Although this problem is more dramatic in the supercomputer

environment, this same problem holds true to some degree at all levels of

computer hardware.

What can be acquired from this examination is that operational performance

of a computer system can not be obtained from timing information presented

which reflects only one problem area, solving dense systems of equations

using LINPACK programs in a FORTRAN environment, for example. It would

further be irrelevant to measure computer systems of unlike architectures,

configurations, and manufacturers by comparing performance timing data in

situations that are not characteristic or typical of the actual or future

applications.

It is possible, however, to include these component measures when the

benchmark program is known to be reasonably close to the application need.

An obvious improved choice is to select an appropriate benchmark developed

along the same nature of the user application requirements. Further, it

is not unreasonable to select a "system" of benchmarks that are judged

open and fair by an impartial judge such as the set provided by the

National Institute of Standards and Technology (formerly the National

Bureau of Standards) located in Gaithersburg, Md. Here, some sort of

averaging or weighted joint measure would be necessary to arrive at a

single MRC if that were the goal. It is still highly probable that the

actual overall operational system performance will be poorly estimated

relatively between machines until final code implementation is available

for evaluation. A reasonable list of criteria, would include benchmark

data as only a first cut estimate, but because it can easily be obtained

many decisions are based on using only this kind of information.

3.2 Independent Hardware Performance Capabilities

Several characteristic computer hardware "elements" exist that limit the

theoretical power of any particular machine. These hardware elements can

be partitioned into three general groups as follows:

l) Instruction execution speed,

2) Computer organization, and

3) Storage organization.

It is important to note, as was mentioned above, that a particular level

of performance from an individual element within one of the groups does

not assure the required overall power or even a level of performance of

the computer in a particular application situation. Hence, at best, they

only provide a rough comparison or guideline between only the hardware

17

features within computer systems. These are most representative of
computing power differences when they are applied 5etween like families

of computers. The information becomes less distinctive in value when the

comparison shifts to the more generic comparison situations. The addition

and combination of these features causes significant swings in the final

estimate of computing power.

These three groups listed above will be discussed independently, however

there is significant overlap and interaction between the chosen groupings.

Regardless, in order to build a set of criteria, there is sufficient

published or measurable data for the performance of the elemental building

blocks to maintain an independent criteria within each group as it alters

the overall computing power.

3.2.1 Instruction Execution Speed

One of the primary measures of hardware performance is the time it takes

an individual instruction to be completed. The manufacturer will state

the computer's capability in a given number of instructions per second.

Since the concern is the high performance end of this discussion, millions

of instructions per second or MIPS will be used.

The problem with this measure is that, in reality, each instruction takes

a different amount of time depending on the architecture and the microcode

of the processor. Note that the reference to instructions at this point

is to the number of machine instructions from the hardware instruction

set, not the typical higher level language compiled instructions whose

timing is additionally software dependent. Also, the instruction

execution speed is directly related to the response time (the time it

takes to provide the user an output after the "enter" key is stroked by

the user). However, actual response times are also related to a multitude

of other elements that are both hardware and software generated. Response

time also comprises a human-computer interface problem that some designers

react to by providing an intermediate response that reports the computer

is "working" the problem. This chapter's references to execution speed

and performance discounts these intermediate response time designs since

they may have no relation to the actual compute time that is necessary in

a problem. Response time itself is a topic in following chapters.

The variation in instruction times can be seen in analysis of another

fundamental timing element the manufacturers refer to within each of their

instruction cycle times. Each instruction can be any number of clock

cycles (CC). Depending on its function, the instruction may also require

additional number of CCs for time consuming transfers to memory or between

registers. Therefore, the faster cycle time stated as the clock frequency

(CF) relates to the number of CCs occurring each second. It is a higher

resolution, but more sensitive measure commonly applied when comparing

similarly equipped machines with the same instruction sets. However, it

is less logical to compare the CC time or CF rates to get a measure of

relative execution speeds between significantly different machines,

considering the broad range of variations possible.

18

In comparing mainframes or workstations or both, the CCtime may still be
an important parameter which can quickly guide the _election away from a
machine that is advertised as being theoretically too slow for a given
need. The opposite conclusion from this equation does not hold true.
That is, given what appears to be a CC time that is fast enough for an
operational problem, then the computer performance will be sufficient for
the need. It would be possible however, given the assembly code of an
application program, and the instruction set reference data which includes
the number of CCrequired and the CF, to computewithin approximately ten
percent the time a sequence of instructions would actually use on the
given machine. Even the exact time can be determined by running the
instructions on a development system that has an execution vehicle
specifically for that purpose. The problem, as it was in application
benchmarking, is that these methods rely on the code being completed.

Another measure, one that has been used earlier, is usually applied when
there are heavy computational requirements. It is the numberof floating
point operations that can be completed within a second. This performance
factor was referred to as the number of MFLOPS,for millions of floating
point operations per second that a computer can demonstrate. This
specification is similar to MIPSexcept that an engineer can usually give
a realistic estimation of the total number of calculations necessary
without undue effort.

In the situations where only the general nature of the code is known, key
instruction execution times can be comparedbetween systems to provide a
rough hardware performance correlation. This procedure lacks engineering
accuracy and swings very close to the heuristic environment of intuition.

In summary, the elements from the instruction execution speed group to
be tied to the general criteria principals are MIPS, and MFLOPS. These
two different hardware speed measureswill be applied in the criteria set
at the end of this chapter. The CF was found to only be of value in
comparing machines that are identical except for the CF value itself, and
while executing the sameinstruction sets. Becauseof this, and the fact
that the CF influence is included in the MIPSand MFLOPSvalues, the CF
is normally not considered a general enough parameter to be included when
comparing mainframe and engineering workstations.

3.2.2 Computer 0r_anization

The organization of a computer is an important element in the final

performance that can be realized. The major differences between computers

can be seen in the central processor architecture, the number of

processors available, and the methods applied to complete the input and

output functions.

3.2.2.1 The Central ProcessinK Unit (CPU) Architecture

The function of the CPU is to execute the instructions that it fetches

from main storage. The instructions can be branching, math, loading and

storing, etc. In order to execute the instructions, an architecture of

19

registers, interruption facilities, Arithmetic and Logic Unit (ALU), and
even the instruction set itself must be determined, kll of these features

will affect, in a subjective way, the value of the CPU to the computing

power. The goal of this section is to obtain a rating of the CPU based

on the features available.

The first component of the CPU to be discussed will be the instruction

set method. The instruction set itself has been a recent area of

development that provides for further performance divergence between

systems. The most significant activity has been related to the extent of

the instruction set. A complex instruction set computer (CISC) provides

a complete set of complex instructions that were developed to benefit the

assembly language programmer. The architecture provides the complex

instruction so the programmer does not have to code the set of primitive

instructions that correspond to the complex instruction. The complex

instruction is a hardware or microcode supported instruction, hence it is

also faster in its operation compared to the sequence of fundamental

instructions that are equivalent to it. This has obvious benefits, but

there is a price to pay in using CISC. That price is increased complexity

of the central processor, and increased storage requirements for the

microcode. In this way the primitives, or the set of fundamental

instructions, are actually impeded in their performance due to the

overhead associated with the complex instruction set. Much recent work

with the reduced instruction set computer (RISC) has been completed to

provide higher final speed of execution. ?his is possible because today

the software development work is done on higher level languages, and the

compiled code can be optimized for improved performance using RISC.

The choice between CISC or RISC language sets is also related to the

applications selected for the computer. These hardware features of the

CPU are, therefore, appropriately related to the software application

arena, but will not have a direct intrusion into the power determined

other than what is already evident in the other performance measures.

Interruption action (IA) is the second important process considered within

the CPU. There are normally four interruption categories allowed by the

CPU. They are listed as follows: program interruption (P/l), I/0

interruption (I/0/I), hardware interruption (H/I), and operating system

interruption (0S/I). Interruption procedures are especially important in

real-time applications. However, it is difficult to directly assess the

effects the interruption processes have on the other performance factors

and the overall computing power. Therefore, as in the choice between a

CISC or RISC, the level and capabilities of the interruption process of

the CPU will affect the subjective rating of the CPU.

The number and use of registers is characteristic of the CPU architecture

and greatly effects the overall performance. The added capability of

floating point registers (FPR), along with general purpose registers (GPR)

can greatly alter the execution speed when a great deal of high precision

computational requirements exist in the application programs. Generally,

the more registers accessible, and the greater the capability of the

registers, the higher the CPU rating.

20

The ALU is considered part of the CPU and reflects-on its organization.

The speed of the ALU is measured in MFLOPS, which was an elemental item

discussed in the instruction execution speed group. The relative speeds

of the ALU have always been a key difference between mainframe and

workstation performance capabilities. The pursuit of swiftness in

mathematical operations rather than the pace of program operation is

because prevailing applications for workstations rely moreand more on

mathematical operations. The current engineering workstations can be used

to determine the physical stresses on new product designs using finite-

element analysis, or perhaps to design and simulate analog circuits with

a simulation program. Such analyses demand millions of mathematical

operations to complete. Today's typical high-end workstation is often

capable of 2 MIPS. This level of operation is commensurate to the IBM

Corporation 370/158 mainframe of 1974, at a much reduced cost. However,

even when fitted with a standard math coprocessor to improve its floating-

point performance, today's most up-to-date workstation can perform math

operations at only about 17 percent of that same 1974 IBM Corporation

mainframe capacity of 1.5 MFLOPS (Rauch, 1987).

There are generally three varieties of math processors that can be

attached to improve the workstation MFLOPS performance. The best known

is the off-the-self standard math coprocessor (SMC). This unit acts as

an extension to the CPU, and can be added as a simple chip or as an

accessory board. The second type is found in graphics applications.

Often in this case a dedicated numerics processor (DNP) is added and is

embedded in the CPU system architecture. This procedure can increase the

performance as much as I00 times that of adding a standard coprocessor.

These dedicated math processors must be microcoded, but if the application

falls into this category the speed improvement can warrant the difficult

development efforts. The third variety is known as general-purpose

attached math processors (GPAMP). GPAMPs combine the benefits of using

high-level language during design development that is found in a SMC, but

nearly attain the same speed as the custom architecture of the DNP.

Unlike the DNP however the GPAMP is designed for good performance in

multiple applications such as graphics, digital signal processing, and

circuit simulation.

It is clear that the metrics associated with adding a special math

processor (SMP) within the CPU architecture results in an improved MFLOPS

specification and is, therefore, already contained in the performance

rating. The nature of this discussion resulted in illumination of the

situation, rather than an augmentation to the conclusion. The addition

of an SMP is not included in the concept of adding additional central

processors to support the solution. Multiprocessor CPU organizations,

also called parallel processing, is a separate consideration.

21

3.2.2.2 Multiprocessors

Another hardware development in computer organizations related to CPU

architecture has been the inclusion of multiple processors (MP), in place

of a single central processor. These processors operate together in

parallel on the problem. Practical parallel processor hardware falls into

two major categories. Parallel processors are usually either single-

instruction stream, multiple-data stream (SIM_D), or multiple, instruction

stream, multiple-data stream (MIMD) (Flynn, 1972).

In a somewhat analogous manner, as is the case when comparing many

workstations to a single mainframe, adding multiple processors for

increased speed performance in a single computer does not add linearly

to increase the overall computing power. The gain, if any, that is

achieved will depend on many factors. The most difficult to measure is

the nature of the problem being solved. Solutions to problems that

require manipulation of large data matrices and vectors such as the

computation of matrices or eigensystem decomposition can reasonably be

expected to be resolved in less time with parallel processing (Huang,

1980). For a more general problem, however, the speedup obtained can be

a ratio anywhere from a value much less than one, indicating a slowdown

of the process, to a number even greater than the number of processors,

depending on the solution's algorithmic situation (Kusmanoff, 1989).

There is a major difference in software development efforts when multi-

processors are applied against a problem in an attempt to improve the

performance of the system as was described above. The level of effort

for true parallel processing requires significant program development

efforts by programmers especially trained in the multiprocessor

environment. The improvement can still only be accomplished when the

application fits appropriately to the environment.

Another extension ofmultiprocessor hardware exists where the additional

processors improve the reliability by having backup processors that

simultaneously execute each instruction as it is fetched. IBM refers to

these as dyadic processors in reference to their IBM 3081 dual processor

capabilities (IBM Corporation, 1986). With a dyadic organization, the

primary objective is reliability of the computer, not the improvement in

the speed of processing. In many applications, the improved reliability

factor warrants the additional cost of multiple processors. In this

situation, all of the activity due to having the multiprocessors is

transparent to the software development and does not alter development

time or effort.

3.2.2.3 Input/Output (I/0) Architecture

The I/0 operation is, in reality, distributed among the channel, the

control unit, the device, and the CPU. The application requirement for

an I/0 activity is found within the actual operational program. The

methods used from initiation through continuation to termination make up

the I/0 architecture. I/0 considerations associated with the performance

22

of the computer are the number of channels (NCH)available for I/O, and
the channel capacities (CHC).

3.2.3 Storage Organization

The storage organization of a computer plays an important role in how

effectively a computer operates, hence the computing power. The storage

modes of concern include the memory architecture and peripheral

capabilities. The performance measures of storage that are directly

involved with computing power are capacity and speed of access to this

memory. Indirectly, the word length is also a storage consideration which

can influence the speed of operation. The word length, in addition, has

a relation to the instruction set length and the real storage capacities.

Since these items will be, or have been, discussed separately, word length

in itself will not be a topic. However, a direct consideration related

to word length is the ability to address memory units smaller than a full

word. This will be included within the memory architecture discussion.

3.2.3.1 Memory Architecture

The main memory is one of the major components in any computer. Its

primary performance characteristics of capacity and speed certainly relate

to the power capabilities of the computer. These characteristics,

however, will be seen to have been already incorporated into performance

metrics previously established. The relationship of the word length to

the storage capacity provides a constraint in the area of absolute storage

which in itself can limit the operational program capability if not speed

of execution.

3.2.3.1.1 Main Memory Capacity (MMC)

The directly addressable MMC is a constraint associated with the

performance of a computer system that also relates to the "size" of the

problem. The requirements can be affected by the number of instructions

in the operational program, its required database for real-time input use,

or the interim output storage expectations. All of these factors

interrelate to the operational software demand for memory storage.

The MMC that any computer has is determined by its addressing scheme. For

example, a 32-bit computer that has a 32-bit address is capable of

directly addressing up to 232 or approximately 4.3xi09 memory locations.

This represents the maximum size of the address space of the computer, and

a constraint on the maximum size of memory space that is directly

addressable. The actual amount of memory in a system is usually

determined by the cost of memory hardware.

3.2.3.1.2 Memory Speed

The speed of the memory can be measured by the time that elapses between

the initiation of an operation and the completion of the operation. This

measure is referred to as the access time (AT) for the memory. Another

scale for memory speed is the memory cycle time (MCT). This is the

"--_ 23

minimum time delay that is required between the initiation of two
independent memoryoperations. Commonly,the MCTadd AT are not greatly
divergent in value, but the MCT is usually slightly longer depending on

the actual memory unit implementation. These memory cycle times require

synchronization along with the instruction execution times. The

differences are not based on available hardware capabilities as much as

on the economics of the computer organization. That is, the CPU can

usually process instructions faster thancompatibly priced hardware memory

units. The great expense of using higher priced high speed memories can

be mitigated by using a smaller set of high speed memory locations that

the CPU sees the slower memory through.

This method is referred to as cache memory, and is based on the fact that

execution time is usually spent in a few main routines. The observation

is that many instructions in a localized area of the program are

repeatedly executed, while other areas are referred to infrequently. The

cache memory acts as a high speed buffer between the main memory and the

CPU for these often used instructions.

Performance data based on properly coded use of cache memory can often

show a significant swing compared to those programs that do not optimize

the code for this hardware improvement area. This causes the systems that

depend on cache memories to attain higher execution speeds to be more

fragile in their general application. This factor needs to be included

in the subjective measure of robustness of the computing power.

Because the basic impact of memory speed is seen in the MIPS and MFLOPS

evaluations, no additional metric associated with memory speed will be

applied to computing power.

3.2.3.1.2.1 Smallest Addressable Memory Unit (SAMU)

Main memory is usually designed to store and fetch full word-length values

of memory, although many machines have a capability to address lessor

subsets of a memory location based on 4, 8, 16, or integer multiples of

4 bits commonly referred to as a byte of memory. The greater the

flexibility in address scheme and the larger the word-length the more

substantial the performance factors can be considered. The SAMU will

reflect in the robustness value, where the extension of additional memory

addressing capabilities allows more robust performance.

3.2.3.1.2.2 Absolute Storage Versus Virtual Storage (VS)

The amount of directly addressable memory is determined by the address

structure of the CPU. When the memory requirements have exceeded the

capabilities, other techniques have been developed to provide additional

memory capacities. The most common is referred to as virtual memory.

Naturally, an address specified by the CPU may be an actual physical

location in memory. It is also possible that data may be stored in

physical locations that require a mapping of the CPU address to locate the

physical address. This type of address is referred to as a virtual

address (VA). VA is a valuable asset and helps make programs portable.

24

It is also used to allow bulk storage systems to be added but addressed
as if they were in main memory. Using virtual a_dressing and memory
mapping techniques expand the effective memorycapacity in a tradeoff of

slowing the access times when the mappings occur.

Systems that advertise features of memory extension through memory mapping

and VA or an improved speed by applying cache memory techniques require

a larger effort to optimize the operational system to take advantage of

the improvements. These improvements may effectively show up in the

benchmarking activities mentioned in the earlier section. Then again,

they may only be productive in special environments of well engineered

software development endeavors.

3.3 System Performance Hardware Criteria

It was seen that in this work there is no single number that classifies

the computing power. It would be as difficult to characterize computing

power with a single number as it is to characterize the overall

performance of an automobile with a single number. For a discussion of

those that have tried to accomplish a single computing power description

goal see the references at the end of this document (Smith, 1988 and

Dongarra, Martin, Worlton, 1987). For this study, the power of a computer

is seen to be a function of a multitude of interrelated performance

considerations. It has been said by experts in this field that no single

approach to evaluation addresses the requirements of everyone who needs

to measure performance (Dongarra, Martin, Worlton, 1987). Yet some gauge

of computing power is necessary to make tradeoff decisions.

This chapter has identified a set of hardware factors which will at least

guide the decision maker to a somewhat objective consideration. What

this last section will accomplish is to extract from the earlier sections

the actual set of hardware criteria that reflects the elements of the

three hardware groupings. This criteria set is provided as the best, or

the ideal capacity of the computer, and not to be taken as a practical

operational reality, but as a theoretical operational limit. Therefore,

using this hardware criteria equation against a computer that is

available, will attempt to characterize the theoretical maximum amount of

computing power that is accessible. On the other hand, when using the

criteria against computer program requirements, the theoretical minimum

amount of computing power that is needed, in these basic criteria hardware

terms, would be determined. The balance of supply against demand will

then help to determine software residency possibilities.

Some of the performance values provided are specifically speed related

and measurable. They are linked to maximum power in the same manner that

an automobile's zero to sixty miles per hour time is linked to power. The

analogous computer measurable items that could be listed are elements such

as the MIPS, MFLOPS, CC, and MRC.

There are other values that are construction factors such as the inclusion

of an overhead camshaft in an automotive engine. These directly associate

to the measurable performance elements, hence are already included in the

25

computing power, but are listed to enhancethe subjective input of how the
specific levels of performance from the measurable _lements are derived.
In computer hardware terms, these would be items such as cache memoryor
multiple processors. They are items that are listed to makethe decision
maker aware of how the level of performance of the measuredelements were
obtained. This information provides the sensitivity, or a robustness
indication, that reports on the ability of the equipment to maintain the
specified performance level under varying environments.

Lastly, somemeasures of performance contain capacity elements such as a
car's interior room or its gas tank limit. Here, an analogous computer
hardware componentwould be associated with the storage organization. In
this area, the range of computer performance that can be expected is
defined in objective terms-. Any of these types of items come into the
area of hard constraints from or to the system.

So, holding true to not trying to use a single number to describe

computing power, the following sections will provide several combined

parameters along with two computed indexes related to the optional

considerations that affect quality of the CPU and the robustness that can

be expected. These are to be taken together to render a decision on the

question of what is the minimum required computing power to meet the needs

of the application program. A reverse exercise starting with the hardware

available will relate the computing power that is accessible within the

workstation or the mainframe computer. Note that this is not the total

system solution but only a first step to the solution. Three more

chapters follow this one that add considerably more information needed to

make the final determination of destination, host or workstation.

3.3.1 Measurable Quantities of Speed

The measurable performance items that are related to the speed of the CPU

are the values of MIPS, MFLOPS and the MRC. The CC is a comparable unit

of speed but as discussed earlier it will not be included in the final

tally because of its limited application and the special constraints

required in its application.

Because several quantities have been identified with the speed performance

aspect of the computing power, the recommended approach can go into two

directions. Either take one of the individual metrics as being the most

representative of the speed performance, or take the multiple inputs and

build a new composite metric that is representative of all the metrics

available. The values used for the MFLOPS and MIPS would be provided from

the manufacturer. Neither is always more correct, as each is sensitive

to the operational nature of the application program. The different

nature of these measures centers on the amount of computation necessary.

Because of this, two weighing factors will be defined that can be used

to build a hybrid metric of the combined inputs. The weighing factors

will be correlated to the nature of the operational program. The

fraction of the time estimated that the operational code spends in math

computations will be defined by weight, Wc. The fraction of the time the

code spends in operations other than mathematical operations will be the

26

weight, Wo. Wc plus Womust equal 1.00. The value established for the
MRCwill follow the guidelines established in the beginning of this
chapter and will be in MIPS or MFLOPSdepending on the benchmark. For
this application, it is recommendedto use a geometric average to arrive
at the MRCwhen it is derived from a system of programs. The value
computedfor the speed of the computer, Sc, in millions of executions per
second (MEPS),which is a generic term, will be

Sc = ((Wc*MFLOPS + Wo*MIPS)*MRC) '5

This equation provides a speed measure by using a geometric average of the

input values in a combined approach including manufacturer specifications

and actual execution of code by the CPU.

3.3.2 Measurable Quantities of Capacities and Thresholds

Several quantities such as the MRC, MIPS, or MFLOPS which are extracted

from performance tests, published data, or installed hardware are directly

related to hard limitation thresholds. That is, if any these capacities

are not met, it is equivalent to a system breakdown and the computing

power of the system is unable to meet the requirements. These capacities

can be associated with the current state of art of the hardware or with

the allowed cost of the system. In order to consider these thresholds it

is necessary to have the application requirements clearly established to

match to the hardware availability. The capacities associated with

engineering workstations need to be augmented by the system requirements

when distribution requires interaction with application software at other

locations.

The MMC is a constraint based on the hardware available. This may be a

cost factor or a hardware compatibility factor. In either case, it is a

parameter that is provided by the computer hardware and demanded upon by

the operational software. The crossover of the demand and constraint is

incompatible with successful operation and must be considered a hard limit

threshold.

The values of MIPS and MFLOPS as advertised by the manufacturer clearly

are also hard limit thresholds, that is, if the demand exceeds the supply

the system will fail and the computer power is once again zeroed out.

This failure would clearly be theoretically based, however it would still

be considered a hard stopping point for decision making.

3.3.3 CPU RatinK

Unlike the objective thresholding quantities just addressed, the CPU will

receive a soft or slightly arbitrary rating. It will range between 0 and

i00 and because of its subjective nature, needs to be considered a soft

comparison value. The CPU rating is to be used in conjunction with the

earlier established measures of power to help differentiate between

different CPU architectures. There are six elements assigned to build the

composite CPU rating. A weighing is given to each element, with the

subgroupings reflecting partial point value assignments. These weights

27

are aggregated to attain the final value for the CPUrating. For example,
if the computer has CISC (I0), all interrupt options (i0), only 5 GPRs
(3), a DNP(15), two processors (2), ii I/O channels (i0) and a CHCof
less than i0 MBPS(5) the CPUrating will be 55. The actual application
considerations of the CPUrating will be examined in the final chapter.

ELEMENT SUBWEIGHT WEIGHT

i. INSTRUCTIONSET 20

CISC i0
RISC 20

2. INTERRUPTIONACTION i0

BASIC 2
P/I 2
I/0/I 2
H/I z
olslI 2

3. RESISTER CAPABILITIES i0

GPR 1-5 3

GPR 6-10 5

GPR I0 OR ABOVE 7

FPR ANY ADD 3

4. SPECIAL MATH PROCESSORS 20

SMC i0

DNP 15

GPAMP 20

5. MULTIPROCESSORS 20

2*LOG2(P) P=NUMBER OF PROCESSORS

6. I/0 CAPABILITY 20

NCH i-I0 5

NCH Ii OR ABOVE i0

CHC i-i0 MBPS 5

CHC i0 MBPS OR ABOVE i0

3.3.4 Robustness of ComputinK Power

Several factors were stated to be related to the robustness of the

computing power. These factors will all be applied as weights correlated

to the difficulty of use, sensitivity to software environment changes, and

maturity of the technology. The subjectiveness of these inputs will again

make this a soft measure to be applied to the overall computing power of

28

the applicable weight factors. Several factors are included that have
already been inputs to someother componentof the _omputer power. The
reentry of the information as a robustness indicator is meant to exhibit
the impact on the ability to actually attain the level of computing power.
The closer the robustness factor is to one. The higher the probability
of the computer system reaching the level of power anticipated or needed.
The final robustness factor is the product of the assigned weights if the
computer system has the optional factor. For example, if a computer
system has cache memory (.99), has virtual storage (.99), and uses
multiple processors (.9), its robustness factor would be the product of
.99, .99, and .9 or would be equal to .88209. As was the case in the CPU
rating above, the actual application of the robustness factor against the
residency question will be related in the final chapter.

FACTOR WEIGHT

i. CACHEMEMORY .99

. SAMU

BYTE .9999

MULTI-BYTE .999

WORD .99

3. VS .99

. SMP

SMC

GPAMP

DNP

,999

.99

.9

5 . INSTRUCTION SET

RISC

CISC

.9

.9999

6. MP .9

29

4.0 SOFTWARE DEVELOPMENT

When looking at the placement of application programs in a distributed

computing system another area of concern is the development of the

operational software. The operational software is the implemented code

which is necessary to enact the users requirements. It is also called the

application software. There are a large number of concerns a_fecting the

residency of this software which arise during the development of the

system. These concerns include:

i)

2)

3)

4)

5)

The types of functions which need to be performed;

Maintainability of the software across the system;

The amount of user interaction;

The universal need for the application; and

The performance requirements of the application.

In many organizations, the plan for the development, evolution, and

maintenance of a system is a separate document from the software

requirements since a development plan is considered to be a statement of

how the requirements will be carried out. An important component of

software development is a methodology that includes management techniques

and procedures to assure the success of the project. The current ideas

on structured, verifiable, modularized software are all methods used to

help attain quality control in software.

In summary, during the development stages of system components there needs

to be a methodology used to create a system that is easy to understand,

maintainable, consistent, reliable, and.verifiable. The areas of system

development which will affect these characteristics of a system are

structured programming, reusability of code, configuration management,

attention to user interface, and program performance.

4.1 Understandability and Maintainability

Standardization is the key to a system that is easy to understand and

maintainable. This standardization needs to be applied at the analysis

and design stages, as well as at the implementation level. The use of

standardized approaches to these areas of a programming system's

development will help to ensure that the system is understandable and

maintainable. These approaches include the following fundamental

components: structured programming (including functional decomposition

and hierarchical decomposition), reusability of code, and software

configuration management.

4.1.1 Structured Programming

Structured programming is a methodology that lends structure and

discipline to the program form, design process, coding, and testing. It

is a methodology for constructing hierarchically ordered, modular programs

using standardized control constructs.

30

Although there is much documentation on the necessity for a structured and

defined approach to software development, poorly- designed and large

cumbersome application programs abound in the industry. In a distributed

processing system, the necessity for well-structured software is still

essential. When there are copies of a poorly designed program running on

multiple nodes of a network the inefficiency is proliferated throughout

the system.

Structured programming is a method of constructing a program according to

a set of rules requiring a strict style format and a standardized control

structure. Its common objective is to build high-quality, low-cost

software systems. The principles of structured programming seek to

improve the management of system development, the process of system

development, and the resulting system through the introduction of well-

defined procedures, tools, techniques, project controls, and communication

mechanisms. They structure the development life cycle into a sequence of

step-by-step procedures and use standardization, review, and documentation

to provide order and visibility to the process of system development.

According to Martin and McClure (Martin, 1985), the primary objectives of

structured computing techniques are as follows:

| Achieve high-quality programs of predictable behavior (reliable)

Achieve programs that are easily modifiable (maintainable)

| Simplify programs and the program development process (minimize

complexity)

| Achieve more predictability and control in the development

process (provide disciplined programming methodology)

Speed up system development (increase programmer productivity)

| Lower the cost of system development.

There are a number of approaches which can be taken to achieve

standardization across a distributed system. According to Martin and

McClure, the basic approaches are covered by the following principles of

structured philosophy (Martin, 1985):

| Principle of Abstraction - To solve a problem, separate the

aspects that are tied to a particular reality in order to

represent the problem in a simplified, general form.

| Principle of Formality - Follow a rigorous, methodical approach

to solve a problem.

| Divide-and-Conquer Concept - Solve a difficult problem by

dividing the problem into a set of smaller, independent problems

that are easier to understand and to solve.

31

"_..4

| Organize the components of a solution into a tree-like

hierarchical structure. Then the solutibn can be understood

and constructed level by level, each new level adding more
detail.

Structured techniques are a collection of programming methodologies for

analysis, design, coding, testing, project management concepts, and

documentation tools. Structured programming is accomplished by modular

programming, step-wise refinement, levels of abstraction, and top-down and

bottom-up programming.

Modular programming is the organization of a program into small,

independent units, called modules, whose behavior is governed by a set of

rules. Modularization can be applied at different levels of system

development. It can be used to separate a problem into systems, a system

into programs, and a program into modules.

Stepwise refinement is the process proposed by Wirth for developing a

program by performing a sequence of refinement steps (Wirth, 1971). The

process begins by defining the basic procedural tasks and data needed to

solve the programming problem. This initial definition is at a very high,

general level. The process stops when all program tasks are expressed in

a form that is directly translatable into the programming language(s).

The levels of abstraction proposed by Dijkstra view a program as divided

into conceptual layers or levels (Dahl, 1972). The topmost level

represents the program in its most abstract (general) form. All

successive levels serve to define the components of this level. In the

bottommost level, program components can be easily described in terms of

the programming language.

The terms top-down and bottom-up programming refer to adaptations of

Wirth's programming by stepwise refinement and Dijkstra's prografmning by

levels of abstraction. When a system is built from the bottom up, the

designer creates the components first, makes each component work well, and

then fits the components together. When a designer works top down, he

first creates the overall structure, defining but not yet building the

components. As the design progresses, he fills in the details by building

the lower-level components. Top-down and bottom-up design are practiced

in many fields of engineering other than programming. On complex

projects, a combination of top-down and bottom-up design is usually

required.

In order to achieve the primary objectives of structured programming for

a distributed system, there are a number of technical objectives which

should be met in order to provide a structured design. Before beginning

the development stage, a system designer needs to have a clear concept

about the systems and functions which need to be performed. Once this

information is known, clear diagramming techniques should be used to

provide an understandable design of the system's flow. As the design

continues, a standard set of control structures should be employed which

can be converted into code with minimum effort. When developing software

32

for any system the complex problems should be decomposedinto successively
simpler ones. Powerful b_ilding blocks and libraries should be used to
attain the maximumautomation of system design with techniques that make
possible the automatic generation of code. An analyst's and programmer's
workbench used to maximize help from the computers in achieving objectives
is an example of a building block.

An important factor in the understandability and maintainability is the
communication which needs to occur during the development of the system.
This communication should include the end users as well as the other
membersof the development team. The end users should be contacted to
provide the designers with specifications for a system which is teachable
and understandable for the users. Communicationamongthe membersof the
development team will help to establish rigorous interfaces between
separately developed modules and achieve overall consistency across the
system. Constant and explicit communicationwill help to minimize errors
and catch those that do occur as early as possible.

The primary goal of all these objectives is to design software which is
verifiable and correct while at the sametime controlling the complexity
of the system. These goals are important in any system, not just a
distributed system. They have been discussed here to provide a reference
for an approach to providing software for a distributed system which is
easy to understand and maintainable.

4.1.i.1 Functional Decomposition

One approach to structured programming is functional decomposition. Most

structured design employs a form of functional decomposition. A high-

level function is decomposed into lower-level functions; these are

decomposed further; and so on. A tree structure shows the decomposition.

The term functional decomposition applies to functions rather than data.

However, similar diagrams are sometimes drawn for the decomposition of

both data and functions.

There are three different categories of functional decomposition. (Martin,

1985) The first and most common type of functional decomposition is a
tree structure that relates to function and not to the data that those

functions use. The second category shows the data types that are input

and output to each function. This can be much more thorough, because if

it is handled by computer, the machine can check that the data consumed

and produced by each functional node are consistent throughout the entire

structure. The third category is still more thorough. It allows only

certain types of decomposition, which have to obey precise rules that are

defined by mathematical axioms. The resulting structure can then be

completely verified to ensure that it is internally consistent and

correct.

The specification of generalized and independent functional modules for

performing all non-unique application processing is necessary to reduce

redundancy of effort and documentation in module development, reduce the

redundancy of storage space and execution time during network operation,

33

and confine the effects of changes to the software to a small number of

standardized modules (Schneidewind, 1989).

In a distributed processing system, the components of the system need to

be broken down by function. For real-time distributed systems, such

decomposition requires consideration of critical timing constraints and

may require introduction of special modules such as monitors for module

synchronization (MOK, 1984). Once the components have bee_ identified

by function, they should be reviewed and any redundant functional modules

should be eliminated by developing one global module which performs the

function for all applications which need its capability. These global

modules could then be put in a library to be accessed by any system

application which needed the function. Reusability of code is discussed

in more detail in a later section.

4.1.1.2 Hierarchial Decomposition

The modules in a structured program are typically hierarchically ordered.

Although hierarchical organization is usually considered an inherent part

of modular programming, it is possible to organize a modular program in

a nonhierarchical manner. For example, a simple modular program

containing only a few modules can be organized sequentially. One module

is executed after another. When the last module in the sequence has been

executed, program execution stops.

Since sequential organization is not an effective means of controlling

program complexity as programs grow in size, a structured program is not

sequentially ordered. It should be hierarchically ordered in the

following manner:

| The first level of the hierarchy contains one module. This

module, called the root module, represents the overall program

function at its highest level and describes the viewpoint for

the activity.

| The second level of the hierarchy contains modules that further

define the function of the root module. At this level, the top-

level function is decomposed into several component functions.

| In general, each successive level of modules in the hierarchy

provides a more detailed functional description of what the

program does.

One hierarchical design for a distributed processing system is based on

a hierarchy of abstract machines. At the bottom of the hierarchy is the

hardware machine interface. Using the operation provided by the hardware

machine, a virtual machine is provided, which is called an extended

computer (Faulk, 1988). By using the extended computer interface to hide

machine-dependent characteristics, it is intended to make upper level code

more portable, abstract from machine idiosyncrasies, provide more readable

code, and provide more uniform solutions to machine-dependent coding

problems.

34

The extended computer interface is designed to- include only those

operations that would have a different machine-dependent implementation

should the underlying computer be replaced by one of similar capabilities.

The object is to provide the minimal set from which efficient

implementations of all useful operations can be constructed. This

obviously minimizes the amount of machine-dependent software which would

need to be rewritten to transport the System to a different_nachine.

4.1.2 Reuse of Code/Library

These days, there is great interest in the reuse of software. For

example, the Department of Defense is using it as a leading initiative

to improve its software technology. In the discussion on structured

programming, the idea of reusable code was touched upon. In a distributed

processing system where there are clusters of workstations working

independently to help achieve the system goal, there are sure to be

processes and procedures which need to be performed in more than one area

of the system.

A neglected area of great potential in reusability is to design software

modules that can be applied to multiple applications. Application

development time is significantly reduced and resistance to the ripple

effect of future software changes will be maximized by providing a set of

server modules which perform all user services other than unique

applications functions. Server modules which provide common services are

appropriate because certain services (e.g. database management) are not

application unique. Rather than having "n" complete sets of application-

specific modules, this approach produces only one set of generalized

modules in which only the input and output functions are replicated n
times.

'Reusable code can be produced by applying the modularization and

decomposition approaches to software development. As applications are

broken down into multiple modules, the designer should be considering the

functions which are necessary to other applications in the system. These

functions should be classified into independent modules which can be used

by other applications.

4.1.3 Configuration Management

Control of software is an important aspect of a distributed system. When

there are multiple systems in a cooperating environment attempting to

perform one overall task, the integrity of each systems' software must be

maintained. Hence, the need for configuration management. Configuration

management can be defined as the discipline of identifying the

configuration of a system at discrete points in time for purposes of

systematically controlling changes to the configuration and maintaining

the integrity and traceability of this configuration throughout the system

life cycle. Configuration management involves the control of the

development and execution of operational software. One of its main goals

35

is to ensure that only well-tested and reliable software is available to

run when the system is performing its intended function.

Software configuration management is one of the disciplines used to

attain and maintain product integrity. Achieving some level of product

integrity is fundamental to the production of software on a successful

basis (successful meaning that the software meets or exceeds the

requirements and expectations of the end user). However, it ,lust be noted

that successful software development is more than just ensuring that the

end product fulfills user technical requirements. It is also necessary

to fulfill the requirements in timely fashion and at a reasonable cost.

In the above paragraph the idea of product integrity was introduced.

Product integrity is defined to be the intrinsic attributes:

| Which characterize a product that meets user requirements

imposed, assumed, presumed or intended during any stage in its

life cycle;

| Which facilitate traceability from product conception (as an

idea) through all subsequent stages in its life cycle; and

| Which characterize a product that meets specified performance

criteria.

In addition, the integrity of a product is diminished if it is not

completed on time or within budget. (Bersoff, 1980)

This definition gives particular emphasis to the fulfillment of user

requirements, whether specified in advance or not. Frequently,

requirements for a product cannot be specified at the beginning of its

development cycle. The user may simply not know how to produce a

comprehensive specification of his requirements or more likely will omit

or misstate some of the requirements; sometimes, the product may even be

developed in isolation from the user. Our definition is, therefore, a

pragmatic one, demanding, in part, that product integrity be a measure of

the fulfillment of the real needs and realistic expectations of the user.

It therefore assumes that the developer must carry the prime

responsibility for attaining the definition, an Alpine custom split-level

house that craftsmen build from the finest materials for a man in a

wheelchair does not have product integrity for that user. On the other

hand, to a professional mountain climber, the same house may truly posses

all the attributes which fulfill the user's expectations, be of superior

quality and get the highest marks for product integrity.

Attaining system/software product integrity requires managements's

judicious application of many disciplines, including those which are

"supporting" in nature versus those which are the "doing" disciplines.

The supporting disciplines are particularly important to this discussion

because it is through the application of the supporting disciplines that

management is able to achieve some checks and balances over the entire

36

development effort. These supporting disciplines are referred to as
product assurance disciplines, and they specifically include:

| Configuration management

Quality assurance

| Verification and validation

Test and evaluation

In the distributed computing system the implementation of configuration

management is neither more or less important than in a conventional time-

sharing system. Configuration management is necessary to maintain a

reliable system. In a distributed processing system, reliability is a

very important consideration because of dependencies that may be present

between various nodes in the system. If a node goes down because of

unreliable or non-verified software, it could have a serious impact on the

rest of the system.

4.2 Level of User Interaction

There are two views of user interaction to consider when discussing how

the level of user interaction affects the residency of an application.

One side is the obvious, but important, consideration of whether there

is a user interface present in an application. The other side of user

interaction is the design of the user interface.

If an application contains user interactive routines, then the response

time will be an important consideration when the application is designed.

Any application which contains user interactive commands needs to be able

to respond to a user's input within a reasonable amount of time to show

the user that the input has been accepted. If an application is user

interactive, it should reside on the node where it will be executed by the

user in order to provide suitable response time. This is a simple

guideline to follow if the application has a high-level of interaction

(i.e., its main function is dependent upon constant user interaction.)

If, however/ an application has only minimal user interaction (i.e.,

queries for initial inputs) and spends most of its execution time doing

data calculations, it would be best to separate the query function of the

application from the computation function. By doing this the

computational process can then be evaluated individually for its data,

memory, and CPU requirements. If the computational process requires more

processing power than the workstation is capable of, or if it requires

access of system data, it could be executed on the mainframe after being

provided with the necessary inputs from the interactive process on the

workstation. This would involve a minimum of communication connections

to pass the inputs, invoke the computation, and return the results.

The importance in the design of the user interface is that the screen

format should be well designed. A well-designed screen format can

37

increase human processing speed, reduce human errors, and speed computer

processing time. A poorly designed screen will hav_the opposite effect.

There are a number of important characteristics to consider during screen

design, but only those which are particularly relevant to distributed

systems will be discussed. They are:

| Consistency:

throughout;

A system should look, act, and feel the same

| Design Tradeoffs: Human requirements must always take

precedence over machine processing requirements;

| Initiative: For new and inexperienced people, provide a

computer-initiated dialogue. For the experienced, permit a

human-initiated dialogue.

| Flexibility: A system must be sensitive to the differing needs

of its users.

The first characteristic of screen design which is particularly important

in a distributed system is design consistency. Design consistency is a

common thread that runs throughout these guidelines. It is the cardinal

rule of all design activities. Consistency is important because it can

reduce requirements for human learning by allowing skills learned in one

situation to be transferred to another like it. While any new automated

system must impose some learning requirements on its users, it should

avoid encumbering productive learning with nonproductive, unnecessary

activity. Inconsistencies in'design are caused by differences in people.

Several designers might each design the same system differently.

Inconsistencies also occur when design activities are pressured by time

constraints. All too often the solutions in those cases are exceptions

that the user must learn to handle. People, however, perceive a system

as a single entity. To them it should look, act, and feel similarly

throughout. Excess learning requirements become a burden to their

achieving and maintaining high performance and can ultimately influence

their acceptance of the system. Design consistency is achieved primarily

by applying design standards within a common framework. The designer

creativity that this stifles (if indeed it does) would seem to be a small

price to pay for an effective design.

The second characteristic includes the design tradeoffs which occur when

design guidelines conflict with one another or with machine processing

requirements. In such conflicts the designer must weigh alternatives and

reach a decision based on accuracy, time, cost, and ease-of-use

requirements. This leads to the second cardinal rule in user interface

development: Human requirements always take precedence over machine

processing requirements. It might be easier for the designer to write a

program or build a device at the expense of user ease, but this should not

be tolerated. This is particularly important in a system with many users

that have different levels of experience.

38

The third system characteristic is initiative. Initiative defines who

leads the dialogue between a user and the computer. In a computer-

initiated dialogue, the direction is plsced in the hands of the system and

a person responds to various kinds of prompts provided by the computer.

These prompts may take the form of questions, directions, menus of

alternatives, or forms to fill in. Computer-initiated dialogues are

usually preferred by new users of systems. They rely on our powerful

passive vocabulary (words that can be recognized and understood), and they

are a learning vehicle, implicitly teaching a system model as one works.

Human-initiated dialogues place the responsibility of direction in the

hands of the system's user. The computer becomes a blackboard waiting to

be drawn upon. The user provides free-form instructions from memory,

either commands or information, and the system responds accordingly.

Human-initiated dialogues are often preferred by experienced system users

since they permit faster and more efficient interaction. A computer-

initiated dialogue tends to slow down and disrupt the more experienced

user.

Mixed-initiative dialogues have also been designed. An example of this

is labeled function keys on display terminals. The label itself provides

a prompt or memory aid but the user must remember when it can be used.

Most of the earlier generation computer systems possessed human-initiated

dialogue, since this has been the style their designers have been most

comfortable with. As a result of the kinds of problems associated with

the exposure of computer technology to more nonspecialists, there has been

a shift in emphasis to computer-initiated methods. This new emphasis has

brought into focus more clearly the problems of this approach for a person

who becomes experienced with a system. The result is that today we are

beginning to see systems that combine both initiative styles. The needs

of both kinds of system users can then be simultaneously satisfied.

Some research has been done to try and determine at what point a person

is ready to make the transition from a computer- to human-initiated

dialogue (Gilfoil, 1982 and Chafin and Martin, 1980). These studies

provided novice system users with a choice of a menu-driven dialogue

(computer-initiated) or a command-driven dialogue (human-initiated). In

the Gilfoil study participants chose the menu approach to begin with and

moved to the command approach after 16-20 hours of experience. At this

point they were found to perform better and to be more satisfied with the

command dialogue. In the Chafin and Martin study, the transition occurred

around 25-50 hours. These numbers, of course, should not be interpreted

literally. Many characteristics of the system, task, and using population

would substantially influence the results. What is important is the

direction these numbers take. They show that it does not take long for

new users of a system to start moving from dependent to independent

status. An interactive system, to be truly effective, must provide a

dual-initiation capability. (Galitz, 1985)

The final characteristic of screen design which pertains to a distributed

system is flexibility. Flexibility is a measure of the system's

capability to respond to individual differences in people. A truly

39

flexible system will permit a person to interact with it in a manner
commensuratewith that person's knowledge, skills, and experience. This
characteristic is closely-related to initiative. Onekind of flexibility
has already been described in the discussion on initiation. A system that
permits both human- and computer-initiated dialogues is flexible in that
regard. Other areas of flexibility include the display or nondisplay of
prompts, permitting defaults, or the creation of special vocabularies.
With a flexible system, each person working with such a syste_ncan choose
the method most comfortable to himself or herself.

Flexibility can have differing levels. At one extreme the user can choose
the preferred method and the system will respond accordingly. At the
other extreme the system constantly monitors a person's performance
(errors, speeds, frequency of use of components, and so on) and modifies
itself accordingly. The latter might more appropriately be called an
adaptive system.

In order to maintain a consistent user interface, a screen builder which
could be used by all software designers in the system would be an
appropriate approach. Through the use of such a utility, the look and

feel of all screens in the system would be similar.

4.3 Universal Need For an Application

In a large distributed system with many processing units, there are going

to be functions and applications which are common to the users at many

different sites in the system. The screen builder and configuration

management applications are prime examples of such a function. The

considerations which need to be evaluated concerning the residency of

these global applications include the frequency of use by the users on the

system, their necessity during normal operation, the response time

requirement, and the data requirement. These factors need to be

considered collectively as well as the up-front computing power

requirements.

The frequency that an application may be used by each user should be a

driving factor in the placement of the application. If the application

is used frequently by many users, the response time is going to be an

important element in the decision of where to place the application. If

a user has a frequent need for a function, the amount of time they will

wait for a result will decline as the frequency increases. In this case,

it would be more appropriate to place an individual copy at each user's

site in order to provide a quick response time. However, if the

application has requirements for shared data which is stored on the

host/mainframe, it could be possible that the application would perform

better on the host/mainframe. In this case the response time may be

degraded if multiple users request the same data at the same time. If an

application is not used frequently by many users, its placement will have

a greater dependency on other elements pertaining to its operation

requirements.

40

Close in hand with the frequency of use of an application is the necessity
for the application to be run during real-time operation as compared to
development. If an application is to be run during development of the
system and not during the operation then the response time requirement is
not quite as important. The user will still have a requirement for
reasonable response time, but the real-time need for optimum execution
time is not present. This situation would tend to lead a system designer
to place developmental tools on the mainframe. On the other hand, if an
application is to be run during normal operation the response time
requirement will be a very important factor and will need to be considered
along with the data requirements whentrying to determine an application's
residency.

As mentioned earlier, a factor in the universal need for an application
is the response time required by the users. It has been pointed out in
previous chapters that this requirement is an important consideration when
trying to determine an application's residency. In regards to the
universal need for the application, the response time is again an

important consideration. If an application is needed by many of the

system users, it will be important to know if they have a real-time need

for the application. The response time requirement will be influenced by

the demand for the application, the frequency of its execution, and its

data requirements. These must all be considered together when looking at

the response time demand.

Another important requirement to be considered in the residency of a

universal application is its data requirement. If the application, is a

system function which needs access to local data then the application

would most likely reside on the users local system. If the application

is dependent on the shared data stored on the host/mainframe it may be

more appropriate for the user to run the application at the

host/mainframe. In this case the decision would have to be based in

conjunction with the response time requirement and the frequency of need.

It is apparent that the decision for placement of an universal application

can be very simple or very complicated. In the simple cases, low usage

requirements, developmental applications, non-real-time requirements, and

local data requirements sway the decision heavily to either the

workstation or the mainframe. In the complicated cases, the response

time, data requirements, and frequency factors need to be evaluated

collectively so that the most effective solution can be determined.

4.4 Program Performance

One of the most critical requirements put on a system is the timing

requirement of the applications which will run on that system. In a

system where responses are needed immediately, this is going to be an

important criterion for any application which has a real-time need. The

available computing power of the candidate systems will have to be able

to meet this requirement before the system can even be considered as the

location for an application. This determination should not be a problem

between the mainframe and an engineering workstation once the computing

41

kv

power of each has been determined. Computing power is defined here to

include all factors that describe both the subjective and objective

qualities of the target system. It is thus a measurement of the "success"

of the target system, a constraint below which the system must not be

allowed to fall. Other factors which must be considered when looking at

timing requirements are the effects of other processes executing

concurrently on the same processor and overall execution time of the

application. When a system designer is contemplating the residency of an

application, the effect on each individual program's performance is

greatly affected by the number of processes which will be executing

concurrently on the same processor.

In many systems, especially those that are embedded in, or connected to,

specialized equipment, the real-time performance is essentially a

measurement of the success of the system. There are other time

constraints which relate events to each other rather than to real time.

These relationships would normally involve precedence but might also

include information for choosing between competing activities based on

some kind of priority system. While detailed decisions on precedence or

priority throughout the target system may be left to the designer, there

should be a means for including critical constraints in this area in the

requirements.

Other factors which characterize the performance of a program are the

accuracy and comprehensiveness. The accuracy of the detection and

computation of data can be critical. If important data that could be

displayed is never made available, or not presented when it could be a

determining factor during operation, the target system is performing at

a less-than-optimal level. The requirements constrain the eventual design

by identifying, at least in general terms, the degree of comprehensiveness

desired. Designers can later figure out how to manipulate the data with

the quality and human factors constraints.

42

5.0 CONTROLS

In discussing the assignment of applications to either the host or the
workstation, a system designer needs to look at the types of control
available in a system to manage the tasks of resource utilization,
interprocess communication, and the access of shared data. A distributed
processing system gives rise to someproblems that do not_exist in a
centralized system, or that exist in a less complex form. Mainly, in a
system which includes a mainframe cooperating with multiple engineering
workstations, all nodes need to coordinate to somedegree in order to
perform their designated functions. This coordination is maintained
through the control of system resources, communication, and shared data
access.

There are many forms of control in a distributed system. Deciding which
type is appropriate for each function in a distributed computing system
is difficult. Deciding how distributed control algorithms of different
types will interact with each other under one system is even more complex.
If these algorithms are implemented in the right combinations then there
should be improved performance, reliability, and extensibility-the major
potential benefits of distributed systems.

Correct placement of an application program requires analyzing the demands
an application program has on system resources, such as memory,CPUtime,
peripheral hardware. If the program has resource demandsthat can best
be met, or only met, by either an engineering workstation or the mainframe
thenthese resource constraints should be applied in the residency of the

application. If aD application has a need for communication with other

processes then the resource demands of the other processes must also be

considered when attempting to place the application. An application's

requirement for accessing data shared across the system is another

important consideration for assignment of an application to either the

mainframe or a workstation. Determining an application's need for

resources, communication, and shared data is necessary to evaluate the

impact of control methods for these needs on the residency of the

application. The following sections discuss methods used to control these

elements of a system and the effect these controls have on the residency

of an application.

5.1 System Resources

Identification of the methods used to control the general resources on

the distributed system being investigated is necessary when attempting to

determine the residency of application programs throughout the network.

A system designer must assign applications in a manner which best utilizes

these resources within the constraints of the methods which have been

implemented to control them. When attempting to determine the residency

of application programs throughout the network based on the control of

resources, the system designer should examine the types of control which

are available on a system and specify considerations which need to be made

based on the implementation selected for the system in question. The

43

topics of control which will be discussed here include operating systems
and load balancing.

5.1.1 Operating System Control

In a typical computer system, system resources are not directly accessed

by users. The users contact the resources through a set of services

usually referred to as an operating system. In the operating system

arena, functions such as scheduling, deadlock detection, access control,

and file servers are candidates for being implemented via distributed

control. Consider an individual operating system function to be

implemented by "n" distributed replicated entities (controllers). For

reliability, it is required that there be no master controller. In other

words, each of the controllers is considered equal (democratic) at all

times. Furthermore, one of the most demanding requirements is that, in

most operating systems, functions must run in real-time with minimum

overhead (time sensitive). This requirement eliminates many potential

solutions based on mathematical or dynamic programming.

Central to the development of distributed control functions is the notion

of what constitutes optimal control. However, such a notion for dynamic,

democratic, and time-sensitive functions is not yet well formulated. In

fact, this is such a demanding set of requirements that there are no

mathematical techniques that are directly applicable. Those techniques

which do exist do not address problems such as: inherent delays in the

system which cause inaccuracies and eliminate the possibility of immediate

response to actions; the necessity for quick decision making; and

reliability issues. Furthermore, these theories do not directly deal

with stability, an issue that is fundamental to distributed control and

reliability.

To have any hope of solving the control problem in a distributed system,

either the optimization requirement should be relaxed, more structure

should be imposed to the problem, or both. In general, imposing

additional structure includes: (i) not only requiring that each controller

act sequentially but also to know the action and the result of any action

of all previous controllers; (2) various n-step delay approaches; (3)

periodic coordination; or (4) using a centralized coordinator. Even with

such simplifications, the specification of additional structure does not

guarantee that the resulting optimization problem is solvable in practice.

Even with this additional structure, the optimization problem can be too

complex (and costly) to run functions like scheduling and routing in real

time without compromising reliability. Therefore, heuristic methods may

be developed which can be run in real time to effectively coordinate

distributed controllers in a stable way and do not compromise reliability.

Even with a heuristic approach, the delayed effects of the interactions

are often not considered. Furthermore, both iterative solutions and

keeping entire histories are not practical for most functions in a

distributed computing system. With the scheduling problem, there is the

added concern that it is difficult, if not impossible, to know the direct

system-wide effect of a particular action taken by a controller. For

example, assume that controller "i" takes action "a;" and assume that the

44

net effect of all the actions of all the controllers improve the system.
It cannot be assumedthat action "a" was a good action, when, in fact,
it may have been a bad action dominated by the good actions of other
controllers.

Within any distributed computing system, the distribution of control may
range from a single fixed control point that makes all operational
decisions based on continual observation of the system_performance
(centralized control) to a fully distributed set of identical control
centers cooperating in the decision process governing the operation of the
system. The operating system will be a large determination factor in what
level of control is implemented on a system.

A recent study at Stanford University relating to distributed computing
systems resulted in the development of an operating system, V. The
motivation for this study was the growing availability and functionality
of relatively low-cost, high-performance computer workstations and local
networks (Cheriton, 1988). The basic hypothesis was that an operating
system could be developed that manageda cluster of these workstations,

providing the resource and information sharing facilities of a

conventional single mainframe system but running on this new, potentially

more powerful and more economical hardware base.

The design philosophy of the V system was based on three major principles.

The first principle was that high-performance communication is the most

critical facility for distributed systems. By high performance it is

meant that the exchange rate of significant amounts of data across the

network should be comparable to that of conventional file access. If the

communication rate is slow, it may lead to poor performance and the

proliferation of elaborate techniques for dealing with the limited

communication facilities. Fast communication allows the system to access

files without concern for location, thereby making true network

transparency feasible. The second principle was that the protocols, not

the software, define the system. In particular, any network node that

"speaks" the system protocols can participate, independent of its internal

software architecture. Thus, the challenge was tO design protocols which

would help attain the performance, functionality, reliability and security

required by the system goal. The final principle was that a relatively

small operating system kernel can implement the basic protocols and

services, providing a simple network-transparent process, address space

and communication model. The rest of the system can then be implemented

at the process level in a machine and network independent fashion.

A cooperating computer system requires a cohesive control structure to

bind its components and a local operating system for each of its node

computers (workstations and mainframe) to execute. Knowing what type of

controls an operating system in a distributed processing system has

implemented is important to the allocation of applications between nodes.

If the operating system is too localized, unable to provide the commands

needed for communication between processors (like DOS) then there will be

very poor interaction and no overall control. If the operating system is

designed for multi-systems (like V) then the users will have better

45

control and function. In a system of multiple engineering workstations
connected to a mainframe computer containing a centralized database, there
needs to be a degree of decentralized control for communication and
resource allocation purposes. There could also be centralized control at
the mainframe level for the access of shared data.

5.1.2 Load Distribution

Most load distributing algorithms can be categorized as following one of

two archetypical strategies - load sharing (LS) and load balancing (LB)

(Krueger, 1988). LS attempts to conserve the ability of the system to

perform work by assuring that no node within the system is idle while

there exists a demand for service anywhere in the system. LB goes a step

further by striving to equalize the entire workload among all of the

nodes. LB can further be characterized by the static or dynamic nature

of its control. Static control only deals with the initial placement of

a process. Dynamic control employs a migration component capable of

transferring a process once it has already started to execute.

In distributed computing systems, these algorithms have been developed

to improve the performance of the system (e.g. to minimize the mean

response time of a job) by efficiently utilizing the computing power of

the entire system. The availability of facilities which allow a user on

one workstation in a distributed system to execute a job on another

workstation in the system has led to an effective means of maximizing the

computing power within a.distributed system. Through the use of these

remote execution facilities, the user of a workstation-based distributed

system can transfer jobs from heavily loaded nodes to inactive or less-

busy nodes.

Recently, this method was applied to find the prime factors of a 100-digit

number. It had been theorized by computer scientists that a single

computer doing a million calculations per second would have needed 25

years to solve the problem. Even a state-of-the-art supercomputer such

as the Cray would need about i0 months of constant computing. However,

the number was factored in just 26 days by using the idle time of 400

computers in the United States, Europe, and Australia.

Since workstations are typically allocated as private resources for the

user who controls access to them, the load distribution method aims to

maximize the utilization of processors with as little interference as

possible between the jobs it schedules and the activities of the users

who own the processors. This is an important concern for the users of

workstations connected in a distributed processing system. If a user at

a workstation has a time-critical application which needs to execute, that

user does not want an application from another node trying to execute in

the background at the same time. The capability to control when the

processor is free to execute remote processes would be a desirable feature

for the users of workstations.

Although a communication delay must be incurred by transferring a job

from one node to another, the performance of a distributed computer system

46

can generally be improved by an effective load balancing policy. An
example of this type of load distribution is used by lhe Condor scheduling
system (Litzkow, 1988). Condor operates in a workstation environment.
This system identifies idle processors in the network and schedules
background jobs on them. Whenthe user of a workstation resumes activity
at a station, Condorcheckpoints the remote job running on the station and
transfers it to another workstation. The system guarantees that the job
will eventually complete, and that very little, if any, work will be
performed more than once.

Obviously, load distribution, both LS and LB, involves coordination and
cooperation between the various nodes of the distributed system. Hence,
there is always communication delay of transferring a job. If a
distributed system does not implement somemethod of load distribution,
applications can only execute locally. In this case, however, the
assigned processor must be capable of providing the response time required
by the applications.

In summary, the questions which need to be answered about a system with
regards to load distribution are is the system capable of load
distribution and if so what type is implemented: LS or LB (static or
dynamic)? If a system does have a load distribution method active then
are there any background applications which cannot be controlled by the
load distribution because of special resource demands which would
eliminate the application being passed off to another processor? If there
is not a load distribution plan, then all resource demandswill need to
be considered in the static allocation of background applications to each
processor.

5.2 Interprocess Communication

The considerations of interprocess communication control are discussed

in this section. A computer network consists of a collection of host

computers connected by a communication subnet. The subnet physically

transfers messages between nodes of the network. Most networks are

designed as a layered system which allows a layer at one site to

communicate with "peer" layers at other sites. The rules governing this

communication are called protocols. The complete set of layers and

protocols in a computer network is known as a network architecture.

Functions in the subnet such as access control, routing, and congestion

control are good candidates for being implemented with distributed

control. Routing is the decision process which determines the path a

message follows in passing from its source to its destination. Some

routing schemes are completely fixed; others contain fixed alternate paths

where the alternative is chosen only on failures. These non-adaptive

schemes are too limited and do not fully utilize distributed control.

Adaptive routing schemes modify routines based on changing traffic

patterns. Adaptive routing schemes may be centralized where a routing

control center calculates good paths and then distributes these paths to

the individual hosts of the network in some periodic fashion. Again, this

is not an effective use of distributed control.

47

Routing algorithms which exhibit distributed control typically contain n

copies of the algorithm (one at each communication processor).

Information is exchanged among communication processors periodically or

asynchronously as a result of some noticeable change in traffic. The

information exchanged varies depending on the measurement used by the

algorithm (e.g. the number of hops, an estimate of delay to the

destination, or buffer lengths). Each copy of the routing al_orithm uses

the exchanged (out-of-date) information in making routing decisions. Such

algorithms have the potential for good performance and reliability because

the distributed control can operate in the presence of failures and

quickly adapt to changing traffic patterns. On the other hand, several

new problems arise in such algorithms. If the algorithm is not careful,

then phenomena known as ping-ponging <message looping) and poor reaction

to "bad news" might occur. These problems are essentially stability

problems and affect the reliability of systems.

Another type of distributed routing algorithm is based on "n" spanning

trees being maintained, one to each site of the network. Each spanning

tree is largely independent of the other trees so this is not a highly

cooperative type of distributed control. Such an approach does have a

number of advantages such as guaranteeing that there will be no looping

of messages, thereby solving the stability problem. There is also another

degree of reliability provided because each site has its own tree; but

additions to the algorithm are needed to further increase the reliability

so that an individual failed site can be bypassed (i.e., alternative paths

should be provided).

When too many messages are in the subnet, performance degrades. Such a

situation is called congestion. In fact, depending on the subnet

protocols, it may happen that at high traffic, performance collapses

completely, and almost no packets are delivered. This is another form of

stability problem and, hence, is also related to reliability. Solutions

include preallocation of buffers and performing message discarding only

when there is congestion.

A particularly interesting distributed control algorithm for congestion

control is called "isarithmic congestion control" (Stankovic, 1985). In

this scheme, a set of permits circulate around the subnet, and a set of

permits are fixed at each host. Whenever a communication processor wants

to transmit a message, it must first acquire a permit, either one assigned

to that site (and not being used) or a circulating permit. When a

destination communication processor removes a message from the subnet, it

regenerates the permit. Stationary permits are considered free upon

message acknowledgement. This scheme limits the number of messages in

the subnet to some maximum given by the number of permits in the system.

Although this scheme enhances reliability in one or more ways, there are

still reliability issues which are left untreated. These issues could be

addressed if this scheme included what actions to perform in the case of

lost permits or downed sites.

48

An unfortunate characteristic of message communication is that it is
possible for a messageto becomelost while passing-through the network.
This might require users to program explicit acknowledgment schemesinto
the application-level procedures, which then adds to the communication
cost by both time and lost acknowledgements. Furthermore, because of the
distributed nature of most systems that use messages, messagesmay be
received in an order different from that transmitted, and messagesmay
arrive at the destination buffer from different sources. _It is also
possible for a sender to issue a burst of messageswhich can not be
addressed quickly enough before the sender times out. Because of these
problems it is necessary to implement reliable interprocess communication.
The protocols established for system communication are necessary in any
applications which plan to incorporate interprocess communication. In
order for one application to communicatewith another application, there
needs to be a commonset of procedures used to establish a connection
between the two applications and transfer the information between the
sender and the receiver.

_v

The control of interprocessor communication can be characterized in

roughly three categories - master/slave, dialogue, and mailing system.

(Stankovic, 1985) In the master/slave approach the slave is available at

all times, the master does not ask permission, and the slave notifies the

master when it has completed its task. This kind of IPC can be

accomplished in hardware by interrupt signals and in software by procedure

calls. This is a tightly coupled IPC construct, and its use is often very

efficient because the master does not have to wait for permission from the

slave. This construct, as normally implemented, can block for long

periods of time if, for example, the slave crashes after it is called.

The dialogue approach requires the user to acquire permission for using

another processor. The activity of the other processor is triggered by

the user's request, but controlled by the processor, and the connection

between the user and the service processor is established temporarily.

The dialogue approach can be implemented by procedure calls - i.e., a

series of calls back and forth between user and facility with the

appropriate checks and parameters. In many instances of dialogue

communication, there is no specific need for the message. They are just

checks and acknowledgements. However, if the two conversing parties are

physically on different processors, or if there are many conversing

parties, the message mechanism is more natural and better suited to these

tasks. The reasons for this arise from data flow considerations. First,

the sender and receiver are on different nodes and, therefore,

difficulties arise in sharing global variables and referencing

environments. Second, with multiple conversing parties, the buffering of

messages may become necessary. Reliability issues arise at a number of

places in the dialogue approach.

The third category of control is the mailing system approach. In this

approach, information is not sent directly from source to destination

because there are intermediate stops. The information is sent whether

or not it can be processed immediately, or is even capable of ever being

49

processed. Typically senders (receivers) have somekind of buffer into
which (from which) information is placed (removed). An important
characteristic of messagesis that the number of messagessent can vary
with time; that is, senders can operate in burst modewhere a number of
messagesare sent in quick succession and none are sent for a period of
time. Furthermore, receivers may not be able to process each message
right away; hence, the need for buffers. The semantics of the procedure
call do not support a mailing system. Users would be lequired to
implement the mail features themselves. The messageis the communication
method developed for implementing mailing systems, but the level of
reliability associated with messagesis highly variable depending on the
implementation.

The things a system designer needs to investigate when allocating
applications to particular processors in a network are the amount of

interprocess communication between an application and other processes,

the number of other processes which communicate with the application, and

the importance of response time in the application's execution. If an

application has a high degree of interprocess communication, it should

reside on the same node with other applications it communicates with in

order to reduce the response time which would be dependent on the

communication delays. If this requirement would overload a single

processor then the least involved processes should be moved to other

processors which can meet their computational needs. If the communication

control software does not distinguish between local and remote

communication then the difference in response time may not be noticeable,

but the reliability of local communication would be higher. Chapter Six

covers the factors associated with delays caused by the use of a

communication network.

5.3 Shared Data Access

A primary strength of a centralized system using the time-sharing

technology of a mainframe computer came from the ability to share stored

information among all the users of a system. A common problem on a

distributed processing system is the need for different processors to

share the same data. Where and how this data should reside on the network

and what the process should be for controlling access to it are important

questions to be answered when allocating applications in a distributed

processing system.

In many cases it is necessary for two or more processes to have

simultaneous access to the same file. However, a process that modifies

a file cannot share with any other process access to that file at the same

time. In order to provide users with this flexibility, a system must

provide two methods of access to every file, either shared or exclusive.

The user specifies which method of access (shared or exclusive) is desired

when the file is requested. If the process has not been granted exclusive

access to a file, then a request for shared access to that file by any

process can be granted. In the same manner, if no process has been

granted either shared or exclusive access to a file, then a request for

exclusive access to that file by any process can be granted. This

50

protocol provides multiple readers (shared) or one writer (exclusive) with
access to a specific file.

A deadlock exists whenever two or more processes vying for the same
resource reach an impasse. That is, neither process trying to access the
resource may proceed until they are granted access. Whena deadlock
occurs, if a job is aborted, the resulting partially completed process
often represents an inconvenience. The user whose process aborted must,
in many cases, reconstruct partially altered files. For this reason,
deadlock is an important consideration in the design of operating systems
even though in practice it seldom occurs.

Data sharing and data partitioning are two different approaches for
coupling multiple systems which need to access the samedata. In the
data sharing approach, all the processors have direct access to the common
data, and accesses are coordinated by appropriate protocols. In the data
partitioning approach, the commondata is partitioned among different
processors and a function shipping mechanism is used to access data on
remote systems. In a paper by Dias, lyer, Robinson, and Yu (Dias, 1989)
the data sharing approach and methods of enhancing its performance are
discussed. Using this approach, all processors in the distributed
processing system have access to commondata at the disk level. In some
partitioned approaches data is replicated on different processors. The
reason for this replication is to improve the reliability of the system.
If a processor containing necessary data failed, then the replicated data
on another processor could still be accessed and the system would be able
to continue functioning. The replication of data would mean that there
needs to be a control mechanismfor insuring that all instances of data
are simultaneously updated. If this type of control is not present then
synchronization problems could occur whenthe system attempted to switch-
over to the backup data because the data would not be in the samestate.

There has been quite a bit of research done in the area of distributed
database system architecture. One of the main research issues in
distributed databases has been concurrency control. In order to manage
simultaneous access among transactions running on different systems,
global concurrency control of the data is required. Various algorithms
for concurrency control have appeared, including somebased on distributed
control. In one such algorithm, integrity of the database is maintained
by distributed controllers in the presence of concurrent users. The
distributed controllers must somehowcooperate to achieve a system-wide
objective of good performance subject to the data integrity constraint.
This cooperation is achieved by the combined principles of atomic actions
and unique time stamps. Another class of algorithms have also been shown
to achieve this samecooperation based on two-phase locking and atomic
actions. However, manyof these solutions are not robust, i.e., they must
block on failures.

In the scenario of a cooperating mainframe host/engineering workstation
environment, the mainframe host contains a centralized database of global
data needed by each of the connected engineering workstations. The
closest discussion found on this type of environment discussed load

- 51

sharing in a hybrid distributed-centralized database system (Ciciani,
1988). With this type of system sometransactions rub at (geographically)
distributed systems, and other transactions at a central computing
complex. Sucha system can provide the advantage of distributed systems
for transactions that refer principally to local data, and also provide
the advantage of centralized systems for transactions that access a lot
of non-local data. In a fully centralized system, where user terminals
are connected by a network to the central computing complex, all
transaction input messagesare shipped to the central system where the
transaction is processed, and output messages are sent back to the
terminal; hence the centralized system does not make use of the
possibility of a local data reference. The distribution of a database may
range from a single file or file system with a file directory maintained
as a single copy in a central storage medium (totally centralized data
base), to a multiple file system with replication of both files and
directory maintained across several storage mediums.

Another method by which a workstation can achieve control of shared
information is by including a file system that is capable of accessing

remote files via a local area network attachment. These file systems are

commonly known as distributed file systems. There are three major types

of distributed file systems: remote-disk systems, block-level-access

systems, and file-level-access systems. A remote-disk system implements

a method of sharing disk drives among a number of workstations by

communicating disk I/0 requests via a local area network. A block-level-

access system implements a method of sharing disk files among a number of

workstations by communicating I/0 requests for file blocks via a local

area network. This method allows more than one user to read or write to

a file at a time. A file-level-access system implements a method of

sharing files among a number of workstations by transferring entire files

via a local area network.

A combination of these approaches to shared data can be used to exploit

the advantages of each. A remote-disk system eliminates the need for a

local disk, and provides shared access to immutable data. This eliminates

the need for a local disk, reduces the cost, size, and power consumption

of a workstation. Block-level-access systems permit mutable blocks to be

shared among workstations. The systems containing the shared files are

referred to as file servers. These servers implement directory systems

that can not be confused by concurrent access, and thus it is safe for

multiple users to create, delete, and mutate blocks of files. High

performance networks and file-servers must be used with a block-level-

access system because multiple server requests are required to access an

entire file. Block-level-access systems can also be used to eliminate the

need for a local disk. File-level-access systems permit mutable files to

be shared among workstations. Because entire files are retrieved at once

fewer access to file servers are necessary. However, when individual

blocks of files change rapidly, it is not practical to fetch entire files.

Other controls which are necessary to maintain the reliability of the

shared data and which have an impact on the allocation of applications to

either an engineering workstation or the mainframe include data location,

52

deadlock prevention and detection, integrity and consistency in multiple
copy data bases, fault tolerance and error recovery? query optimization,
data translation among heterogeneous data bases with different data
structures, communication protocols for distributed data bases,
performance monitoring and measurement, and security and privacy issues.
If a task has to retrieve large amountsof shared data at different times
during its execution then that task needs to reside on the samenode as
the data in order to cutdown on response time.

53

6.0 NETWORKINGDELAYS

Chapter Six contributes the last supplementary guidelines for the
selection of the software residency in a merged mainframe/engineering
workstation environment. The final parameters that are included involve
the consequences that arise becausea distributed system demandsthe use
of an external communication network. Whenever the workstation residency

is considered, then the added delays of a complex communication network

may be required also. This is not a subtle difference, because if the

data and operational programs are all co-resident, and only an output

display needs to be relayed to the user, then the communication demands

may be quite small. To know the true communication demands, and then

calculate or measure the impact is the focus of this chapter.

There are three basic delays that result when communication is extended

between separate hardware entities over a network. The first is the delay

associated with the difference in the slower transmission speed of the

network versus the speed of accessing shared storage in a non-distributed

system. The second network originated delay is the price paid for the

coupling protocol overhead processing which is necessary to achieve

network communication. A third delay or slowdown is connected with the

intersystem interference brought about with conflicts between simultaneous

network system communication activities. To some extent, this was already

discussed in Chapter Five relating to the control activities that are

necessary when a database is shared across network boundaries and this

particular effect will not be revisited here. However, the congestion

slowdown of the network due to attempts at simultaneous access is a major

communication problem and will be the concluding topic on network delays.

In actual situations, it is necessary to size the requirements against the

dimensions of the capabilities to decide the impact the communication

network has on the operational performance. This relates directly to the

question of the residence of the operational software.

6.1 Demand For a Network

Two basic arguments are always present. Given a mainframe computer that

has the computing power necessary, as defined by the performance factors

in Chapter Three, any one of the operational programs would typically

operate faster if it could rely exclusively on the mainframe for its

computing demands. On the other hand, given engineering workstations with

enough power to complete the application execution within the constraints

imposed, and given enough workstations, there would be little requirement

for a mainframe.

In the former case, the workstations perform as simple input and output

devices requiring only output display activities and request inputs.

There is an obvious pitfall when such a plan is followed for all of the

operational programs. It is that the mainframe could fall short of

meeting the requirements of one or more of the individual operational

54

computer programs while trying to simultaneously meet the accumulated
demandsand process all of them.

In the latter case, the assumption limits the scientific computational
capacities of the operational software and the inter-application needs.
Hence, unless the operational applications are totally uncoupled, a
communication network is necessary to exchange information between the
workstations.

The two extreme ranges are rare; therefore, this study has assumedneither
of these limits is ever the actual case. That is, it is assumedto be
necessary and possible to off-load someportion of the mainframe computing
demandsto an engineering workstation. It is also assumedthat there are
application demands that require a mainframe level of computing power.

In any case, it is also reasonable to make the assumption that there is

some coupling necessary as is found in any cooperative work and group

decision making activities which then demand system communications. The

contribution of this chapter is to fold into computing power the

information associated with the impact of the network communications

between the mainframe and the engineering workstations while trying to

balance the workload to maximize the overall available computing power.

6.2 Network Transmission Speed

In the last ten years network communication has gone from transmission

speeds at the physical interface of ii0 hps and 9600 bps to fiber networks

that support i0 Mbps and I00 Mbps channels. The simple fact that high

speed circuits for LANs are now available does not mean that they exist

or are reasonable on all applications. Systems that use the lower speed

rates because of cost tradeoffs or dependence on older telecommunication

systems will find that the data speed is the bottleneck causing the

greatest delay of the three delays possible because of networking. On the

other hand, the newest high speed optic links operate as fast as the

software procedures can transmit the output data or receive the input

data, hence do not enter into the performance slowdown at all.

The hardware performance portion of the communication delay can be

reasonably estimated when one knows the message lengths and the number of

messages required by the operational programs. Merging these message

requirements with the network channel structure can provide the timing

estimates to compare with the application program parameters when

designing a network. If the network is already available, this procedure

will relate the potential of the network to meet the demand of the

software requirements. The key parameter being the capacity of the

channel versus the capacity demand of the operational system.

6.3 Protocols and Communication Procedures

There are a great many software activities required whenever communication

is deemed necessary. There are the obvious software interactions that can

be clearly identified within the application code. These are the basic

primitives that make the communication setups or calls. These simple

55

operations consists of only a few instructions but are the collision point
of the operational program and the communication ne£work.

A great deal of technology movementand study has occurred in the last
ten years to develop a standardized way of communicating over a computer
network. Themost commondescription, based on seven layers of subsystems
which have been developed by the International Organization for
Standardization (ISO), is called the Open System Interconnection COSI)

reference model. The International Telegraph and Telephone Consultative

Committee (CCITT) consistent with the ISO model has published its standard

X.200, Reference Model of Open Systems Interconnection for CCITT

Applications. Each of the seven layers has an interface that services the

layer above it, and a peer protocol that has procedures between peer

entities with the destination and origination points at the same

subdivision level. Each layer function adds value to the services of

the entire set of lower layers until the highest layer has available to

it the complete set of services required by the application. The layering

of functions has influence on the communication throughput in two ways.

The first is by the extension of the basic message unit length due to the

protocol header-trailer information that is necessarily added at each

level. Normally, the basic message length can be a variable consideration

which allows change in the message overhead to message content

relationship. However, limits on maximum length of the messages are

imposed by the protocols, by the nature of the exchange, the quality of

network service, and the buffer space. Studies have shown that a

measurable percentage of the communication bandwidth available is used

to service these protocol overhead needs. This is an applications program

dependent consequence and the cost can be approximated as a percentage of

the available communication bandwidth knowing the protocols selected for

implementation, and the types and amount of message traffic required.

The second effect is the processing time required to service each layer

as the message is passed down and up through the layered entities. This

is related to not only the protocol selected but the operating system

relationship to the communication activities. Access to memory, how often

the message needs to be touched, computation of checksums, and

interruption procedures all affect the delay from network communication

and are functions of the implementation method within the operating

system.

Often the lower three layers of protocol, the physical, link, and network,

are implemented in silicon (firmware and hardware) and the central

processor can even be supported by its own separate communication

processor. Then again, there are networked systems that do not off-load

any of the communication processing, causing considerable impact on each

communication demand. Processing delays associated with network

communication can be estimated based on the number of instructions used

by analyzing the code and knowing the Chapter Three hardware performance

factors. It is also possible to use network benchmarking procedures that

assist in predicting performance in various environments.

56

6.4 Network Error and ConKestion

Up to this point all of the communication considerations have treated the

network as if it were error free, and there were no simultaneous user

communication network requests. Contrary to this, errors can be expected

to occur in transmission and multiple (if not all) users may try to

communicate at the same instant. Both of these problems will cause

additional delays associated with dead time consumed in queues and

duplicated message retransmission requirements. The extreme limit of

this delay would be a locked up network, with no response possible without

restarting the system.

6.4.1 Transmission Errors

The engineering analysis of a transmission system contains a large number

of parameters of concern. Primarily these include, but are not limited

to: frequency response, interchannel modulation, idle channel noise,

received signal level, and delay response. These parameters are all

physical characteristics which can cause an error in the transmission of

the signal if they fall out of system tolerance. The number of errors

resulting from these problems and any other problem are grouped into a

single digital communication performance measure. That parameter of

performance of the network due to the expected errors is the bit error

rate (BER) of the communication system. The BER that can be expected is

dependent on all of the hardware factors of the system.

A longer distant network like a metropolitan area network (MAN) or a wide

area network (WAN) is more prone to have errors, hence high BER, due to

less reliable communication systems and varying conditions of the

environment. In the case of a LAN the BER is usually very small and if

fiber optic transmission systems are used, the BER is nearly non existent

in a properly maintained and installed system.

Within the layers of protocol there are error checking and correction

techniques that shield the user from being aware of problems that are

occurring. However, a troublesome communication link can cause a

significant slowdown in performance by limiting the throughput of the

system. Retransmission of messages in error increases the load on the

system. If the BER is high enough, communication is no longer possible.

At this point all users will be well aware of the situation and once again

experience a locked up (non-communicating) network.

6.4.2 Communication Network ConKestion

Any computer communication network has a finite communication capacity.

This is true for a LAN, a MAN, a WAN, or even the common telephone

network. The basic problem that causes congestion is the same in all

cases. With the telephone system network, there exists a capability for

every user to make a connection, but not all users can do so

simultaneously. In computer communication networks a similar situation

occurs, along with additional options to improve the overall network

connectivity or usage. In both cases however, when the demand approaches

57

the capacity, the communication is hampered by not being available and

this kind of slow down is termed a congested network.

6.4.2.1 Telephone Networks

In the case of the telephone system, a system of switches, trunk lines,

and statistical factors control the size of the system to optimize the

cost versus performance of the system[The limits of the system are
associated with two factors, what connections are trying to be made at a

point in time, and the number of simultaneous connections allowed

throughout the system, In the first case, if a destination user is busy

when a connection is trying to be made to it, then the connection fails.

This is signaled to the originating user with a busy signal of slow

buzzes. In the second case, systems are sized by average loads, and

average peak loads, assuming that all users will not be making demands on

the communication system at the same time. When the total load is too

great, the local switch returns a busy signal of fast buzzes to the

originator, even if the final destination may be available at that point

in time. In the case of the telephone system a hard-wire dedicated path

must be established, end-to-end, before the two users can communicate.

Further, the dedicated path must remain established during the entire

exchange, and is taken down to terminate. Trying to making a long

distance phone call on Mother's day is an example of a congested telephone

network and its delaying effects on communication.

6.4.2.2 Computer Communication Networks

Computer communication has some of the same constraints as the telephone

system, but also has some additional options. Computer communication

networks can be designed to work with a connection or a connectionless
mode.

In the connection mode the network functions are similar to the telephone

system requiring the end user to be available to set up a logical rather

than physical connection between the users. This logical connection is

an end user to end user path that remains current during the communication

dialogue and consists of reserved buffers and logical channels. It

differs from having to have a fixed dedicated hard wire path end-to-end

by allowing the path to change during the conversation internally on the

network. Additionally, the hard-wired path or paths will be supporting

many other logical paths during each other connection's idle block time.

A computer communication network is the same as a telephone network in
that the end users can not communicate information until the connection

is completely established end-to-end. Also, the responsibility of error
free communication lies with the end users and not the network.

The connectionless mode allows a user to release a message to the network

and fastens responsibility for the message to the network. The network

gives an assurance to the sender that it won't give up until the message

is delivered (although this is not always the case). This is analogous

to the U.S. Mail system where the letter (message) is addressed to the

destination and released to the post office (network) which promises

58

delivery of the originator's letter to the destination address. There is

never an end-to-end connection established and the me_sage can go anywhere

necessary before it reaches the final destination. The limits of a

network operating in the connectionless mode are associated with buffer

storage space available and the number of messages existing at any one

time within the network.

Communication networks, connection or connectionless, are also designed

for average peak loads in a trade off of cost for capacity. -Even costly

designed networks, after a brief period of growth may find that the demand

equals or exceeds the capacity of the network. When this first occurs

there is a slow down in the network that is manifested in a slower

response time of the operational program. This congestion can cause

delays, lost messages, and eventually if the load continues to grow, a

total lock up of the network.

In order to make the decision for residence of an operational program,

the communication needs should be clearly defined so that the risk of

failure of the individual program and the failure of supporting

communication network can both be assessed. The overall supporting

communication network demand is, of course, based on the aggregate of

each of the operational program demands. Therefore, system wide control

must be imparted to protect the resource of the network as additional

demands arise. What individually appears to be correct can, in the total

picture, be disastrous in a full load demand situation.

59

7.0 CONCLUSIONS

After five comprehensivechapters that delineate the assorted consequences
on the overall performance swings due to considerations associated with
coupling engineering workstations and mainframes, it should be obvious
that it would be impossible to try and summarizeto a single bottom line.
It is clear that the residency question of the software is a multi-faceted

one that requires pivotal understanding by the system configuration

managers commanding their utmost understanding and efforts.

The worst possible situation that could exist is to have each individual

engineering workstation organization develop its own operational software

solutions in a system abyss. Interestingly, this is true even if there

is zero interactive coupling of the operations that are distributed.

Reiterated here are some of the reasons for this: the inability to use

or reuse the developed code between disciplines; the various levels of

software engineering proficiency which causes significant additional cost

because of inept software designs and documentation; and the lack of a

single point of control associated with managing the common network

resource for input.

The best possible situation is where a software engineering organization

is singularly responsible and knowledgeable of the effects thus described

as well as all of the other critical considerations outlined in the

preceding chapters. Then the residence of each new entry into the system

software vault can be considered totally against the overall operational

effectiveness avoiding the biased and limited examinations of a single

discipline. Of course, this is the ideal situation, and quite often an

organization must compromise the ideal because of what it usually calls

an operational expediency. In any case, the preceding chapters can be

summarized to some extent to provide the goal of a criteria question set.

7. i Summary

As a summary, this chapter will furnish the system manager a question

checklist set of criteria elements that were extracted from the earlier

chapters. These are meant to be the stimulus for the enigmatic

consideration that is necessary to conclude the software residency

question. No single recipe exists that takes the input data and answers

the question of residency. However, the questions are arranged so that

if a "yes" answer results, then increased weight to the host as the

residence is indicated. If a "no" answer is the result, then the

engineering workstation weighing is increased. As was indicated earlier,

however, there are some thresholds that can not be exceeded. In these

cases, a firmer position can be taken. Questions marked with a single

asterisk indicate that failure on these threshold items require no less

than host computing power level. Items marked with a double asterisk

indicate that the host can not meet the requirements in its aggregated

operational status requiring off loading of an application onto the

workstation. Other than these special question, the grey area on the

residency question is generally considered quite large, and it can be

6O

thought of as a non-linear problem solution that will yield better results
after somemodification and another iteration. For connection to the body
of this report, each question is referenced to the appropriate chapter
section number. This number can be used to locate the research
discussion.

7.2 General Criteria Questions

As was stated, these general criteria questions will build a weighing

factor that will hopefully indicate a trend for either the host or the

workstation for the residency of the software. The questions that are not

asterisked should be considered equal in influence on the decision. A

reasonable, if not a somewhat arbitrary rule would say that if 70 percent

of the questions are answered "no," then the workstation residency is the

decision. If 70 percent are answered "yes," then the host residency is

the most likely answer. Between these two limits, would be considered a

range of optional consideration. Notice, that the influence in some areas

is affected by restating the question with increasing levels of

performance. This will either increase the number of yes or no answers

and thereby strengthen the influence, or balance the yes and no answers

and thereby nullify the influence.

7.2.1 System Considerations

There are a few system questions which need to be answered before the

application specific questions can be considered. These questions are:

1. What type of operating system is being used on the host/mainframe?

(5.1.1)

2. What type of operating system is being used on the workstation?

(5.1.1)

3. Is there a load distribution algorithm for the system? (5.1.2)

4. If there is load distribution, is it load sharing? (5.1.2)

5. If there is load distribution, is it load balancing? (5.1.2)

6. Is there shared data on the host/mainframe? (5.3)

7. Is there shared data on the workstations? (5.3)

8. Is there a distributed file system? (5.3)

7.2.2 Computing Power

Chapter Three considerations are based on the computing power of the

hardware. Before the questions can be answered, certain information needs

to be furnished about the application, the workstation and the host. The

information is all discussed in more detail throughout Chapter Three,

however they are referenced here for convenience.

61

It is necessary to have the host and the workstati6n Sc values computed
from the equation Sc = ((Wc*MFLOPS+ Wo*MIPS)*MRC)"5. This requires
knowledge of advertised MFLOPS,and MIPS for both the workstation and the
host. Knowledge from the application software yields the Wc, Wo, and the
proper benchmarks to use to acquire the value of the MRC. Note that the
benchmarknature needs to be as closely related to the actual application
as possible and will probably be different in each application. The MIPS
requirement of the software needs to be estimated as well as MFLOPSand
the maximumtime for execution. 'The MMCneeds to be established as to
what is required and available. The CPUratings and the robustness
factors for each computer needs to be calculated following the guidelines

in sections 3.3.3 and 3.3.4 respectively. Following the collection of

these items, then the next 24 questions can be addressed.

I. Is the host Sc 64 times greater than the workstation Sc? (3.3.1)

2. Is the host Sc 256 times greater than the workstation Sc? (3.3.1)

3. Is the host Sc 1024 times greater than the workstation Sc? (3.3.1)

. Is the workstation value of MIPS available exceeded by the

application MIPS requirement? (3.3.2)*

. Is the aggregated application required value of MIPS exceeded by the

host MIPS value? (3.3.2)**

6 ° Is the workstation value of MIPS exceeded by the aggregated

application requirements? (3.3.2)*

. Is the aggregated application requirements of MIPS with the addition

of this application exceeded by the MIPS value of the host? (3.3.2)**

.

.

Is the workstation value of MFLOPS available exceeded by the

application requirement? (3.3.2)*

Is the application required value of M_FLOPS exceeded by the MFLOPS

available on the host? (3.3.2)**

i0. Is the workstation MFLOPS value available exceeded by the aggregated

requirements with the addition of this application? (3.3.2)*

ii. Is the aggregated requirement of the application program MFLOPS

exceeded by the host value of MFLOPS available? (3.3.2)**

12. Is the maximum acceptable response time for the software less than

i0 msec? (3.2.1)

13. Is the maximum acceptable response time for the software less than

i00 msec? (3.2.1)

62

i4.

15.

16.

17.

18.

19.

20.

21.

22.

Is the maximum acceptable response time for the software less than

1.0 sec? (3.2.1)

Is the maximum acceptable response time for the software less than

i0.0 sec? (3.2.1)

Is the required CPU rating estimated to be higher than the estimated

workstation CPU rating? (3.3.3)*

Is the host CPU rating estimated to be higher than the estimated

application required CPU rating? (3.3.3)**

Is the required MMC greater than 50 percent of the workstation MMC

that is available? (3.2.3.1.1)

Is the required MMC greater than the workstation MMC that is

available? (3.2.3.1.1)*

Is the available host MMC greater than the required application MMC?

(3.2.3.1.1)**

Is the ratio of estimated number of computations compared to the

number of other instruction executions greater than I00? (3.3.1)

Is the ratio of estimated number of computations compared to the

number of other instruction executions greater than i00,000? (3.3.1)

23. Is the robustness factor of the host greater than .8? (3.3.4)

24. Is the robustness factor of the workstation less than .8? (3.3.4)

7.2.3 Software Development Issues

i,

2.

3.

4 .

5.

6.

7.

8.

Is the application primarily a noninteractive function? (4.2)

If there is user interaction, is it only front-end queries? (4.2)

If there are queries, can they be separated from the calculations

and passed as parameters to the calculation process? (4.2)

Do many disciplines require this application's function? (4.2)

Is the application only needed under special circumstances? (4.3)

Is the application a development tool? (4.3)

Is the response time requirement critical? (4.3)

Are there host applications which will need this application's

output? (4.4)

63

9. Is there one other discipline which will use the application's
output? (4.4)

i0. Are there five disciplines which will use the application's output?
(4.4)

ii. Do all of the disciplines use the application's output? (4.4)

7.2.4 Control Considerations

i. Can the application run in the background? (5.1.2)

2. Does the application have communication needs with other applications

on the host/mainframe? (5.2)

3. Is the application independent of applications on the workstation?

(5.2)

4. Is the application dependent on applications on the host? (5.2)

5. If there are communication needs, does the application have

infrequent communication needs with applications on the

host/mainframe? (5.2)

6. If there are communication needs, does the application have periodic

communication needs with applications on the host/mainframe? (5.2)

7. If there are communication needs, does the application, have heavy

communication needs with applications on the host/mainframe? (5.2)

8. Does the application have infrequent communication needs with more

than one workstation? (5.2)

9. Does the application have periodic communication needs with more

than one workstation? (5.2)

i0. Does the application have heavy communication needs with more than

one workstation? (5.2)

II. Is the execution time a critical factor7 (5.2)

12. Does the application require shared data access? (5.3)

13. Does the application access the shared data frequently? (5.3)

14. Does the application modify shared data? (5.3)

7.2.5 Networking Delay Impact

i. Are there more than eight message types required to be sent or

received within this application? (6.4.2)

64

2. Are there more than 32 messagetypes required to be sent or received
within this application? (6.4.2)

3. Are the average messagelengths greater than I00 bytes? (6.4.2)

4. Are the average messagelengths greater than i000 bytes? (6.4.2)

5. Are more than i0 messagesper minute expected to be sent for this
application? (6.4.2)

6. Are more than i000 messagesper minute expected to be sent for this
application? (6.4.2)

7. Is the hardware network transmission speed less than 1 Megabit per
second? (6.2)

8. Is the hardware network transmission speed less than i0 Megabits per
second? (6.2)

9. Is the full protocol used to communicateat each level of the OSI
model? (6.3)

i0 Is the BER of the network estimated to be worse than one bit in
100,0007 (6.4.1)

ii Is the BERof the network estimated to be worse than one bit in ten
million? (6.4.1)

12 Does this application program have data messagesfor more than eight
user destinations? (6.4.2)

13 Does this application program have data messagesfor more than 32
user destinations? (6.4.2)

14 Does this application have more than eight users who can make data
inquiries? (6.4.2)

15 Does this application have more than 32 users who can make data
inquiries? (6.4.2)

16 Is the network a connectionless service? (6.4.2.2)

17. Is the network utilization rate expected to be above 50 percent after
adding this application? (6.4.2.2)

18. Is the greatest peak communication demandof this program above i0
percent of the network transmission speed? (6.4.2.2)

7.3 Methods For ApplyinK The Criteria

When new applications are being created for a system which is already in

operation, the principles discussed in Chapter Four concerning the

65

understandability and maintainability of software should be followed. If
these methods are used from the beginning of the software design, it can
lead to more efficient execution and resource utilization in the
distributed system. A software developer must be conscious of decomposing
the software into processes which perform different functions (i.e.,
separate user interface functions from calculation functions). The
developer should also design the applications into modules which perform
specific tasks and allow modules which perform common tasks to be reused

by other applications. The ideas of task partitioning and task allocation

discussed in Chapter Two should also be used in this case to better

decompose the software into functions and modules which can then be

partitioned to best utilize the system resources. Configuration

management is especially important in a distributed system to control the

duplication of code, task, and functions and to ensure that only validated

software is executed during normal operation. Once a new application has

been designed and developed using the principles above, answering the

residency questions should be a fairly straight forward task.

In a system where the distributed system developed out of a single, time-

s_aring computer, answering the residency questions will be more

complicated. The main reason for this being true is that the original

applications were designed and developed for the time-sharing environment

and not a cooperative one. The best approach to this problem is to

analyze the current system and then apply the questions to each

application which is being considered for migration. If the application

can be easily modified to better conform to either the workstation or the

host then these modifications should be contemplated and performed

providing the modification cost is not greater than the expected benefit.

The residency decision for an universal application can be very simple or

very complicated. In the simple cases, low usage requirements,

developmental applications, non-real-time requirements, and local data

requirements sway the decision heavily to either the workstation or the

mainframe. In the complicated cases, the response time, data

requirements, and frequency factors need to be evaluated collectively so

that the most effective solution can be determined. Application of the

residency questions for these types of applications will help to clear the

picture in the complicated cases and verify the residency for the simpler

cases.

Because of the tremendous swing in software application differences and

hardware system construction let alone the great variety of design

philosophies and the multitude of organizational possibilities, the

residency direction that results from using these question guidelines

should never be interpreted as an absolute measure. All of the questions

are valid if not occasionally subjective and are always open to changes

in the state of art over time. Still, using the question exercise above

information will be gained that is critical to system performance, and the

trend manifested will usually be reasonable. The exercise is

significantly better than only a brief cursory review of the system.

Further, after each iteration and application consideration the system

manager will become more cognizant of the system limitations and

66

capabilities when considering the question of residency in a mixed host

and engineering workstation environment.

67

APPENDIXA: ACRONYMS& DEFINITIONS

AT
AET
ALU
BER
BET
CCITT
CPU
CHC
CC
CF
CISC
DNP
FPR
GPAMP
GPR
H/I
I/0
I/0/I

IMC

IA

IS0

IPC

LB

LS

LAN

MLI

MMC

MRC

MCT

MAN

MEPS

MFLOPS

MIM_D

MP

NCH

OSI

OS/I

PR

P/I

RISC

SIMD

SAMU

Sc

SMP

SMC

VA

VS

WAN

Access time

Accumulative execution time

Arithmetic and Logic Unit
Bit error rate

Benchmark execution time

International Telegraph and Telephone Consultative_Committee

Central Processing Unit

Channel capacity

Clock cycle

Clock frequency

Complex instruction set computer

Dedicated numerics processor

Floating point register

General purpose attached math processor

General purpose register

Hardware interruption

Input/Output

Input/0utput interruption
Intermodule communication

Interruption action

International Organization for Standardization

Interprocessor communication

Load balancing

boad sharing
Local Area Network

Machine language instruction

Main memory capacity

Maximum rate of computation

Memory cycle time

Metropolitan area network

Millions of executions per second

Million floating-point operations per second

Multiple-instruction stream, multiple-data stream

Multiple processors
Number of channels

Open System Interconnection

Operating system interruption

Precedence relationship

Program interruption

Reduced instruction set computer

Single-instruction stream, multiple-data stream

Smallest addressable memory unit

Speed of the computer

Special math processor

Standard math coprocessor
Virtual address

Virtual Storage
Wide area network

68

APPENDIX B: REFERENCES

Bersoff, E.H., Henderson, V.D., Siegel, S.G., Software Configuration

Management, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1980, pp.

57.

Chafin, R., Martin, T. "DSN Human Factors Project Final Report", Los

Angeles, California: University of Southern California, 1980.

Cheriton, D.R., "The V Distributed System," Communications of the ACM,

Vol. 31, No. 3, March 1988, pp. 314-333.

Chu, W.W., Lan, M.T., "Task Allocation and PRecedence Relations for

Distributed Real-Time Systems", Tutorial: Distributed-Software

Engineering. Washington, D.C.: IEEE Computer Society Press, 1989, pp. 97-

108 (Reprinted from IEEE Transactions on Computers, June 1987, pp. 667-

679).

Chu, W.W., Hellerstein, J, Lan, M.T., An, H.M., Leung, K.K., "Estimation

of Intermodule Communication (IMC) and Its Applications in Distributed

Processing Systems", IEEE Transaction on Computing, Vol. C-33, August

1984, pp. 691-699.

Dahl, O., Dijkstra, E.,- Hoare, C., Structured Programming.

Academic Press, 1972, pp. 1-82.

New York:

Dias, D.M., Iyer, B.R., Robinson, J.T.,Yu, P.S., "Integrated Concurrency-

Coherency Controls for Multisystem Data Sharing", IEEE Transactions on

Software Engineering, Vol. 15, No. 4, April 1989, pp. 437-448.

Dias, D.M., lyer, B.R., Yu, P.S., "Tradeoffs Between Coupling Small and

Large Processors for Transaction Processsing," IEEE Transactions on

Computers, Vol. 37, No. 3, March 1988, pp. 310-320.

Dongarra, J.J., "Performance of Various Computers Using Standard Linear

Equations Software in a Fortran Environment," Argonne National Laboratory,

Argonne, Illinois, pp. 47-69.

Dongarra, J.J., Martin, J.L., Worlton, J., "Computer Benchmarking: Paths

and Pitfalls," IEEE Spectrum, July 1987, pp. 38-43.

Efe, K, "Heuristic Models of Task Assignment Scheduling in Distributed

Systems", Tutorial: Distributed-Software Engineering. Washington, D.C.:

IEEE Computer Society Press, 1989, pp. 89-95 (Reprinted from Computer,

June 1982, pp. 50-56).

Ein-Dor, P., "Grosch's Law Re-Revisited: CPU Power and the Cost of

Computation," Communication of the ACM, Vol. 28, No. 2, February 1985,

pp. 142-151.

69

Falk, H., "Development systems evolve toward integrated, host-independent
solutions," ComputerDesign, April i, 1988, pp. 44-50.

Faulk, S.R., D.L. Parnas, "On Synchronization in Hard-Real-Time Systems",
Communicationsof the ACM,Vol. 31, No. 3, March 1988, pp. 274-287.

Galitz, W.O., Handbook of Screen Format Design. Wellesley
Massachusetts: QEDInformation Sciences, Inc., 1985, pp. 16-20.

Hills,

Gilfoil, D.M., "Warming Up to Computers: A Study of Cognitive and
Affective Interactions Over Time," Proceedings: HumanFactors in Computer
Systems, pp. 245-250. Gaithersburg, Maryland, March 15-17, 1982.

Huang, J.P., "Modeling of Software Partition for Distributed Real-Time
Applications", IEEETransactions on Software Engineering, Vol. ii, No. i0,
October 1985, pp. 1113-1126.

IBM Corp., IBM 3081 Functional Characteristics, IBM Pub. No. Ga22-7076-
7, Seventh Edition, 1986.

Kraemer, K.L., King J.L., "Computer-based Systems for Cooperative Work

and Group Decision Making," ACM Computing Surveys, Vol. 20, No. 2, June

1988, pp. 115-146.

Krueger, P, M. Livny, "A Comparison of Preemptive and Non-Preemptive Load

Distributing", Proceedings Of The Eighth International Conference on

Distributed Computing Systems, Washington, D.C.: IEEE Computer Society

Press, 1988, pp. 123-130.

Kusmanoff, A.L., "Real Time Bearing Estimation in a Multi-source

Environment Using Multi-processor, Multi-algorithmic Acceleration," Ph.D.

Dissertation, Oklahoma State University, May 1989.

Litzkow, M.J., M. Livny, M.W. Mutka, "Condor A Hunter of Idle

Workstations", Proceedings Of The Eighth International Conference on

Distributed Computing Systems, Washington, D.C.: IEEE Computer Society

Press, 1988, pp. 104-111.

Martin, J., C. McClure, Structured Techniques For Computing. Englewood

Cliffs, New Jersey: Prentice-Hall, Inc., 1985, pp. 16.

Mok, A.K., "The Decomposition of Real-time System Requirements into

Process Models," Proceedings of the Real-time Systems Symposium, IEEE

Computer Society, Washington, D.C., 1984, pp. 125-134.

Perry, T.S., Zorpette, G., "Supercomputer Experts Predict Expansive

Growth," IEEE Spectrum, February 1989, pp. 26-33.

Schneidewind, N.F., "Distributed System Software Design P_radigm With

Application to Computer Networks", IEEE Transactions on Software

Engineering", Vol. 14, No. 4, April 1989, pp. 402-412.

70

Shatz, S.M., J. Wang, Tutorial: Distributed-Software Engineering.
Washington, D.C.: IEEE Computer Society Press, 1989, pp. 58-59.

Smith, J.E., "Characterizing ComputerPerformance With a Single Number,"
Communicationof the ACM,Vol 31, No.10, October 1988, pp. 1202-1206.

Stankovic, J.A., Reliable Distributed SystemSoftware, Silver Spring, M_D:
IEEE Computer Society Press, 1985, pp. 83-84, 135-138.

Rauch, K., "Math Chips: HowThey Work," IEEE Spectrum, July 1987, pp.25-
30.

Thierauf, R.J., Effective ManagementInformation Systems. Columbus, Ohio:
Bell & Howell Company,1984, pp. 218-222.

Vick, C.R., C.V. Ramamoorthy,Handbookof Software Engineering. NewYork,
NewYork: Van Norstrand Reinhold Company,1984, pp. 656-674.

Wirth, N., "Program Developmentby Stepwise Refinement," Communication of
the ACM,Vol. 14, No.4, April 1971, pp. 221-227.

/

V

71

THE ROLE OF THE HOST IN A COOPERATING
MAINFRAME AND WORKSTATION ENVIRONMENT

Volume II

NASA Grant Number NAG 9-341

SwRI Project Number 05-2769

"v

Submitted to:

NASA-Johnson Space Center

Houston, Texas

Prepared by:

Antone Kusmanoff, Ph.D.

Nancy L. Martin

Southwest Research Institute

6220 Culebra Rd., P.O. Box 28510
San Antonio, TX 78228-0510

TABLE OF CONTENTS

1.0 INTRODUCTION

i.i Purpose = • • •

1.2 Document Organization

2.0 HARDWARE ENVIRONMENT

2.1 Speed Factors

2.2 Capacity Factor

2.3 CPU Rating Factor

2.4 Robustness Factor

2.5 Summary

3.0 CURRENT ENVIRONMENT MIGRATION

3.1 Host Applications/Subsystems

3.1.1 Telemetry Functions

3.1,2 Near Real-time Telemetry (NRT) Retention

3.1.3 Near Real-time Telemetry (NRT) Reduction

3.1.4 Trajectory

3.1.5 High Speed Guidance, Navigation

3.1.6 .Low _peed Guidance, Navigation and Control (GNC)

3.1 7 Vector Propagators

3.1.8 Network Communications (NETCOM)

3.1 9 Command Control System/Control (CCS/C)

3.1.10 Command Application

3.1 ii Network Support Software (NSS)

3.1.12 Configuration Management (CM)

3.1 13 Shuttle Configuration Analysis Program (SCAP)

3.1.14 Fault Message Application

3.1 15 Scratch Pad Line

3.1.16 Orbiter Attitude

3.1 17 Time Storage

3.2 Workstation Applications

3.2.1 Display Sharing

3.2.2 Display Manager

3.2.3 MUS

3.2.4 Flight Notes

3.2.5 E-mail

3.3 Universal Functions

4.0 PLACEMENT OF NEWLY DEVELOPED APPLICATIONS

9

i0

i0

ii

ii

12

12

12

12

13

13

14

14

16

17

17

17

17

18

18

18

18

19

19

19

2O

TABLE OF CONTENTS (Cont'd)

5.0 CONCLUSIONS

5.1 The Necessity of a Centralized Host
5.2 Future Directions

5.2.1 Centralized Control/Distributed Applications

5.2.2 Load Distribution

APPENDIX A: ACRONYMS & DEFINITIONS

APPENDIX B: RESIDENCY QUESTION MATRIX

22

22

23

23

23

25

27

ii

1.0 INTRODUCTION

i.i Purpose

Since the beginning of manned space flight, the Mission Control Center

environment at NASA/Johnson Space Center (JSC) has been dependent on a

mainframe concept to do all of the computation and display of_information

necessary for the support of a space mission. As discussed in the first

volume of this document, advancements made in computer systems have

prompted a move from centralized computing based on timesharing a

mainframe computer to distributed computing based on a connected set of

engineering workstations. The MCC has not been immune to this move. As

systems.were upgraded to bring new technology into the MCC, the overall

system at NASA/JSC has evolved.

The shift to distributed computing from centralized computing has led to

challenges associated with the residency of application programs on the

system. In this volume the residency guidelines established in the first

volume will be applied to the MCC environment and recommendations

concerning the residency of applications in a cooperating host/mainframe

and workstation environment will be presented. Currently, there is a

tremendous amount of software executing on the Real Time Host (RTH) and

the Flight Support Host (FSH) in the MCC. As workstations are introduced

into the MCC environment, consideration must be given to the distribution

of current host software between the workstations and the host. The

purpose of this research is to develop an understanding of how the role

of a host and workstation may evolve in the future due to advancements

made in workstations and distributed systems. The ultimate goal of this

research is to provide guidelines to aid in the development of a software

environment which allows the optimum usage of all technologies currently

available, as well as providing a means to integrate new technologies as

they are developed.

1.2 Document Organization

The recommendations for the residency of applications in the MCC will be

presented in the following chapters. This document has been arranged

into this introductory chapter, a chapter on the current hardware

environment of the MCC, a chapter concerning the migration of current

applications and the allocation of global functions, and a chapter

discussing development and placement of new applications. A concluding

chapter will offer recommendations for the direction of the MCC in the

future.

The hardware environment chapter will concern itself with identifying the

hardware portion of computing power of the current architectures available

in the MCC. This portion will be addressed using the issues and

categories discussed in Chapter Three of Volume I. The combined

mainframe/workstation performance is a conclusion of the integration of

the hardware, its organization, and architectures interacting dynamically

with the software operating system, and applications programs.

The third chapter will begin the discussion of the r_sidency question for

applications which are currently executing on the hosts and workstations.

This chapter will take categories of functions and, using the questions

from Volume I, objectively recommend the location of those applications

based on the questions for which answers are available and intuitive

reasoning. This chapter also discusses the categories of universal

applications such as configuration management.

In Chapter Four methods for developing and assigning new applications will

be discussed. This chapter will take into consideration the necessary

approaches in software development which will help resolve the residency

question.

In the final chapter, recommendations will be made for the future

direction of the architectures in the MCC. These recommendations will be

based on types of functions which need to be carried out for the MCC to

remain fully operational and still maintain an efficient usage of the

available hardware.

2

2.0 HARDWARE ENVIRONMENT

In Volume I the computing power was defined as an integrated combination

of the hardware performance factors and the software correlation to the

hardware factors. This chapter will provide the computer hardware

decision criteria to contrast between the NASA/JSC mainframe and the

engineering workstations when considering the residency of !he software

application.

The first step in assigning software applications in a specific

environment of cooperating mainframes and workstations is to derive the

estimate of the individual computing powers for each different computer

in the network. Referring to the last section of the third chapter of

Volume I, it is seen that the computing power is related to a large number

of hardware metrics which are grouped into four segments, the speed

factor, the capacity factor, the CPU rating factor, and the robustness

factor. Hence, in the case of the NASA/JSC MCC, with the mainframe being

the IBM 3081 and the workstations being MASSCOMP 6650s, the hardware

configuration metrics of Chapter Three of Volume I will be obtained from

the manufacturer's literature and other published data on these computers.

With this done, it is possible to estimate the relative computing powers

available at each level. Following that, the set of residency questions

from Chapter Seven of Volume I can be approached appraising each specific

software application.

Within the MCC complex there are five mainframe computers, IBM 3081s,

which are available to act as the Real-time Host (RTH) during an actual

shuttle flight. A typical mission has one mainframe functioning as the

Mission Operations Computer (MOC) and another as the Dynamic Standby

Computer (DSC) which runs in parallel with the MOC. This parallel

processing is included to increase the reliability of the system. The DSC

is running synchronously, instruction by instruction, with the MOC and is

capable of taking over as the active M0C should a failure occur. During

a flight, there is also another mainframe used simultaneously as the

Flight Support Host (FSH). The computational activity occurring on the

FSH is relatively independent of the processing on the MOC/DSC

combination. In that configuration, the "host" can be considered a

multiple mainframe solution. This multiprocessing influence is not taken

directly into consideration in this chapter, just as the total number of

workstations is not an included consideration. This comparison is single

mainframe versus a single workstation. Also, the IBM 3081 has a dyadic

processor that will be dealt with as a single processor system. This is

because the main function achieved with the dual processors is increased

reliability.

The engineering workstations which are being integrated into the JSC MCC

are MASSCOMP 6650s. The 6650 is considered a true multiprocessor machine

as long as the applications and the operating system are able to take

advantage of the hardware features. This installation is supporting two

processors, and work is being completed to take advantage of the multi-

processing capability at the operating system level, hence the
workstations will be considered multiprocessor capable.

The four factors mentioned above, and all of the elements in each factor,
will be covered in the following sections. Each entry will have a
discussion and a breakout of the metrics for each of the computers.

2.1 Speed Factors

The first speed factor is the performance obtained based on the computers

executing benchmark programs. In Volume I it is was stated that it is

possible to include this component measure when the benchmark program is

known to be reasonably close to the application need. It was stated to

be even better when an appropriate benchmark is available that was

specifically developed along the same nature as the user application

requirements. However, in this case there are a multitude of software

applications that need to be considered. Hence, a set of benchmark

programs with a mix of operational types would be recommended to be used

to obtain a Maximum Rate of Computation (MRC) value for each system. It

would be reasonable to select the benchmark set such as the one provided

by the National Institute of Standards and Technology (formerly the

National Bureau of Standards). The programs, known as the NBS bench-

marking collection, can be accessed by way of Arpanet. Doing this, some

sort of averaging or weighted joint measure would be necessary to arrive

at a single MRC using all of the required benchmark programs. Of course,

it is still possible that the actual operational system performance will

be incorrectly estimated. Since the benchmark data is only one element

of the speed factor, and the speed factor only one part of the overall

computing power estimate, a small variation between the model and reality

is not unreasonable. In any case, currently no reasonable MRC data is

presently available that meets the requirements stated above. Because of

this, the assignment for both MRC values is N/A, standing for not

available. It would be inappropriate to estimate this parameter from

other data provided directly from the manufacturer such as the MIPS

(Millions of Instructions Per Second) and FLOPS (Floating Point Operations

Per Second) ratings. Further, these values are already included in the

overall computing power estimate equation for speed of the computer, Sc.

The primary disadvantage of not having the MRC is that the Sc value used

the MRC as a damping factor in the geometric average with the other speed

data. In this case it will be necessary to only include the weighing

factors and the MIPS and FLOPS ratings that follow.

The next speed factors are the published values of MIPS and MFLOPS. Also

included below, but not directly entered into the speed factor is the

Clock Frequency (CF) of each separate machine. All of this information

is available from the manufacturers and other sources such as the Argonne

National Laboratory. The MIPS and CF values were taken directly from NASA

and manufacturer's specifications. The value for MFLOPS was extrapolated

from data published in 1988 by the Argonne National Laboratory. The

performance was measured on the MASSCOMP 5600 with the floating point

accelerator and was reported to be .33 MFLOPS. Using the advertised

improvement of the 6650 over the 5600, 7 million Whetstones/second versus

3 million Whets, a conversion factor of 2.333 was derived. Using this
factor, a prediction of .77 MFLOPSresults for the _[ASSCOMP6650. This
comparison data is based on solving a system of linear equations with
LINPACKin full precision using Fortran.

IBM 3081 MASSCOMP6650
MRC= N/A N/A

MIPS= 15.6 13.3
MFLOPS= 2.1 .77

CF= 41.67 MHz 33.0 MHz

It turns out that the 1980 designed mainframe and the 1989 designed

workstation have a speed performance in the same general neighborhood.

Of course there are three more factors to follow before the comparison of

computing powers can be made. Also there was no correspondence possible

based on an equitable (application oriented) benchmark system, which could

highlight a possible speed difference. In any case, these values do

conclude the metrics associated with the speed factor. Using this

information and the weighing factors that arise from the software

analysis, the speed factor, Sc, for each computer can be approximated to

be used in the set of questions.

2.2 Capacity Factor

The quantities of MRC, MIPS, or MFLOPS are speed related, but they'also

have a thresholding nature. That is, these hardware factors are directly

related to hard limitation thresholds associated with software demands.

If the capacities associated with an application cannot be met, the

computing power of the system falls short of the software requirements.

Of course when considering these measures as thresholds, it is necessary

to have the application program requirements explicitly established. The

capacities associated with engineering workstations can be augmented by

the system requirements when software distribution requires an interaction

with application software at other locations.

Another capacity constraint, the Main Memory Capacity (MMC), may be a cost

factor, a hardware compatibility factor, or both. In any case, it is a

parameter that is provided by the computer hardware and demanded upon by

the operational software. Exceeding the crossover of the demand and

constraint is incompatible with successful operation and can be considered

a hard limit threshold. Large storage capacities using virtual memory,

by applying mapping overlays are used to extend MMC, however the installed

values are as follows:

IBM 3081 MASSCOMP 6650

MMC= 16 MB 32 MB

2.3 CPU Ratin K Factor

The objective thresholding quantities just addressed are very different

from the softer or objective rating given to the CPU. As was stated when

it was developed, the CPU rating is to be used in conjunction with the

earlier established measures
different CPUarchitectures.
composite CPUrating will each be rated below.

of power to help differentiate between
The six elements afsigned to build the

MAX IBM 3081 MASSCOMP6650
i. INSTRUCTIONSET

CISC i0 i0
RISC 20

2. INTERRUPTIONACTION

BASIC 2 2
P/I 2 2
I/O/I 2 2

H/I 2 2

OlSlI 2 2

3. REGISTER CAPABILITIES

GPR 1-5 3

GPR 6-10 5

GPR i0 OR ABOVE 7 7

FPR ANY ADD 3 3

4. SPECIAL MATH PROCESSORS

SMC i0

DNP 15

GPAMP 20 20

5. MULTIPROCESSORS

2*LOGz(p) 20

6. I/0 CAPABILITY

NCH i-i0 5

NCH ii OR ABOVE i0 i0

CHC i-i0 MBPS 5

CHC i0 MBPS UP i0 i0

CPU RATINGS 70

2.4 Robustness Factor

i0

2

2

2

2

2

20

55

In Volume I several hardware factors were related to what was called the

robustness of the computing power. These factors are applied as weights

correlated to the difficulty of use, sensitivity to software environment

changes, and maturity of the technology. These are also soft measures
with somesubjectivity included in the value. Rememberthat someof the
factors that are included were inputs to other componentsof the computing
power. The closer the robustness factor is to one, the higher the
probability of the computer system reaching the level of power anticipated
or needed. The final robustness factor is the product of the assigned
weights. If the computer system does not have the optional factor, it is
considered to be one (i) for that system. The application of the
robustness factor against the residency questions can be accomplished
after its value is computed as follows:

MAX IBM 3081 MASSCOMP6650

i. CACHEMEMORY .99 .99 .99

2. SAMU

BYTE .9999

MULTI-BYTE .999

WORD .99

.9999

.99

3. VS .99 .99 .99

4. SMP

SMC .99

GPAM2 .99

DNP .9

.99 .99

. INSTRUCTION SET

RISC .9

CISC .9999 .9999 .9999

6. MP .9 .9

ROBUSTNESS PRODUCT .970 .865

2.5 Summary

The information above reports that considering the systems in the MCCU

I) the new workstation is approaching the speed of the older mainframe,

2) the MMC of the workstation is greater, 3) the CPU of the mainframe is

higher rated, and 4) the performance predicted by the mainframe has a

higher probability of occurring than the performance of the workstation.

The above data can be used to answer some of the questions at the end of

Chapter Seven of Volume One. This chapter furnishes the system manager

the set of criteria elements that were extracted from the hardware

configuration. This information is summarized in a System Information

Summary included in Appendix B. There is not always a simple answer to

the residency question, but this information was meant to be the stimulus

for the complex considerations that need to be made. Volume I clearly

stated that a single recipe does not exist which takes the input data and

answers the question of residency. Certainly, these hardware factors are
only a fraction of the inputs. Of course, there are-some thresholds that
cannot be exceeded. In these cases, a stronger position was taken in the
question area. Other than these special situations, the undecided area
on the residency question is quite large and is a subjective issue.
However, the information that has been gained in this analysis is
important to system performance, and the trend manifested is reasonable.
The limitations and capabilities that come out of the hardware
considerations are extremely valuable when considering the question of

residency in a host and engineering workstation environment.

3.0 CURRENTENVIRONMENTMIGRATION

In the MCC, the cooperating mainframe and workstation system developed
out of a time-sharing environment which makes answering the residency
question more complicated. The difficulty in this situation is that the
original applications were designed and developed for the time-sharing
environment, not a distributed, cooperative one. A practical__approach to
this problem is to analyze the current system and then apply the residency

questions from Volume I to each application/subsystem which is being

considered for migration.

Currently, there is a tremendous amount of software executing on the Real-

Time Host (RTH) and the Flight Support Host (FSH) of the MCC. One of the

main objectives of this research has been to identify the applications

which execute on the hosts, determine which disciplines use them in some

capacity, apply the residency questions as completely as possible with the

available information and then recommend whether or not a host application

should be moved to the workstations for execution. On the other hand,

there has also been a large amount of software written for the

workstations. In most cases, this software is probably best suited for

the workstation because the applications are discipline-specific. There

may, however, be a few cases of workstation applications which may be

better suited to run on the host mainframes.

The residency questions from Volume I have been applied to a number of

applications and subsystems which are currently executing in _he MCC. As

many residency questions as possible have been answered in Appendix B of

this document. Using the knowledge that could be gleaned from this

exercise, recommendations have been made concerning where some of the

applications/subsystems should reside. Further investigation and more

detailed answers will have to be collected before more of the residency

questions can be answered.

3.1 Host Applications/Subsystems

Even with the most current advancements, today's workstations do not have

the processing power to perform all of the functions which are currently

executed on the RTH and FSH. Even if they did, to rewrite all of the

mainframe software in workstation code would be a timely and costly

venture. The mainframes are well suited for certain tasks and should

continue to be employed for real-time data reduction and for maintaining

a massive database of statistics from many flights (current and

historical). Both the raw real-time data from the spacecraft and the

processing results from the hosts will be available on the Local Area

Network (LAN) for the workstations to use. In this manner, as

workstations become more powerful they may take on more of the host's

functions or they may use their added power for other tasks. The growth

path is quite flexible and those decisions can be made as the workstations

advance and new functions are conceptualized.

The RTHand FSHof the MCCare IBM 3081 machines. During an operational
flight, there are two mainframes up and running the R-THapplications. One
mainframe acts as the Mission Operations Computer (MOC)and one is the
DynamicStandby Computer (DSC). The DSCruns in parallel with the MOCand
provides a reliable backup to the MOC. The two mainframes share their
data on a Direct Access Storage Device (DASD). The role of the FSHis to
provide the Near Real-time Telemetry (NRT)Data Reduction which serves as
the telemetry data retrieval system for the MOCand Payload Operations
Control Center (POCC). The other applications which execute on the FSH
are analysis and monitor type functions.

3.1.1 Telemetry Functions

The primary function of the MOC/DSC computers is the commutation and

calibration of raw telemetry data from the Network Data Driver (NDD). The

MOC receives the raw data from the space vehicle and then performs the

calculations necessary to provide the values to the disciplines which have

requested the data for display to the Flight Controllers.

The Telemetry application unpacks data sent from the NDD, converts that

data to engineering units, performs calibration and computations, and

stores the results of these processes in the Intermediate Data Array (IDA)

which is then output on the RT-LAN. Initially, processed telemetry is

retrieved by Processed Parameter List (PPL) requests from the

workstations. The RTH processes cyclic telemetry data on a one second

basis. The RTH will also process application/user requests for telemetry

data.

The NDD downlinks raw telemetry data messages at an approximate once-per-

second rate. The host telemetry is required to build and output multi-

cast (via the RTLAN), a MOC Telemetry Message (MTM) for every NDD data

stream that it is processing. The calibrated data must be made available

to the workstations 5 seconds after its receipt from the NDD.

Because of the need to store this data for historical purposes this

function should remain on the host. Although applications on the

workstations are capable of processing raw data themselves, not all do.

A number of them prefer using the preprocessed shared data provided by the

host.

3.1.2 Near Real-time Telemetry (NRT) Retention

Near Real-time Telemetry (NRT) data is stored continuously on the RTH by

the NRT Retention application. This application stores unprocessed full

rate Space Transportation System (STS) data to the NRT data base and

archival tape. Retention will support data on a flight basis from the

Telemetry Preprocessing Computer (TPC).

The data routed to the MOC may be retained in the database. A block of

data will be shipped to Retention from the MOC via Multiple Virtual

Storage (MVS) Cross Memory services. As a result, the Retention job must

reside in the same host as the MOC. When supporting a TPC configuration,

i0

a second Retention job will run in parallel on the DSC. The DSCRetention
job will retain to tape but not to disk. Upon notification from MOC
Telemetry, the roles of the MOCRetention and DSCRetention jobs will
switch.

The size of the data base will depend upon the amount of DASDavailable.
The worst case loading requires support of 3 STSstreams for one flight.
A stream is comprised of up to 16 K byte s data plus someheader and status
bits. Data should be available for retrieval no later than 5 minutes
after it is received at the host. This application is projected to need
.18 MIPS for execution.

Since this application requires a significant amount of storage capacity
and a strong reliability factor there is no reason to move this
application to the workstation. If this application were moved to the
workstation level then eachworkstation would need a copy of its data base
or somemethod of maintaining consistency within the data base of NRT
data.

3.1.3 Near Real-time Telemetry (NRT) Reduction

The Near Real-time Telemetry (NRT) Reduction subsystem runs on the FSH and

retrieves a block of retained telemetry data from the NRT data base upon

request from a workstation. Data values are retrieved using Measurement

Simulus Identification (MSID) values. Parameter list data values

retrieved from the data base may be transmitted tO the user at a

workstation. In addition, report generation of NRT data can be generated.

These parameter list and report generation retrievals are referred to as

reduction runs.

Since the telemetry data is output to the data base in raw form, upon

retrieval the required data may optionally be unpacked from its message,

calibrated, limit sensed and have the necessary computations performed

before it is shipped to the requesting workstation. This application is

projected to require 2.5 MIPS for its execution.

This application should not be moved off of the host because of the

universal need for its output and its access of the large NRT data base.

3.1.4 Tra _ectory

The Trajectory application provides trajectory related information

processing in support of the flight controllers. Trajectory processing

functions are performed on demand as a result of a flight controller's

request, and automatically in response to incoming network radar data and

cyclic time queues. Some of the applications are just data management,

but there are a large number of calculation operations.

Trajectory data is accessible to any workstation that is connected to the

LAN through the MITS-approved Data Control Lists (DCLs) using the

Trajectory Data Retrieval (TDR). This application is projected to require

1.2 MIPS during its execution.

ii

This application should not move, because of a commondemand for its
output and because of the reliability factor of the host.

3.1.5 High Speed Guidance, Navigation and Control (GNC)

There is a clear line between high speed and low speed applications for

navigation. Two examples of trajectory functions which fall in this

category are the Satellite Acquisition Table (SAT) and the Landing

Opportunities application. The SAT calculates when the shuttle is going

to pass a certain point. The Landing Opportunities application computes

landing opportunities if the need arises.

The high speed trajectory functions are performed during ascent and re-

entry and need to remain on the host in order to keep pace with rapid

progression through the stages of these mission phases.

3.1.6 Low Speed Guidance, Navigation and Control (GNC)

The low speed GNC functions perform the same operations as the high speed

functions. However, the low speed trajectory functions execute during

the slower paced orbit phase. Because of this pace, the low speed

functions could move to the workstation. In order to move to the

workstation, however, there would still be a need for access to a common

table of data (not large). If there is a reliable and efficient

communication mechanism, one table could be maintained on the host and

accessed by the workstation. This would require modification to the

current code in order to provide access to the data from the workstation.

3.1.7 Vector Propagators

Two examples of vector propagators are the Analytic Ephemeris Generator

(AEG) and ENCKE. These functions are used primarily by the Trajectory

discipline to perform numerical integration, but are sometimes used by

other disciplines.

They could probably be taken off of the host and their functionality

downloaded to each discipline which uses it. If they used shared data on

the host, then modifications would need to be made to access the necessary

data.

3.1.8 Network Communications (NETCOM)

The NETCOM provides monitoring and/or control of the Network

Communications Interface Commons (NCIC's), TDRSS, Dump Data Handling

Subsystem (DDHS), remote sites and the Network Output Multiplexer (NOM).

The NETCOM also provides metering of data output to the NOM. It submits

configurations and reconfiguration and keeps status on telemetry,

trajectory, and software check-out. It is a table driven application used

by the Operations Support Team (OST). This application also monitors the

Digital Television Equipment (DTE), Manual Entry Device (MED), and Push

Button Indicator (PBI) hardware and their emulations.

12

NETCOM parameters are retrievable via the Generalized Data Retrieval (GDR)

capability in the Command Control System/Control (CCS/C) with the

following supported rate options: Cyclic - request a data value message

for a PPL to be output to the requesting workstation at the specified

cyclic rate; Single shot - request a data value message for a PPL to be

output to the requesting workstation only one time; Data change - request

a data value message for a PPL to be output to the requesting-workstation

when data for the PPL is first requested and whenever data values for

parameters specified in the PPL change.

Since this application is only used by one discipline, the Operations

Support Team (OST), and doesn't use any shared data, it would be possible

to move this application to the workstation level provided there is

sufficient access to the status and control data for the systems which it

monitors. If there are other disciplines which require this application's

results, a communication mechanism would be needed to send the results

over the GPLAN when requested.

3.1.9 Command Control System/Control (CCS/C)

Data is received from the real-time hardware through the operating system

into the CCS/C application. The CCS/C logs this data and routes it to the

appropriate applications. Data is also received from these applications.

The CCS/C logs and sends data through the operating system to the real-

time hardware. There is an additional CCS/C function known as GDR. The

GDR provides a data retrieval service for the workstations to request data

from the host and monitors the data flow. The CCS/C Subsystem also

provides the emulation of PBI's, DTE's, and MED's to the workstations.

The emulation of MEDs allows input from the workstation which will result

in processing as if the request was input from the dedicated CRTs which

are currently used as the MEDs. Output advisory/error messages that

result from MEDs that are entered from workstations will also be output

to the workstations from which the MEDs were entered. The DTE emulation

will allow requests for display data to be handled via CCS/C services to

support display requests from the workstation environment. PBIs are

emulated by an input from a workstation which results in processing as if

the PBI was input from a console. Output advisory/error messages that

result from a PBI entered from a workstation shall be output to the on-

line printer and to the on-line monitor in the same manner as if the PBI

was entered from a console. Advisory/error messages that are output to

the on-line monitor shall also be output to the workstations from which
the PBI was entered.

This subsystem should not be moved from the host since its purpose is to

serve as an interface to the host from applications which execute on the
hosts and the workstations.

3.1.10 Command Application

_r

The Command application performs Shuttle ground command software functions

in the MCC. These functions provide the capabilities to generate, format

13

access for viewing, and transmit vehicle commandsin response to inputs
from flight control workstations. The Commandapplication also generates
network managementcommandsand validates the success of transmission
based on vehicle telemetry downlink and network responses. The Command
application also validates commandsuplinked to the Orbiter.

There is a universal need for the commandverification. It should remain
centralized on a host in order to maintain control of the transmission of
commandsto the space vehicle.

3.1.11 Network Support Software (NSS)

The NSS resides in both the RTH and FSH as the interface between the host

resident applications and the LAN. The primary function of the NSS is to

interface the host computer or application with the RT-LAN or GP-LAN. NSS

will log and/or trace (in an NSS trace table) all major events (such as

error conditions, and some portion of each Communications Server

(COMSERVER) input/output request). The trace table will also be logged

to tape or disk. Both the log data and trace table data will contain time

tag information. Host applications requiring NSS services have their own

channel interface to the LAN COMSERVER. NSS supports host application-

requested creation and destruction of virtual circuits. NSS maintains a

list of valid node names that each host application may support and

maintains a list of the valid subchannel addresses that NSS will support

for each LAN COMSERVER. NSS provides the user the capability to print

and/or view NSS displays on the host terminals and provides an interface

to the computer operator for the input of commands. These commands may

be in the form of key word commands or MED commands. Note that no

responses (or displays) will be returned to the computer operator's

console. Additionally, the computer operator's console will receive text

messages from NSS describing certain cases of error and advisory
conditions.

This application requires a maximum of .23 MIPS for its operation and 4.17

MB of memory. This application should not be moved since its purpose is

to serve as the interface between host applications and the LAN.

3.1.12 Configuration ManaKement (CM)

CM is primarily a library function of storing, downloading and uploading

allsoftware elements (data, source files, object files, computations,

etc.) for mission, Independent Verification (IV), simulation (SIM), and

development operations. Configuration Management provides the functions

necessary to maintain and control the various operational software

configurations for operational workstations. This includes the

establishment of a centralized system library and control of access to the

elements in this library. Interfaces between the workstation and host

system users provide the method for establishing and maintaining the

library elements.

CM processing is divided into two major parts: a Host (global) function

and a Local (workstation) function. The Host portion maintains the

14

central library and distributes elements to requesting nodes. The Local

portion controls the local environment and communicates with Host CM for

upload/download of library elements.

The functional requirements for the Host CM processing consist of the

database management, real-time host services, system structure management,

and database report processing. To accomplish the required processing for

these components, Host CM is required to provide both real-_ime support

and nonreal-time support.

The real-time support consists of the Host Real-time Services and portions

of the Database management functions. All processing is accomplished

between the Host CM function and workstations via the Local Area Network

(LAN) interface. This processing is generally referred to as the 'real-

time' portion of Host CM.

The nonreal-time support consists of the System Structure Management and

portions of the Database Management function. All processing will be

accomplished between the Host CM function and a terminal via an interface

method. This processing is generally referred to as the 'structure

management' portion of Host CM.

Host CM controls the majority of the workstation based software elements.

Host elements, front end components, communication server components,

host operating system, etc. are not to be considered part of the CM

library.

Host CM processing maintains a centralized library of the elements needed

by workstation processing to provide operational system suppor%. This

central library will be the major part of the CM system and is managed

via an interface with a Commercial Off-The-Shelf (COTS) Data Base

Management System (DBMS). The CM database will contain the actual

workstation elements as well as supporting information identifying usage

of each element. Other parts of the CM database will provide the basis

for control of access and use of the library elements.

Real-time Host CM processing will provide an interface between the

operational workstations and the CM host. The primary function of this

processing is to allow workstation software elements to be transmitted to

the workstation for real-time configuration and to allow workstations to

transmit new or modified elements for storage within the Host CM database.

The real-time Host CM function will be available as a separate application

from the other host resident jobs (MOC, DSC, NRT, etc.). A real-time Host

CM job accessing a single Operational database is required to be active

in only one host machine at any given time, due to the restrictions of

available COTS DBMS products. However, more than one Host CM job will be

allowed to access the Operational Database(s) at any one time, in order

to support dual operational activities. (If this capability requires the

use of dual Operational Databases, then procedures shall be implemented

to keep the contents of both databases synchronized).

15

The FSH will be the primary target environment for Host CM job executions.

Procedural controls and system availability may mak_ it necessary to run

the Host CM function in the Real-time Host (RTH) when the FSH is not

available.

The structure management component of CM provides the capability to define

one of three databases for access at session initialization. It also

provides the capability to define and update valid user definitions, allow

user definitions to identify predefined lists of elements to be downloaded

as a result of the workstation sign on request, define and update valid

group definitions, define and update valid function definitions, define

and update valid access control information, update flight and

certification level qualifiers for existing elements (without having to

upload the element data from the workstation), and create and store

reconfiguration products on the CM database. The structure processing

will be performed independently from the real-time Host CM processing.

These functions will be accomplished via a terminal interface to the

structure management portion of the Host CM application. Inputs to Host

CMwill consist of processing requests related to creating and maintaining

the CM database structures required to support the central element

library. Outputs will consist of screen information showing the state of

the requested structure.

This subsystem requires a maximum of 3.9 MIPS for its execution and 2.71

MB of memory. Since it maintains a library of all workstation software,

CM should remain on a centralized system such as the host in the current

MCC configuration.

3.1.13 Shuttle ConfiKuration Analysis ProKram (SCAP)

The Shuttle Configuration Analysis Program (SCAP) is used by the flight

control team in the assessment and resolution of in-flight anomalies.

SCAP consists of a series of programs and databases containing

configurations of electrical components, busses and orbiter sensors for

the shuttle and its payloads. SCAP provides an automated, interactive

system for maintaining and accessing the databases. As detected component

failures are input to SCAP, other related failures and single-point

failures are output, including the accumulation and interaction of

multiple failures. The primary input to SCAP is anomaly information

resulting from flight status monitoring activities. The primary output

from SCAP are displays and/or reports detailing the failure effects or

configuration information. Access to the SCAP system is currently

provided to users via the MITS LAN and GP LAN to MASSCOMP workstations.

Users performing SCAP processing via a MASSCOMP/C3 Integral Graphics

Processor (IGP) are provided an automatic log-on capability, which will

support up to four IGPs per workstation initially. The user will not be

required to manually establish a Time-Share Option (TSO) session. SCAP

will automatically come up when it is selected from the process pull-down

menu under the Workstation Executive (WEX).

There are two programs included in the SCAP subsystem - the Failure

Analysis Program (FAP) and Instrumentation. The FAP serves the flight

16

controller by assessing the multiple system/component failures, next worse

failures, loss of functional capabilities, loss of redundancy, and single

point failures based upon a given input failure case. It uses a logic

database to show the relation of each shuttle component to various

functional capabilities and systems. It uses data from the Shuttle Data

Tape that describes the various shuttle components involved.

Instrumentation provides the capability to perform retrievals of SCAP

channelization, SCAP Line Replaceable Unit (LRU), full telemetry, and

calibration. Instrumentation enables the flight controller to selectively

retrieve information of specific orbiter parameters. It uses a flight

dependent instrumentation database created from the Shuttle Data Tape

(SDT), the Payload Instrumentation Parts and Components List (P/L IPCL),

the System Software (S/S) IPCL, and the Payload Data Tape (PDT).

The SCAP program is used by a few disciplines and runs on a huge database.

It may be able to be moved to the few workstations which use it if the

memory capacity of the workstation is sufficient to hold the database.

This application requires a maximum of 4.6 MIPS for execution and has a

targeted response time of 30 seconds.

3.1.14 Fault MessaKe Application

The Fault Message Application is a table look-up application used by the

Data Processing Support (DPS) discipline. Other disciplines request to

see the output of it, but it is a trivial application for a mainframe.

The DPS workstation could handle this application if there was a

communication mechanism to share output between workstations.

3.1.15 Scratch Pad Line

This application decides where crew input to on-board computers will go.

It is mostly table look-up and is used primarily by the DPS discipline.

The workstation could handle this application, if there was a

communication mechanism available to share the output when requested.

3.1.16 Orbiter Attitude

The Orbiter Attitude application is used by many disciplines. It

calculates the attitude of the vehicle and stores the result in the host

for access by disciplines which need it.

This application could be moved to the workstation if there were a

communication mechanism set up to provide the output to those other

disciplines which may want it.

3.1.17 Time Storage

The calculation of all the times used during a mission are done on the FSH

and stored in the MOC for access by all applications and disciplines.

These times include the Greenwich Mean Time (GMT) and Mission Elapsed Time

(MET).

17

Since this application provides data necessary to _very discipline and

needs to be processed frequently, it is recommended that the function to

compute the times remain on the host.

3.2 Workstation Applications

As the workstations have migrated into the MCC, there have been many

applications written to run on them. Many of these applications are

discipline-specific and should remain resident on the workstations for

which they were intended. However, there are a number of applications

which were developed which may be better suited for one of the hosts.

3.2.1 Display Sharing

Display Sharing is a new function being planned for the MCC to give the

Flight Controllers the same functionality as the thumb wheel used to pull

up any DTE display on the consoles. Display Sharing is the distribution

of output information from applications on a source workstation to other

workstations in the system. The MCC Display Sharing capability is divided

into three categories: telecast; monitor attach; and display copy.

Telecast allows a source workstation to request a distribution channel and

then output to simultaneously display information for a single window to

its local monitor and the channel allowing access to other workstation

monitors. To receive the display information; a receiving workstation

connects to a defined channel. Monitor Attach is basically an over-the-

shoulder view of a workstation monitor. All information on the source

workstation's monitor will appear on a receiving monitor and the receiving

_onitor will track the source workstation displays. Display copy is an

image capture for a specific frame. Once captured, the image frame is

distributed to a specific receiving workstation.

At this time, there is not enough information available to make a

recommendation on the residency of this application.

3.2.2 Display Manager

The Display Manager manages the displays created by Display Builder during

operation. It also uses Data Acquisition to access the shared data on the

MOC. Since every workstation will have displays to be managed, it should

reside on the workstation.

3.2.3 MUS

This interactive application is used by the flight controllers to request

(through GDR) NRT data from the MOC. Due to its interactive nature and

the possible need for NRT data displayed quickly, it is best to leave this

application on the workstation.

18

5.2.4 FliKht Notes

The Flight Notes function is an application which can be used to

automatically write up the flight notes which are sometimes required

during the course of a mission. This application is appropriately placed

on the workstation since it has a highly interactive interface.

5.2.5 E-mail

The mail function currently resides on the workstations and requires a

user to log onto a certain workstation to receive their mail. It should

be more centralized so that a user can log onto any workstation in the

network and receive mail.

3.3 Universal Functions

In any large system, there are functions which most of the users require

to perform their job. The residency decision for an universal application

can be very simple or very complicated. In the simple cases, low usage

requirements, developmental applications, nonreal-time requirements, and

local data requirements sway the decision heavily to either the

workstation or the mainframe. In the complicated cases, the response

time, data requirements, and frequency factors need to be evaluated

collectively so that the most effective solution can be determined.

Application of the residency questions for these types of applications

will help to clear the picture in the complicated cases and verify the

residency for the simpler cases. The MCC universal functions have been

included in the sections which pertain to their current residency.

19

4.0 PLACEMENT OF NEWLY DEVELOPED APPLICATIONS

In order to prepare for future advancements in the workstation and

distributed processing environment, a systems designer needs to develop

software in a way which will lead to more efficient execution and resource

utilization in the distributed system of the MCC. When new applications

are being designed for a system which is already in operation, the

designer should be familiar with the residency questions from Volume I so

that all of the factors which will impact the efficiency of the final

product on its intended target system will be acknowledged and

incorporated into the requirements for the application. Once the

requirements have been assigned, the principles discussed in Chapter Four

of Volume I concerning the understandability and maintainability of

software should be followed.

During the development of a new application, there are a large number of

concerns which affect the residency of this software. These concerns

include: I) the types of functions which need to be performed; 2)

maintainability of the software across the system; 3) the amount of user

interaction; 4) the universal need for the application; and 5) the

performance requirements of the application. All of these concerns are

addressed by the residency questions. During the development stages of

the application's components, there needs to be a methodology used to

insure that all of the residency issues are considered for the particular

application being developed. The residency questions should be used as

a checklist to accomplish this task. The primary goal of these objectives

is to design software which is verifiable and correct while at the same

time controlling the complexity of the system.

The first step in the development of software for the cooperating

mainframe/workstation environment is the decomposition of the software

into processes which perform different functions (i.e. separate user

interface functions from calculation functions). During this

decomposition phase, the developer should then design the processes into

modules which perform specific tasks and allow modules which perform

common tasks to be reused by other applications. Once the requirements

have been decomposed into specific processes and tasks, the ideas of task

partitioning and task allocation discussed in Chapter Two of Volume I

should also be used to better decompose the software into functions and

modules which can then be partitioned to best utilize the system

resources.

Once the applications are developed, a properly implemented configuration

management system is a major necessity for the success of any software

system. Configuration management is especially important in a distributed

system to control the duplication of code, tasks, and functions and to

insure that only validated software is executed during normal operation.

In summary, as new applications are conceptualized their design needs to

be attacked by first using the residency questions as a checklist for

examining the aspects of a cooperating environment which will impact the

_ ___ 20

residency, and therefore the design, of the application. Once these

issues have been considered, they should weigh heavily on the decisions

made during the implementation of the remaining design and development

procedures. If a new application is designed and developed using the

principles discussed above, determining the residency of a new application

should be a fairly straight forward task because it will have been

designed with the residency issues in mind.

21

5.0 CONCLUSIONS

The residency question of software in an environment moving from a
centralized, time-sharing environment to a distributed processing
environment using cooperating mainframes and engineering workstations is
not an easy one to answer. This research has concentrated on discussing
the factors associated with the coupling of workstations and mainframes.
These discussions have tried to make the user think of all factors which
impact the residency of an application between a mainframe and a

workstation. It may seem trivial to attempt to answer all of the

questions proposed, but it insures that the developer analyzes each of the

contributing factors. Applying these questions can be compared to a

checklist of items. Taken independently, each item may seem insignificant,

but when considered as a whole, if one consideration is missed, it could

have a significant impact on the outcome.

The best possible situation for a large, widely distributed, cooperative

system would be to have a software engineering organization which is

singularly responsible and knowledgeable of the effects outlined in the

preceding chapters. The residence of each new entry into the system

software vault should be considered totally against the overall

operational effectiveness avoiding the biased and limited examinations of

a single discipline. Determination of the residency of applications

requires a coordination and understanding by the system designers and

developers. Without coordination among the system designers and

developers there will not be an opportunity to reuse code developed by

other disciplines.

5.1 The Necessity of a Centralized Host

Throughout the course of this research, it has been acknowledged that

there is still a need for the host/mainframe in the MCC environment.

Although the workstations have approached the mainframes in their speed

factors, the storage and reliability attained by the host is still an

important asset to the environment. In the MCC's current configuration,

the host/mainframes should continue to be used as the central processing

and storage unit for space vehicle data which is needed by all of the

mission support teams. It is also the most reasonable location for the

storage of the Configuration Management data base and a few discipline-

specific applications whose outputs are needed by other disciplines. One

final benefit of the host/mainframes is their reliability. Both the RTH

and the FSH are configured to have a backup system pickup their processing

if they should ever go down. This is an important feature for integrity

of data which is at times critical.

It can be foreseen that as workstations continue to grow, they will be

able to pickup some of the processing currently executed on the host.

However, for the system to run efficiently without host/mainframe support,
there needs to be a communication mechanism which will allow the

workstations at different disciplines to pass common data back and forth.

22

Until this type of communication is available in the MCC, the
host/mainframes will still play a major role in the operation of the MCC.

5.2 Future Directions

In this final section, suggestions have been made for the future

environment of the MCC. As the workstations advance and become less

expensive and more powerful, the necessity for the mainframe/host may

dwindle. The following topics discuss some alternative ideas which could

be implemented in the MCC.

5.2.1 Centralized Control/Distributed Applications

In this report, applying workstations as a solution has basically been

another way of saying distributed processing. Actually, another mode

exists that has a workstation acting as a centralized application

controller over a distributed process. A single workstation can take on

the role of centralized logical control for a distributed process. The

distributed process could actually be executing on the mainframe, among

the workstations, or on both. One such possible situation, such as having

a specific workstation acting as a file server, requires the workload to

realize connections across the network. When N users, or clients, need

to communicate with every other user, or server, then a fairly large

number of connections need to be sustained between all of the processes.

Another approach is to distribute the process, but centralize the control

and the access between the distributed processes through a single logical

point processor. In this case, a workstation can act as the logical

center of a star network. Appearing as the client and server, it controls

the whens, ifs, bows, and even the whats of every communication associated

with that particular process. The most obvious advantage of having fewer

logical connections, now N at the most, is offset by the possibility of

incurring unsuitable delay while communicating to a destination. Some

other features are the very rigid control of the application, data

verification, timing monitoring, and synchronization possibilities. These

possible trade-offs need to be measured carefully when assigning a

workstation to the role of centralized controller in a distributed

application.

5.2.2 Load Distribution

As workstations become more prominent in the MCC and the disciplines begin

to develop more applications to run on them, consideration should be given

to implementing a load distribution algorithm. This topic was discussed

in Volume I, Chapter Five. Load distribution can be described as being

either load sharing (LS) or load balancSng (LB). LS attempts to conserve

the ability of the system to perform work by assuring that no node within

the system is idle while there exists a demand for service anywhere in

the system. LB goes a step further by striving to equalize the entire

workload among all of the nodes. LB can be further characterized by the

static or dynamic nature of its control. Static control only deals with

the initial placement of a process. Dynamic control employs a migration

23

component capable of transferring a process once it has already started
to execute.

These algorithms have been implemented in distributed computing systems
to improve the performance of the system by efficiently utilizing the
computing power of the entire system. By using remote execution utilities
the workstation-based distributed system can transfer jobs from heavily
loaded nodes to inactive or less-busy nodes. This leads to an effective
meansof maximizing the computing power within a distributed system.

Although a communication delay must be incurred by transferring a job from
one node to another, the performance of a distributed computing system is
generally improved by an effective load balancing policy. Implementing a
load distribution algorithm in the MCCenvironment may not be necessary
at this point in time, but eventually, as more demandsare put onto the
workstations, the need will arise.

24

APPENDIX A: ACRONYMS & DEFINITIONS

AEG

AOS

ccs/c
CPU

CHC

CF

CISC

CM

Analytic Ephemeris Generator

Acquisition of Signal

Command and Control System/Control

Central Processing Unit

Channel Capacity

Clock Frequency

Complex Instruction Set Computer

Configuration Management

COMSERVER Communications Server

COTS

DASD

DCL

DBMS

DDHS

DNP

DPS

DSC

DTE

EECOM

FAP

FDO

FLOPS

FSH

FPR

GC

GDR

GMT

GNC

GPAMP

GPR

GSTDN

H/I

IDA

IGP

IlOII

IPCL

IPS

IV

LB

LRU

LS

LAN

MB

MBPS

MCC

MCCU

MED

MEPS

MET

Commercial Off-the-Shelf

Direct Access Storage Device

Data Control List

Data Base Management System

Dump Data Handling System

Dedicated Numerics Processor

Data Processing Support

Dynamic Standby Computer

Digital Television Equipment

Electrical, Environ, and Consumables

Failure Analysis Program

Flight Dynamics Officer

Floating Point Operations per Second

Flight Support Host

Floating Point Register

Ground Control

Generalized Data Retrieval

Greenwich Mean Time

Guidance, Navigation, and Control

General Purpose Attached Math Processor

General Purpose Register

Ground Spaceflight Tracking and Data Network

Hardware Interruption

Intermediate Data Array

Integral Graphics Processor

Input/Output Interruption

Instrumentation Parts and Components List

Instrument Pointing System

Independent Verification

Load Balancing

Line Replaceable Unit

Load Sharing

Local Area Network

Megabytes

Megabytes per Second

Mission Control Center

Mission Control Center Upgrade

Manual Entry Device

Million Executions per Second

Mission Elapsed Time

25

MFLOPS

MHz

MIPS

MITS

MMC

MOC

MOD

MP

MRC

MSID

MTM

MVS

NCH

NCIC

NDD

NOM

NRT

NSS

osli
OST

PBI

PDT

P/I

P/L

PPD

PPL

RISC

RTH

SAMU

SAT

Sc

SCAP

SDT

SIM

SMP

SMC

S/S

STS

TDR

TDRSS

TPC

TS0

VS

WEX

W/S

Million Floating-point Operations per Second

Megahertz

Million Instructions per Second

MOD IPS TACAN Subsystem

Main Memory Capacity

Mission Operations Computer

Mission Operations Directorate

Multiple Processors

Maximum Rate of Computation
Measurement Stimulus Identification

MOC Telemetry Message

Multiple Virtual Storage

Number of Channels

Network Communications Interface Common

Network Data Driver

Network Output Multiplexer

Near Real-time Telemetry

Network Support Software

Operating System Interruption

Operations Support Team
Push-button Indicator

Payload Data Tape

Program Interruption

Payload

Projection Plotting Display

Processed Parameter List

Reduced Instruction Set Computer
Real-time Host

Smallest Addressable Memory Unit

Satellite Acquisition Table

Speed of the Computer

Shuttle Configuration Analysis Program

Shuttle Data Tape

Simulation

Special Math Processor

Standard Math Coprocessor

System Software

Space Transportation System

Trajectory Data Retrieval

Tracking and Data Relay Satellite System

Telemetry Preprocessing Computer

Time-Share Option

Virtual Storage
Workstation Executive

Workstation

26

APPENDIX B: RESIDENCY QUESTION MATRIX

Appendix B contains System Summary Information, answers to System Specific

Questions and a series of matrices containing answers to the residency

questions presented in Volume I for each of the applications discussed in

Chapter 3 of Volume II.

The question checklist utilized was extracted from the concluding chapter

of Volume I. Using available information, these questions have been

applied to those host and workstation applications which are candidates

for migration. The questions are arranged so that if a "yes" answer

results, then increased weight to the host as the residence is indicated.

If a "no" answer is the result, then the engineering workstation weighing

is increased. Questions marked with a single asterisk indicate that

failure on these threshold items require no less than host computing power

level. Items marked with a double asterisk indicate that the host can not

meet the requirements in its aggregated operational status requiring off

loading of an application onto the workstation. For connection to the

body of this report, each question is referenced to the appropriate

chapter section number in Volume I. This number can be used to locate the

research discussion. The application reference number refers to the

residency discussion associated with the application in Volume II.

These general criteria questions will build a weighing factor that will

hopefully indicate a trend for either the host or the workstation for the

residency of the software. The questions that do not have asterisks

should be considered equal in influence on the decision. A reasonable,

if not somewhat arbitrary, rule would say that if 70 percent of the

questions are answered "no" then workstation residency is the decision.

If 70 percent are answered "yes" then host residency is the most likely

answer. Between these two limits,, would be considered a range of optional

consideration.

27

System Information Summary

IBM 3081

i)

MASSCOMP 6650

SPEED FACTORS

MRC N/A N/A

MIPS 15.6 13.3

MFLOPS 2.1 .7_

CF 41.67 MHz 33.0 MHz

where:

2)

3)

4)

Sc = ((Wc*MFLOPS + Wo*MIPS)*MRC) '5

Wc = the fraction of time spent in mathematical computations

Wo = the fraction of time spent in other operations

Note: MRC is not available for these computations

IBM 3081 MASSCOMP 6650 RATIO

Wc ffi0

WO = 1

15.6 MEPS 13 3 MEPS

12.9 MEPS i0 79 MEPS

Wc = .4

Wo ffi .6

10.2 MEPS 8 29 MEPS

Wc ffi .5

Wo ffi .5

8.85 MEPS 7 03 MEPS

7.5 MEPS 5 78 MEPS

WC : .8

Wo ffi .2

4.8 MEPS 3 28 MEPS

Wc = i

Wo = 0

2.1 MEPS 77 MEPS

CAPACITY FACTORS

MMC

IBM 3081

16 MB

70

.970

CPU RATINGS

ROBUSTNESS PRODUCT

1.17

1.19

1.23

1.26

1.30

1.46

2.73

MAS SCOMP 6650

32 MB

55

.865

28

System Specific Questions

I, What type of operating system

is being used on the

host/mainframe? (5.1.1)

. What type of operating system

is being used on the

workstation? (5.1.1)

Centralized

Locallzed

.

I0.

Is there a load distribution

algorithm for the system?

(5.1.2)

If there is load distribution,

is it load sharing? (5.1.2)

If there is load distribution,

is it load balancing? (5.1.2)

Is there shared data on the

host/mainframe? (5.3)

Is there shared data on the

workstations? (5.3)

Is there a distributed file

system? (5.3)

Is the robustness factor of

the host greater than .8?

(3.3.4)

Is the robustness factor of

the workstation less than .8?

(3.3.4)

N___o

Ye.._ss

N..._o

N_..q

Ye_._9_e

Ye..._as

29

Application 3.1.1 3.1.2

Computing Power Y N Y N

I. Is the host Sc 64 times greater
than the workstation Sc? (3.3.1) X X

2. Is the host Sc 256 times greater
than the workstation Sc? (3.3.1) X X

3. Is the host Sc 1024 times greater
than the workstation Sc? (3.3.1) X X

4. Is the workstation value of MIPS
available exceeded by the appli-
cation MIPSrequirement? (3.3.2)* X

5. Is the aggregated application re-
quired value of MIPSexceeded by
the host MIPSvalue? (3.3.2)** X

6. Is the workstation value of MIPS
exceeded by the aggregated appli-
cation requirements? (3.3.2)* X

7. Are the aggregated application re-
quirements of MIPSwith the addi-
tion of this application exceeded
by the MIPSvalue of the host?
(3.3.2)**

. Is the workstation value of MFLOPS

available exceeded by the applica-

tion requirement? (3.3.2)*

. Is the application required value

of MFLOPS exceeded by the MFLOPS

available on the host? (3.3.2)**

i0. Is the workstation MFLOPS value

available exceeded by the aggre-

gated requirements with the

addition of this application?

(3.3.2)*

ii. Is the aggregated requirement of

the application program MFLOPS

exceeded by the host value of

MFLOPS available? (3.3.2)**

3.1.3 3.1.4

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

X

3.1.5

Y N

X

X

X

30

Application

Computing Power (Continued)

12. Is the maximumacceptable response
time for the software less than
i0 msec? (3.2.1)

13. Is the maximumacceptable response
time for the software less than
I00 msec? (3.2.1)

14. Is the maximumacceptable response
time for the software less than
1.0 sec? (3.2.1)

15. Is the maximumacceptable response
time for the software less than
i0.0 sec? (3.2.1)

16. Is the required CPUrating esti-
mated to be higher than the esti-
mated workstation CPUrating?
(3.3.3)*

17. Is the host CPUrating estimated
to be higher than the estimated
application required CPUrating?
(3.3.3)**

18. Is the required MMCgreater than
50 percent of the workstation MMC
that is available? (3.2.3.1.1)

19. Is the required MMCgreater than
the workstation MMCthat is avail-
able? (3.2.3.1.1)*

20. Is the available host MMCgreater
than the required application
MMC?(3.2.3.1.1)**

21. Is the ratio of estimated number
of computations comparedto the
numberof other instruction execu-
tions greater than I007 (3.3.1)

22. Is the ratio of estimated number
of computations comparedto the
numberof other instruction execu-
tions greater than I00,0007 (3.3.1)

3.1.1 3.1.2

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

3.1.3 3.1.4

Y N Y N

X

X

X

X

X

X

X

X

X

3.1.5

Y N

31

Application

Software Development Issues

i. Is the application primarily a

noninteractive function? (4.2)

2. If there is user interaction, is

it only front-end queries? (4.2)

3. If there are queries, can they be

separated from the calculations

and passed as parameters to the

calculation process? (4.2)

4. Do many disciplines require this

application's function? (4.2)

5. Is the application only needed

under special circumstances? (4.3)

6. Is the application a development

tool? (4.3)

7. Is the response time requirement

critical? (4.3)

. Are there host applications which

will need this application's out-

put? (4.4)

. Is there one other discipline

which will use the application's

output? (4.4)

I0. Are there five disciplines which

will use the application's out-

put? (4.4)

ii. Do all of the disciplines use the

application's output? (4.4)

3.1.1 3.1.2

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3.1.3 3.1.4

Y N Y N

X

X

X

X

X

X

X

X

X

- X

X

X

X

X

X

X

X

X

3.1.5

Y N

X

X

X

X

X

X

X

X

X

32

Application

Control Considerations

I. Can the application run in the
background? (5.1.2)

.

.

Does the application have communi-

cation needs with applications on

the host/mainframe? (5.2)

Is the application independent of

applications on the workstation?

(5.2)

4. Is the application dependent on

applications on the host? (5.2)

.

.

.

.

.

If there are communication needs,

does the application have infre-

quent communication needs with

applications on the host/main-

frame? (5.2)

If there are communication needs,

does the application have periodic

communication needs with applica-

tions on the host/mainframe? (5.2)

If-there are communication needs,

does the application have heavy

communication needs with applica-

tions on the host/mainframe? (5.2)

Does the application have infre-

quent communication needs with
more than one workstation?

(5.2)

Does the application have periodic
communication needs with more

than one workstation? (5.2)

i0. Does the application have heavy
communication needs with more

than one workstation? (5.2)

3.1.1 3.1.2

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3.1.3 3.1.4

Y N Y N

X

X

X

X

X

X

X

X

X

X

" X

X

X

X

X

X

X

X

X

3.1.5

Y N

X

X

X

X

X

X

X

X

X

X

33

Application

Control Considerations (Continued)

II. Is the execution time a critical
factor? (5.2)

12. Does the application require
shared data access? (5.3)

13. Does the application access the
shared data frequently? (5.3)

14. Does the application modify
shared data? (5.3)

3.1.1

Y N

X

X

X

X

3.1.2

Y N

X

X

X

X

3.1.3

Y N

X

X

X

X

3.1.4

Y N

X

X

X

X

3.1.5

Y N

X

X

X

X

34

Application

Networking Delay Impact

i. Are there more than eight message
types required to be sent or re-
ceived within this application?
(6.4.2)

. Are there more than 32 message

types required to be sent or

received within this application?

(6.4.2)

3. Are the average message lengths

greater than I00 bytes? (6.4.2)

4. Are the average message lengths

greater than I000 bytes? (6.4.2)

, Are more than i0 messages per

minute expected to be sent for

this application? (6.4.2)

. Are more than I000 messages per

minute expected to be sent for

this application? (6.4.2)

. Is the hardware network trans-

mission speed less than I Mega-

bit per second? (6.2)

. Is the hardware network transmis-

sion speed less than I0 Megabits

per second? (6.2)

. Is the full protocol used to com-

municate at each level of the OSI

model? (6.3)

I0. Is the BER of the network esti-

mated to be worse than one bit in

I00,000? (6.4.1)

ii. Is the BER of the network esti-

mated to be worse than one bit in

ten million? (6.4.1)

3.1.1 3.1.2

Y N Y N

3.1.3 3.1.4

Y N Y N

3.1.5

Y N

35

Application

Networking Delay Impact (Continued)

12. Does this application program
have data messagesfor more than
eight user destinations? (6.4.2)

13. Does this application program
have data messagesfor more than
32 user destinations? (6.4.2)

14. Does this application have more
than eight users who can make
data inquiries? (6.4.2)

15. Does this application have more
than 32 users who can makedata
inquiries? (6.4.2)

16. Is the network a connectionless
service? (6.4.2.2)

17. Is the network utilization rate
expected to be above 50 percent
after adding this application?
(6.4.2.2)

18. Is the greatest peak communica-
tion demandof this program above
I0 percent of the network trans-
mission speed? (6.4.2.2)

3.1.1 3.1.2

Y N Y N

X

X

X

X

3.1.3 3.1.4

Y N Y N

X

X

X

X

3.1.5

Y N

X

X

36

Application

Computing Power

i. Is the host Sc 64 times greater
than the workstation Sc? (3.3.1)

2. Is the host Sc 256 times greater
than the workstation Sc? (3.3.1)

3. Is the host Sc 1024 times greater
than the Workstation Sc? (3.3.1)

. Is the workstation value of MIPS

available exceeded by the appli-

cation MIPS requirement? (3.3.2)*

. Is the aggregated application re-

quired value of MIPS exceeded by

the host MIPS value? (3.3.2)**

. Is the workstation value of MIPS

exceeded by the aggregated appli-

cation requirements? (3.3.2)*

o Are the aggregated application re-

quirements of MIPS with the addi-

tion of this application exceeded

by the MIPS value of the host?

(3.3.2)**

, Is the workstation value of MFLOPS

available exceeded by the applica-

tion requirement? (3.3.2)*

. Is the application required value

of MFLOPS exceeded by the MFLOPS

available on the host? (3.3.2)**

i0. Is the workstation MFLOPS value

available exceeded by the aggre-

gated requirements with the

addition of this application?

(3.3.2)*

ii. Is the aggregated requirement of

the application program MFLOPS

exceeded by the host value of

MFLOPS available? (3.3.2)**

3.1.6 3.1.7

Y N Y N

X

X

X

X

X

X

3.1.8 3.1.9

Y N Y N

X

X

X

X

X

X

3.1.10

Y N

X

X

X

37

Application

Computing Power (Continued)

12. Is the maximumacceptable response
time for the software less than i0
msec? (3.2.1)

13. Is the maximumacceptable response
time for the software less than
I00 msec? (3.2._

14. Is the maximumacceptable response
time for the software less than
than 1.0 sec? (3.2,1)

15. Is the maximumacceptable response
time for the software less than
I0.0 sec? (3.2.1)

16. Is the required CPUrating esti-
mated to be higher than the esti-
mated workstation CPUrating?
(3.3.3)*

17. Is the host CPUrating estimated
to be higher than the estimated
application required CPUrating?
(3.3.3)**

18. Is the required MMCgreater than
50 percent of the workstation MMC
that is available? (3.2.3.1.1)

19. Is the required MMCgreater than
the workstation MMCthat is avail-
able? (3.2.3.1.1)*

20. Is the available host MMCgreater
than the required application
MMC?(3.2.3.1.1)**

21. Is the ratio of estimated number
of computations comparedto the
numberof other instruction execu-
tions greater than i007 (3.3.1)

22. Is the ratio of estimated number
of computations comparedto the
numberof other instruction execu-
tions greater than i00,000? (3.3.1)

3.1.6 3.1.7

Y N Y N

X

X

X

X

X

X

X

X

3.1.8 3.1.9

Y N Y N

X

X

X

X

X

X

3.1.10

Y N

X

X

X

X

38

Application

Software Development Issues

i. Is the application primarily a

noninteractive function? (4.2)

i2. If there is user interaction, is

it only front-end queries? (4.2)

3. If there are queries, can they be

separated from the calculations

and passed as parameters to the

calculation process? (4.2)

4. Do many disciplines require this

application's function? (4.2)

5. Is the application only needed

under special circumstances? (4.3)

6. Is the application a development

tool? (4.3)

7. Is the response time requirement

critical? (4.3)

. Are there host applications which

will need this application's out-

put? (4.4)

, Is there one other discipline

which will use the application's

output? (4.4)

i0. Are there five disciplines which

will use the application's out-

put? (4.4)

Ii. Do all of the disciplines use the

application's output? (4.4)

3.1.6 3.1.7

Y N Y N

X.

X

X

X

X

X

X

X

X

X

X

X

,i

X

X

X

X

X

X

3.1.8 3.1.9

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3.1.10

Y N

X

X

X

X

X

X

X

X

X

39

Application

Control Considerations

i. Can the application run in the
background? (5.1.2)

, Does the application have communi-

cation needs with applications on

the host/mainframe? (5.2)

o Is the application independent of

applications on the workstation?

(5.2)

4. Is the application dependent on

applications on the host? (5.2)

, If there are communication needs,

does the application have infre-

quent communication needs with

applications on the host/main-

frame? (5.2)

, If there are communication needs,

does the application have periodic

communication needs with applica-

tions on the host/mainframe? (5.2)

. If there are communication needs,

does the application have heavy

communication needs with applica-

tions on the host/mainframe? (5.2)

, Does the application have infre-

quent communication needs with

more than one workstation?

(5.2)

, Does the application have periodic
communication needs with more

than one workstation? (5.2)

i0. Does the application have heavy

communication needs with more

than one workstation? (5.2)

3.1.6 3.1.7

Y N Y N

X.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3.1.8 3.1.9

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3.1.10

Y N

X

X

X

X

X

X

X

X

X

X

40

Application

Control Considerations (Continued)

ii. Is the execution time a critical

factor? (5.2)

12. Does the application require

shared data ac4_ess? (5.3)

13. Does the application access the

shared data frequently? (5.3)

14. Does the application modify

shared data? (5.3)

3.1.6

Y N

X

X

X

X

3.1.7

Y N

X

X

X

X

3.1.8

Y N

X

X

X

X

3.1.9

Y N

X

X

X

X

3.1.10

Y N

X

X

X

X

41

Application

Networking Delay Impact

i. Are there more than eight message
types required to be sent or re-
ceived within this application?
(6.4.2)

. Are there more than 32 message

types required to be sent or

received within this application?

(6.4.2)

3. Are the average message lengths

greater than i00 bytes? (6.4.2)

4. Are the average message lengths

greater than i000 bytes? (6.4.2)

. Are more than i0 messages per

minute expected to be sent for

this application? (6.4.2)

. Are more than I000 messages per

minute expected to be sent for

this application? (6.4.2)

. Is the hardware network trans-

mission speed less than I Mega-

bit per second? (6.2)

. Is the hardware network transmis-

sion speed less than i0 Megabits

per second? (6.2)

. Is the full protocol used to com-
municate at each level of the OSI

model? (6.3)

i0. Is the BER of the network esti-

mated to be worse than one bit in

I00,0007 (6.4.1)

Ii. Is the BER of the network esti-

mated to be worse than one bit in

ten million? (6.4.1)

3.1.8 3.1.9

Y N Y N

3.1.10

Y N

___ 42

Application

Networking Delay Impact (Continued)

12. Does this application program
have data messagesfor more than
eight user destinations? (6.4.2)

13. Does this application program
have data messagesfor more than
32 user destinations? (6.4.2)

14. Does this application have more
than eight users who can make
data inquiries? (6.4.2)

15. Does this application have more
than 32 users who can makedata
inquiries? (6.4.2)

16. Is the network a connectionless
service? (6.4.2.2)

17. Is the network utilization rate
expected to be above 50 percent
after adding this application?
(6.4.2.2)

18. Is the greatest peak communica-
tion demandof this program above
i0 percent of the network trans-
mission speed? (6.4.2.2)

3.1.6 3.1.7

Y N Y N

X

X

X

X

3.1.8 3.1.9

Y N Y N

X

X

X

X

X

X

3.1.10

Y N

X

X

X

X

43

Application

Computing Power

_I. Is the host Sc 64 times greater
than the workstation Sc? (3.3.1)

. Is the host Sc 256 times greater

than the workstation Sc? (3.3.1)

3. Is the host Sc 1024 times greater

than the workstation Sc? (3.3.1)

4. Is the workstation value of MIPS

available exceeded by the appli-

cation MIPS requirement? (3.3.2)*

. Is the aggregated application re-

quired value of MIPS exceeded by

the host MIPS value? (3.3.2)**

. Is the workstation value of MIPS

exceeded by the aggregated appli-

cation requirements? (3.3.2)*

. Are the aggregated application re-

quirements of MIPS with the addi-

tion of this application exceeded

by the MIPS value of the host?

(3.3.2)**

. Is the workstation value of MFLOPS

available exceeded by the applica-

tion requirement? (3.3.2)*

. Is the application required value

of MFLOPS exceeded by the MFLOPS
available on the host? (3.3.2)**

i0. Is the workstation MFLOPS value

available exceeded by the aggre-

gated requirements with the

addition of this application?

(3.3.2)*

ii. Is the aggregated requirement of

the application program MFLOPS

exceeded by the host value of

MFLOPS available? (3.3.2)**

3.1.11 i3.1.12 3.1.13 3.1.14 3.1.15

Y N Y N Y N Y N Y N

X X X" X X

X X X X X

X X X X X

X X X

44

Application

Computing Power (Continued)

12. Is the maximumacceptable response
time for the software less than

i0 msec? (3.2.1)

13. Is the maximum acceptable response

time for the software less than

i00 msec? (3.2.1)

14. Is the maximum acceptable response

time for the software less than

1.0 sec? (3.2.1)

15. Is the maximum acceptable response

time for the software less than

I0.0 sec? (3.2.1)

16. Is the required CPU rating esti-

mated to be higher than the esti-

mated workstation CPU rating?

(3.3.3)*

17. Is the host CPU rating estimated

to be higher than the estimated

application required CPU rating?

(3.3.3)**

18. Is the required MMC greater than

50 percent of the workstation MMC

that is available? (3.2.3.1.1)

19. Is the required MMC greater than
the workstation MMC that is avail-

able? (3.2.3.1.1)*

20. Is the available host MMC greater

than the required application

MMC? (3.2.3.1.1)**

21. Is the ratio of estimated number

of computations compared to the
number of other instruction execu-

tions greater than I00? (3.3.1)

22. Is the ratio of estimated number

of computations compared to the

number of other instruction execu-

tions greater than i00,0007 (3.3.1)

3.1.11

Y N

X

X

X

3.1.12

Y N

X

X

X

X

X

X

X

3.1.13 3.1.14 3.1.15

Y N Y N Y N

X _

X

X

X

45

Application

Software Development Issues

I. Is the application primarily a
noninteractive function? (4.2)

2. If there is user interaction, is
it only front-end queries? (4.2)

3. If there are queries, can they be
separated from the calculations
and passed as parameters to the
calculation process? (4.2)

4. Domanydisciplines require this
application's function? (4.2)

5. Is the application only needed
under special circumstances? (4.3)

6. Is the application a development
tool? (4.3)

7. Is the response time requirement
critical? (4.3)

, Are there host applications which

will need this application's out-

put? (4.4)

, Is there one other discipline

which will use the application's

output? (4.4)

I0. Are there five disciplines which

will use the application's out-

put? (4.4)

ii. Do all of the disciplines use the

application's output? (4.4)

3.1.11 3.1.12

Y N Y N

3.1.13 3.1.14 3.1.15

Y N Y N Y N

X X X X X

X

X

X

X

- X

X

X X X X

X X X

X

X X

X X

X X

X

X X

X X X

X X X

X X X

X X

X X

X X

46

Application

Control Considerations

I. Can the application run in the
background? (5.1.2)

, Does the application have communi-

cation needs with applications on

the host/mainframe? (5.2)

° Is the application independent of

applications on the workstation?

(5.2)

4. Is the application dependent on

applications on the host? (5.2)

. If there are communication needs,

does the application have infre-

quent communication needs with

applications on the host/main-

frame? (5.2)

. If there are communication needs,

does the application have periodic

communication needs with applica-

tions on the host/mainframe? (5.2)

. If there are communication needs,

does the application have heavy

communication needs with applica-

tions on the host/mainframe? (5.2)

. Does the application have infre-

quent communication needs with

more than one workstation?

(5.2)

, Does the application have periodic
communication needs with more

than one workstation? (5.2)

I0. Does the application have heavy

communication needs with more

than one workstation? (5.2)

3.1.11 3.1.12 3.1.13 3.1.14

Y N Y N Y N Y N

X_

X

X

X

X

X

X

X

X

X

X

X

X

X

X- X X

X

X

X

X

X X X

X

X

X

X

X

X

X X

X X

X X X X

3.1.15

Y N

X

47

Application

Control Considerations (Continued)

ii. Is the execution time a critical

factor? (5.2)

12. Does the application require

shared data access? (5.3)

13. Does the application access the

shared data frequently? (5.3)

14. Does the application modify

shared data? (5.3)

3.1.11

Y N

X

X

X

X

3.1.12

Y N

X

X

X

X

3.1.13

Y N

X

X

X

X

3.1.14

Y N

X

X

X

X

3.1.15

Y N

X

X

X

j

48

Application

Networking Delay Impact

I. Are there more than eight message
types required to be sent or re-
ceived within this application?
(6.4.2)

. Are there more than 32 message

types required to be sent or

received within this application?

(6.4.2)

3. Are the average message lengths

greater than i00 bytes? (6.4.2)

4. Are the average message lengths

greater than i000 bytes? (6.4.2)

. Are more than i0 messages per

minute expected to be sent for

this application? (6.4.2)

. Are more than i000 messages per

minute expected to be sent for

this application? (6.4.2)

. Is the hardware network trans-

mission speed less than i Mega-

bit per second? (6.2)

. Is the hardware network transmis-

sion speed less than I0 Megabits

per second? (6.2)

. Is the full protocol used to com-
municate at each level of the OSI

model? (6.3)

i0. Is the BER of the network esti-

mated to be worse than one bit in

I00,000? (6.4.1)

Ii. Is the BER of the network esti-

mated to be worse than one bit in

ten million? (6.4.1)

3.1.11 3.1.12 3.1.13 3.1.14

Y N Y N Y N Y N

3.1.15

Y N

49

Application

Networking Delay Impact (Continued)

12. Does this application program
have data messagesfor more than
eight user destinations? (6.4.2)

13. Does this application program
have data messagesfor more than
32 user destinations? (6.4.2)

14. Does this application have more
than eight users who can make

data inquiries? (6.4.2)

15. Does this application have more
than 32 users who can make data

inquiries? (6.4.2)

16. Is the network a connectionless

service? (6.4.2.2)

17. Is the network utilization rate

expected to be above 50 percent

after adding this application?

(6.4.2.2)

18. Is the greatest peak communica-

tion demand of this program above

I0 percent of the network trans-

mission speed? (6.4.2.2)

3.1.11 3.1.12 3.1.13 3.1.14 3.1.15

Y N Y N Y N Y N Y N

X

X

X

X

50

Application

Computing Power

I. Is the host Sc 64 times greater
than the workstation Sc? (3.3.1)

2. Is the host Sc 256 times greater
than the workstation Sc? (3.3.1)

3. Is the host Sc 1024 times greater
than the workstation Sc? (3.3.1)

Is the workstation value of MIPS
available exceeded by the appli-
cation MIPSrequirement? (3.3.2)*

. Is the aggregated application re-

quired value of MIPS exceeded by

the host MIPS value? (3.3.2)**

, Is the workstation value of MIPS

exceeded by the aggregated appli-

cation requirements? (3.3.2)*

. Are the aggregated application re-

quirements of MIPS with the addi-

tion of this application exceeded

by the MIPS value of the host?

(3.3.2)**

. Is the workstation value of MFLOPS

available exceeded by the applica-

tion requirement? (3.3.2)*

, Is the application required value

of MFLOPS exceeded by the MFLOPS

available on the host? (3.3.2)**

i0. Is the workstation MFLOPS value

available exceeded by the aggre-

gated requirements with the

addition of this application?

(3.3.2)*

ii. Is the aggregated requirement of

the application program MFLOPS

exceeded by the host value of

MFLOPS available? (3.3.2)**

3.1.16 3.1.17

Y N Y N

X

X

X

X

X

X

3.2.1 3.2.2 3.2.3

Y N Y N Y N

X .

X

X

X

X

X

X

X

X

51

Application

iComputing Power (Continued)

12. Is the maximumacceptable response
time for the software less than
i0 msec? (3.2.1)

13. Is the maximumacceptable response
time for the software less than
i00 msec? (3.2.1)

14. Is the maximumacceptable response
time for the software less than
1.0 sec? (3.2.1)

15. Is the maximumacceptable response
time for the software less than
I0.0 sec? (3.2.1)

16. Is the required CPUrating esti-
mated to be higher than the esti-
mated workstation CPUrating?
(3.3.3)*

17. Is the host CPUrating estimated
to be higher than the estimated
application required CPUrating?
(3.3.3)**

18. Is the required MMCgreater than
50 percent of the workstation MMC
that is available? (3.2.3.1.1)

19. Is the required MMCgreater than
the workstation MMCthat is avail-
able? (3.2.3.1.1)*

20. Is the available host MMC greater

than the required application

MMC? (3.2.3.1.1)**

21. Is the ratio of estimated number

of computations compared to the
number of other instruction execu-

tions greater than I007 (3.3.1)

22. Is the ratio of estimated number

of computations compared to the
number of other instruction execu-

tions greater than I00,0007 (3.3.1)

3.1.16

Y N

3.1.17- 3.2.1 3.2.2 3.2.3

Y N Y N Y N Y N

X X X- X X

X X X X X

X X X X X

X X X X

52

Application

Software Development Issues

i. Is the application primarily a

nonlnteractive function? (4.2)

2. If there is user interaction, is

it only front-end queries? (4.2)

3. If there are queries, can they be

separated from the calculations

and passed as parameters to the

calculation process? (4.2)

4. Do many disciplines require this

application's function? (4.2)

5. Is the application only needed

under special circumstances? (4.3)

6. Is the application a development

tool? (4.3)

7. Is the response time requirement •

critical? (4.3)

S. Are there host applications which

will need this application's out-

put? (4.4)

, Is there one other discipline

which will use the application's

output? (4.4)

i0. Are there five disciplines which

will use the application's out-

put? (4.4)

II. Do all of the disciplines use the

application's output? (4.4)

3.1.16 3.1.17

Y N Y N

X.

X

X

X

X

X

X

X

3.2.1 3.2.2 3.2.3

Y N Y N Y N

X

X

X- X

X

X

X

X

X

X

X

X

X X X X X

X

X

X X X

X X X

XX

X

X

X X

X

X

X X X X X

53

Application

Control Considerations

I. Can the application run in the
background? (5.1.2)

. Does the application have communi-

cation needs with applications on

the host/mainframe? (5.2)

. Is the application independent of

applications on the workstation?

(5.2)

4. Is the application dependent on

applications on the host? (5.2)

. If there are communication needs,

does the application have infre-

quent communication needs with

applications on the host/main-

frame? (5.2)

. If there are communication needs,

does the application have periodic

communkcation needs with applica-

tions on the host/mainframe? (5.2)

. If there are communication needs,

does the application have heavy

communication needs with applica-

tions on the host/mainframe? (5.2)

. Does the application have infre-

quent communication needs with
more than one workstation?

(5.2)

. Does the application have periodic

communication needs with more

than one workstation? (5.2)

I0. Does the application have heavy
communication needs with more

than one workstation? (5.2)

3.1.16 3.1.17 3.2.1

Y N Y N Y N

X, X X- X

X X X X

X X X X

X X X X

X

X

X

X

X

X

X

X

3.2.2 3.2.3

Y N Y N

X

X X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

54

Application

Control Considerations (Continued)

ii. Is the execution time a critical
factor? (5.2)

12. Does the application require
shared data access? (5.3)

13. Does the application access the
shared data frequently? (5.3)

14. Does the application modify
shared data? (5.3)

3.1.16

Y N

X

X

X

X

3.1.17

Y N

X

X

X

X

3.2.1

Y N

X

X

X

X

3.2.2

Y N

X

X

X

X

3.2.3

Y N

X

X

X

X

"_ 55

Application

Networking Delay Impact

i. Are there more than eight message
types required to be sent or re-

ceived within this application?

(6.4.2)

. Are there more than 32 message

types required to be sent or

received within this application?

(6.4.2)

3. Are the average message lengths

greater than i00 bytes? (6.4.2)

4. Are the average message lengths

greater than i000 bytes? (6.4.2)

. Are more than I0 messages per

minute expected to be sent for

this application? (6.4.2)

. Are more than I000 messages per

minute expected to be sent for

this application? (6.4.2)

, Is the hardware network trans-

mission speed less than 1 Mega-

bit per second? (6.2)

. Is the hardware network transmis-

sion speed less than I0 Megabits

per second? (6.2)

. Is the full protocol used to com-
municate at each level of the OSI

model? (6.3)

I0. Is the BER of the network esti-

mated to be worse than one bit in

I00,000? (6.4.1)

Iii. Is the BER of the network esti-

mated to be worse than one bit in

ten million? (6.4.1)

3.1.16 3.1.17

Y N Y N

3.2.1 3.2.2

Y N Y N

3.2.3

Y N

56

Application

Networking Delay Impact (Continued)

12. Does this application program

have data messages for more than

eight user destinations? (6.4.2)

13. Does this application program

have data messages for more than

32 user destinations? (6.4.2)

14. Does this application have more

than eight users who can make

data inquiries? (6.4.2)

15. Does this application have more
than 32 users who can make data

inquiries? (6.4.2)

16. Is the network a connectionless

service? (6.4.2.2)

17. Is the network utilization rate

expected to be above 50 percent

after adding this application?

(6.4.2.2)

18. Is the greatest peak communica-

tion demand of this program above

i0 percent of the network trans-

mission speed? (6.4.2.2)

3.1.16 3.1.17 3.2.1

Y N Y N Y N

3.2.2 3.2.3

Y N Y N

57

iApplication

iComputing Power

i. Is the host Sc 64 times greater

than the workstation So? (3.3.1)

2. Is the host Sc 256 times greater

than the workstation Sc? (3.3.1)

3. Is the host Sc 1024 times greater

than the workstation Sc? (3.3.1)

. Is the workstation value of HIPS

available exceeded by the appli-

cation HIPS requirement? (3.3.2)*

. Is the aggregated application re-

quired value of HIPS exceeded by

the host HIPS value? (3.3.2)**

. Is the workstation value of HIPS

exceeded by the aggregated appli-

cation requirements? (3.3.2)*

. Are the aggregated application re-

quirements of HIPS with the addi-

tion of this application exceeded

by the HIPS value of the host?

(3.3.2)**

8. Is the workstation value of MFLOPS

available exceeded by the applica-

tion requirement? (3.3.2)*

, Is the application required value

of MFLOPS exceeded by the MFLOPS

available on the host? (3.3.2)**

I0. Is the workstation MFLOPS value

available exceeded by the aggre-

gated requirements with the

addition of this application?

(3.3.2)*

ii. Is the aggregated requirement of

the application program MFLOPS

exceeded by the host value of

MFLOPS available? (3.3.2)**

3.2.4 3.2.5

Y N Y N

X

X

X

X

X

X

Y N Y N Y N

58

Application

Computing Power (Continued)

12. Is the maximumacceptable response
time for the software less than
I0 msec? (3.2.1)

13. Is the maximumacceptable response
time for the software less than
I00 msec? (3.2.1)

14. Is the maximumacceptable response
time for the software less than
1.0 sec? (3.2.1)

15. Is the maximumacceptable response
time for the software less than
I0.0 see? (3.2.1)

16. Is the required CPUrating esti-
mated to be higher than the esti-
mated workstation CPUrating?
(3.3.3)*

17. Is the host CPUrating estimated
to be higher than the estimated
application required CPUrating?
(3.3.3)**

18. Is the required MMCgreater than
50 percent of the workstation MMC
that is available? (3.2.3.1.1)

19. Is the required MMCgreater than
the workstation MMCthat is avail-
able? (3.2.3.1.1)*

120. Is the available host MMCgreater
than the required application
MMC?(3.2.3.1.1)**

21. Is the ratio of estimated number
of computations compared to the
number of other instruction execu-
tions greater than I00? (3.3.1)

22. Is the ratio of estimated number
of computations comparedto the
number of other instruction execu-
tions greater than I00,000? (3.3.1)

3.2.4 3.2.5

Y N Y N

X

X

X

X

X

X

X

X

Y N Y N Y N

59

Application

Software Development Issues

I. Is the application primarily a
noninteractive function? (4.2)

2. If there is user interaction, is
it only front-end queries? (4.2)

3. If there are queries, can they be
separated from the calculations
and passed as parameters to the
calculation process? (4.2)

.

.

Do many disciplines require this

application's function? (4.2)

Is the application only needed

under special circumstances? (4.3)

6. Is the application a development

tool? (4.3)

.

8.

9.

Is the response time requirement

critical? (4.3)

Are there host applications which

will need this application's out-

put? (4.4)

Is there one other discipline

which will use the application's

output? (4.4)

i0. Are there five disciplines which

will use the application's out-

put? (4.4)

II. Do all of the disciplines use the

application's output? (4.4)

3.2.4 3.2.5

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Y N Y N Y N

60

Application

Control Considerations

i. Can the application run in the
background? (5.1.2)

2. Does the application have communi-
cation needs with applications on
the host/mainframe? (5.2)

3. Is the application independent of
applications on the workstation?
(5.2)

4. Is the application dependent on

applications on the host? (5.2)

5. If there are communication needs,

does the application have infre-

quent communication needs with

applications on the host/main-

frame? (5.2)

o If there are communication needs,

does the application have periodic

communication needs with applica-

tions on the host/mainframe? (5.2)

. If there are communication needs,

does the application have heavy

communication needs with applica-

tions on the host/mainframe? (5.2)

. Does the application have infre-

quent communication needs with
more than one workstation?

(5.2)

. Does the application have periodic
communication needs with more

than one workstation? (5.2)

I0. Does the application have heavy
communication needs with more

than one workstation? (5.2)

3.2.4 3.2.5

Y N Y N

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Y N Y N Y N

61

Application

Control Considerations (Continued)

ii. Is the execution time a critical

factor? (5.2)

12. Does the application require

shared data access? (5.3)

13. Does the application access the

shared data frequently? (5.3)

14. Does the application modify

shared data? (5.3)

3.2.4

Y N

X

X

X

X

3.2.5

Y N

X

X

X

X

Y N Y N Y N

62

Application

Networking Delay Impact

1. Are there more than eight message

types required to be sent or re-

ceived within this application?

(6.4.2)

. Are there more than 32 message

types required to be sent or re-

ceived within this application?

(6.4.2)

3. Are the average message lengths

greater than i00 bytes? (6.4.2)

4. Are the average message lengths

greater than i000 bytes? (6.4.2)

. Are more than i0 messages per

minute expected to be sent for

this application? (6.4.2)

. Are more than i000 messages per

minute expected to be sent for

this application? (6.4.2)

. Is the hardware network trans-

mission speed less than I Mega-

bit per second? (6.2)

. Is the hardware network transmis-

sion speed less than i0 Megabits

per second? (6.2)

. Is the full protocol used to com-
municate at each level of the OSI

model? (6.3)

i0. Is the BER of the network esti-

mated to be worse than one bit in

i00,000? (6.4.1)

II. Is the BER of the network esti-

mated to be worse than one bit in

ten million? (6.4.1)

3.2.4 3.2.5

Y N Y N Y N Y N Y N

63

Application

Networking Delay Impact (Continued)

12. Does this application program

have data messages for more than

eight user destinations? (6.4.2)

13. Does this application program

have data messages for more than

32 user destinations? (6.4.2)

14. Does this application have more

than eight users who can make

data inquiries? (6.4.2)
L

115.Does this application have more

than 32 users who can make data

inquiries? (6.4.2)

16. Is the network a connectionless

service? (6.4.2.2)

17. Is the network utilization rate

expected to be above 50 p_rcent

after adding this application?

(6.4.2.2)

18. Is the greatest peak communica-

tion demand of this program above

10 percent of the network trans-

mission speed? (6.4.2.2)

3.2.4 3.2.5

Y N Y N Y N Y N Y N

64

