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Abstract
Purpose of review Bone fracture healing is a complex physiological process relying on numerous cell types and signals.
Inflammatory factors secreted by immune cells help to control recruitment, proliferation, differentiation, and activation of
hematopoietic and mesenchymal cells. Within this review we will discuss the functional role of immune cells as it pertains to
bone fracture healing. In doing so, we will outline the cytokines secreted and their effects within the healing fracture callus.
Recent findings Macrophages have been found to play an important role in fracture healing. These immune cells signal to other
cells of the fracture callus, modulating bone healing.
Summary Cytokines and cellular signals within fracture healing continue to be studied. The findings from this work have helped
to reinforce the importance of osteoimmunity in bone fracture healing. Owing to these efforts, immunomodulation is emerging as
a potential therapeutic target to improve bone fracture healing.

Introduction

In the context of tissue repair, bone is unique as it is able to
heal itself without forming a scar. The lifetime prevalence of
bone fracture is 50% in the US and while most bone injuries
are able to heal normally, 5%–10% result in non-union every
year. This rate increases with certain comorbidities and with
advanced age [1, 2]. Approximately 100,000 fractures require
surgical intervention every year in the US, amounting to over
a billion dollars in health care costs [3]. Treatments thus far
involve the use of frames to stabilize bone and of osteo-

inductive agents (such as BMP) to increase the amount of
bone deposition at the site of injury.

Recent work highlighting the importance of immune cells
in fracture healing may develop into a potentially new area of
treatment for bone injury [5–7]. Immune cells, which are de-
rived from hematopoietic stem cells, are required for normal
bone development and proper fracture healing. Dysfunction of
these cells, as seen with age or with metabolic dysregulation,
hinders bone repair. Rejuvenation of the hematopoietic popu-
lation through parabiosis or bone marrow transplantation is
able to ameliorate these shortcomings [4, 5]. Current efforts
are directed at delineating the exact role these cells play in frac-
ture healing. A better understanding of osteoimmunity could
result in the emergence of therapeutic targets for bone healing.

When a bone is injured, an inflammatory response is cast:
immune cells are recruited to the site of injury; multiple fac-
tors are secreted, inflammatory and other. This intense inflam-
matory event is required to ensure normal fracture healing
through angiogenesis of vessels, repair of the injured tissue,
and eventually remodeling [6–8]. While the inflammatory re-
sponse itself is short-lived, the effects of the immune cells
extend beyond the early stages of fracture healing.
Mesenchymal progenitor cell recruitment and activation rely
on this inflammatory response. Thus, immune cells are inte-
gral to bone fracture healing. This review will outline the role
of the immune system during fracture healing, then specifical-
ly the role of each individual cell type.
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Bone Fracture Healing

Fracture repair is a complex and well-orchestrated regenera-
tive process involving numerous signaling pathways and cell
types. It follows one of two processes: (1) primary (direct)
fracture repair, and (2) secondary fracture repair.

Primary fracture repair involves deposition of bone tissue:
mesenchymal progenitor cells and osteoblasts are recruited and
activated at the site of injury; subsequently, they deposit a bone
matrix to unify the tissue [9]. This type of fracture healing oc-
curs when the fractured bone-ends are rigidly fixed and lack
relative displacement, leading to little or no inflammatory re-
sponse.While this process is not likely to occur spontaneously
in nature, it does ensue in fracture following fixation (such as in
distraction osteogenesis in limb lengthening) [10].

Secondary fracture repair is the more common form of
fracture healing observed in clinic. Bone repair occurs through
a cartilaginous intermediate and in phases described below.
Immune cells play a significant role in secondary bone repair.

Inflammatory Phase

Long-bone fracture healing is likened to endochondral ossifi-
cation seen during embryonic development, but a key differ-
ence is the presence of an inflammatory phase during the
former. When a fracture occurs, there is a local disruption of
the vascularization and soft tissue. In response to this vascular
injury, a hematoma forms and will act as the future template
for callus formation [11]. Immune cells, including platelets,
neutrophils, and macrophages are then recruited to the site and
activated [12, 13]. These cells invade the hematoma and secrete
growth factors and cytokines, which help to recruit mesenchymal

cells. The hematoma is reorganized and there is deposition of a
fibrin thrombus [11, 12]. As capillaries invade the thrombus,
granulation tissue replaces the fibrin clot. Neutrophils and mac-
rophages remove dead cells and debris [14]. They also release
factors that promote the recruitment of mesenchymal progenitor
cells that originate from the periosteum, bone marrow, and sys-
temic circulation [15, 16]. These cells, in turn, have an immuno-
suppressive character which helps to resolve the inflammation at
the site and prepare it for the next stage of healing [17–21].

Cartilaginous Callus Formation

During the inflammatory phase, mesenchymal progenitor
cells are recruited to the site of injury and undergo
chondrogenic differentiation. It is the decreased mechanical
stability at the fracture site that promotes this chondrogenesis.
The granulation tissue is replaced by a fibrocatilaginous callus
which poses a semi-rigid quality to provide mechanical sup-
port [8, 11]. Initially, this cartilaginous callus is largely avas-
cular; however, as healing proceeds, the callus is invaded by
endothelial cells, promoting angiogenesis [22]. This induces
terminal differentiation of chondrocytes, resulting in hypertro-
phy and the production of mineralized cartilaginous matrix [8,
23]. The fate of these chondrocytes is now debated as either
undergoing apoptosis or undergoing trans-differentiation/de-
differentiation to osteogenic cells [24].

Bony Callus Formation

Uponcalcificationof the fracturecallus,osteoprogenitorcellsare
recruited from the periosteum, bone marrow, vasculature, and
surrounding tissue to initiate osteogenesis and the deposition of

Figure 1. Role of immune cells
during fracture repair. Bone
fracture healing can be viewed as
a four-stage process. Immune
cells play important roles
throughout this process; however,
a majority of their activity occurs
during early stages of fracture
healing.
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bone onto the calcified cartilage [8]. Simultaneously, osteoclasts
are activated at the site and begin to resorb the cartilaginous
callus. This results in the replacement of the cartilaginous callus
with the bony callus, which is composed of woven bone and
provides greater stability than the fibrocartilaginous callus [25].
Macrophages and T and B cells have been shown to play a role
duringmineralization(discussedbelow);however, their function
has yet to be elucidated.

Remodeling Phase

The remodeling phase marks the last stage of fracture re-
pair. Woven bone within the callus is replaced with laminar
bone, consisting of a highly organized matrix of collagen
fibers; therefore restoring the original structure and function
of the bone [11]. This process is driven by osteoclast–me-
diated bone resorption followed by osteoblast–mediated
bone formation [8].

Immune Cells and Fracture Healing

As described, fracture repair is a complex process requiring a
well-organized response from multiple cell-types. During the
inflammatory phase; clot formation, tissue granulation, and
cell recruitment are necessary first steps which are dependent
on the coordination of various immune cells. Throughout the
different phases, hematopoietic cells appear to direct mesen-
chymal cell differentiation and activity. New information is
rapidly being uncovered as osteoimmunity is a developing
field. The following is a summary of immune cell types and
their observed roles in fracture healing.

Immune cell function and origin

Hematopoietic cells arise from the mesoderm during embry-
onic development and locate to numerous sites in the human
body. Along with the spleen, the bone marrow serves as a
primary source for hematopoietic cells during adulthood: from
within it all cells of the hematopoietic lineage can be differen-
tiated. These cells play important roles in staving off infection
and identifying foreign bodies; they are divided into two
groups: cells of the lymphoid lineage and cells of the myeloid
lineage. The majority of the cells located within the bone
marrow cavity remain in a quiescent, multipotent state and
are activated upon stimulus. Bone injury often results in bleed-
ing; damage to the local vasculature serves as an activation
step to recruit and activate these cells.

Platelets

Platelets are non-nucleated cells of the myeloid lineage. Their
primary function lies in blood clotting; however, they have
been shown to have a role in fracture healing [26]. Soon after

injury, circulating platelets arrive at the affected site and are
activated by the thrombin released in response to injured vas-
culature. Activated platelets take part in creating the fibrin
thrombus. This acts as a scaffold for cellular engraftment as
platelets secrete inflammatory cytokines (IL-1, IL-6, TNF-α)
and growth factors (PDGF, TGF-beta) to recruit other immune
cells (neutrophils and monocytes) and mesenchymal progen-
itor cells respectively [27–29].

Neutrophils

Neutrophils are phagocytic cells of the myeloid lineage. As
described, neutrophils are recruited by IL-1, TNF-α secreted
by platelets [30, 31]. The role of neutrophils in fracture
healing is still being elucidated and involves many aspects
of tissue repair. During early stages of the inflammatory phase,
neutrophils have been shown to contribute to the fibrin throm-
bus by depositing a fibronectin matrix [32]. During the later
stages of the inflammatory phase, neutrophils take part in
removing cellular and tissue debris and are implicated in re-
moval of the thrombus [33–35]. However, their most significant
role seems to involve the secretion of cytokines (IL-1, IL-6, IL-
10, TNF-α, MCP-1, CXCL-1α, MIP-1) to attract monocytes,
which will differentiate to macrophages [36–39].

Macrophages

Macrophages are phagocytic cells of the myeloid lineage.
They are differentiated from monocytes. These cells play an
integral part in bone homeostasis as well as bone fracture
repair. During homeostasis, macrophages likely act as niche
cells to osteoblasts and to osteoclasts, taking part in the
crosstalk and communication to maintain the balance in bone
remodeling. Indeed, our work shows that ablation of macro-
phages retards early skeletal growth and development
resulting in decreased trabecular number and decreased bone
mineral density and later leads to osteoporosis [40•].

The importance of macrophages in fracture healing is still
being investigated. The depletion ofmacrophages during bone
fracture healing delays bone union [5, 40•, 41]. Fracture cal-
luses from mice in which macrophages had been ablated de-
veloped smaller, under-mineralized fracture calluses with in-
creased amounts of fibrotic tissue. Furthermore, depletion of
macrophages decreased the number of mesenchymal progen-
itor cells and inhibited the ability of these cells to differentiate
to osteoblasts [40•, 42••].

In fracture healing, monocytes are recruited to the site of
injury by MIP-1 (also known as CXCL2) primarily, and by
IL-1 and TNF-α. They subsequently differentiate to macro-
phages that have a sliding scale of functional attributes depen-
dent on their “polarization”, which is induced by extracellular
signals and is thought to be reversible in vivo [43]. At one end,
macrophages undergo programming to become classically

140 Curr Osteoporos Rep (2018) 16:138–145



activatedM1macrophages when exposed to inflammatory cy-
tokines (IL-1, TNF-α). These are inflammatory macrophages
that further secrete IL-1, IL-6, TNF-α, MCP-1, and MIP-1 to
maintain recruitment of monocytes. They perform phagocyto-
sis to remove necrotic cells as well as the fibrin thrombus [45].
At the other end of the sliding scale are the alternatively activat-
edM2macrophages,which are functional after exposure to IL-
4.These cells initiate an anti-inflammatory response in the later
stages of inflammation as they secrete tissue repair signals (IL-
10, TGF-beta, BMP-2, and VEGF), recruit mesenchymal pro-
genitor cells, induce osteochondral differentiation, and prompt
angiogenesis [46–50].

The importance of macrophages in tissue homeostasis has
be confirmed in other tissues as well [44–47]. Interestingly,
tissue-resident macrophages have been found to be of benefit
to tissue health while macrophages derived from circulating
monocyte have been found to be less efficient [48]. Recently,
the existence of tissue resident macrophages in bone (termed
Osteomacs) has been proposed [42••, 49]. The comparative
importance of tissue-resident versus monocyte-driven macro-
phages in bone biology has yet to be elucidated.

Osteoclasts

Osteoclasts are multinucleated cells of the myeloid lineage;
they differentiate directly from monocytes, although they
can also arise from macrophages [50].

Although osteoclasts are not traditionally thought of as
immune cells, they are able to act as innate immune cells
within bone as inflammatory signals lead to differentiation
and activation of osteoclasts [51].

Osteoclasts are specializedcells as theyare theonly cells that
resorb bone matrix [52]. Their primary role is that of a ‘bone
phagocyte’. They are responsible for debridement, resorption
of the cartilaginous callus, resorptionof the bonycallus, resorb-
ing the tunnels requiredforvasculatureandnerves, and together
with osteoblasts balance bone remodeling [25]. Upon activa-
tion, osteoclasts adhere to the bone surface, form a ruffled bor-
der, and create a tight sealwith themineralized surface termeda
resorptionpit [52].This sealedcompartment is thenacidifiedby
pumping in hydrogen ions to dissolve the hydroxyapatite crys-
tal and lysosomal enzymes are secreted into the resorptionpit to
digest the proteinaceous material.

Recently, studies have further elucidated the immune cell
signaling that regulates osteoclast activation. During fracture
healing, monocytes are recruited to the site and differentiate to
osteoclasts. Osteoclasts, which reside on mineralized bone
surfaces, are primarily activated by receptor activator of nu-
clear factor kappa-B ligand (RANKL) binding to the osteoclast
cell surface receptor RANK. Osteoblasts appear to be the pri-
mary source of RANKL during homeostasis and fracture
healing; however, NK cells and activated T cells are also able
to produce RANKL during fracture healing. Conversely,

osteoprotegerin (OPG) is a decoy receptor that binds to
RANK and inhibits RANKL binding, thereby preventing oste-
oclast activation. OPG is secreted by osteoblasts during homeo-
stasis and fracture healing and by B cells during fracture healing.

This inflammatory signaling combines with a resorption-
based signaling to create the communication mechanism that
regulates bone remodeling. As osteoclasts resorb the bone
matrix, proteins such as bone sialoprotein and osteopontin,
which are intercalated within the mineralized matrix and
bound to collagen and hydroxyapatite, are freed and able to
signal to local osteoblasts as the RGD motif of these proteins
binds to the αvβ3 cell surface receptor [53, 54].

T-Lymphocytes and B-Lymphocytes

T lymphocytes and B lymphocytes (also known as T cells and
B cells) are hematopoietic cells of the lymphoid lineage. They
constitute the two cell types of adaptive immunity and while
their lineage can be further classified and subdivided, for the
purpose of this review they will simply be classified as T cells
and B cells. Depletion of T cells or of B cells leads to dimin-
ished bone health and decreased fracture healing [55, 56].
Mice lacking T cells and B cells have been shown to have
stiffer bones that are more susceptible to fracture [57].

Tcells and B cells seem to have cell-signaling roles near the
end of the inflammatory phase and again during the mineral-
ization phase [58]. During later stages of the inflammatory
phase, T cells produce RANKL to recruit, differentiate, and
activate osteoclasts; likely in an effort to remove the fibrin
thrombus in preparation of the cartilaginous callus. During
this time, B cells are involved in suppression of the pro-
inflammatory signals IFN-γ, TNF-α, and IL-2 [59].
Concurrently, B cells produce OPG, thereby regulating oste-
oclastic differentiation and activity [60–62].

Recent findings have placed more attention on the role of
the cytokine IL-17 secreted by T cells. IL-17 has been shown
to be an immunomodulator, able to induce anti-inflammatory
functions from mesenchymal stromal cells [63] and has been
shown to induce osteogenic differentiation and activity, aiding
in osteoblast maturation [56]. Furthermore, IL-17 plays a role
during the remodeling phase of the fracture callus as it in-
creases expression and secretion of RANKL, leading to en-
hanced proliferation and activation of osteoclasts [64].

Natural Killer Cells

Natural killer cells (NK cells) are hematopoietic cells of the
lymphoid lineage. The immunological function of NK cells is
to recognize foreign or virally infected cells and induce apo-
ptosis or cell lysis through cytotoxic granules [65]. Little is
known about the function of natural killer cells in fracture
healing. It is possible that NK cells play a role in removal of
damaged cells located at the site of injury; however, conditions
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at the fracture site have been shown to inhibit NK cell-based
cell lysis [66]. It is more likely that NK cells play a signaling
role in debridement of the injured tissue recruiting inflammato-
ry cells and osteoclasts as they are known to produce IFN-γ and
RANKL [67]. NK cells may also play a role in tissue deposition
through recruitment of mesenchymal progenitor cells at a later
stage of fracture repair as they secrete CXCL7 [68].

Mesenchymal Signals to Immune Cells

The term “licensing” has been coined to describe the anti-
inflammatory response of mesenchymal stromal cells
(MSCs) to inflammatory cytokines secreted by immune cells
[69]. IL-17 secreted by T-lymphocytes induces an iNOS-
based immunosuppressive response in MSCs [63]. Secretion
of TNF-α by immune cells has been shown to induce anti-
inflammatory activity of MSC population via activation of
NF-κB [70]. Using models of graft versus host disease,
INF-γ was identified in licensing MSCs to help suppress the
immune response [71]. Interestingly, IL-1α or IL-1β alone are
not able to elicit a licensing response from MSCs but do so in
the presence of INF-γ [72]. Novel interactions and the effects
of inflammatory molecules on mesenchymal cells continue to
be discovered. As this phenomenon is studied, the information
gained may help to shed light on processes involved in bone
fracture healing and potential therapeutic interventions.

Immune Dysfunction and Fracture Healing

In the clinical setting, the importance of healthy immune
function on fracture healing is clear. Neither a muted nor
an elevated immune response is advantageous during bone
fracture healing. HIV-positive patients display slower bone
fracture healing, increased occurrence of fragility fractures,
and increased risk of developing osteoporosis [73].
Conversely, in conditions of autoimmune disease, such as
lupus or rheumatoid arthritis, bone fracture healing is also
inhibited [74, 75]. With chronic inflammation, as in diabe-
tes, obesity, or aging, inflammatory signaling and process-
ing are dysregulated, leading to a chronic state of elevated
inflammation, which is associated with poor fracture
healing [37]. For example, in diabetes, increased levels of
TNF-α lead to increased apoptosis of chondrocytes and
premature resorption of the cartilaginous callus [76, 77].

Inflammatory Cells as a Target for Treatment?

In aged patients, fracture healing occurs at a slower pace
and has a higher occurrence of non-union than in young
patients. In conditions of metabolic dysregulation, fracture

repair is likewise hindered and often results in bone that is
weaker than the original tissue [78]. This lack of structural
integrity leads to a higher rate of re-fracture and a higher
rate of revision surgery in implants. The information
gained from investigating osteoimmunology in fracture
healing could lead to novel treatment strategies and a better
prognosis for bone injury patients.

Scaffolds made of various biomaterials have been
employed in the surgical management of non-healing frac-
tures. These scaffolds provide the structural template for tissue
regeneration. Historically, these scaffolds were designed to be
inert to minimize the host’s immune response to the foreign
body. However, these scaffolds often lead to activation of the
innate and adaptive immune system [79]. Since then, our un-
derstanding of the immune response in wound healing has
vastly improved, and there has been a growing interest in
developing scaffolds with immune-modulating capacities.
Recent studies have shown that various biomaterials can affect
in vivo macrophage function, altering the polarization of mac-
rophages [80–82]. Most of these studies have been performed
on animal models. It remains to be seen whether these scaf-
folds will elicit similar effects in humans.

Efforts to modulate the immune system to improve fracture
repair has been documented in the literature. Platelet-rich plas-
ma (PRP) therapy is an autologous blood product in which
patient’s own platelets have been concentrated, and injected
locally at the site of injury [83–86]. Although there are some
studies suggesting improvement in fracture healing with PRP
therapy in humans, the sample size of these studies were small
and only a few were randomized controlled studies. While
platelets may play a role in the initial inflammatory cascade,
the mechanism by which concentrated platelets promote frac-
ture healing is largely unknown.

Conclusion

Immune cells play a critical role in bone fracture healing.
These cells serve as the initial responders at the site of injury,
mending vasculature, and initiating cascades of signals to re-
cruit cells to carry out the repair processes. Osteoimmunity is a
developing research field and more work must be done to
better appreciate the biological significance of immune cells
in bone regeneration.
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