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The dynamics of the electron population in the Earth’s radiation belts affect the

upper atmosphere’s ionization level through the low-energy Electron

Precipitation (EP). The impact of low-energy EP on the high-latitude

ionosphere has been well explained since the 1960’s decade. Conversely, it

is still not well understood for the region of the South American Magnetic

Anomaly (SAMA). In this study, we present the results of analysis of the strong

geomagnetic storm associated with the Interplanetary Coronal Mass Ejection

(May 27-28, 2017). The atypical auroral sporadic E layers (Esa) over SAMA are

observed in concomitance with the hiss and magnetosonic wave activities in

the inner radiation belt. The wave-particle interaction effects have been

estimated, and the dynamic mechanisms that caused the low-energy EP

over SAMA were investigated. We suggested that the enhancement in pitch

angle scattering driven by hiss waves result in the low-energy EP (≥10 keV) into

the atmosphere over SAMA. The impact of these precipitations on the ionization

rate at the altitude range from 100 to 120 km can generate the Esa layer in this

peculiar region. In contrast, we suggested that the low-energy EP (≤1 keV)
causes the maximum ionization rate close to 150 km altitude, contributing to

the Esa layer occurrence in these altitudes.
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Key points

• Pitch angle scattering driven by hiss waves could cause the

electron precipitation ≥ 0.5 keV over the SAMA.

• Electron precipitation ≤ 10 keV is the main ingredient to

generate Esa layer detected close to 100-120 km

over SAMA.

• Electron precipitation ≤ 1 keV is the main ingredient to

generate Esa layer detected close to 150 km over SAMA.

Introduction

Coupling between the solar wind structures and the Earth’s

magnetosphere can affect the upper atmosphere’s ionization

through charged particle precipitation. The high-latitude

dynamic after the low-energy Electron Precipitation (EP) has

been well understood since the 1960’s decade. Rees (1963) and

Cai and Ma (2007) found that the low-energy EP (≥1 keV) can
cause maximum ionization at altitudes below 150 km. These

charged particles can be an essential source to generate the

auroral-type sporadic E layer (Esa) at high latitudes

(Whitehead, 1970). Nath et al. (1980) suggested that low-

energy EP is usually the major cause for the generation of

such a layer, once the modified wind shear mechanism is

important under low-energy EP conditions only.

The Esa layer over the South American Magnetic Anomaly

(SAMA) has been observed since the 1970’s, in which the

theoretical discussions regarding the inner radiation belt

dynamic were suggested as the main mechanisms responsible

for the low-energy EP over this region (Batista and Abdu, 1977).

SAMA is a weak magnetic field region that results from the

geomagnetic field’s geometric configuration (Pinto and

Gonzalez, 1989) and has pronounced departures in its

symmetry. This peculiar region presents the trapped particle

mirror points considerably lowered in altitude compared to other

areas around the Earth (Roederer, 1967).

The dynamic mechanisms in the inner radiation belt are

crucial to understanding the mechanisms responsible for the

low-energy EP over the SAMA (Paulikas, 1975; Batista and Abdu,

1977; Pinto and Gonzalez, 1989; Nishino et al., 2006). Therefore,

observing the magnetospheric wave activities inside the inner

radiation belt and slot region allows us to understand the physical

processes that cause these atypical layers over the SAMA, as

Gonzalez et al. (1987) suggested. In this context, the plasma

waves can be detected, such as the hiss (Meredith et al., 2004) and

magnetosonic (Boardsen et al., 2016) waves. The plasmaspheric

hiss waves are regarded as Extremely Low Frequency (ELF)

whistler-mode emission (20 Hz - few kHz) (Meredith et al.,

2004; Cao et al., 2005). The fast magnetosonic (MS) waves are

typically detected between the proton gyrofrequency (fcp) and the

lower hybrid resonance frequency (fLHR) (e.g., Russell et al.,

1969; Ma et al., 2013).

The lightning-generated whistlers could also play an

important role in electron precipitation from the Earth’s inner

radiation belt and slot region (see, e.g., Inan et al., 1989, Green

et al., 2005; Green et al., 2020). Generally, the lightning-generated

wave power could be mixed into the high frequency (>~ 2 kHz)

portion of plasmaspheric hiss in the observation (Meredith et al.,

2007). However, they are distinguishable using the wave

polarization properties observations and could affect the

electrons at lower energies than hiss (Green et al., 2020).

The pitch angle scattering is the main dynamic mechanism

responsible for the EP driven by hiss waves (Lyons et al., 1972;

Abel and Thorne 1998). On the other hand, the MS wave-particle

interaction can result in EP in the atmosphere through the

bounce resonance mechanism (Chen et al., 2015; Maldonado

et al., 2016; Maldonado and Chen, 2018), Landau resonance

mechanism (Li et al., 2014; Bortnik et al., 2015; Ma et al., 2016),

and transit-time scattering mechanism (Bortnik and Thorne,

2010; Lei et al., 2017).

This work proposes to study the inner radiation belt/slot

dynamic during the low-energy EP into the ionized

atmosphere. The confirmation of the low-energy EP

occurrence is through the Esa layer’s signatures in two

digital ionosondes installed close to the SAMA region.

Then, the main physical processes responsible for this Esa
layers’ generation over SAMA are determined for the first

time, using in situ satellite measurements in the inner

radiation belt and an empirical model of the atmospheric

ionization. Finally, the dynamic mechanisms responsible for

the extra atmosphere’s ionization over the SAMA region are

identified, leading to a better understanding of the

magnetosphere-ionosphere coupling, and answering many

open questions, as follows below:

1. Why the auroral-type sporadic E layer is detected over the

SAMA region (outside the auroral region)?

2. What are the magnetosphere waves and the main dynamic

mechanism that cause the electron precipitation over the

SAMA region?

3. What energy levels of electrons precipitate over the SAMA

region?

4. What energy levels of electrons can generate the Esa layers

close to 100-120 km over SAMA?

5. What energy levels of electrons can generate the Esa layers

close to 150 km over SAMA?

Approach

We aim to investigate the low-energy EP (tens of keV) in the

ionosphere over the SAMA. For this purpose, we use space and

ground-based observations recorded over several decades.

However, we have constraints on how we can proceed in this

investigation. For example, we need simultaneous observations
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of the solar wind, the magnetosphere, and ionospheric

conditions. Additionally, it would be simpler to investigate

periods in which the low-energy EP effects would be easily

distinguishable from the background patterns. In this work,

we select an event to study the signatures in the inner

radiation belt that are associated with the ionosphere.

Assuming that low-energy EP occurs during geomagnetic

storm conditions, it is reasonable in the first moment to search

for signatures in the ionosphere during intense geomagnetic

storms. As defined by Gonzalez et al. (1994), intense

geomagnetic storms are usually related to the transit of

interplanetary counterparts of coronal mass ejections (ICMEs)

through Earth’s orbit. In this way, we identify the candidate

events in the ICME events catalog compiled by Cane &

Richardson (2003) and Richardson & Cane (2010). Currently,

the event list is available at http://www.srl.caltech.edu/ACE/ASC/

DATA/level3/icmetable2.htm.

This work investigates the solar wind structure employing

parameters measured by instruments onboard the Advanced

Composition Explorer (ACE) satellite, which provided the

solar wind parameters at the L1 Lagrangian point since 1997

(Stone et al., 1998). Specifically, we use observations from the

Magnetic Field Experiment (MAG) and Solar Wind Electron,

Proton, and Alpha Monitor (SWEPAM).

FIGURE 1
(A) Solar wind speed (Vp); (B) density (Np); (C) Interplanetary Magnetic Field (IMF) Bx (red) and By (blue) components; (D) IMF intensity (Bt) and
Bz component, in red and blue colors, respectively; (E) AE Index; (F) Symmetric disturbance index (SYM-H). The Vp, Np, Bt, Bz, Bx and By are
obtained by ACE satellite in the Lagrangian L1 point. AE and SYM-H geomagnetic indices are obtained at OMNI database: High Resolution OMNI (5-
min averaged). The vertical dashed red lines refer to the onset time of the geomagnetic storm’s phases.
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On the other hand, we need to identify a signature of the low-

energy EP in the ionosphere appropriate for this study. The Esa
layer is a suitable signature for such investigation as low-energy

EP is associated with these sporadic E layers in the auroral region.

Here, we use the data collected by Digisondes installed in

Cachoeira Paulista, Brazil (22.7°S, 45.0°W, dip: -35°, L = 1.13),

from the Embrace Network (Denardini et al., 2016), and installed

in Santa Maria, Brazil (29.7°S, 53.8°W, dip: -37°, L = 1.16) from

the China-Brazil Joint Laboratory for SpaceWeather (Moro et al.,

2019) to monitor the occurrence of Esa layer over the SAMA

region. The ionograms are graphs of virtual height versus

frequency, which provide the ionospheric profile, and from

which the ionospheric parameters, including the sporadic-E

layer types, can be obtained. These graphs are obtained from

the ionosondes, a radar that transmits radio waves continuously

into the ionosphere ranging from 1 to 30 MHz and 5/10 min of

time resolution (Reinisch et al., 2009). It is important to mention

that virtual heights are calculated based on the time interval

between pulse transmission and echo received through the

antennas (Reinisch et al., 1997).

The Van Allen Probes Mission (VAP), which was designed to

investigate the dynamics of the Earth’s radiation belts, has been

providing observations of low-energy electron flux and the wave

activity for approximately 7 years since its launch on 12August 2012

(Mauk et al., 2013). The proton flux contamination in the Magnetic

Electron Ion Spectrometer (MagEIS - Blake et al., 2013) data of the

Van Allen Probes has been removed (Claudepierre et al., 2015),

providing the low-energy electrons trapped without contamination.

FIGURE 2
Electron density from Van Allen Probe A (A) and B (C), and frequency-time spectrogram ofmagnetic spectral density from Van Allen Probe A (B)
and B (D). The red line represents the lower hybrid resonance frequency (fLHR). The electron densities and fLHR are obtained from the EMFISIS
instrument. The geomagnetic storm period analyzed here is approximately 2 hours before the sudden commencement phase and about 8 hours
after the beginning of the recovery phase. The vertical dashed red lines refer to the onset time of the geomagnetic storm’s phases.
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In contrast, the low-energy electrons precipitated over SAMA are

still challenging to measure due to the strong proton contamination

(e.g., Rodger et al., 2013; Andersson et al., 2014). In this way, we

analyze and discuss the low-energy electrons in the inner radiation

belt/slot as well as the plasma waves. The plasma waves, such as hiss

waves (Meredith et al., 2004), can interact with these electrons

through the pitch angle scattering mechanism to cause EP to the

atmosphere. In contrast, the MS waves (Ma et al., 2013) can interact

with these electrons through bounce resonance, Landau resonance,

or transit-time scattering mechanisms to cause EP to the

atmosphere. Furthermore, an empirical model (Fang et al., 2010)

is used to estimate the atmospheric ionization rate (100–150 km)

and confirm the role of the low-energy EP in the Esa layer generation

over this peculiar region.

The hiss and MS wave power spectral densities are estimated

using observations from the Electric and Magnetic Field

Instrument Suite and Integrated Science (EMFISIS)

instrument (Kletzing et al., 2013). We infer the total electron

density from the data measured by the Electric Field and Waves

(EFW) instrument (Wygant et al., 2013) and the frequency ratio

of electron plasma oscillation to electron cyclotron gyration (fpe/

fce) from the EMFISIS instrument. We compute the Wave

Normal Angle (WNA), ellipticity, and planarity based on the

singular value decomposition method (Santolík et al., 2003). For

this, we use data from the waveform receiver (WFR) integrated

into EMFISIS.

Based on these constraints, we selected one ICME event

observed onMay 27-28, 2017, which is concomitant to an intense

geomagnetic storm and the occurrence of the Esa layer over

SAMA. For these analyses, we consider that the geomagnetic

storm evolves in different phases related to the structure of

the ICME.

FIGURE 3
Low-energy electron flux (32–70 keV) fromVan Allen Probe B during the geomagnetic storm time (top) and R-P time (bottom). The start time of
the geomagnetic storm is considered here as approximately 2 hours before the sudden commencement phase and it ends approximately 8 hours
after the beginning of the recovery phase. The low-energy electron flux is obtained from MagEIS instrument onboard Van Allen Probe (B). This
decontaminated data is available for this period only from Van Allen Probe (B). The vertical dashed red lines refer to the onset time of the
geomagnetic storm’s phases.
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Interplanetary medium conditions
and geomagnetic storm

The scenery of this study occurred under the influence of an

ICME, which can drive a geomagnetic storm (Gonzalez et al.,

1999; Echer et al., 2008; Richardson and Cane, 2012), and deposit

energy in the magnetosphere (Ponomarev et al., 2006). An ICME

reached the L1 Lagrangian point at 15:30 UT on 27 May 2017, in

which the solar wind speed (Figure 1A) and the proton density

(Figure 1B) abruptly increased, from ~ 290 to 365 km/s and from

~ 7 to 30 proton/cm3, respectively. These abrupt increases

occurred concomitantly with the signature of the storm’s

sudden commencement (SC-P) (first vertical dashed red line)

observed in the SYM-H (Figure 1F). This SC-P (SYM-H positive)

persists until ~ 23:00 UT on May 27, and the maximum positive

value is ~ +60 nT. By component (Figure 1C red line) fluctuates

between -10 nT and +12 nT during the SC-P. The Bz component

(Figure 1D blue line) is southward oriented, and the AE index

(Figure 1E) oscillates below 500 nT, except at ~ 23:00 UT when it

reached ~ 500 nT.

The storm’s main phase (M-P) started at ~ 23:00 UT on May

27 (the second vertical dashed red line), in which the SYM-H

(Figure 1F) values crossed zero, and it persisted decreasing until

07:15 UT on May 28. During this M-P, the proton density

(Figure 1B) decreases significantly (<10 proton/cm−3), Bz

component (Figure 1D red line) reached ~ -20 nT, and the

AE index (Figure 1E) reached a maximum value of

approximately 1,600 nT at ~ 02:00 UT and 05:30 UT on May

28, persisting above ~ 1,000 nT on average. The storm’s recovery

phase (R-P) started at ~ 07:15 UT on May 28 (the third vertical

dashed red line), in which the SYM-H (Figure 1F) began to

increase. The AE index (Figure 1E) reached ~ 1700 nT at ~ 07:

30 UT on May 28.

Inner radiation belt dynamic and low-
energy EP over SAMA

The energy deposited in the inner magnetosphere, under the

influence of this ICME, is considerably strong (Ponomarev et al.,

2006). This energy can generate magnetospheric waves in a wide

range of frequencies (e.g., Da Silva et al., 2021), especially during

the geomagnetic storm’s phases. The magnetospheric waves can

interact with the electron and can cause particle precipitation to

the atmosphere. The electron particle precipitation can be

observed over both the auroral and SAMA regions. Precisely,

FIGURE 4
(A) Dynamic spectrum of chorus wave magnetic field from Van Allen Probe B, obtained from EMFISIS on 2017-05-28 (08:00-09:30UT) below
10 kHz and HFR (electric field was recalculated into magnetic field magnitude under the approximation of field aligned propagation) above 10 kHz.
(B)Choruswaves amplitude, Bw (pT). (C) Time scale for electron (10-1,000 keV) quasi-linear scattering by lower band choruswaves, τ= 1/Daa

. (D) The
10-250 keV electron lifetime (τ) dynamics at L* = 2.5 during the time interval from Figure 2 (electron energies are color coded). Electron
cyclotron frequency fce and lower hybrid frequency fLHR are indicated by the red curves, 0.5 fce and 0.1 fce are indicated by the white curves. The
vertical dashed red lines refer to the onset time of the geomagnetic storm’s phases.
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over the SAMA region, the low-energy EP (tens to hundreds

keV) arising from the inner radiation belt can be estimated

through the measurements of the X-rays emission, as

observed by Pinto and Gonzalez (1989); Pinto et al. (1989)

and Kuznetsov, (2007).

Due to trapped particle mirror points being considerably

lowered in altitude as they drift through the SAMA (Roederer,

1967), this region is significantly contaminated by the protons. It

implies the difficulty of measuring the electron flux in the inner

radiation belt and the electron precipitation (e.g., Rodger et al.,

2013; Andersson et al., 2014). However, the background

contamination of the electron flux measurements from

MagEIS was removed (Claudepierre et al., 2015) and is used

here to discuss the low-energy electron flux variability in the

inner radiation belt and their possible relationship with the

plasma waves. Consequently, the main physical processes

responsible for launching the electron particles in the loss

cone over this region are identified.

Plasma wave activities and low-energy
electron flux variability during the
geomagnetic storm’s phases

The plasma waves, such as the plasmaspheric hiss and

magnetosonic waves can be detected in the inner radiation

belt. This region can be coincident with the plasmasphere

region and will be identified by the total electron density. The

total electron density is a fundamental parameter of plasma;

here specifically, it is used to map regions of the

magnetosphere, such as the plasmasphere. This parameter

is estimated through the higher-frequency measurements

obtained from the EMFISIS instrument onboard Van Allen

Probes, which is able to measure a single electric field

component of waves in the frequency range of 10–500 kHz.

These higher-frequency measurements allow the

determination of the total electron density at the spacecraft,

which can be inferred from the upper hybrid resonance

frequency fUH. The upper hybrid resonance frequency is

defined as ω2
uh � ω2

ce + ω2
pe. Where fpe � ωpe/2π and

fce � q|B|/m, in which fce is given in hertz and |B| in

nanotesla, measured by in-situ magnetometer. The total

electron density is obtained by substituting the appropriate

values for the electron charge and mass (e.g., Kurth et al.,

2015).

The plasmaspheric hiss waves, regarded as Extremely Low

Frequency (ELF) whistler-mode emission (20 Hz to a few kHz)

(Meredith et al., 2004; Cao et al., 2005), are commonly observed

over a broad spatial region in the plasmasphere or plasmaspheric

plumes. The MS waves are typically detected between the proton

gyrofrequency (fcp) and the fLHR (e.g., Russell et al., 1969; Ma

et al., 2013). These waves can play an essential role in the loss

process of energetic electrons in the inner magnetosphere, being

able to cause electron precipitation (Li J. et al., 2019; Yahnin et al.,

2019). Thus, analyzing the global spatiotemporal evolution of

these waves’ intensities during the geomagnetic storm’s phases is

TABLE 1 The Magnetic Local Time (MLT) and L values of the VAP-A/B and the ionosonde stations during the conjunctions. The conjunctions were
observed only during the storm’s main and recovery phases.

Storm’s main phase (M-P)

05/28/2017 Van Allen Probe A Cachoeira Paulista Santa Maria

1:36 UT MLT = 21.86, L = 2.48 MLT = 22.38, L = 1.13 MLT = 21.78, L = 1.16

1:44 UT MLT = 22.51, L = 2.17 MLT = 22.51, L = 1.13 MLT = 21.90, L = 1.16

Storm’s recovery phase (R-P)

05/28/2017 Van Allen Probe B Cachoeira Paulista Santa Maria

7:40 UT MLT = 3.75, L > 1.17 MLT = 4.31, L = 1.13 MLT = 3.71, L = 1.16

7:42 UT MLT = 4.37, L > 1.17 MLT = 4.35, L = 1.13 MLT = 3.75, L = 1.16

Storm’s recovery phase (R-P)

05/28/2017 Van Allen Probe A Cachoeira Paulista Santa Maria

11:21 UT MLT = 7.36, L = 1.32 MLT = 8.01, L = 1.13 MLT = 7.41, L = 1.16

11:24 UT MLT = 8.08, L = 1.34 MLT = 8.05, L = 1.13 MLT = 7.46, L = 1.16
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FIGURE 5
(A) The frequency-time spectrogram of the magnetic field; (B) ellipticity; (C) planarity and (D) the total electron density during the first (left
panels), second (right panels) and third (bottom panels) conjunctions. The lower hybrid resonance frequency (fLHR) (white line) are presented in
panels (A–C). The ellipticity and planarity are calculated through the singular value decomposition method (Santolík et al., 2003). The fLHR and
frequency-time spectrogram of magnetic field are obtained from EMFISIS instrument and the electron density is inferred from the data of EFW
instrument. The EFW and EMFISIS instruments are onboard the VAP.
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important to identify the main dynamic mechanisms responsible

for launching the electron particles in the loss cone, which can

result in particle precipitation over SAMA. For that, we use the

spectrograms of the magnetic field from the EMFISIS instrument

onboard the Van Allen Probes to detect the plasma wave

activities, considering the periods when the Van Allen Probes

orbit was next to the perigee (~ L < 3.5).

Figure 2 presents the electron densities, the spectrograms

of the magnetic field and fLHR obtained from the EMFISIS

instrument onboard Van Allen Probes A (panels a and b) and

B (panels c and d). The electron density is a fundamental

parameter of plasma obtained from plasma wave

measurements made onboard Van Allen Probes (Kurth

et al., 2015). In accordance with the literature, the

plasmasphere is considered the innermost region of the

magnetosphere. It is formed by a thermal plasma cloud

encircling the Earth, in which their electron density varies

between ~10–104 electrons/cm3. In contrast, the outside of the

plasmasphere is formed by hot plasma, where the electron

density changes abruptly to tenuous density (~1 electron/

cm3). Thereby, the boundary that separates the low-density

plasma region from the high-density plasma region is called

FIGURE 6
Spatial distribution in two dimensions of electron density for L values 1.5, 2, 3, 4, and 5 using a dipolar model of Earth’s magnetic field lines in the
Solar Magnetic coordinate (SM) for plane YZ (top panel) and XY (bottom panel). The total electron density measurements were obtained from the
EMFISIS instrument onboard the Van Allen Probes A (blue lines) and B (red lines). The color bar is the total electron density value.
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plasmapause, which is represented by the variation of the ratio

between the maximum and minimum electron density, as

widely used in previous studies (e.g., Guo et al., 2021; Thomas

et al., 2021; Zhelavskaya et al., 2016; Liu et al., 2015; Lemaire

et al., 1998). The determination of the plasmapause allows the

identification of the plasmaspheric waves. On the other hand,

the fLHR identifies the MS wave activities. The time duration

of Figure 2 (15:00 UT on May 27 to 15:00 UT on May 28)

includes the storm’s sudden commencement, main, and

recovery phase.

The Van Allen probe A (RBSP-A) presented three periods at

the perigee, while the Van Allen probe B (RBSP-B) presented two

periods:

The RBSP-A periods:

1) The first period (15:00UT - 19:00UT on May 27) refers to the

storm’s sudden commencement phase (SC-P).

2) The second period (00:00UT - 04:00UT onMay 28) is referent

to the storm’s main phase (M-P).

3) The third period (09:00UT - 13:00UT on May 28) is referent

to the storm’s recovery phase (R-P).

The RBSP-B periods:

1) The first period (21:00UT on May 27 and 01:00UT on May

28) occurred during the storm’s sudden commencement

phase and storm’s main phase (SC-M-P);

2) The second period (06:00UT - 10:00UT on May 28) occurred

during the storm’s recovery phase (R-P).

The spectrogram of the magnetic field observed in Figure 2

(panel b - RBSP-A) during the SC-P suggests the presence of the

plasmaspheric hiss waves at ~ 16:00 UT and from 18:00 UT

below the plasmapause (panel a). The spectrogram also shows the

discrete MS waves around 19:00 UT, observed below fLHR.

During the M-P (panel b - RBSP-A), the power spectral

density suggests the presence of the plasmaspheric wave

activities during all-time analyzed (00:00UT - 04:00UT on

FIGURE 7
Ionograms from Digisonde located at Cachoeira Paulista station during the first (A), second (B) and third (C) conjunctions. The red arrows show
the Es layers presence. The color code in these ionograms represents the echo direction of the signal received. Red shades denote O-polarization,
and green shades indicate X-polarization. The blue points are used for the echoes in the North/East directions, and yellow shades are used for the
South/West. More details can be found at https://giro.uml.edu/ionogram-data.html.
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May 28), in which the power spectral is considerably strong

compared with the SC-P period, and below fLHR. During the R-P

(panel b- RBSP-A), the plasma wave activities are observed again,

below the plasmasphere (panel a) and the fLHR during all-time

analyzed (09:00UT - 13:00UT on May 28). The plasmapause is

apparently compressed during the R-P (panel a - RBSP-A)

compared with the SC-P and M-P periods. This result was

already expected due to the plasmapause being located closer

to the Earth when it is under the influence of high geomagnetic

activity (see Chappell et al., 1970; Goldstein, 2006; Pierrard et al.,

2008).

The spectrogram of the magnetic field observed in Figure 2

(panel d - RBSP-B) during the SC-M-P suggests the signatures of

the plasmaspheric wave activities within the inner radiation belt.

These plasmaspheric wave activities are observed during SC-P

confined below 200 Hz, while during the M-P, these waves are

observed below 700 Hz. During the R-P, the behavior of the

plasmasphere is similar to the period measured by the RBSP-A

(09:00UT - 13:00UT on May 28), in which the plasmapause is

apparently compressed (panel c) compared with the SC-M-P

period.

The low-energy electron flux (32–70 keV) within the

radiation belts (Figure 3) is presented here, with more detail

during the R-P (bottom panel), in which the plasmapause is

apparently compressed compared with the SC-M-P period (top

panel). The seed population increased considerably during the

R-P, compared with the SC-M-P. Before 06:50 UT, an electron

flux increase is observed above 38 keV. In contrast, two electron

flux decreases are observed, the first is close to 7:00 UT reaching

the electrons below 45 keV, and the second is observed close to 7:

15 UT reaching the electrons above 45 keV. After the perigee

time (after 8:00 UT), the electron flux increase is persistent for

more than 1 h and 30 min in all the range of energy presented.

The plasmapause approached the Earth (L≈1.8) during the R-P,
as observed in Figure 2D after 06:00 UT on May 28 (black line)

and in Figure 4A at the beginning of the chorus wave activities.

This strong geomagnetic activity may produce a favorable plasma

regime, as observed through the measurements of the seed

population (tens keV, Figure 3) after the initial geomagnetic

storm phase, which may contribute to the rapid scattering of

electrons (Meredith et al., 2004; Ma et al., 2016b; Agapitov et al.,

2019). Therefore, it is crucial to investigate the plasma waves and

seed particles’ lifetime during this period.

Figure 4 shows the chorus wave activities at extremely low L*

in usual chorus frequency bands 0.1-0.45 fce and 0.55-0.9 fce that

reach up to 80 kHz. The dynamic spectrum of chorus wave

magnetic field is calculated combining from EFI and HFR Van

Allen Probe B measurements during geomagnetic storm R-P on

28 May 2017. Figure 4 shows that the lower band chorus waves

had maximum time-averaged amplitudes of ~100-140 pT (while

the statistical model from Agapitov et al., 2018, gives ~90 pT) at

L* = 3, where the fpe/fce ratio was ~2 at ~8:30 UT (Figure not

shown).

The dynamics of electron lifetime can be estimated based on

the chorus model (Agapitov et al., 2015, 2018), which was

extended, taking into account the cold plasma dynamics and

the latitudinal distribution of wave amplitude. The results are

shown in Figure 4, in which the parameters correspond to a

typical quasi-linear scattering time scale 1/Daa (30 keV) ~0.4 ±

0.1 h at L* = 3 (versus ~6 ± 0.2 h using the statistical model from

(Agapitov et al., 2019)) and ~2 h at L* = 2.3 presumably causing

intensive precipitations of 10-30 keV electrons to the ionosphere.

The dynamics of electron lifetime can be based on the hiss

model (Agapitov et al., 2020), in which this new model version

considers the low-energy electron levels (10-250 keV) and the

latitudinal distribution from L* = 2.5. Thereby, the fpe/fce is

considerably low (~2), as expected (e.g., Albert et al., 2016;

Watt et al., 2019). The main results are presented in Figure 4,

in which the 10-250 keV electron lifetime (τ) dynamics at L* =

2.5 driven by plasmaspheric hiss waves are shown during the

time interval from Figure 2. The electron energies are color

coded. The quasi-linear scattering time scale 1/Daa (10 keV) is

below 1 h from 23:00 UT on May 27 to 10:00 UT on May 28,

coinciding with the M-P and R-P geomagnetic storm. It means

that the plasmaspheric hiss waves confined at L* =

2.5 presumably cause intensive precipitations of 10 keV

electrons to the ionosphere.

Plasma wave activities during the
conjunctions between the Van Allen
Probes and the ionosonde stations over
SAMA

The plasmaspheric hiss waves have been measured at low

latitude within the inner radiation belt (L = ~ 1-2) since the 70s

decade (Tsurutani et al., 1975). These waves can trigger the

dynamic mechanisms for the EP over the SAMA region, as

suggested by Gonzalez et al. (1987). Therefore, planarity and

FIGURE 8
Global magnetic field (color’s scale) and magnetic equator
(red line) in 150 km altitude, VAP-B orbit (white dotted line) and
their footprint (white dashed line) on 28 May 2017 (07:30–09:
30 UT), Santa Maria and Cachoeira Paulista stations (red stars)
and the central region of the SAMA (white iso-intensity lines with
22,000 nT).
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ellipticity are used to identify the plasmaspheric waves in the

inner radiation belt. Once, the planarity and ellipticity allow for

classifying the degree of magnetic field polarization in the

polarization plane and the ellipticity of the magnetic field

polarization (Hartley et al., 2018).

The ionosonde measurements can indirectly infer the

occurrences of the low-energy EP through the signature of the

auroral type sporadic E layer (Esa) in this peculiar region. The

ellipticity and planarity are calculated only during the

conjunctions between the Van Allen Probes and the

ionosonde stations over Brazil. Table 1 shows the occurrences

of the three conjunctions during the entire period analyzed. The

first and third conjunctions are observed between VAP-A and

the ionosonde stations during the M-P and R-P, respectively. In

contrast, the conjunction between VAP-B and the ionosonde

stations is observed only during the R-P.

Figure 5 presents the frequency-time spectrogram of the

magnetic field (a), ellipticity (b), planarity (c) and total

electron density (d) during the first (left panels), second (right

panels), and third (bottom panels) conjunctions. The fLHR

(white line) are presented in panels (a). The plasma density

and wave polarization properties are used to distinguish the

different types of the plasmaspheric waves (e.g., Li et al., 2015; Li

W. et al., 2019).

Figure 5 (left panels) shows the plasma waves during the first

conjunction period (VAP-A, 01:20-02:10 UT), which occurs

during the storm M-P. The MS wave activities are observed

almost the entire time. They are detected inside the plasmasphere

FIGURE 9
(A) the frequency-time spectrogram of magnetic field; (B)WNA; (C) frequency ratio fpe/fce (blue line) and the total electron density (black line).
The lower hybrid resonance frequency (fLHR) (yellow line) is presented in the panel a. The fpe/fce, fLHR and frequency-time spectrogram ofmagnetic
field are obtained from EMFISIS instrument and the electron density is obtained from EFW instrument. WNA is calculated through the singular value
decomposition method (Santolík et al., 2003), in which the waveform receiver (WFR) data obtained from EMFISIS instrument is used. The EFW
and EMFISIS instruments are onboard the VAP-B.
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and below fLHR (e.g., Laakso et al., 1990; Santolík et al., 2002).

Their ellipticity is ~ - 0.2 and planarity ≥ 0.8. It means that their

propagation is highly oblique related to ambient magnetic field

direction and linearly polarized (e.g., Horne et al., 2007; Ma et al.,

2016). Figure 5 (right panels) shows the plasma waves during the

second conjunction period (VAP-B, 07:30-08:20 UT), which

occurs during the storm R-P. The hiss waves are observed

approximately before 07:38 UT and from 07:46 UT, with

ellipticity ≥ 0.5 and planarity ≥ 0.2 (e.g., Li et al., 2015). The

MS waves are detected from 07:53 UT, and their polarization

ellipticity is concentrated between ± 0.2 and planarity ≥ 0.8.

Figure 5 (bottom panels) shows plasma waves during the third

conjunction period (VAP-A, 11:10-12:00 UT), which occurs

during the storm R-P again. The plasma wave activities are

very similar to the waves detected during the second

conjunction. The hiss waves are observed from 11:23 UT,

with ellipticity ≥ 0.5 and planarity ≥ 0.2 (e.g., Li et al., 2015),

and the MS waves presented the ellipticity ~ - 0.2 and

planarity ≥ 0.8.

Figure 6 (top and bottom panels) show the spatial

distribution of the electron density in two dimensions for L

values 1.5, 2, 3, 4, and 5 using a dipolar model of Earth’s magnetic

field lines in the Solar Magnetic coordinate (SM) for plane YZ

and XY, respectively. The total electron density measurements

are obtained from the EMFISIS instrument onboard the Van

Allen Probes A (conjunction 1 and 3) and B (conjunction 2), and

the periods are limited by the availability of the EMFISIS data

(See Supplementary Figure S1 –in Supporting Information).

Observe in Figure 6 (top and bottom panels) that SAMA

L-shells correspond to approximately 1 ≤ L ≤ 2 (inner radiation

belt) and the auroral oval is located about 3 ≤ L ≤ 6 (outer

radiation belt). Additionally, the dynamic location of the

plasmapause shows its preferential position within the inner

radiation belt and slot region (L < 3) during these three

FIGURE 10
Total incident energy of electrons (100 eV—hundreds of keV) for Santa Maria (top) and Cachoeira Paulista (bottom) stations, considering the
second and third conjunctions. The height scale H (km) is calculated to Santa Maria and Cachoeira Paulista during the three conjunctions (See
Figure 15).
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conjunctions periods. It means that the plasma waves detected

within the plasmasphere are confined at L < 3, which may have

resonantly interacted with the low-energy electrons to cause the

EP to the SAMA region (lower latitude region).

The ionosonde stations used in this study are located over the

SAMA region, specifically in the low-middle latitude (20° <
geomagnetic latitude < 50°). Therefore, the dynamic

mechanisms responsible for the Es layers generally are

associated with both the vertical shear in the horizontal tidal

wind (Haldoupis, 2012) and the low-energy EP (Batista and

Abdu, 1977). The Es layers associated with the vertical shear in

the horizontal tidal wind are normally classified into the flat (Esf),

high (Esh), cusp (Esc), and low (Esl) types, while the Es layers

associated with the low-energy EP is observed in the ionograms

as traces of range spreading echoes, named Esa layer (e.g., Moro

et al., 2022; Kirkwood and Nilsson, 2000; Piggott and Rawer,

1978). They are commonly detected in the auroral regions

produced by the auroral particle ionization (Nikolaeva et al.,

2021) from the outer radiation belt (Blum et al., 2013) and

peculiarly over the SAMA region due the low-energy EP from the

inner radiation belt (Batista and Abdu 1977; Gonzalez et al.,

1987; Moro et al., 2022).

Figure 7 shows the ionograms over Cachoeira Paulista

during the first (top panels), second (middle panels), and

FIGURE 11
Ionization rate altitude profiles panels (A,D,G), ionization rate altitude integrated panels (B,E,H) and frequency range altitude panels (C,F,I)
considering the second conjunction for SantaMaria station. The total incident energy of electrons is presented in Figure 10 (top panel). The ionization
rate is obtained from empirical model (Fang et al., 2010) considering the total incident energy of electrons presented in Figure 10 (top panel) and the
height scale presented in Figure 15 (top panel).
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third (bottom panels) conjunctions. The Figure 7 (top panels)

shows the ionograms considering the first conjunction period

(01:36 UT and 01:44 UT), which occurs during the M-P. A flat

trace is observed in the ionogram at 01:30 UT (short period) at

around 120 km. This Es layer’s type is classified as Esf
(Haldoupis, 2012). The ionograms show the absence of the

Esa layers in all the analyzed time, which means the absence

of the low-energy EP effect over Cachoeira Paulista during the

M-P. Supplementary Figure S2 (top panels) presents the absence

of the Es layers in Santa Maria during the analyzed time. It is

important to highlight that only the magnetosonic wave activities

are detected during this conjunction within the inner radiation

belt (Figure 5 - left panels).

The middle panels of Figure 7 show the ionograms

considering the second conjunction period (07:40 UT and

07:42 UT), which occurs during the R-P (night time). A

spread and diffuse trace is observed in the ionograms that

performed a downward movement reacheing 100–150 km.

This Es layer’s characteristic type is classified as Esa layer

(Moro et al., 2022; Resende et al., 2013; Kirkwood and

Nilsson, 2000) and could be associated with the low-

energy EP from the inner radiation belt (Batista and Abdu,

1977). Supplementary Figure S2 (middle panels) presents

similar signatures in the ionograms registered in Santa

Maria, which exhibit the Esa layers characteristics during

the analyzed time. The hiss and MS wave activities were

FIGURE 12
Ionization rate altitude profiles panels (A,D,G), ionization rate altitude integrated panels (B,E,H) and frequency range altitude panels (C,F,I)
considering the second conjunction for Cachoeira Paulista station. The total incident energy of electrons is presented in Figure 10 (bottom panel).
The ionization rate is obtained from empirical model (Fang et al., 2010) considering the total incident energy of electrons presented in Figure 10
(bottom panel) and the height scale presented in Figure 15 (bottom panel).
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detected in the inner radiation belt (Figure 5 - right panels)

during this second conjunction. The hiss waves are

considered in the literature as important to cause the low-

energy EP over the SAMA region during the R-P (Gonzalez

et al., 1987). Thereby, it is crucial to investigate the dynamic

mechanisms responsible for the low-energy EP driven by

these waves, as described in.

Finally, Figure 7 (bottom panels) shows the ionograms

from the Cachoeira Paulista station considering the third

conjunction period (11:21 UT and 11:24 UT), which also

occurs during the R-P (daytime). A trace discontinued in

height with the E-region trace is observed in the ionograms,

which descends with time, becoming a trace with a relatively

symmetrical cusp at the peak of the E-region electron

density (above 150 km). This signature in the ionograms is

evidence of the Esh layer over SAMA during the R-P that could

be associated with the strong wind shear. On the other hand, the

weak spread and diffuse trace observed between 100 and 150 km

exhibit very clear Esa layers characteristics. Furthermore, the E

region appears strong, suggesting that the E region conductivity

increased due to the particle precipitation (Santos et al., 2016).

Supplementary Figure S2 (bottom panels) presents similar

signatures in the ionograms registered in Santa Maria station,

which shows the presence of the Esh layer and a weak spread and

diffuse traces during the entire analyzed time that can be

classified as Esa layer. Although the Esa layer is usually

observed during the night hours (Hunsucker and Owren,

1962), and this third conjunction occurs in the morning

(around 08:30 LT), the evidences shown in the ionograms of

the two stations give us the confidence to classify the layers as

Esa. Moreover, the plasma wave activities within the inner

radiation belt during the third conjunction are very similar to

the second conjunction. Considering all these points, it is crucial

to investigate the dynamic mechanisms responsible for the low-

energy EP driven by these waves which will be done in the next

sections.

Dynamic mechanisms responsible for the
low-energy EP over SAMA during the
second conjunction

According to the conjunctions observed during the M-P and

R-P (Table 1) and the Esa layer detected in the ionosonde stations

over the SAMA region (Figure 7), the coincidences between the

Esa layer’s signature and the conjunctions were observed during

R-P, in the second and third conjunctions. Figure 8 highlights the

second conjunction with the VAP-B orbit (white dotted line) and

the Southern Hemisphere footprint (white dashed line) of May

28, and the ionosonde stations (red stars). The VAP-B orbit and

their footprint are obtained at https://sscweb.gsfc.nasa.gov/cgi-

bin/Locator.cgi. The magnetic equator (red line) and the global

magnetic field (color’s scale) obtained with International

Geomagnetic Reference Field (IGRF-13th generation) (Alken

et al., 2021) are also presented in Figure 8, in which the

ionosonde stations are localized in the center of the SAMA

FIGURE 13
Ionograms fromDigisonde located at Santa Maria during the second (A), and third (B) conjunctions. The red arrows show the Esa layer presence
and the blue line is referent the plasma modeled frequency (MHz) altitude. Unfortunately, the Santa Maria ionograms present high 60 Hz
interferences from the street lights used nearby the Digisonde site.
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region (22,000 nT isoline). The third conjunction with the VAP-

A orbit and the Southern Hemisphere footprint of May 28, and

the ionosonde stations are presented in Supplementary Figure S3.

The plasma waves, such as hiss and MS waves are detected

during this second conjunctions (Figure 5 - right panels), and the

Wave Normal Angle (WNA) is calculated through the singular value

decomposition method (Santolík et al., 2003) to discuss the dynamic

mechanisms responsible for the low-energy electron precipitation

over the SAMA region. Hiss waves are widely distributed in the radial

distance and magnetic local time (MLT) and can cause precipitation

of electrons from tens of keV to a few MeV to the atmosphere

through pitch angle scattering mechanism (Meredith et al., 2006,

2007). Pitch angle scattering is a resonant mechanism between the

electrons and magnetospheric waves, in which the first adiabatic

invariant (μ), that depends on the particle’s pitch angle and its energy,

is violated (e.g., Baumjohann and Treumann, 2012; Hartley and

Denton, 2014). Conversely, the MS wave activities are mainly

confined to the geomagnetic equator and propagate perpendicular

to the background magnetic field. The MS waves can scatter the

electrons from high pitch angles (close to 90°) to intermediate pitch

angles (Xiao et al., 2015) due to the resonance conditions. Shklyar and

Matsumoto (2009) showed two resonance conditions for electrons,

named cyclotron resonance and Landau resonance, respectively:

vǁ � ω − fce

kǁ
, (1)

vǁ � ω

kǁ
, (2)

where kǁ and vǁ are parallel components of the wave normal

vector and charged particle velocity, respectively. ω is wave

frequency, and fce is the magnitude of the electron cyclotron

frequency in the relations which are specific for electrons. These

conditions require large parallel velocity once the kǁ is very small,

and thus, a small pitch angle.

Figure 9 presents the frequency-time spectrogram of

magnetic field (panel a), WNA (panel b), frequency ratio fpe/

fce (panel c - blue line), and total electron density inferred from

the upper hybrid resonance line (panel c - black line). The fLHR

(yellow line) are presented in panel a. During the plasmaspheric

hiss wave activities (from 08:08 UT) is observed WNA ≤ 40°, as

also observed by Li et al. (2015). Unlike hiss waves, the

propagation of MS waves is highly oblique related to ambient

magnetic field direction and linearly polarized (Horne et al.,

2007; Ma et al., 2016), i.e., WNA ≥ 70° from 07:56 UT.

The frequency ratio fpe/fce (panel c—blue line) presents low

values ~ 2 – 3 from~ 08:08UT, as expectedwhen the plasmapause is

located at L~1.8 (see Albert et al., 2016; Watt et al., 2019). The

resonant energy for whistler mode waves propagating parallel to the

ambient magnetic field interacting with keV electrons is a function

of the electron gyrofrequency (fce) and the plasma frequency (fpe),

besides the wave frequency (f), the speed of light (c) and the

electron rest mass (me) (e.g., Helliwell, 1965; Malykhin et al., 2021).

Wr � mec2

f

(fce − f)3
f2
pe

, (3)

FIGURE 14
Ionograms from Digisonde located at Cachoeira Paulista during the second (A) and third (B) conjunctions. The red arrows show the Esa layer
presence and the blue line is referent the plasma modeled frequency (MHz) altitude.
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Accordingly, the resonant energy is a function of the

ambient plasma density and magnetic field strength, and by

further calculation it can be shown that it increases following

the decrease of fpe/fce ratio. Thus, the low values of the

frequency ratio (fpe/fce) can be efficient for scattering loss

of electrons (hundreds of keV) driven by MS waves (see Lei

et al., 2017). However, we are interested in low-energy EP

(tens of keV) because this energy range can generate the Esa
layers over SAMA (Batista and Abdu, 1977). Thereby, the

results presented here suggest that the hiss waves may cause

the scattering loss of electrons (tens of keV) over this region.

Additionally, it is essential to highlight the results observed

in Figure 4 (panel d), especially during the second

conjunction, in which the quasi-linear scattering time

scale 1/Daa (10 keV) is below 1 h, presumably causing

intensive precipitations of 10 keV electrons to the

ionosphere over the SAMA region.

Atmospheric ionization over SAMA
(100–150km) induced by low-
energy EP

An empirical model with a new parameterization of

ionization in the atmosphere by the isotropically precipitating

electrons (100 eV–1 MeV) (Fang et al., 2010) is used here to

estimate the atmospheric ionization over SAMA during the

second and third conjunctions induced by low-energy EP. To

compute the atmospheric ionization, we assume that the incident

particles (differential number flux, cm−2 s−1 keV−1) have a

Maxwellian distribution defined by the function:

ΦM(E) � Q0

2E3
0

Eexp(− E

E0
), (4)

where the free parameters are total energy flux (Q0, keV cm−2 s−1)

and the characteristic energy (E0, keV). The differential number flux

FIGURE 15
Height scale (km) for Santa Maria (top) and Cachoeira Paulista (bottom) stations, considering the three conjunctions.
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(ΦM) is givein in cm−2 s−1 keV−1. Figure 10 shows the total incident

energy of electrons (100 eV—hundreds of keV) for Santa Maria

(top) and Cachoeira Paulista (bottom) stations, considering the

second and third conjunctions. The orders of magnitude of the total

incident energy of electrons in Santa Maria are tens of keV and

hundreds of keV during the second and third conjunctions,

respectively. Otherside, the orders of magnitude of the total

incident energy of electrons in Cachoeira Paulista are hundreds

of keV during the second and third conjunctions.

H(z) � kT(z)
m(z)g (z), (5)

where k is the Boltzmann constant, T is the atmospheric

temperature, m is the average molecular weight, g is the

acceleration due to the gravity and z is vertical location.

The ionization model data (Fang et al., 2010) also estimates the

plasma frequency (MHz) altitude profile. First, it is considered that

the time variation of electronic density (zNe
zt ) is equal to the difference

between the ionization rate (ΦM) and the loss terms. After that, the

electron density is obtained assuming that the loss terms are

proportional to the population (Ne
τ ) and assuming a short-time

scale for the recombination (τ), which the transport mechanisms

can be neglected. Here, we assume a recombination time (τ) of 1 s

(Batista and Abdu, 1977), and then the plasma frequency (MHz)

altitude profile is obtained. This plasma frequency is the highest

cutoff frequency at which the ionosphere layers reflect

electromagnetic waves (Kumluca et al., 1999), which in turn, is

associated with the peak electron concentration of the Es layer, Ne

(electrons/m3) by the simple relationFc � c
���
Ne

√
, where c = 8.98

(e.g., Yu et al., 2020; Nikolaeva et al., 2021).

Figures 11, 12 present the ionization rate altitude profiles

(panels a, d, g), ionization rate altitude integrated between

100 eV and 100 keV (panels b, e, h), and the plasma modeled

frequency (MHz) altitude profile (panels c, f, i) during the second

conjunction. Figures 11, 12 are referring to Santa Maria and

Cachoeira Paulista stations, respectively. Profiles of the ionization

rate for four different energy levels of the electrons (0.5 keV (blue

line), 1.0 keV (red line), 5.0 keV (green line), and 10 keV (magenta

line)) are given in Figures 11, 12, panels a,d,g. At both ionosonde

stations, the ionization rate peaks between 100–200 km altitude for

all different energy levels, while the maximum of the low-energy

electrons between 0.5–1.0 keV is generally located at higher altitudes

compared to the low-energy electrons between 5.0–10.0 keV. The

altitude integrated ionization rate (panels b, e, h) provides the energy

amount deposited in the 100 km ≤ altitude ≤ 200 km. The Esa layer

density due the electron precipitation can be identified in panels (c),

(f), and (i), which were estimated through the calculation of the

modeled plasma frequency in (MHz). The ionization rate observed

in Figures 11, 12 suggests the occurrences of the low-energy EP

(0.5–10 keV) over the SAMA region during the Esa layer generation,

as expected the low-energy EP (≥10 keV) occurred due to pitch

angle scattering driven by plasmaspheric hiss waves discussed in

previous sections. Although the previous studies of hiss waves have

been focused on the scattering of electrons of 10 keV - 1 MeV

energies, the recent studies (Li J. et al., 2019; Khazanov andMa 2021)

have shown that the hiss waves also can scatter electrons of energies

below several keV down to the energies of tens of eV. The Esa layer

which occurs in SantaMaria is considerably higher than the Esa layer

in Cachoeira Paulista. This behavior can be attributed to the low

ionization rate due to the low-energy EP = 5 and 10 keV in Santa

Maria. Therefore, we suggest that the low-energy EP ≤ 1 keV is the

main ingredient to generate Esa layer detected close to 150 km

altitude in Santa Maria, while the low-energy EP ≤ 10 keV is the

main ingredient to generate Esa layer detected close to 100-120 km

altitude in Cachoeira Paulista.

The ionization rate altitude profiles, ionization rate altitude

integrated, and the plasmamodeled frequency altitude during the

third conjunction are presented in the support information,

Supplementary Figure S4 (Santa Maria station) and

Supplementary Figure S5 (Cachoeira Paulista station). The

ionization rate observed in Supplementary Figure S4, S5

suggests the occurrences of the low-energy electron

precipitation over the SAMA region during the third

conjunction due to pitch angle scattering driven by

plasmaspheric hiss waves.

We can estimate the free parameters (Q0, E0) by comparing

these plasma frequencies (MHz) altitude profile modeled with

the Esa layers presented in the ionograms, as shown in Figures

13, 14.

Finally, although the downward movement to be typical in

low/mid-latitudes due to the wind shear mechanism (Resende

et al., 2017), the inner radiation belt dynamic and the

atmospheric ionization over SAMA are highly favorable to

the occurrences of the low-energy EP during the second

(Figures 13, 14 - middle panels) and third (Figures 13, 14 -

bottom panels) conjunctions. It means that this atmospheric

ionization over SAMA, especially in 100–150 km altitude, is

very similar to the ionized atmosphere in the auroral region

during the generation of the Esa layers (Whalen et al., 1971;

Buchau et al., 1972; Blagoveshchensky and Borisova, 2000).

Therefore, we can suggest that the low-energy EP (≤10 keV)
from the inner radiation belt is the main ingredient

responsible for generating the Esa layers over Cachoeira

Paulista during the R-P at nighttimeFigure 15. Conversely,

the low-energy EP (≤1 keV) is the main ingredient responsible

for generating the Esa layers over Santa Maria during the R-P

at night.

Concluding remarks

The hiss wave’s power spectral density and the ambient

plasma conditions as given by the low values of the frequency

ratio fpe/fce, suggests the occurrences of the low-energy EP

(≥10 keV) to the atmosphere during the recovery phase of a

geomagnetic storm. Additionally, the modeling results
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(Figure 4D) show that the quasi-linear scattering time scale 1/

Daa (10 keV) is below 1 h, especially during the second

conjunction. It suggests that the quasi-linear scattering driven

by hiss waves is one of the causes of the intensive precipitations of

10 keV electrons to the ionosphere over the SAMA region.

The estimation of the atmospheric ionization induced by

low-energy EP over SAMA suggests the deposition of the

electrons (≤10 keV) at altitudes 100–120 km. Therefore, we

can suggest that the pitch angle scattering driven by hiss

waves triggers the dynamic mechanism responsible for the

low-energy electron precipitation over the SAMA region that

generates and maintains the Esa layer in this low latitude during

the recovery phase geomagnetic storm. Otherwise, atmospheric

ionization induced by the low-energy EP over SAMA also

suggests the deposition of the electrons (≤1 keV) in altitudes

from 150 km, which was decisive to the Esa layer occurrence at

150 km in Santa Maria.

The techniques used here, such as the observational and

modeled data analyses, contribute to explaining the coupling

between the inner radiation belt and the ionized atmosphere over

the SAMA region, which was not well understood before.

Additionally, the signature of this atypical Esa layer in the

Brazilian sites could be used as an indicator of the

occurrences of the low-energy electron precipitation over

SAMA once the electron detectors onboard of the low orbit

satellites are contaminated with the proton flux trapped in the

inner belt (e.g., Rodger et al., 2013; Andersson et al., 2014).
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