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Abstract 12 

Humans, like other animals, pre-empt danger by moving to locations that maximize their success at 13 

escaping future threats.   We test the idea that spatial margin of safety (MOS) decisions, a form of pre-14 

emptive  avoidance, results in participants placing themselves closer to safer locations when facing more 15 

unpredictable threats.  Using multivariate pattern analysis on fMRI data collected while subjects engaged 16 

in MOS decisions with varying attack location predictability, we show that while the hippocampus 17 

encodes MOS decisions across all types of threat, a vmPFC anterior-posterior gradient tracked threat 18 

predictability.  The posterior vmPFC encoded for more unpredictable threat and showed functional 19 

coupling with the amygdala and hippocampus. Conversely, the anterior vmPFC was more active for the 20 

more predictable attacks and showed coupling with the striatum. Our findings suggest that when pre-21 

empting danger, the anterior vmPFC may provide a safety signal, possibly via predictable outcomes, 22 

while the posterior vmPFC drives prospective danger signals. 23 



2 

 

Introduction 24 

Staying in close proximity to safety is a key antipredator behavior as it increases the likelihood of the 25 

organism’s future escape success (Mobbs et al., 2020).  One metric used by behavioral ecologists to 26 

measure this safety behavior is called spatial margin of safety, where prey will adopt locations that 27 

prevent lethal predatory attack (Lima, 1985; Martindale, 1982; Wetterer, 1989) . In turn, this provides the 28 

prey with a safety net, while also reducing stress,  energy consumption and promotes increased focus on 29 

other survival behaviors, such as foraging and copulation. Humans appear to use safety distance in similar 30 

ways.  For example, when human subjects are placed close to a safety exit, measures of fear decrease and 31 

when under threat, and the sight of safety signals reduces fear and fear reinstatement (Christianson et al., 32 

2008, 2011; Eisenberger et al., 2011).  Here , we test the idea that when subjects are pre-empting threats 33 

of varying attack location probabilities, subjects will vary their spatial margin of safety (MOS) decisions 34 

depending on predictability.  We propose that MOS decisions involve prospective spatial planning, which 35 

involves estimating safety by calculating the predator’s attack locations (Cooper and Blumstein, 2015)  .  36 

Further, we examine how pre-emptive MOS decisions are instantiated in human defensive circuits 37 

(Mobbs and LeDoux, 2018; Mobbs et al., 2018).   38 

In the natural world, prey encounter predators that attack with varying degrees of uncertainty. Uncertainty 39 

is often determined by the likelihood of attack and the distribution of distances at which the threat will 40 

attack. For example, uncertainty alerts the prey that information about the predator’s impending attack 41 

location is unknown, thereby resulting in increased anxiety and movement towards safety (Grupe and 42 

Nitschke, 2013). Thus, pre-empting predation via close spatial MOS,  safeguards against the 43 

unpredictable spatial and temporal movements of the predator (Ii and Lima, 2006) .  Consequently, the 44 

ability to predict a predator’s attack location will in turn shape the prey’s MOS calculations, whereby 45 

uncertain threats will result in low risk behaviors and smaller spatial radius from a refuge at the expense 46 

of forgoing other survival needs (e.g. food). In particular, frequent and salient outlier information in a 47 

given information, as presented as leptokurtic noise, makes organisms prone to overreaction and 48 

inaccurate estimations of the environment (d’Acremont and Bossaerts, 2016). Therefore, our second 49 
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question is how statistical uncertainty of a threat’s attack location sways spatial MOS decisions and shifts 50 

activity in the human defensive circuits. 51 

         The prospective nature of MOS decisions may elicit activity in a set of neural circuits involved in 52 

anxiety (Adhikari, 2014)  , which can be defined as a future oriented emotional state and involves the 53 

behavioral avoidance of potential dangers. Two drivers in this spatial avoidance are the ventromedial 54 

prefrontal cortex (vmPFC), and the hippocampus (Adhikari, 2014; LeDoux and Pine, 2016; Mobbs, 2018; 55 

Qi et al., 2018)  (Adhikari, 2014; LeDoux and Pine, 2016)  . For example, the hippocampus plays a key 56 

role in anxiety,  and guides decisions via memory and prospection(Benoit et al., 2014; Hassabis et al., 57 

2007).  Further, synchronization between the hippocampus and vmPFC are associated with anxiety like 58 

behaviors(Adhikari et al., 2010; Fung et al., 2019; Padilla-Coreano et al., 2016), suggesting that the 59 

hippocampus, potentially along with the amygdala, is involved in signaling the threat significance of a 60 

stimulus. The vmPFC is a heterogeneous structure involved in information seeking, anticipation and the 61 

organization of defensive and safety responses (Adhikari et al., 2010; Dixon et al., 2017; Iigaya et al., 62 

2019; Wallis et al., 2017).    Research has shown that a safety stimulus during an aversive experience 63 

results in increased activity in the anterior vmPFC while decreasing threat also results in increased 64 

activity in the same region, suggesting that the anterior vmPFC may emit safety signals(Åhs et al., 2015; 65 

Eisenberger et al., 2011). Research also shows that attention set to safety signals, extinction, and down-66 

regulation of anxiety are associated with vmPFC activity, suggesting that it is a key node in what has been 67 

called the fear suppression circuit(Sangha et al., 2020; Wilkinson et al., 1998; Xu et al., 2016). 68 

Conversely, the posterior vmPFC, encompassing the subgenual and rostral anterior cingulate cortex 69 

(sgACC and rACC), receives dense projections from the amygdala (Amaral and Insausti, 1992)    and is 70 

implicated in negative affective responses and behavioral expression of fear( Grupe and Nitschke, 2013; 71 

Mobbs, 2018; Mobbs et al., 2007, 2010).  How these, and other brain regions are evoked during pre-72 

emptive MOS decisions is yet to be tested.   73 

       To address these gaps in knowledge between spatial MOS decisions and human defensive circuits, 74 

we created a task to investigate spatial MOS decisions under uncertainty and elucidate: (i) How do 75 
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changes in the threat’s attack predictability, threat intensity, and reward value impact the subjects’ MOS 76 

decisions? And ii) Do the hippocampus and vmPFC encode characteristics of threats that are central to 77 

MOS decisions?  This task models the ecological phenomena where animals venture further away from 78 

their safety refuge to acquire adequate supplies of food. To create less predictable attack positions, we 79 

used leptokurtic distributions, which are evolutionarily novel and volatile in nature, and have been shown 80 

to increase the level of uncertainty and difficulty to learn to the environment (d’Acremont and Bossaerts, 81 

2016). Leptokurtic noise is generated as the composite of two normal distributions with similar means 82 

and contrasting variances. Leptokurtic distributions are thus probability density curves that have higher 83 

peaks at the mean and are fatter tailed where extreme outcomes (outliers) are expected more (Fig. C). We 84 

contrasted this with standard Gaussians (Fig. 1D and E)), which are more computationally familiar. We 85 

hypothesized that when subjects are facing virtual predators with higher frequency of outlier attack 86 

distributions, this will result in more uncertainty and therefore, decisions to move closer to safety.  87 

Fig. 1: Experimental Structure 88 

 89 
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(A)During the MOS decision task, every 10 trials are grouped as a block. Participants were first presented 90 

with a screen with a series of information at the beginning of every block, including the reward/shock 91 

level, color of the predator (leptokurtic condition in color red; normmatch  in color green, where the 92 

variance of the distribution is matched with the leptokurtic condition.; normhalf , in color blue, where the 93 

variance is half as compared to the leptokurtic condition). Next, they were asked to rate how confident 94 

they were to escape the threat from a scale of 1 to 5.  Participants were then presented with information 95 

regarding shock and reward levels. There are 4 conditions in total : low reward, low shock, where one 96 

shock and the base reward is administrated; low reward, high shock, where two shocks and the base 97 

reward is administrated; high reward, low shock, where one shock and twice the base reward is 98 

administrated; high reward, high shock, where two shocks and twice the base reward is administrated.  99 

(B) During a trial, for the first 4 seconds, participants were presented with a screen displaying the margin 100 

of safety runway and their initial location. They were told to make a choice of which runway position 101 

they want to be at when the threat approaches later. To prevent motor confounds, they were specifically 102 

told to only mentally make the decision, and blocked from pressing the button during this phase.  After a 103 

4-second jitter, they were presented with the same screen again where they can press the button and move 104 

to the desired MOS location.  A dynamic bar displaying the maximum possible reward associated with 105 

the chosen MOS location is also presented on top of the screen. In the next 2 seconds, the outcome of the 106 

chasing was revealed, including whether their escape was successful and how much reward was gained.  107 

Attack distributions for (C)leptokurtic distribution ; (D) gaussian distribution with matched variance and 108 

(E) half the variance gaussian; (F) the predator’s attack distances through all trials. Zero on the Y axis 109 

marks the mean of the distribution, while numbers represent how far away the drawn instance is away 110 

from the mean. (G) Escape probability. X axis represents possible margin of safety choices, while Y 111 

access represents the corresponding probability of escape. (H) Schematic representation of the 112 

experimental procedure. Participants undergo 4 x 30 min scans sessions over a two-day period.   113 

Results  114 



6 

 

Participants make less risky MOS choices in the less predictable threat 115 

environment  116 

MOS choice in the task represents the position participants selected relative to the safety refuge. A 117 

position choices that is closer to the safety is considered less risky, granting participants an easier access 118 

to the exit. In order to investigate how the uncertainty of predator attacks modulate MOS choices, we first 119 

examined how MOS decisions vary across distributions types, with a repeated-measures, one-way 120 

ANOVA. The result showed a main effect of distribution type [F(2,44) = 61.33, p < 0.001]. A Tukey post 121 

hoc test revealed that participants’ MOS choices were significantly closer to the safety zone in the 122 

leptokurtic distribution condition (0.74 +- 0.06) than in the normmatch condition (0.68 +- 0.03) and 123 

normhalf condition (0.67 +- 0.01). This indicates that participants made less risky MOS choices in a less 124 

predictable threat environment, potentially as a result of their perceiving the leptokurtic attackers as more 125 

dangerous. Interestingly, there was no significant difference in mean MOS choices between the two 126 

normal distributions. This suggests a mere difference in attack distance variance is not sufficient to drive 127 

behavioral change.  (Figure 2 a,b,c,d) 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 
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Fig. 2: Behavioral Results 140 

 141 

Choice frequencies for (A) leptokurtic, (B) matched variance normal and (C) half variance normal 142 

attacking threats. The MOS decision phase and the outcome.  (D): Confidence ratings for leptokurtic 143 

distribution, matched variance normal distribution, and normal distribution with half variance. Post-hoc 144 

analysis revealed that participants were less confident in the leptokurtic condition compared to the other 145 

two conditions (p < 0.001).  Leptokurtic attack location are in red; normal distribution with matching 146 

variance  are in green; and  normal distribution with half variance  are in blue. 147 

 148 

Participants made less risky MOS choicesin threat environment with higher 149 

punishment 150 

To further disentangle how shock and reward levels could interact with predator attack type as additional 151 

external incentives, we examined participants’ MOS choices within different shock and reward 152 

conditions. While there was no significant difference in their MOS decisions when facing different levels 153 
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of rewards (t(21) = 1.378, p = 0.182) their MOS choices were significantly less riskt in the high shock 154 

condition (0.75 +- 0.07), compared to the low shock condition (0.69+-0.05): t(21) = 21.21, p < 0.001. 155 

This suggests that participants were sensitive to the level of danger and adjusted their MOS decisions 156 

accordingly (Supplementary figure 1). The lack of sensitivity to rewards comes potentially from the 157 

overwhelming aversiveness of the shock.      (1) 158 

 159 

More confident participants made riskier MOS decisions 160 

Having shown that the level of predictability in the attack distribution influences MOS decisions, we 161 

asked whether it also affects subjective confidence in escape success. We collected participants’ 162 

confidence ratings before every unique trial block (shown in figure 1 A/B, where every 10 trials consist a 163 

unique trial block). An ANOVA on the confidence ratings also revealed that participants were generally 164 

more confident on trials in the normal distributions (both matched variance and half variance) compared 165 

with trials in the leptokurtic distribution. A main effect of distribution type was found [F(2,44) = 27.32, p 166 

< 0.001], and a Tukey post hoc test showed that confidence rating in the leptokurtic condition (1.42 +- 167 

0.42) was significantly lower than those in the normmatch condition (2.43 +- 0.68) and the normhalf  168 

variance (2.65 +- 0.62) (p < 0.001) (figure 2 e). We also examined the relationship between participants’ 169 

MOS choices and confidence ratings. Interestingly, a significant correlation was only observed in the 170 

leptokurtic condition, where individuals who were more confident made riskier MOS choices (r = -0.54. p 171 

= 0.04). This effect was not observed for either the normmatch  condition (r = 0.25, p = 0.37) nor the 172 

normhalf   condition (r = -0.31, p = 0.27). 173 

 174 

MOS decisions are represented within prefrontal and subcortical regions  175 

Building on our behavioral results, we next sought to identify neural systems underlying MOS decisions 176 

in response to varying levels of threat predictability. Due to the design feature of the behavioral 177 

experiment, the decision phase consists of  both a cognitive (perception of the threat) and decision 178 
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component, making the univariate analysis insufficient to capture the underlying dynamics of the neural 179 

process (Davis et al., 2014; Norman et al., 2006). The MVPA analysis here thus serves two main 180 

purposes: 1) to identify the key regions involved in decision making under the current threat, and 2) to 181 

distinguish the underlying neural mechanism among threats with different levels of predictability. Results 182 

of this analysis can then be used to inform ROIs for subsequent connectivity and parametric modulation 183 

analysis. To accomplish this, we used a searchlight cross-decoding approach using linear support vector 184 

regression (SVR) and leave-one-out cross-validation (see Supplementary Methods). 185 

 186 

Two separate whole brain searchlight analysis were performed to answer the following questions 187 

respectively: which regions are critically involved in 1) perceiving different attacking distributions and 2) 188 

making Margin of safety choices. Admittedly, there are potential overlap between the threat perception 189 

and decision making process. But our aim here is to identify the critical regions separately to better 190 

understand the processing stream.  191 

 192 

The first classifier predicted which attacking distribution a given trial belonged to. This showed that 193 

regions including the right insula and the mid-cingulate cortex (MCC) encoded the distribution type, with 194 

a decoding accuracy significantly higher than the Monte-Carlo simulated chance level accuracy (overall 195 

accuracy: t(21) = 2.82, p = .010).  The whole brain decoding map was thresholded at P<0.05 (FWE) (Fig. 196 

3a).  197 

 198 

Next, for the analysis of MOS decision types, each trial was labelled according to the MOS decision the 199 

participant made, and a classifier was trained to predict which trials fall into which decision categories. 200 

The categories were created by grouping MOS choices that are close in spatial distance together. During 201 

the task, the entire MOS choice runway is divided to 6 segments from left to right, resulting in 6 MOS 202 

decision categories. Each choice category thus represents a level of how close participants place 203 

themselves to the safety.  Decoding of choices was found in regions including the right hippocampus, 204 
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vmPFCpost and vmPFCant with a decoding accuracy significantly higher than chance level (t(21) = 2.47, 205 

p = .022). These results suggested that the both the distribution type and MOS decision making process is 206 

robustly represented in the above mentioned prefrontal and subcortical regions.  (Fig. 3 A,B) 207 

Fig. 3: Neural representation of pre-emptive MOS decisions.  208 

 209 

Avoidance decisions decoded in the vmPFC and the Hippocampus. (A): whole brain searchlight map 210 

displaying statistically significant regions for the MOS choice classifier (FDR corrected, p < 0.05). (B): 211 

Classification accuracy of the MOS choice classifier. Each dot represents data from a single participant. 212 

Average accuracy was significantly higher than the simulated chance level (p < 0.001). Box and whisker 213 

plots display accuracies from the region of interest classifiers, targeted at the pre-defined ROIs (the 214 

hippocampus, vmPFC (posterior) and vmPFC (anterior)).(C): In the hippocampus, classification accuracy 215 

from all three attack conditions were significantly higher than their corresponding chance levels. (D); 216 

Classification accuracy was only significantly higher than the chance level in the leptokurtic distribution 217 
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in vmPFCpost .(E): Classification accuracy was only significantly higher than the chance level in the 218 

normmatch condition in vmPFCant .  (F): Behavioral similarity structure among MOS choices. The 219 

Behavioral similarity structure displays how similar MOS choices are at the behavior level. For example, 220 

MOS choice 1 and 2 are closer in distance compare to choice 1 and 6, thus more similar in the structure. 221 

Naturally, choices are more similar when in close spatial distance, and more dissimilar when in sparse 222 

spatial distance. (G): Actual pattern similarity within the regions of interest. The neural RDM in the 223 

hippocampus was significantly correlated with the theoretical model (r = 0.593, P < 0.001). Similar 224 

correlation effects were also found in (H) vmPFCpost and (I) vmPFCant, (r = 0.754, p < 0.001; r = 0.482. 225 

p < 0.001). 226 

 227 

vmPFC subregions differentially encode MOS decisions according to levels of 228 

predictability 229 

The regions implicated in the whole brain searchlight overlap with ROIs in previous literature shown to 230 

be critically involved in the process of decision making under threat. We thus performed MVPA analysis 231 

within each ROI, namely the hippocampus, vmPFCpost  and vmPFCant to investigate how they uniquely 232 

contributed to the MOS decision process. Within each specified ROI, we investigated classification 233 

accuracy for the MOS decisions labels, separately for each distribution conditions. Thus, by comparing 234 

how well the process is decoded within each ROI, we can examine how the involved regions drive 235 

behavioral change depending on the  levels of predictability in different attacking conditions.   236 

 237 

Within the vmPFCpos , only choice decoding for the leptokurtic condition was significantly above the 238 

Monte-Carlo simulated chance level (Monte-Carlo simulated baselines: leptokurtic, 36.7%; normmatch  , 239 

34.8%; normhalf, 33.7%) (leptokurtic distribution, p < .001; normmatch, p =.410; normhalf, p = .868). 240 

Within the vmPFCant, only classification for the normmatch condition was significantly above chance 241 

level (leptokurtic distribution, p = .341; normmatch, p =.004; normhalf, p = .156). Within the 242 
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hippocampus, classification for all 3 distribution types was significantly above chance level (leptokurtic 243 

distribution, p < .001; normmatch, p = .011; normhalf, p = .038). A follow up ANOVA did not reveal a 244 

significant difference among the decoding accuracies (Fig. 3 B,C,D,E  ). 245 

 246 

Univariate overlap with vmPFC regions involved in ‘fear’ and ‘extinction’ 247 

To validate the functionality of brain regions identified as vital within the MOS paradigm, we constructed 248 

ROIs from neurosynth using the key words “fear” (for comparison with posterior vmPFC/sgACC) and 249 

“extinction” (for comparison with vmPFCant ) . ROIs were constructed using 6mm spheres from the peak 250 

coordinate. The above comparisons were made because we hypothesized that the two pairs of concepts 251 

would overlap: 1) “fear” and the approaching/increment of threat;  2) “extinction” and the reduced level 252 

of threat.  We then performed SVC with the “fear” ROI on vmPFCpos   with the leptokurtic contrast ( p < 253 

0.001, T = 5.07, cluster size = 31, (0,26,-12)) and SVC with the “extinction” ROI on vmPFCant (p = 254 

0.010, T = 4.35, cluster size = =11, (-2,46,-10) ). For a full list of activated regions, please refer to 255 

supplementary table 1. These coordinates overlap with the corresponding ROIs taken from the searchlight 256 

analysis, indicating that information processing and learning through both fear and safety are potentially 257 

presented in MOS decision making through vmPFCpost and vmPFCant, respectively.   258 

 259 

vmPFC activity encodes MOS decisions  260 

Having demonstrated that vmPFC activity patterns encode MOS decisions, the next step was to ask 261 

whether overall BOLD activity levels in the vmPFC also covaried with MOS decision (Fig. 4E). To test 262 

this, we constructed two univariate parametric modulators indicating whether the participants’ final MOS 263 

choices is a safety choice or a risky choice (compared to their randomly assigned initial location). The 264 

parametric modulation of univariate data thus reveals what regions showed activity associated with 265 

risky/safety choices under different levels of predictability. Inspection of the resulting statistical maps, 266 

using SVCs from the previously constructed vmPFCpost and vmPFCant   ROIs, showed that the “move to 267 
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danger” and “move to safety” modulations were significant in the vmPFCpost and vmPFCant  ROIs 268 

respectively (Move to danger: p < 0.001, T = 6.44;  Move to safety: p < 0.001, T = 4.39, supplementary 269 

table 4). 270 

 271 

vmPFC activity encodes MOS decisions  272 

Having demonstrated that vmPFC activity patterns encode MOS decisions, the next step was to ask 273 

whether overall BOLD activity levels in the vmPFC also covaried with MOS decision (Fig. 4E). To test 274 

this, we constructed two univariate parametric modulators indicating whether the participants’ final MOS 275 

choices is a safety choice or a risky choice (compared to their randomly assigned initial location). The 276 

parametric modulation of univariate data thus reveals what regions showed activity associated with 277 

risky/safety choices under different levels of predictability. Inspection of the resulting statistical maps, 278 

using SVCs from the previously constructed vmPFCpost and vmPFCant   ROIs, showed that the “move to 279 

danger” and “move to safety” modulations were significant in the vmPFCpost and vmPFCant  ROIs 280 

respectively (Move to danger: p < 0.001, T = 6.44;  Move to safety: p < 0.001, T = 4.39, supplementary 281 

table 4). 282 

 283 

Representational similarity analysis of the vmPFCpost, vmPFCant and 284 

hippocampus  285 

The MVPA searchlight analysis offers insights into key regions involved in encoding the MOS decision 286 

process. However, it is left unclear how different MOS choices (in this case, choices within one of the 287 

choice categories) were neurally represented in the ROIs. Thus, we conducted a representational 288 

similarity analysis to investigate the underlying geometry of the neural encoding of the MOS decision 289 

variables in the ROIs. Distinctive clustering in the RDM structure also help further validate the original 290 

behavioral paradigm, showing how sensitive participants were to all the possible MOS choice categories.     291 
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A Behavioral RDM, together with RDMs from the neural data within the hippocampus, vmPFCpost, and 292 

vmPFCant were constructed to investigate the potential MOS decision information and perceived 293 

distribution information embedded in the activity patterns of these ROIs. A high level of similarity 294 

between the theoretical structure (behavioral RDM) and the actual brain activity (neural RDM) in a 295 

certain ROI will indicate that task-relevant information is encoded in a way that is consistent with the 296 

behavioral structure of the during the MOS decision process. Figure 3 illustrates the theoretical/behavioral 297 

RDMs constructed by the pairwise relations of the 6 MOS decision categories. Spearman correlation 298 

coefficients were used to calculate the distance between the model and neural data matrices. The neural 299 

RDM in the hippocampus was significantly correlated with the theoretical model (r = 0.593, P < 0.001) 300 

across all conditions. Similar correlation effects were also found in vmPFCpost and vmPFCant, (r = 301 

0.754, p < 0.001; r = 0.482. p < 0.001), but these were specific to the leptokurtic and normmatch  302 

conditions respectively (fig 3f,g,h,i   ).  303 

 304 

Converging evidence from the searchlight analysis, univariate parametric modulation, and RSA analysis 305 

has shown that the vmPFC subregions (vmPFCpost and vmPFCant) play a vital role in the encoding of 306 

MOS decisions under environments with different levels of predictability. Next,we further investigate the 307 

connectivity structure seeding from these regions. 308 

 309 

Fig. 4:  Psychophysiological interactions seeding from regions of interest and meta analytical 310 

decoding 311 
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 312 

 (A) Example of Brodmann Areas (BA) that distinguish posterior-anterior axis.  For example, the posterior 313 

vmPFC reflects BA 25, 24, 32(ACC), 10m and 14, while the anterior encompasses BA 10p, 10 r 11, and 32 314 

(non-ACC).  This is made clearer by the dotted line.  Connectivity analysis were first performed on the 315 

anterior and posterior vmPFC seeds, where 6 mm spheres centered on the peak voxel of the 316 

corresponding clusters in the MVPA searchlight were used as seeding regions. (B) For the posterior 317 

vmPFC seed, in all three attacking conditions, the connectivity maps showed significant connectivity 318 

between the hippocampus and the seeding region (leptokurtic: p < 0.001,T = 4.06; normmatch:  p < 319 

0.001, T = 3.62; normhalf : p = 0.011, T = 3.18). Interestingly, only in the leptokurtic attacking condition, 320 

the amygdala was found significant on the connectivity map (p < 0.001, T = 4.60). (C) On the other hand, 321 

with the anterior vmPFC seed, all three attacking conditions showed significant connectivity towards the 322 

Caudate (leptokuctic: p < 0.001,T = 3.87; normmatch  P < 0.001, T = 4.23; normhalf   P < 0.001, T = 323 

4.59. ).  We constructed two parametric modulators indicating whether the participants’ final MOS 324 
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choices is a (D) safety choice or a (E) risky choice (compared to their randomly assigned initial location). 325 

The parametric modulation of univariate data thus reveals what regions were associated with 326 

risky/safety choices under different levels of predictability. On the resulting statistical maps, using SVCs 327 

from the previously constructed vmPFCpost and vmPFCant   ROIs, we found that the “move to danger” 328 

and “move to safety” modulations were significant in the vmPFCpost and vmPFCant   ROIs respectively 329 

(Move to danger: p < 0.001, T = 6.44;  Move to safety: p < 0.001, T = 4.39) (F)  Meta-analytical decoding 330 

with Neurosynth. Red and Green radar bars represent correlation strength between key words and the 331 

anterior (x = 0, y = 26, z = -12) and posterior(x = -2, y = 46, z = -10) vmPFC ROIs.   332 

 333 

Differences in vmPFC subregion connectivities 334 

 With vmPFCpost and vmPFCant   identified as key regions associated with risky and dangerous choices, 335 

we were interested in how these regions regulate MOS decisions in concert with subcortical structures. To 336 

test this, we performed connectivity analysis using gPPI (see supplementary methods), to reveal regions 337 

that showed covarying activity with our vmPFC seed regions.  From the MVPA analysis, we took the 338 

vmPFCpost and vmPFCant as seed regions for the leptokurtic distribution contrast and normal 339 

distribution contrasts, since they were identified as regions representing the process where participants 340 

make risk decisions under the corresponding predator conditions. PPI analyses were first performed on 341 

the moving to safety/danger contrast, respectively on the vmPFCpost and vmPFCant, ROIs (fig 4 b c) For 342 

the vmPFCpost seed, in all three attacking conditions, the connectivity maps showed significant 343 

activation in the hippocampus (leptokurtic: p < 0.001,T = 4.06; normmatch:  p < 0.001, T = 3.62; 344 

normhalf : p = 0.011, T = 3.18). Interestingly, only in the leptokurtic attacking condition did the amygdala 345 

show significant coupling with the vmPFCpost (p < 0.001, T = 4.60). On the other hand, with the anterior 346 

vmPFC seed, all three attacking conditions showed significant connectivity towards the caudate 347 

(leptokurtic: p < 0.001,T = 3.87; normmatch  P < 0.001, T = 4.23; normhalf   P < 0.001, T = 4.59. ). For a 348 

full list of activated regions, please refer to supplementary table 2.   349 
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Subjects continually optimize MOS decisions through adaptive learning from trial 350 

outcomes 351 

 In order to perform effectively on the task, subjects may continually adjust their policy depending on 352 

their perceived likelihood of escape which is updated on every trial depending on its outcome. We sought 353 

to test this by fitting a simple reinforcement learning model to the behavioral data which assumes subjects 354 

estimate the likelihood of receiving a given reward (which depends on both the available reward level and 355 

the likelihood of survival) on each trial.  356 

 357 

This took the form of a standard Rescorla-Wagner learning model which was used to characterize 358 

participants’ margin of safety choice behaviors. The learning rate ‘α’ reflects to what extent participants’ 359 

choice of MOS is based on the most recent outcomes. A high learning rate indicates that choice behavior 360 

is updated in a more rapid manner based on the difference between the expected choice outcome and the 361 

actual choice outcome. In contrast, at low learning rates, surprising outcomes lead to little change in their 362 

choice on the next trial.  In the current study, we estimated participants’ learning rates in the uncertain vs 363 

more certain attack position blocks by fitting a reinforcement learning model(Browning et al., 2015) to 364 

their choices in each task block (10 trials per session, as described in figure 1).  365 

 366 

We first examined whether our model recapitulated observed patterns in the MOS decision data. The 367 

model demonstrated behavior that was consistent with the true data (Figure 5 a), indicating that a 368 

reinforcement learning model can describe subjects’ behavior in the task. We next assessed whether 369 

participants, as a group, adapted their learning rate in response to the change in attack distances between 370 

the more predictable normal distributed attack distances and more uncertain attack distances characterized 371 

by leptokurtic outliers. Consistent with previous studies of reinforcement learning, participants’ learning 372 

rates were higher in the leptokurtic attack than the more predictable normally distributed attacks 373 

positions. (Main effect of attack distribution: F(2,63) = 4.43, p =  0.0159. Post hoc comparisons, p<0.001) 374 
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(figure 5 b), indicating that subjects adapted their learning based on the level of uncertainty in the attack 375 

distribution. 376 

 377 

MOS prediction errors are tracked by a distributed network of brain regions 378 

A parametric modulation analysis on univariate data, using the prediction error from the RL model was 379 

performed to address what underlying neural processes were involved during the learning process  of 380 

participants’ MOS decisions.  Small volume corrections were performed on the key ROIs : hippocampus: 381 

leptokurtic: p = 0.002; normmatch: p = 0.004; normhalf: p = 0.191;  amygdala: leptokurtic: P = 0.014; 382 

normmatch: p = 0.006; normhalf: P = 0.094; striatum: leptokurtic: p < 0.001; normmatch: p < 0.001; 383 

normhalf: p < 0.001. This suggests that while the striatum decodes the representation of prediction error 384 

in all three attacking distributions, the hippocampus and amygdala were involved only in the leptokurtic 385 

and normmatch  attacking conditions. (figure 5 d e). 386 

Fig. 5:  Behavioral modelling  387 

 388 



19 

 

(A) Actual MOS choice categories and model fitting MOS choice categories. Choice 1~6 are choice 389 

categories from risky to safe. Y axis represents the choice ratio under each category (B) Learning rate 390 

from the reinforcement learning model over two days. Data of two sessions within one day were averaged 391 

across participants. Learning rate in the leptokurtic condition (which is more predictable) was 392 

significantly higher than the other two conditions (posthoc p < 0.001).(C):  Maps showing parametric 393 

modulation with prediction errors from the model. Small volume corrections (D): (hippocampus): 394 

leptokurtic: p = 0.002,; norm1: p = 0.004 ; norm2: p = 0.191 ;  (amygdala): leptokurtic: P = 0.014; norm1: 395 

p = 0.006; norm2: P = 0.094 (E): (striatum): leptokurtic: p < 0.001; norm1: p < 0.001; norm2: p < 0.001. 396 

For the remaining activated regions, please refer to supplementary table 3. 397 

 398 

Discussion  399 

We found evidence in support of our hypothesis that in uncertain environments, participants adjust their 400 

distance to be closer to safety(Mobbs et al., 2015).  We also show that when encountering a more 401 

uncertain threat, participants decreased confidence in escape success, while displaying higher learning 402 

rates, signifying that under uncertain environments, people adjust decisions more based on recent, 403 

immediate information, instead of accumulated information over time. Our MVPA analysis shows that 404 

the vmPFCPost is associated with avoidance of more uncertain threats and consequently the decision to 405 

stay closer to safety.  The vmPFCPost  also showed increased functional coupling with the hippocampus 406 

and amygdala, supporting the known connectivity with this region as well as its role in control of 407 

fear(Mobbs and Kim, 2015; Nili et al., 2010).  On the other hand, the vmPFCAnt was associated with 408 

more certain attack locations and thereby executing safer decisions.  These results are congruent with the 409 

idea that vmPFC sub-regions play distinct roles in both danger and safety signals that reflect the ability to 410 

predict positive or negative outcomes with a threat. 411 

  412 
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Our results suggest that when the attack location is relatively predictable (i.e. normmatch and normhalf 413 

Gaussian distributions), participants make more risky MOS choices.  That is, subjects choose to place 414 

themselves further away from the safety exit to earn more reward. On the other hand, when the attack 415 

location is more unpredictable (i.e. leptokurtic distribution), participants tended to place themselves closer 416 

to safety and thus displayed more protective actions. Critically, despite significant differences in variance, 417 

there were no differences in MOS decisions between the two Guassian distributions. This suggests that 418 

participants’ decision patterns facing uncertain threats was not swayed by a simple change in distribution 419 

variance, but by a total structural change in the predictability of the distribution. This was echoed in 420 

participants’ subjective rating of their confidence, a reflection of how likely they felt they were to escape 421 

(Fig. 2E).  422 

 423 

When dissecting the defensive circuitry, it is critical to understand which brain regions are involved in the 424 

avoidance of forthcoming danger.  Our MVPA searchlight identified three key regions, namely the 425 

hippocampus, the vmPFCPost and the vmPFCAnt.  Interestingly, when looking at the classification 426 

accuracies, we found that within the vmPFCAnt, classification accuracy was above chance level only for 427 

the normhalf, in line with our prediction that this region would be involved in the most more predictable 428 

attack locations. On the other hand, within the vmPFCPost, the classification was more accurate than 429 

chance level only for the more unpredictable, leptokurtic distribution condition. This suggests a 430 

separation of vmPFC subregions in terms of functional roles. While the vmPFCAnt is correlated with 431 

more predictable decision environments, the vmPFCPost seems to be associated with more volatile 432 

counterparts. Interestingly, the hippocampus classification accuracies revealed no differences between 433 

attack locations distributions, suggesting a more general role in avoidance decisions. 434 

 435 
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The vmPFCPost  may function as a hub when the environment is more uncertain and where more 436 

information gathering is needed. Further evidence for this comes from our parametric modulation analysis 437 

using relative MOS from the starting position, which showed that more dangerous choices are associated 438 

with activation in the vmPFCPost. This suggests a tentative role for the vmPFCPost to be responsible for 439 

computations concerning a more unpredictable environment, or a more risky choice. In our connectivity 440 

analysis seeding from the vmPFCPost, we observed activations in amygdala and hippocampus only in the 441 

uncertain attacking locations. Previous research has shown a role for the amygdala-mPFC as a pathway of 442 

modulating threat avoidance behavior, and hippocampus as a center for representing predictive 443 

relationships between environmental states (Lisman and Redish, 2009; Stachenfeld et al., 2017).   This is 444 

in line with the idea that for decision making under threat with less predictability, more predictive 445 

computations are required.  446 

 447 

The vmPFCAnt modulates behavior when the environment is relatively easy to predict during the spatial 448 

MOS decisions. Interestingly, using relative MOS from the starting position as a modulator in the 449 

parametric modulation analysis, the vmPFCAnt  was also activated when the choice is categorized as 450 

“safe”. In previous studies, this region has been implicated in both safety learning through extinction and 451 

safety learning through active avoidance (Eisenberger et al., 2011; Harrison et al., 2017).  For example, 452 

studies using the lever press avoidance task in rodents have shown activation of the prelimbic regions of 453 

MPFC (the rodent homologue of human anterior vmPFC) during the expression of active 454 

avoidance(Bravo-Rivera et al., 2015; Diehl et al., 2018) .  These regions partially overlap with the 455 

identified clusters of vmPFCAnt in our task. Further, when looking at functional connectivity seeding 456 

from the vmPFCAnt, the caudate was significant only in the two more predictable predator conditions, 457 

although there may be other explanations (action selection(Lau and Glimcher, 2007)). This resonates with 458 

previous studies where vmPFC not only functions as a center for signaling safety, but also in reward 459 

related processes, because safety processing may be “intrinsically rewarding or reinforcing” (Eisenberger 460 
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et al., 2011) . This is also supported by a parametric modulation analysis showing that shifts towards 461 

safety activate the vmPFCAnt. Also involved in this process is the striatum, which has been shown to be 462 

responsible for fear memory extinction(Alexander et al., 2019; Maren and Quirk, 2004). For example, 463 

previous research on rodents has shown that in rats, the dopamine level in the striatum was unchanged 464 

after exposure to novel environmental stimulus, but follows more closely to the expression of conditioned 465 

response(Wilkinson et al., 1998). Interestingly, this orchestrates with our finding where the striatum is 466 

only responsive to the high predictability threats together with the vmPFCAnt. 467 

 468 

We further correlated the neural data with behavioral parameters from the exploratory reinforcement 469 

learning model. Parametric modulation using prediction error from the RL model also activated the 470 

amygdala in the more uncertain, leptokurtic attacking condition, providing additional evidence for the 471 

modulation mechanism where amygdala is involved in the more volatile threat conditions when large 472 

discrepancies between expected and observed outcomes happen. Within all predator conditions, the 473 

ventral striatum and putamen were also significantly activated in correlation with the PE signal. This is 474 

consistent with previous studies where learning under uncertain environments occurs through reward 475 

based pathways(Jocham et al., 2011; Leong et al., 2017).  On the other hand, parametric modulation using 476 

learning rates established vmPFCAnt as a hub for MOS decision making when facing predictable attack 477 

distances.   478 

 479 

The hippocampus also emerged as a central region involved in MOS decisions. First, decoding of choice 480 

was higher than chance level in the hippocampus, regardless of how uncertain the attacking locations 481 

were. However, the hippocampus only showed functional connectivity with the vmPFCPost in the 482 

uncertain, leptokurtic attacking condition. The first finding resonates with the idea that the hippocampus 483 

has long been thought of as a predictive map and center for planning when considering future actions 484 
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based on immediate feedback from the environment (Bach et al., 2014; Lisman and Redish, 2009; 485 

Stachenfeld et al., 2017).  It was thus universally involved regardless of the uncertainty level of the 486 

attacking environment.  However, our results indicate that activity in the hippocampus becomes more 487 

coordinated with the vmPFCPost in situations which require more intensive planning, as evidenced by the 488 

distinct functional connectivity to the hippocampus when the subjects are encountering a more 489 

unpredictable, leptokurtic, attacking threat. Indeed, our finding corresponds to previous studies using 490 

rodents where the hippocampus has been shown to specifically contribute to model based planning, that 491 

may include  also memory based decision making (Miller et al., 2017)                   . 492 

 493 

The current study offers the first insight into how spatial MOS decisions are determined in threat 494 

environments with different levels of predictability. It also establishes the posterior and anterior vmPFC 495 

subregions as centers modulating the push and pull between risky and safe choices, where the 496 

hippocampus is involved in both processes in a more universal manner. More work is needed to further 497 

validate the functional separation of vmPFC subregions in terms of their roles during decision making 498 

under threat. These new insights, however, suggest a dissociable role of the vmPFC in anxiety, where the 499 

vmPFCPost  is involved in heightened threat signals, while the vmPFCAnt  may be involved in down 500 

regulation of threat via safety signals. 501 
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