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Abstract: The role of gut microbiota and its association with the central nervous system via the
microbiome-brain-gut axis has been widely discussed in the literature. The aim of this review is to
investigate the impact of gut microbiota on the development of depression and underlying molecular
mechanisms. There are two possible pathways in which this interaction might occur. The first
one suggests that depressive disorder could lead to dysbiosis and one of the causes may be the
influence on the hypothalamic-pituitary-adrenal (HPA) axis. The second one considers if changes
in the composition of gut microbiota might cause depressive disorder. The mechanisms that could
be responsible for this interaction include the secretion of neurotransmitters, gut peptides and the
activation of the immune system. However, current knowledge on this topic does not allow for us
to state an unambiguous conclusion, and future studies that take into consideration more precise
stress-measurement methods are needed to further explore direct mechanisms of the interaction
between gut microbiota and mental health.
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1. Introduction
1.1. What Is Metagenome?

It has long been known that the gut microbiota and metabolic processes in the human
body interact with each other. Currently, microbiota refers to all microorganisms, i.e.,
bacteria, fungi, viruses and archaea, that inhabit the human body, while the term micro-
biome refers to the collection of their genomes, which is 100 times larger than the human
genome [1], so that the host genome and microbiome constitute a common “metagenome.”
Bacteria are the dominant population of the gut microbiome [2], accounting for up to 99%
of the genes in the gut. Of these, we can distinguish the four most numerous and species-
variable phyla, namely Bacteroidetes and Firmicutes [3] (representing about 90–99 percent),
Proteobacteria and Actinobacteria [4]. For many years, it was thought that the role of
the gut microbiome was primarily related to its activities in the gut, such as maintaining
normal gut motility, digesting food, absorbing nutrients, and maintaining gut integrity [5].

1.2. How Are the Brain and the Gut Communicating?

Recent approaches to the subject, however, point to the microbiota’s ability to influence
the central nervous system, specifically to promote a reciprocal bidirectional relationship
between the brain and the gut. The brain and gut, through the microbiota, can influence
each other’s functions via neuroendocrine, neuroimmune and sensory-neural molecular
pathways. Moreover, both hypothalamic-pituitary-adrenal (HPA) axis and gut peptides
might be involved in this communication system [6,7]. The connection between brain
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and gut microbiota can significantly impact stress, anxiety, cognition and neuropsychiatric
disorders such as depression, bipolar disorder, schizophrenia, and anxiety [8,9]. The
chronological order of the disturbances is not established, so it is not known exactly
whether depression causes intestinal dysbiosis or whether it is changes in the composition
of the microbiota that promote depression. On one hand, in an experiment conducted
on rodents, depressive disorders developed in those who were transplanted with fecal
samples from depressed patients. On the other hand, however, the rodents that exhibited
depressive behavior and experienced stress showed alterations and reduced diversity in
their gut microbiota [10]. This review paper will attempt to consider two hypotheses:

Does depressive disorder cause dysbiosis? Do alterations in gut microbiota lead
to depression?

2. What Is the Gut Microbiota?

Gut microbiota is a complex and highly diverse community of trillions of microorgan-
isms that live in the digestive tracts of humans and animals, including insects [11,12]. Mi-
crobiota are ten times more abundant than our somatic and germ line cells of the body [13].
The human gut microbiota consists of several types of microbes including bacteria, archaea,
eukarya, viruses and parasites [14] that weigh approximately 1 kg and represents the first
protection system of the gastrointestinal (GI) apparatus. The microenvironment of the gut
favors the growth of bacteria from seven predominant divisions (Firmicutes, Bacteroidetes,
Actinobacteria, Fusobacteria, Proteobacteria, Verrucomicrobia and Cyanobacteria) [15].
Among these, more than 90% of the total population is made up of the Bacteroidetes and
Firmicutes [13]. The presence of the microbiota differs within the parts of the GI tract,
from few micro-organisms in the stomach and small intestine, up to a concentration of
approximately 1012 bacteria in the colon [16,17]. In humans, the gut microbiota has the
biggest quantities of microorganisms, and the greatest number of species compared to other
parts of the body [18].

Microbiota acquired at birth develop in parallel with the host and maintains its temporal
stability and diversity through adulthood until death [19]. The gut microbiota forms an
integral part of the human body [13] and plays a significant role in its normal functioning [11].

Though the gut microbiota is dynamic, it performs some basic immunological, metabolic,
structural and neurological functions [13]. The metabolic role consists of the conversion of
dietary elements into bioactive food components [8]. The gut microbiota scavenge about
10–30% of energy from the dietary fibers in the colon and the rest is excreted as feces [20].
Gut microbes possess an array of enzymes enabling the utilization of carbohydrates re-
sistant to digestion by host digestive enzymes such as lignin, non-starch polysaccharides,
resistant starch and oligosaccharides. Gut microbiota of the lower intestines ferments all
of the dietary fibers, which results in the release of gases, short chain fatty acids (SCFAs),
organic acids, and alcohols. SCFAs, the most prevalent being acetate, propionate and
butyrate, meet about 10% of caloric demand of the host [21] and their main producers
are Roseburia spp., Eubacterium rectale, Faecalibacterium prausnitzii and Clostridium spp. [22].
SCFAs also have promising anti-inflammatory and chemo-preventive properties [23]. Ac-
cording to the MEROPS database, gut microbiota have various peptidase and protease
enzymes. Clostridium spp., Bacteroides spp. and Lactobacillus spp. are of special importance
because of the diversity of possessed enzymes [24]. Some gut bacteria take part in the trans-
formation of bile acids—their bile salt hydrolase deconjugates the unabsorbed bile salt and
produces deoxycholate, ursodeoxycholate and lithocholate [8]. Gut microbiota executes its
protective role by occupying intestinal surfaces and preventing the invasion of pathogenic
microorganisms through creating a stable system. The epithelial cells of the mucosal barrier
use the SCFAs as an energy source. Gut microbiota exhibit a significant impact on bone
growth and development though SCFAs, regulation of calcium and phosphorus absorption
from the diet and immunoregulation by the Lactobacillus spp. of the osteoclast-osteoblast
mediated bone remodeling process [8]. Gut microbiota can control both the central and
enteric nervous system through various mechanisms such as the production and expression
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of neurotransmitters and neurotrophic factors, modulating the enteric sensory afferents,
metabolite production, immunoregulation of mucosa and maintaining the integrity of the
intestinal barrier and tight junctions.

There are several factors that can change the gut microbiota composition and function.
Numerous studies have indicated that host genetics influences the composition of the gut
microbiome [25]. Pattern recognition receptors modulate microbiome composition and
the diseases associated with it. After birth, gut microbiota is shaped mainly by diet as the
microbiome adjust to absorbed nutrients. Firstly, it is enriched in genes involved in the
metabolism of breast milk’s oligosaccharides, whereas later in the ones associated with the
digestion of polysaccharides and vitamins [26]. The method of feeding the newborn signifi-
cantly influences the microbiome composition—breast-fed infants exhibit an overgrowth of
Actinobacteria and an inhibition of Firmicutes and Proteobacteria, whereas formula-fed
infants experience an increase of Clostridium, Streptococci, Bacteroides and Enterobacteri-
aceae [27]. Vegetarians exhibit the dominance of Firmicutes and Bacteroidetes [8]. The
abundance of bile-tolerant species (Bacteroides, Bilophila and Alistipes) and suppression
of Firmicutes have been correlated with a diet rich in protein and fats. Another factors
significantly affecting the microbiota composition is age. The first year of age is considered
to be the most important period of development. Taxonomic diversity is low at birth, but
increases over time. Firmicutes and Bacteroidetes are dominating the adult gut microbiota,
while the elderly exhibit a decrease in Bacteroidetes to Firmicutes ratio, a reduction in
Bifidobacterium, amylolytic activity and SCFAs production and an abundance of Enterobac-
teriaceae [28]. Exercise increases the diversity of microflora by both internal and external
factors such as overall healthy lifestyle, intrinsic adaptation to training, lower levels of
inflammation, reduced morbidity and improved metabolic markers. Greater amounts
of Firmicutes and a lower amount of Bacteroidetes were found in athletes as compared
to non-athletes [8]. What is more, the antibiotics destroy both pathogenic and beneficial
microbes causing dysbiosis—a disturbance of gut microbiota [29]. The kind of antibiotic
and the length of the treatment are associated with the effect on gut microbiota. Moreover,
studies have demonstrated an impact of smoking on microbiota composition, with the
most significant impact observed in the oral cavity [30].

The disturbance of the gut microbiota population associated with the alteration of the
microbial composition was proven to be related with diverse pathological conditions, i.e.,
inflammatory bowel diseases (IBD) [31], obesity and diabetes [32], allergy [33], autoimmune
diseases [34] and cardiovascular disease [35]. Examples of changes in the composition of
gut microbiota correlated with various diseases are shown in Table 1.

Table 1. Correlation of diseases with the changes in gut microbiota composition.

Disease Paper Increase Decrease

Irritable bowel
syndrome

Jeffery et al.
(2012) [36]

Firmicutes especially Clostridium,
Ruminococcus and Dorea a

Ruminococcus albus, Bacteroides
fragilis, Bacteroides vulgatus and

Ruminococcus callidus a

Inflammatory bowel
disease (IBD)

Nishida et al.
(2018) [37]

Mucolytic bacteria (Ruminococcus
gnavas, Ruminococcus torques),

sulfate-reducing bacteria
(Desulfovibrio), pathogenic bacteria
(adhesion/invasive Escherichia coli)

Firmicutes, SCFA-producing bacteria
(Clostridium cluster IV, XIVa, XVII
and Faecalibacterium prausnitzzi)

Obesity Le Chatelier et al.
(2013) [38]

Porphyromonas, Campylobacter,
Bacteroides, Staphylococcus,
Parabacteroides, Dialister

and Ruminococcus

Lactobacillus, Bifidobacterium,
Faecalibacterium, Akkermansia,

Methanobrevibacter and Coprococcus

Insulin resistance and
Diabetes mellitus type 2

Munoz-Garach et al.
(2016) [39]

Firmicutes, Lactobacillus gasseri,
Streptococcus mutans, Escherichia coli

Bacteroidetes, Roseburia, Eubacterium
halli, Faecalibacterium prauznitzi
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Table 1. Cont.

Disease Paper Increase Decrease

Hypertension Dan et al. (2019) [40]
Acetobacteroides, Alistipes, Bacteroides,

Christensenella, Clostridium sensu
stricto, Desulfovibrio, Parabacteroides

Acetobacteroides, Clostridium,
Coprobacter, Enterococcus,

Enterorhabdus, Lachnospiracea,
Lactobacillus, Paraprevotella, Prevotella
Romboutsia, Ruminococcus, Veillonella

Asthma O’Connor et al.
(2018) [41] Bifidobacterium adolescentis

Staphylococcus aureus,
Faecalibacterium prausnitzii and

Clostridium

Autistic spectrum
disorder Strati et al. (2017) [42] Collinsella, Corynebacterium, Dorea and

Lactobacillus
Alistipes, Bilophila, Dialister,

Parabacteroides and Veillonella
a—selection of microbiota listed by this paper.

The human gut microbiota has received considerable interest in recent years and
our knowledge about the species and their potential applications is increasing with the
increasing number of metagenomics studies [11].

3. What Is Major Depressive Disorder (MDD)?

Major Depressive Disorder (MDD) is a disease that affects more than 264 million
people worldwide, approximately 800,000 of whom commit suicide annually [43]. However,
there are many more people with MDD (>350 million), and, in addition, the number of
undiagnosed people who suffer from subclinical depressive symptoms is estimated to
be even higher [44,45]. It is worth noting that the prevalence of MDD over a 12-month
period is almost identical when comparing high-income countries (5.5%) with low- and
middle-income countries (5.9%). This indicates that MDD is neither a direct result of
contemporary lifestyles in developed countries nor of poverty [46]. The diagnosis is made
if the patient has the following symptoms: constantly depressed or depressive mood,
feelings of guilt, anhedonia, feelings of worthlessness, lack of energy, trouble concentrating,
changes in appetite, psychomotor slowing or agitation, insomnia and other sleep problems,
or suicidal thoughts [47]. The phenomena associated with depression include, but are not
limited to, deterioration in physical health and quality of life, increased unemployment,
malfunctioning in the community, decreased productivity, and demand for improvements
in the health care system [45].

Depression is associated the with abnormal function of the hypothalamic-pituitary-
adrenal (HPA) axis [6]. Structural changes in the basal limbic system might also play a vital
role in the pathogenesis of depressive disorder. This hypothesis is supported by both
biochemical and histopathological findings [48]. Understanding the pathophysiology of
depression is not easy because depressive syndromes are heterogeneous and their etiology
is likely diverse [49]. Several mechanisms of this disease, as understood so far, suggest
that there is a bidirectional influence between the gut microbiota and the central nervous
system, including depression. The effects of depression on the gut microbiota are regulated
by stress, changes in the release of neurotransmitters and other signaling molecules in the
gut and dysregulation of the immune response [50].

4. Does Depressive Disorder Cause Dysbiosis?
4.1. Stress and Gastrointestinal Disorders

It was Hans Seyle who first hypothesized that stress can be a cause of multiple somatic
disorders. According to his theory, an illness was considered to be a result of errors in
the adaptation syndrome and therefore called stress the disease of adaptation [51]. This
phenomenon was named the General Adaptation Syndrome (GAS) and described in 1956 in
a book entitled “The Stress of Life” [52]. The biopsychosocial model in understanding the
basis of gastrointestinal disorders was first proposed by Drossman in 1998. To date, gas-
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trointestinal disease has been thought of primarily from a biomedical perspective, whereas
Drossman’s work argues for the inclusion of stress in the exacerbation of gastroesophageal
reflux disease and Crohn’s disease and central nervous system-regulated visceral hypersen-
sitivity in the occurrence of gastrointestinal pain [53]. In experiments using animal models
(rodents), it has been shown that although rodent microbiota is quantitatively different
from human microbiota, both are qualitatively similar. Nevertheless, studies based on
comparing microbiota in both species have many limitations [54]. Furthermore, it is easier
to control the depressive stimuli acting on rodents in a laboratory setting and to turn
individual stressors on or off than to carry out the same on humans, in which the presence
and number of stressors is more complex [55].

4.2. Depressive State and Dysbiosis in Animal Models—Communication Routes

Therefore, we will first focus on demonstrating hypothetic cause-and-effect relation-
ship between depressive stimuli and dysbiosis in animal models, which is presented in
Figure 1. The use of bilateral olfactory bulbectomy in rodents causes severe dysfunction of
the cortical-hippocampal-amygdala circuit that results in behavioral changes leading to
anxiety–like and depressive behaviour. It has been shown that these parts of the central
nervous system are probably also impaired in depressed patients [56]. Changes in rodent
prefrontal cortex function following removal of the olfactory bulb have also been observed
in humans with depression. The dysfunction of the prefrontal cortex in humans embraced
hyperactivity in ventral-medial and hypoactivity in dorsolateral areas [57]. This surgical
procedure induces behavioral changes in rodents that respond to chronic antidepressant
treatment, thus mimicking the time course of treatment with antidepressants in a psychi-
atric ward [58]. A study conducted on mice after olfactory bulbectomy showed higher
expression of corticotropin-releasing hormone (CRH) compared to controls, indicating the
increased activity of the hypothalamic-pituitary-adrenal (HPA) axis.
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Kelly et al. conducted an experiment to verify the thesis that there is a bidirectional
relationship between depressive states and microbiota composition. To conduct the study,
researchers examined the saliva, serum, and fecal composition of 34 depressed patients
and 33 healthy controls. Fecal samples from three patients with the most severe depression
were combined and transplanted into 13 adult male rats that had previously been given
antibiotics. In the study material, significantly increased levels of total cortisol output,
IL-6, IL-8, TNF-α and CRP as well as a higher kynurenine/tryptophan ratio in depressed
patients were detected. In stool samples from depressed patients, there was a reduction
in the total number of species observed and low phylogenetic diversity. There were no
significant differences in plasma lipopolysaccharide-binding protein or short-chain fatty
acid levels, whereas depressive symptoms negatively correlated with daily dietary fiber
intake. In an animal study, it was shown that rats with transplanted “depressed” microbiota
exhibited anhedonia-like and anxiety-like behaviors compared to the control group. Plasma
kynurenine concentration and kynurenine/tryptophan ratio were significantly increased
in the depressed group, and plasma CRP concentration trended upward. Based on these
results, the authors concluded that dysbiosis may play an important role in the pathogenesis
of depression [59].

According to multiple studies, there is a shift in tryptophan metabolism from serotonin
to the kynurenine pathway in depressed patients [60]. Tryptophan, the main precursor
of the kynurenine pathway, is converted to kynurenine and then to other compounds
such as anthranilic acid, kynurenic acid and 3-hydroxykynurenine. In the serotonin
pathway, tryptophan is metabolized to 5-hydroxytryptophan, then to serotonin, then to
5-hydroxyindoleacetic acid [61]. Tryptophan levels are reduced in MDD, likely reflecting
its relative importance in this disorder, particularly in the context of serotonin bioavail-
ability. The decreased bioavailability of tryptophan is at least partially responsible for
the decreased serotonin levels found in MDD. This decrease in tryptophan levels is most
likely, at least in part, responsible for the decreased bioavailability of kynurenine found
in MDD. Furthermore, we also observed an increase in the ratio of kynurenine to tryp-
tophan in MDD, suggesting that the decrease in serotonin bioavailability, traditionally
thought to be one of the bases of the monoamine hypothesis, is secondary not only to
a decreased pool of tryptophan but also to a shift in tryptophan metabolism from serotonin
toward kynurenine [60].

Hoban et al. investigated the behavioral and neurochemical consequences of chronic
gut microbiota depletion during adulthood within rats. Adult male rats were admin-
istered antibiotics in order to deplete the intestinal microbiota, while a control group
received no medications [62]. After six weeks, all rats underwent multiple tests assessing
brain monoamine levels, microbiota composition, anxiety behaviors, depressive behaviors,
colonic distension, and gene expression in the central nervous system, among others [63].
The authors found that antibiotic treatment caused significant depressive behavior, de-
creased 5-hydroxytryptamine (5-HT) levels and increased 5-hydroxyindoleacetic acid/5-
hydroxytryptamine (5-HIAA/5-HT) turnover in the hippocampus. There was an increase
in such parameters: tryptophan levels, norepinephrine levels in the striatum, levodopa
(L-DOPA) and homovanillic acid (HVA) levels in the prefrontal cortex and hippocampus.
Finally, the antibiotic-treated rats showed altered microbial diversity, with a significant de-
crease in Firmicutes and Bacteroidetes and an increase in Proteobacteria and Cyanobacteria.
From these results, a distinct phenotype was identified, including depressive behavior and
cognitive impairment, that was associated with antibiotic-induced microbiota depletion in
rats during adulthood. Chronic exposure to antibiotics reduced the diversity and richness
of the gut microbiota, which coincided with the occurrence of depression-like behaviors.
Decreased levels of 5-HT and 5-HT/5-HIAA in the hippocampus and altered levels of
L-DOPA and HVA showed the dysregulation of monoamine synthesis and degradation,
indicating that dysbiosis may have profound effects on neurotransmitter systems [62].



Nutrients 2022, 14, 1921 7 of 18

4.3. Which Alterations Are Observed in the Depressed Brain

In patients with depressive disorders there are no alterations in the total brain volume,
but there is a decrease in the volume of the hippocampus, prefrontal cortex, fronto-orbital
cortex, anterior cingulate gyrus and subcortical structures—caudate nucleus, globus pal-
lidus and putamen, suggesting atrophy or the loss of cells of these structures [64,65]. There
is also a reduction in the proportion of gray matter compared to white matter within the pre-
frontal cortex [66]. Magnetic resonance imaging (MRI) studies have shown a reduction in
hippocampal volume both in patients during a depressive episode and those with a history
of such disorders in the past. These changes may result from the apoptosis of hippocampal
cells or the inhibition of neurogenesis caused by glucocorticoid neurotoxicity [67]. The
results of studies based on functional neuroimaging indicate a correlation between the
applied treatment, severity of symptoms and the degree of morphological changes. In vivo
resting-state functional magnetic resonance imaging (fMRI) studies have shown decreased
connectivity between the prefrontal cortex, superior temporal gyrus and insular cortex,
and increased connectivity between the amygdala and prefrontal cortex [68]. Microscopi-
cally, exposure to stress causes dendrite remodeling: a decrease in the density of dendritic
spines in the prefrontal cortex and hippocampus, and an increase in their formation in
the amygdala and nucleus accumbens [69,70]. Stress also affects neuronal survival and
synaptic plasticity, which is mediated by brain-derived neurotrophic factor (BDNF). It has
been shown that treatment with antidepressants and the use of non-pharmacological meth-
ods (electroshock, deep brain stimulation, transcranial magnetic stimulation) accelerate
neuronal maturation, dendrite growth and maturation of dendritic spines and improve the
survival of newly formed neurons [71].

Proteomic studies of the frontal cortex and anterior cingulate gyrus indicate the pres-
ence of abnormal cytoskeletal organization in depressed patients, which is associated with
changes in the expression of, among others, glial fibrillary acidic protein (GFAP), tubulin
isoforms or MAP proteins [72]. Suicide victims demonstrated the increased expression
of mRNA and proteins such as TNF-alpha, IL-6 and IL1-beta in Brodmann’s area 10, sug-
gesting the involvement of pro-inflammatory cytokines in the pathogenesis of psychiatric
disorders [73]. Transmembrane TNF-alpha levels were also found to be increased in the
dorsolateral prefrontal cortex, which is responsible for mood regulation. However, due to
the absence of increase in other proinflammatory cytokines and their receptors, as well as
an increase in neuronal integrity markers, it is presumed that the increased levels of trans-
membrane TNF-alpha are due to non-inflammatory causes [74]. In postmortem studies,
serotonin transporter expression in the dorsolateral prefrontal cortex, ventral fronto-orbital
cortex and brainstem is reduced in suicide subjects with a diagnosis of depression. Sub-
tle structural changes in the monoaminergic nuclei of the brainstem, a major source of
serotonin projection (dorsal raphe nucleus) and norepinephrine (locus ceruleus) to the
cortex and increased number and density of tryptophan hydroxylase-responsive neurons
in the dorsal raphe nucleus have been described in suicidal subjects with depression.
Data on alterations in the number of pigmented neurons in the rostral locus ceruleus are
inconsistent, but corticotropin-releasing hormone (CRH) immunoreactivity is increased
in the locus ceruleus, dorsal and median raphe nuclei. Stereological studies of specific
types of hypothalamic neurons showed increased numbers of arginine vasopressin– (AVP),
oxytocin–, and CRH–neurons in the paraventricular nucleus, as well as increased CRH
mRNA and corticoliberin neurons co-localized with AVP neurons. These data are consistent
with reports of hypothalamic-pituitary axis activation in some depressed patients [68].

The symptoms of depression can be complex and vary widely between patients
depending on the severity of the disease. Psychologically, patients presented continuous
low mood or sadness, feeling hopeless and helpless, as well as having low self-esteem.
Furthermore, feelings of worry, irritability and intolerance of others were reported by
patients. Some of them confirmed the occurence of suicidal thoughts or thoughts of
harming themselves [75].
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In the context of physical symptoms, patients complained about changes in appetite or
weight and, moreover, they moved or spoke more slowly than usual. Some of them were
troubled by constipation and unexplained aches and pains, not to mention loss of libido and
changes to the menstrual cycle in women [76]. Patients with depression experienced sleep
disturbances and disruption of daytime rhythms. According to the European Research
Society study (DEPRES II), two of the three most common symptoms reported during
a current depressive episode were somatic in origin (fatigue/lack of energy/insomnia: 73%,
interrupted sleep/decreased sleep: 63%) [77].

The social symptoms of depression included avoiding contact with friends and taking
part in fewer social activities. Additionally, patients reported neglecting their hobbies and
interests and having difficulties in work, school or family life.

4.4. Hypothalamic-Pituitary-Adrenal (HPA) Axis

Not only amongst mice, but also between humans, stress, depressive states and their
allostatic response involve the sympathetic nervous system and the HPA axis. The acti-
vation of this system leads to the release of catecholamines from nerves and the adrenal
medulla. This leads to the secretion of corticotropin from the hypothalamus and then
boosts the adrenocorticotropin. It results in mediation of the release of cortisol from the
adrenal cortex by corticotropin and adrenocorticotropin through a negative feedback loop
and the inhibition of CRH and ACTH secretion. Corticotropin, in turn, stimulates adreno-
corticotropin, which is the direct stimuli for the adrenal gland and its glucocorticoids [78].
Two types of glucocorticoid-activated receptors are responsible for this:

1. Mineralocorticoid receptors (MR) located mainly in the hippocampus
2. Glucocorticoid receptors (GR) in the hippocampus, hypothalamus and pituitary

gland [79].
Research has long pointed to the association of abnormally activated hypothalamic-

pituitary-adrenal (HPA) axis function with the illness of MDD, but it is difficult to clearly
assess the utility of cortisol levels as an indicator of MDD pathophysiology. Certainly,
higher cortisol levels as a stress response are found in patients with acute and severe forms
of MDD [80]. According to numerous studies, the prefrontal cortex has neurons projecting
to the hypothalamus, and therefore there is likely a pathway activated from the prefrontal
cortex or hypothalamus that causes increased HPA axis activity [81].

4.5. Glucocorticoids and Suppression of the Inflammatory Response

Cortisol reduces the inflammatory response and prevents the body from develop-
ing an excessive immune response [82]. Cortisol increases the phagocytosis capacity of
monocytes and macrophages, thereby promoting the removal of pathogens, cellular debris,
foreign antigens and other harmful molecules. Acting through genomic and non-genomic
mechanisms, this steroid hormone inhibits the production of pro-inflammatory cytokines,
chemokines, and reduces the formation of reactive oxygen and nitrogen species. Gluco-
corticoids inhibit the production of proinflammatory cytokines, mainly those promoting
differentiation to Th1 (IL-12 and interferon γ) and Th17 (IL-6 and IL-1), and furthermore
enhance T cell migration to the bone marrow, spleen, lymph nodes, gastrointestinal lym-
phoid tissue and tonsils. The effect of this T-cell migration is to reduce the number of T-cells
circulating systemically and to induce their apoptosis. According to studies, glucocorticoids
inhibit the inflammatory response by stimulating the differentiation of regulatory T cells
(Treg) and directly interact with the T cell receptor (TCR) signaling complex and inhibit its
downstream transduction signaling pathways [83].

4.6. Chronic Stress Affects the Inflammatory Response

However, it is worth considering a condition not associated with the silencing of the
inflammatory response by glucocorticosteroids, which is manifested by glucocorticoid
receptor resistance (GCR) in a state of chronic stress which also occurs in Major Depres-
sive Disorder. The model was proposed by Cohen et al. and, according to him, GCR
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is a result of long-term stressors, which in turn results in the production of more pro-
inflammatory cytokines and a failure to silence inflammation [84]. In a meta-analysis of
82 case-control studies, Köhler et al. indicate a significant role for elevated concentrations of
pro-inflammatory cytokines (i.e., IL-6, TNF-α, IL-10, the soluble IL-2 receptor, IL-13, IL-18,
IL-12, the IL-1 receptor antagonist, the soluble TNF receptor 2, C-C chemokine ligand 2) in
patients with MDD compared to non-depressed individuals [85]. Some studies highlight
the important role of the inflammatory substrate in the pathophysiology of depression that
should be given more consideration and should not be ignored [86].

4.7. Alterations of Intestinal Microbiota in Depressive State

Cortisol and glucocorticoids affect almost every type of immune cell due to the almost
ubiquitous expression of GR, which is localized in the colonic epithelium [83]. Conse-
quently, altered colonic motility was observed in mice after olfactory bulbectomy. Hence,
increased colonic transit and a shift in the profile of the microbiota was noticed [87], which
supports the hypothesis that the depressive state might promote alterations of intestinal mi-
crobiota through enhanced colonic activity [10]. Referring to the human model, a study on
college students examined the effect of university stress on lactic acid bacteria activity. The
number of lactic acid bacteria decreased significantly from a stress-free period to a highly
stressful exam week and continued to decline [88]. Mice undergoing non-surgical methods
of inducing a depressive state, exposed to a 10-day subchronic and mild social defeat stress
(sCSDS), demonstrated changes in the microbiome as well as mice after olfactory bulbec-
tomy [89,90]. Mice subjected to sCSDS had an increase in OTUs (Operational Taxonomic
Units) belonging to the families Rikenellaceae, Desulfovibrionaceae and Lachnospiraceae,
and showed a decrease in OTUs from the genera Allobaculum and Mucispirillum compared
to the control group. However, it is important to remember that prolonged exposure to
a stressor and changes in food intake, including increased appetite and thirst as a response
to stress, may be integral components affecting the gut ecosystem. Changes in microbiota
composition in depressed humans or stressed mice are found in Table 2.

Table 2. Alterations in the intestinal microbial diversity observed in patients with depression and
animals exposed to stress.

Phylum Class Order Family Genus Model Organism Population Shift

Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Unidentified genera Mice Increase [91]

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Unidentified genera Mice Increase [90],
Decrease [92]

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Odoribacter Mice Increase [91]

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio Mice Increase [90]

Proteobacteria Alphaproteobacteria Rhodobacterales Hyphomonadaceae Ponticaulis Mice Increase [93]

Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio Mice Decrease [94]

Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus Mice Decrease [94]

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia Mice Increase [94]

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea Mice Decrease [94]

Firmicutes Clostridia Clostridiales Peptostreptococcaceae Clostridium Mice Increase [94]

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira Mice Decrease [92]

Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus Mice Increase [92],
Decrease [95]

Firmicutes Bacilli Lactobacillales Lactobacillaceae Unidentified genera Mice Decrease [93]

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Mice Increase [92],
Decrease [93,94]

Firmicutes Erysipelotrichia Erysipelotrichales Erysiopelotrichaceae Allobaculum Mice Decrease [90]

Deferribacteres Deferribacteres Deferribacterales Deferribacteraceae Mucispirillum Mice Decrease [90]

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes Mice, Human Increase [91,96]

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Unidentified genera Mice, Human Increase [96],
Decrease [93,97]
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Table 2. Cont.

Phylum Class Order Family Genus Model Organism Population Shift

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides Human, Mice Increase [96],
Decrease [93,94]

Firmicutes Clostridia Clostridiales Lachnospiraceae Unidentified genera Human, Mice Increase [90],
Decrease [92,96,98]

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unidentified genera Human Increase [96]

Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Eggerthella Human Increase [59]

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Unidentified genera Human Decrease [96]

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Human Decrease [96]

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Unidentified genera Human Decrease [59,96]

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Paraprevotella Human Increase [59]

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Human Decrease [59,96]

Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerofilum Human Increase [59]

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia Human Increase [96]

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus Human Decrease [96]

Firmicutes Clostridia Clostridiales Clostridiaceae Faecalibacterium Human Decrease [96]

Firmicutes Clostridia Thermoanaerobacterales Thermoanaerobacteraceae Gelria Human Increase [59]

Firmicutes Erysipelotrichia Erysipelotrichales Erysiopelotrichaceae Unidentified genera Human Decrease [96]

Firmicutes Erysipelotrichia Erysipelotrichales Erysiopelotrichaceae Turicibacter Human Increase [59]

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichidae Holdemania Human Increase [59]

Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Unidentified genera Human Increase [96]

Firmicutes Negativicutes Veillonellales Veillonellaceae Unidentified genera Human Decrease [96]

Firmicutes Negativicutes Veillonellales Veillonellaceae Dialister Human Decrease [59,96]

Firmicutes Negativicutes Veillonellales Veillonellaceae Megamonas Human Increase [96]

Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium Unidentified genera Human Increase [96]

5. Do Alterations in Gut Microbiota Lead to Depression?

The association between gut microbiota and depressive disorder has been the subject
of many studies conducted in recent years. The complex mechanism, which might allow
this bidirectional communication between intestines and the brain, is explained via the
microbiota-gut-brain axis [99]. This pathway includes the immune, endocrine and auto-
nomic system as well as molecules originating from the microbiota that take part in the
regulation of these interactions (Figure 2). Alterations in gut microbiota are not considered
to be the main factor that leads to depression. However, they are an important part.
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What we know is that rodents suffering from depression have a changed ratio in
profitable bacteria such as Bacteroides and Firmicutes compared to healthy ones. According
to the meta-analysis, bacteria from the families Veillonellaceae, Prevotellaceae and Sut-
terellaceae were less numerous in patients with MDD than in healthy controls, although
Actinomycetaceae were more abundant in patients with MDD than in healthy controls. In
addition, the same meta-analysis showed that patients with MDD had decreased levels
of genus Coprococcus, Faecalibacterium, Ruminococcus, Bifidobacterium and Escherichia and
increased levels of Paraprevotella [100].

Interestingly, study observations showed that probiotics including combination ther-
apy with antidepressants had a large effect on depressive symptoms compared with the
control group [101]. Lactobacillus-only trials showed that Lactobacillus have no clinical
effects on depression based on the finding that Lactobacillus-only trials had a small, non-
significant pooled effect in contrast to the significantly larger effects for other probiotic trials
for depression [102].

Furthermore, the composition of intestinal microbiota might have an impact on the
secretion of gut peptides and therefore regulate the endocrine activity of these molecules in
the whole organism. As we already know, gut peptides regulate the endocrine activity and
can communicate with the central nervous system. Their job is not only connected with
food intake, but also with stress behaviors and reactions to such situations. The composition
of intestinal microbiota might have an impact on intestinal barrier permeability and thus
secreted gut peptides do not enter the braincells in the same way and efficacy what can
implicate in different action of peptides in organism. That difference can result in altered
behavior of decreased mood pursuing to depressive-like behavior [7].

5.1. What Are the Gut Peptides?

The group of gut peptides consists of over 20 molecules secreted by enteroendocrine
cells (EECs) that perform many different signaling functions including endocrine and
metabolic activity, and moreover present the ability to communicate with the central ner-
vous system (CNS). The most important gut peptides include peptide YY (PYY), glucagon-
like peptide (GLP-1), cholecystokinin (CCK), corticotropin-releasing factor (CRF), ghrelin
and oxytocin (Table 3) [103].

Table 3. The most important gut peptides and their characteristics (HPA—hypothalamic-pituitary-
adrenal).

Gut Peptide Producing Cells Releasing
Factor Peripheral Function Central Function

PYY [104,105] L-cells a food intake
inhibition of gastric

emptying and intestinal
motor activity

modulation of anxiety
and stress-related

disorders

GLP-1 [106,107] L-cells a food intake
stimulation of insulin

release and inhibition of
glucagon secretion

modulation of the HPA
axis and response to

stress

CCK [108,109] I-cells a food intake

suppression of appetite,
gastric emptying,

gallbladder contraction,
pancreatic enzymes

release

increased
anxiety-like behavior

CRF [110–113]

effector neurons
of hypothalamus
and enterochro-
maffin cells of

the colon

stress

inhibition of gastric
emptying, stimulation of

colonic motility and
impairment of the

intestinal epithelial barrier

increased anxiety and
depressive disorder

ghrelin [114,115] A-cells a starvation increase of appetite
and adipogenesis

modulation of stress
response, anxiety and
depressive disorder
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Table 3. Cont.

Gut Peptide Producing Cells Releasing
Factor Peripheral Function Central Function

oxytocin [116]
magnocellular

neurons in
hypothalamus

stress
facilitation of parturition

and stimulation
of lactation

reduced anxiety-like
behavior and

antidepressant effect
a—enteroendocrine cells present in the small intestine.

5.2. How Does the Microbiota Interact with the Secretion of Gut Peptides?

Firstly, the changes in the composition of gut microbiota might lead to alterations
in the intestinal barrier permeability through the interaction with endothelial tight junc-
tions (TJs). It might cause an imbalance in the amount of gut peptides absorbed to the
circulation and, furthermore, influence their function on the braincells [7,117]. Moreover,
some Gram-negative bacterial genres present in the gut microbiota secrete an endotoxin,
lipopolysaccharide (LPS), which promotes the activation of immune cascades and the
production of pro-inflammatory cytokines. The pro-inflammatory phenotype associated
with gut dysbiosis might be a trigger factor for the stress-induced inappropriate secretion of
gut peptides [117]. Apart from the gut peptides, there are also specific molecules secreted
by microorganisms, including metabolites and neurotransmitters (e.g., GABA, serotonin,
tryptophan metabolites, catecholamines) that might penetrate to the bloodstream and act
directly on receptors in the brain [99].

5.3. What Changes in the Composition of Gut Microbiota Might Cause Depressive Disorder?

The studies conducted both on human and animal subjects have suggested that there
might be some differences in the composition of gut microbiota between healthy and
depressed individuals. The strongest association refers to the Firmicutes/Bacteroidetes
ratio [118,119]. Rodents with a higher amount of Bacteroidetes and a lower share of Firmi-
cutes in their intestines had a tendency toward depressive-like behavior [119]. Moreover,
mice subjected to chronic stress had decreased populations of Bacteroides and increased
ones of Clostridium [94]. The association between fecal microbiota transplants from de-
pressed subjects to healthy ones has also been the subject of research in different studies.
For instance, the results showed that rats colonized with the microbiota from depressive-
like individuals developed the symptoms of depressive behavior. However, no specific
changes in the composition of microbiota that might be the cause of this phenomenon
have been found [59]. Furthermore, several metanalyses have taken into consideration
the effect of probiotic usage on mood [120–122]. Some of them proved that patients with
symptoms of depression might benefit from this kind of supportive treatment (mostly
using probiotics containing Lactobacillus and Bifidobacterium species) [123]. However, no
profiling of gut microbiota was conducted on the participants before and after the use of
probiotics and probiotics with different compositions of bacterial species that were used in
the studies. Some of the studies did not find any effect of probiotics on depression [124].
These are the reasons why the use of probiotics in the treatment of depression still requires
further research.

6. Conclusions

This section summarizes the information about how molecular mechanisms can affect
the microbiome-gut-brain axis. It is widely known and has been deeply researched that
stress (especially constant) is an indicator of gut microbiota alterations. Constant stress
can impact the ratio of valuable bacteria in the human gut. There are more factors that
influence communication pathways between gut microbiota and the brain.

It is said that the composition of intestinal microbiota might have an impact on gut
peptides secretion and is responsible for balance in the endocrine system. Excessive excre-
tion of pro-inflammatory factors (cytokines) has a role in gut microbiome changes because
cytokines influence gut peptides, which are absorbed through the intestinal barrier of mod-
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ified permeability. It then leads to the imbalance of the number of peptides delivered to the
brain. It might be a trigger factor for changes in the microbiome, which could then cause
depressive-like behavior. This is not to mention the specific molecules such as metabolites
and neurotransmitters produced by microorganisms (LPS), which when secreted can in-
stantly access the brain receptors. However, gut peptides and immune hypersensitivity
caused by stress is just one factor of bidirectional influence on gut microbiota that could
cause depression.

Some researchers claim that an abnormally activated HPA axis function (due to the
high cortisol release) is the reason for MDD. The central nervous system and, more specifi-
cally, the prefrontal cortex dysfunction is known to be impaired amongst people suffering
from MDD.

This review aimed to answer whether depressive-like behavior is an indicator of gut
microbiota change or whether it is the other way round. As stated above, there are studies
showing that the gut microbiota is altered because of stress. One such study has been
carried out on students during a stressful exam period. On the other hand, people and
rodents suffering from MDD have been shown to have gut dysbiosis and microorganism
ratio imbalance (Bacteroidetes and Firmicutes). The healthy population does nott suffer
from gut dysbiosis and microorganism ratio imbalance.

To conclude, it is nearly impossible to decide which molecular mechanism is more
likely to explain the etiology of depression, although they both show how they affect organ-
isms. It is unfeasible to measure stress intensity or cortisol levels in real life environments,
and thus it is impossible to create constant, unmodified conditions in which the study
could be conducted, unlike with rodents. Future studies could try to create an isolated
environment where stress could be precisely measured.

The positive outcome of this scientific paper is that the most important mechanisms
known for affecting the microbiome-brain-gut axis were gathered and discussed. This
gives us an idea of how it possibly generates depressive-like behavior. Moreover, it also
encourages us to focus more on this topic and to conduct further research. Future studies
could possibly create new treatments for or contribute to the prevention of MDD.
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