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A plethora of research has implicated the cingulate cortex in the processing of
social information (i.e., processing elicited by, about, and directed toward others) and
reward-related information that guides decision-making. However, it is often overlooked
that there is variability in the cytoarchitectonic properties and anatomical connections
across the cingulate cortex, which is indicative of functional variability. Here we review
evidence from lesion, single-unit recording and functional imaging studies. Taken together,
these support the claim that the processing of information that has the greatest influence
on social behavior can be localized to the gyral surface of the midcingulate cortex (MCCg ).
We propose that the MCCg is engaged when predicting and monitoring the outcomes
of decisions during social interactions. In particular, the MCCg processes statistical
information that tracks the extent to which the outcomes of decisions meet goals when
interacting with others. We provide a novel framework for the computational mechanisms
that underpin such social information processing in the MCCg. This framework provides
testable hypotheses for the social deficits displayed in autism spectrum disorders and
psychopathy.
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Primates live in social environments that require individuals to
understand the complex behavior of conspecifics. A plethora of
research implicates the dorsal Anterior Cingulate Cortex (ACC)
as playing a vital role in processing “social” information (i.e., pro-
cessing elicited by, about, or directed toward others) (Amodio and
Frith, 2006; Somerville et al., 2006; Rudebeck et al., 2008; Behrens
et al., 2009; Apps et al., 2012; Hillman and Bilkey, 2012). Indeed,
individuals with lesions to the ACC display social deficits so severe
that they are said to have “acquired sociopathy” (Anderson et al.,
1999). However, the ACC is also engaged by rewards (Doya,
2008), attention and salience (Davis et al., 2005), conflict, and
during decision-making (Botvinick et al., 1999; Botvinick, 2007)
which are inherently non-social processes. How can the same
region be engaged by such a distinct set of processes? It is often
overlooked that the area labeled as “ACC” by functional imag-
ing research comprises multiple sub-regions, each with distinct
cytoarchitecture and anatomical connections (Vogt et al., 1995;
Palomero-Gallagher et al., 2008; Beckmann et al., 2009). Thus,
some of the processes that have been reported to elicit an ACC
response may in fact be localized to distinct sub-regions.

Here, we draw attention to anatomical tracer, neurophysiol-
ogy, lesion and neuroimaging studies investigating the anatomical
and functional properties of the dorsal ACC. Taken together this
research highlights one sub-region which processes information
about the outcomes of others’ decisions and about the decisions
made by others during social interactions. This region in fact

lies on the gyral surface of the midcingulate cortex (MCCg) and
not in the anatomically defined ACC. We contend that whilst the
sulcal (MCCs) and gyral (MCCg) regions of the MCC can be
differentiated in terms of processing first-person and social infor-
mation respectively, the two areas process similar information
about rewards that guide decision-making. By drawing parallels
between the role of the MCCs in processing first-person rewards,
and that of the MCCg in processing rewards in social contexts, we
provide a new framework for investigating the contribution of the
MCC to social decision-making.

ANATOMY OF THE CINGULATE CORTEX
The cingulate cortex consists of four zones: retrosplenial, pos-
terior (PCC), mid (MCC), and anterior (ACC) (Vogt et al.,
1987, 1995; Palomero-Gallagher et al., 2008). Often the MCC is
labeled as “dorsal” ACC and the actual ACC as “rostral” ACC.
Unfortunately, the use of ACC as a “catch-all” terminology, has
led many to inaccurately discuss the functional properties of an
MCC result in relation to the functional and anatomical proper-
ties of the ACC. The ACC and MCC can be further subdivided
by their cytoarchitecture (Palomero-Gallagher et al., 2008). In
both the MCC and ACC there are differences in cytoarchitec-
ture between the sulcus and the gyrus (see Figure 1A), indicative
of distinct functional properties. Notably in this article we are
discussing only regions within the cingulate cortex and not the
region lying at the borders of the paracingulate sulcus and the
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FIGURE 1 | The Midcingulate Cortex (MCC). (A) Cytoarchitecture of the
MCC taken from Vogt et al. (1995). The areas shaded in green lie in the
MCCs. The areas shaded in red lie on the MCCg. We argue that this area is
engaged when processing information about others’ decisions. Specifically
we argue that areas 24a′ and 24b′, which lie on gyral surface of the cingulate
cortex, extending on average 22 mm posterior to and 30 mm anterior to the

anterior commisure denoted by (∗). (B) Lesion site of the MCCg and ACCg

(red) and the MCCs and the ACCs (green) from Rudebeck et al. (2006). The
lesions that affected the gyrus caused disruptions to social behavior and
disrupted the processing of social stimuli. (C) Subdivisions of the MCC and
ACC according resting-state connectivity (Beckmann et al., 2009). Cluster 7
shown in dark red corresponds, broadly, to the MCCg.

superior frontal gyrus (“paracingulate cortex”) that is well known
for its role in processing social information.

Each cytoarchitectonic region has a different connectional fin-
gerprint (Vogt and Pandya, 1987; Vogt et al., 1987; Devinsky et al.,
1995; Margulies et al., 2007; Beckmann et al., 2009; Torta and
Cauda, 2011). The MCCg shows a connectional profile that sug-
gests involvement in processing information about others. This
region has been shown to have strong connections with poste-
rior portions of the superior temporal sulcus (pSTS) (Pandya
et al., 1981; Seltzer and Pandya, 1989), temporal poles (TPs)
(Markowitsch et al., 1985; Barbas et al., 1999) and paracingulate
cortex (Vogt and Pandya, 1987; Petrides and Pandya, 2006). These
areas have been consistently linked to processing information
about others’ mental states and intentions (Frith and Frith, 2003;
Ramnani and Miall, 2004; Amodio and Frith, 2006; Hampton
et al., 2008). There is minimal overlap between these connec-
tions and those of other portions of the ACC and MCC to the
TPs, the pSTS and paracingulate cortex. Furthermore, the tracer

studies listed above suggest that connections between the MCCg

and these areas may be stronger than the connections from other
ACC and MCC sub-regions. This profile leads us to propose that
the MCCg is the sub-region of the cingulate cortex that plays the
most significant role in social behavior.

Interestingly, the MCCg has connections which overlap with
the MCCs to areas that are engaged during reward-based
decision-making. Both areas project to medial and lateral por-
tions of the orbitofrontal cortex (Morecraft et al., 1992; Morecraft
and Van Hoesen, 1998) and to the nucleus accumbens (Kunishio
and Haber, 1994; Haber et al., 1995). Anterior portions of both
MCC sub-regions also receive dopaminergic input from the ven-
tral tegmental area (VTA) (Hollerman and Schultz, 1998; Schultz,
1998; Williams and Goldman-Rakic, 1998). The connections of
both the MCCg and MCCs to areas engaged when processing
rewards (Schultz, 2006; Rushworth and Behrens, 2008) are indica-
tive of a shared sensitivity to information that guides decision-
making. Thus, we suggest that the MCCg plays an important role
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in processing information about the rewards others will receive
and the decisions that lead to others’ rewarding outcomes.

THE MCCg AND SOCIAL INFORMATION PROCESSING
Is there functional evidence for a role of the MCCg in processing
reward-related information that guides decisions during social
interactions? Chang et al. (2013) recorded from single-neurons
during a task where monkeys received rewards or when they
observed another monkey receiving reinforcement. They found
a class of neurons lying on the gyral surface putatively in the
MCC (although without histology it is not possible to localize
accurately) that showed a change in spike-frequency when the
monkeys observed another receiving the reward. The same neu-
rons did not respond on trials when the monkeys received a
reward themselves. Only a small proportion of neurons in the
MCCs showed this same profile. This response profile highlights
the MCCg as signaling information related to outcomes experi-
enced by others (i.e., it contains a class of neurons that respond
exclusively to others’ reward receipt). Whilst only one study, this
supports our claim that the MCCgprocesses information about
rewards that others will receive.

Evidence from lesion studies also supports the notion that the
MCCg processes social information. Lesions to the gyrus of the
MCC and ACC of macaques have been shown to reduce the exe-
cution of social behaviors, such as the time spent in proximity
with others and vocalizations, and also the processing of social
stimuli (Hadland et al., 2003; Rudebeck et al., 2006). Unoperated
monkeys or those with lesions to the MCCs or to the OFC, show
delays in responding to a food item in the presence of social stim-
uli. Monkeys with lesions to the MCCg (Figure 1) show a reduced
delay, suggesting a reduction in the value assigned to the social
information (Rudebeck et al., 2006).

A small number of neuroimaging studies in humans have
tested the claim that it is the MCCg and not the MCCs which
processes information about others’ decision-making. In Behrens
et al. (2008) participants learned the probability of receiving a
rewarding outcome from two options associated with different
reward levels. On each trial participants received advice from a
confederate about which option to choose. To maximize finan-
cial return subjects had to track how volatile the environment was
(how rapidly the better option was shifting between the two) and
also the volatility of the confederate advice. Whilst MCCs activity
covaried with the environmental volatility, activity in the MCCg

covaried with the volatility of the advice at the time of every trial
outcome (Figure 2A).

Apps et al. (2013) examined activity when participants mon-
itored the decisions and outcomes of a confederate and a com-
puter, when the outcomes were sometimes unexpectedly either
positive or negative. They examined activity at the time of a cue
that revealed the outcome of the trial to the subject before it was
revealed to the confederate or computer. Whilst the MCCs sig-
naled when the outcome of either the computer or confederate’s
response was unexpectedly positive, the MCCg signaled the same
information but only when the choice was made by another per-
son and not by the computer (Figure 2B). Unpublished data from
Apps and Ramnani (under review), also found that the MCCg sig-
naled the net-value of rewards others will receive (benefit-cost)

and not the net-value of one’s own rewarding outcomes. These
findings support the claim that the MCCg is engaged when pro-
cessing information about the rewards others receive (Figure 2C).

THE MCCS, DECISION-MAKING AND RESPONSE-OUTCOME
MONITORING
Whilst there has been considerable theoretical discussion of the
functional properties of the MCC (or “dorsal ACC”), this lit-
erature largely ignores the contribution of this region to social
cognition and is based on studies that find activation that lies pre-
dominantly, or exclusively, in the MCCs. As a result, there is a an
absence of a theory of MCCg function. However, it is notable that
the studies discussed in the previous section are consistent with a
claim that the MCCg processes similar information to the MCCs.
Here, we discuss a theoretical account of MCCs function, in order
to draw parallels with the MCCg in the next section.

Recent theoretical accounts suggest that the MCCs is engaged
when predictions are made about the outcomes of decisions
and when the outcomes of decisions are monitored (Alexander
and Brown, 2011; Silvetti et al., 2013). When outcomes are dis-
crepant from those that were predicted, neurons in the MCCs

signal prediction errors (PE), equating to the surprise evoked by
the outcome (Matsumoto et al., 2007; Holroyd and Coles, 2008;
Quilodran et al., 2008; Jocham et al., 2009; Kennerley et al., 2011;
Nee et al., 2011). Furthermore, it has been argued that such a
response-outcome functional property allows the region to play
a role in monitoring the extent to which behaviors are meeting
higher order needs or goals (Behrens et al., 2007; Botvinick, 2012;
Holroyd and Yeung, 2012; Kolling et al., 2012). That is, the MCC
tracks response-outcome contingencies within the context of how
actions are meeting temporally abstract goals. Although there is
not scope to discuss studies in detail here, there is evidence that
MCC prediction and outcome processing is modulated by the
extent to which behaviors are meeting contextually driven goals
(Behrens et al., 2007; Rushworth and Behrens, 2008; Kolling et al.,
2012).

It has been suggested that information processing in the MCC
conforms to the principles of hierarchical reinforcement learning
theory (HRL). In HRL, learning is not simply between stimulus-
response and outcome [as in classic reinforcement learning (RL)],
but learning occurs in a hierarchical framework where multi-
ple actions (or sub-goals) must be performed and monitored
in order to reach the higher-order goal (e.g., stimulus-response-
response-response-outcome learning) (Botvinick, 2012). As such,
each performed action is aimed at meeting a sub-goal that does
not lead to a rewarding outcome on its own, but the perfor-
mance of each action is crucial in order to achieve the higher order
goal of the rewarding outcome. In HRL PE signals drive learning
and occur when an outcome is unexpected as in RL. There are
a considerable number of neurophysiological and neuroimaging
studies have shown that neurons in the MCCs signal when the
outcomes of decisions are unexpected (Matsumoto et al., 2007;
Holroyd and Coles, 2008; Quilodran et al., 2008; Jocham et al.,
2009; Kennerley et al., 2011; Nee et al., 2011). However, unlike
in standard RL, in HRL PEs occur when actions fail to achieve
sub-goals. These are sometimes referred to as pseudo-prediction
errors (PPE) as they are not directly linked to the receipt of a
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FIGURE 2 | Neuroimaging the MCC. The top panel shows activity in the
same portion of the MCCg in three fMRI studies investigating reward
processing during social interactions. (A) Activity in the MCCg (the cluster in
red, MNI coordinate: −6, 12, 26) correlating with the volatility of advice given
by a social confederate on a reward-based decision-making task, taken from
Behrens et al. (2008). Activity in this cluster correlated with individual
differences in the influence that the advice had on the subjects’ own
decision-making. (B) Activity in the MCCg [taken from Apps et al. (2013)]
signaling a prediction error when the outcome of another’s decision was

unexpectedly positive (coordinate: 0, 8, 28), but not to the expected or
unexpected outcomes of a computer’s responses. (C) Activity shown in the
MCCg (coordinate: 4, 22, 20) correlating with the anticipated net-value
(benefit-cost) of a reward to be received by another person, but not rewards
that will be received one’s self [taken from Apps and Ramnani (under
review)]. The bottom panel shows the results of resting-state connectivity
analysis in Autism Spectrum Disorders by Balsters et al. (in prep).
Connectivity between the MCC, cluster 5 shown in red (D), and the pSTS (E)

was reduced in ASD compared to control participants.

rewarding outcome. Ribas-Fernandes et al. (2011) showed that
the MCCs signal occurs when a PPE would be processed and not
at the time when a classic PE would be signaled. This suggests
that the PE signals in the MCCs may operate to track the extent
to which an action is meeting an organism’s goals by signaling the
surprise at the time of the outcome of a decision. These surprise
signals may take the form of PPEs as proposed in HRL.

THE MCCg : PREDICTIONS AND ERRORS DURING SOCIAL
INTERACTIONS
We argue that the MCCg processes similar information to the
MCCs but does so during social interactions [i.e., information
is processed in an “other” reference frame (Hunt and Behrens,
2011)]. That is, the MCCg signals predictions and monitors
outcomes during social interactions when the outcome will be
received by another. We suggest that social behavior can be orga-
nized into a HRL framework, whereby a subject’s own goal of how
to interact with another acts as a higher-order policy. The actions
of others (or one’s own actions impacting upon another) will
therefore serve as sub-goals to that policy. The outcome of each
action (or sub-goal) will be monitored during a social exchange,
in relation to the prior predictions instantiated by the higher-
order goal. Thus, we suggest the MCCg will be engaged when
processing the value of each action during a social exchange.

In addition, it will be involved in processing information about
whether actions or choices meet current, overarching goals in a
social environment. When a sub-goal is not met, a “social” predic-
tion error (SPE) will signal the discrepancy between the predicted
and actual consequences of the choice, whether self or other,
updating the agent’s own policy. Simply put, the MCCg will signal
predictions and monitor the outcomes of each action when inter-
acting with another. However, the nature of the predictions will
be influenced by the context within which each action and out-
come are being processed. Thus, the context of a social interaction
will influence the manner in which the MCCg codes information
about others’ rewarding outcomes.

For this theoretical account to hold true,the MCCg must be
sensitive to rewards that others receive, MCCg activity must be
related to higher level statistical properties of others’ behavior
(e.g., volatility) and it must signal prediction errors when the
outcomes of others’ choices are unexpected. These three prop-
erties were demonstrated in studies outlined above, where we
highlighted that the MCCg contained neurons that responded
when another receives a reward (Chang et al., 2013), MCCg

activity tracked the volatility of another’s choices (Behrens et al.,
2008) and also this area signalled when the outcome of another’s
decision was unexpected (Apps et al., 2013). Furthermore,
this account would also allow for considerable flexibility and
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individual differences in how reward-related information is
processed in different social contexts, and therefore the extent to
which MCCg influences behavior.

THE MCCG AND DISORDERS OF SOCIAL COGNITION
What predictions can be made for behavioral consequences of
MCCg damage? We suggest that disruptions to the MCCg will
have two main effects: first, this account would be a multi-
faceted impact on motivation for engagement in social inter-
actions may decline as decreased sensitivity to others’ rewards
will diminish the influence of such outcomes on the higher-
order goals of an agent. Furthermore, when presented with
the possibility of interacting with another, the motivation for
attending to sub-goals will not be maintained and agents may
become apathetic toward social engagement. In addition, even
when engaged in a social interaction, a failure to maintain moti-
vation for attending to sub-goals would result in unsustained
social interaction. Second, we contend that MCCg dysfunc-
tion may cause a failure in individuals to update the value of
a policy when an unexpected outcome of a sub-goal fails to
evoke a SPE. As a result, an agent may become insensitive to
an outcome of a sub-goal that reduces the value of a reward
another will receive (i.e., a reduction in empathy), or to the
outcomes of their own actions that reduce the value of a reward-
ing outcome for another (e.g., a failure to maintain prosocial
behaviors).

The first prediction fits with existing theories of social
deficits displayed in Autism Spectrum Disorders (ASD) (Dawson
et al., 2005; Chevallier et al., 2012). Social Motivation Theory
(Chevallier et al., 2012) proposes that individuals with ASD are
unable to form stimulus-reward contingencies for social stimuli,
resulting in reduced social attention and engagement. Chevallier
et al. (2012) focused on an orbitofrontal-striatal-amygdala circuit;
we propose that the MCCg may play a key role in ASD. Previous
studies have shown disturbed cytoarchitecture specifically in the
MCCg in individuals with ASD(Simms et al., 2009). Similarly,
Delmonte et al. (2013) showed hyperconnectivity between the
caudate and MCCg in children with ASD, the strength of which
was negatively correlated with neural responses to social rewards
(Delmonte et al., 2012). Unpublished data by Balsters et al. (in
prep) suggests a reduction in connectivity between the MCC and
the pSTS, an area that is engaged when processing others’ mental
states, in individuals with ASD (see Figure 2).

A meta-analysis of fMRI studies examining social processing in
ASD compared to controls (Di Martino et al., 2009). They showed
consistent group differences in anterior and posterior regions of
the cingulate cortex in the processing of social stimuli, but not in
the MCCg for either the social or non-social tasks. However, our
theoretical perspective would suggest that differences in MCCg
function in ASD will only be observed when processing others’
decisions or outcomes during social interactions. To date, stud-
ies examining social processing in ASD and those reviewed in the
meta-analysis, have largely focused on the perception of social
stimuli and not required subjects to interact with another and
monitor decision-outcome contingencies. Future research should
therefore test the tenets of our theory specifically when subject are
engaged in a social interaction.

The second prediction above matches behavioral deficits seen
in individuals with psychopathy, who are suggested to be insensi-
tive to rewards that others will receive, leading to increased com-
petitive behaviors (Mokros et al., 2008; Koenigs et al., 2010; Curry
et al., 2011). Similarly, individuals with psychopathy have been
shown to display a reduced error related negativity, measured
using Electroencephalography, when observing other’s outcomes
during a social interaction (Brazil et al., 2011). This signal is puta-
tively sourced in the MCC. Recent studies also indicate that gray
matter volume and activity in the MCCg correlate with psycho-
pathic and callous traits (De Brito et al., 2009; Anderson and
Kiehl, 2012; Cope et al., 2012; Lockwood et al., 2013). Thus, whilst
only preliminary evidence, these studies highlight the putative
role that differences in MCCg function may have to psychopathy
and psychopathic traits and particularly to the choices they make
when interacting others.

SUMMARY
Based on anatomical connectivity, neurophysiology and neu-
roimaging evidence, we suggest that the region of the cingulate
cortex that plays the most important role in social cognition and
social behavior lies in the MCCg. Our model highlights this region
as playing an important role in predicting and monitoring the
outcomes one’s own and others’ decisions when the outcomes
will be experienced by another. Future research should examine
the extent to which the MCCg is engaged when monitoring the
outcomes of others’ decisions and how deficits in MCCg function
lead to deficits in using social information to guide one’s behavior.
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