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Abstract

Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting

for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in

women worldwide. It has been well established that tumor development and progression induced by HPV infection

is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits

the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important

for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of

rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through

multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR

signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling

pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding

of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and

carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating

HPV-induced cancers.
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Introduction
Human papillomaviruses (HPVs) are non-enveloped, epithe-

liotropic, circular double-stranded DNA viruses [1,2]. HPV

infection leads to many different cancers [1,3-5]. It has

been well established that high-risk sexually transmitted

HPVs such as HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56,

58, 59, 68, 73, and 82 may lead to the development of cer-

vical intraepithelial neoplasia (CIN), vulvar intraepithelial

neoplasia (VIN), penile intraepithelial neoplasia (PIN),

and anal intraepithelial neoplasia and squamous cell car-

cinoma (AIN) while cutaneous β-HPVs such as HPV 2, 4,

5, 8, 10 and 15 are suspected to have an etiologic role in

skin warts and cancers [3,6-8]. In total, an estimated 5% of

human cancers are caused by HPV infections [9].

Genomic instability is a hallmark of carcinogenesis

and recognised as an important factor in the accumula-

tion of mutated genes required for carcinogenesis [10].

Endogenous mutations and accumulation of mutational

events are very important in the pathogenesis of prema-

lignant lesions and tumour progression, which promote

genomic instability to decrease the ability of maintaining

the fidelity of DNA sequences [3,11,12]. Published studies

have shown that HPV infection causes genomic instability

(chromosomal gain or loss) and gene alterations including

endogenous mutations and increased DNA damage which

are associated with cancer development [13,14]. In HPV-

positive cervical and vulva squamous cell carcinomas, the

most common lesions were the loss of 11q and gains of

3q, the latter has been found in more than 25% of high

grade CIN [13]. A more comprehensive understanding of

genomic instability and mutational events associated with
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the development of cancers caused by HPV infection is

needed and will be separately discussed.

It has been well established that HPV E6 and E7

oncogenes inactivate two tumor suppressors (p53 and

pRb) in virus-infected cells. Molecular and cell biology

approaches have revealed that alterations of additional

signalling pathways are equally important for transform-

ation of HPV oncogene-transduced cells [15]. It is now

widely accepted that PI3K/Akt/mTOR signalling path-

way plays a pivotal role in many human cancers. HPV

infection accompanied by E6/E7 expression activates this

signalling pathway by altering multiple cellular and mo-

lecular events to drive carcinogenesis [16-18]. The PI3K

pathway is unique, in that all of the major components

of this pathway have been found to be frequently ampli-

fied or mutated in HPV-induced cancers [19-24]. The

PI3K/Akt/mTOR signalling pathway mediates the mul-

tiple cellular and molecular functions through the al-

tered expression of its targeted genes, which are critical

to tumor initiation, progression and outcomes [25,26].

Thus, this pathway has been proposed as a promising

therapeutic target for many cancers including cervical

cancer [27]. In this review, we summarise the current

knowledge of the roles of the PI3K/Akt/mTOR signal-

ling pathway in HPV-induced cancers.

HPV life cycle and ATM /p38MAPK/MK2 pathways
HPVs whether they are low-risk and high-risk are

epitheliotropic. Infection with two HPVs may be latent

or active [28]. The latent HPV infection will complete

the viral life cycle to produce virus progeny, which arises

via the distinctly different mechanisms from those in-

volved in active HPV infection [29]. During the HPV life

cycle, genome amplification is necessary for production

of the virus progeny that is prevented until the levels of

viral replication proteins rise, and depends on the co-

expression of several viral proteins [30]. Expression of

E6 and E7 in the lower epithelial layers drives cells into

S-phase creates an environment that is conducive for

viral genome replication and cell proliferation [31,32].

The lower epithelial layers where HPVs can establish

their infection are the only compartment to contain the

cells progressing through the cell cycle [33]. Viral capsid

proteins (L1 and L2) are expressed to assemble the virus

progeny in cells upon their differentiation that also ex-

press E4 to complete its life cycle when the infected cell

enters the upper epithelial layers [29]. We have con-

firmed that expression of HPV6b and BPV1 L1 proteins

is dependent on cell differentiation in primary keratino-

cyte culture systems [34-37]. Thus, the late phase of

HPV life cycle is closely linked to the differentiation

state of the stratified epithelium it infects, with progeny

virus only made in the terminally differentiating supra-

basal compartment [38].

It has been established that the cellular DNA damage

response (DDR) is activated during the HPV life cycle

[39]. This activation leads to the induction of an Ataxia-

telangiectasia mutation (ATM)-dependent signalling cas-

cade, DNA repair and cell cycle arrest during G2/M to

avoid further DNA damage [15,30,34,38,40-42]. Thus,

G1, S, G2, and early M phase cell cycle inhibitors

efficiently prevented the virus infection [33]. The ATM

pathway is responsible for the DDR to double-strand

DNA breaks, which is mediated through the action of

downstream kinases, such as CHK2 [39,42,43]. The E1

gene might play a key role in this process, which causes

double-strand DNA breaks in the host genome [40,44].

By activating the ATM pathway, HPV recruits cellular

DNA repair and recombination factors into its replica-

tion centers during the stable and vegetative phases of

its life cycle [45]. In cells with impaired p53 activity,

DNA damage repair requires the activation of p38MAPK

along with MAPKAP kinase 2 (MK2) [43]. In HPV-

positive cells, phosphorylation of p38 and MK2 proteins

was induced along with relocalization to the cytoplasm.

Treatment with MK2 or p38 inhibitors blocked HPV

genome amplification, confirming the p38/MK2 pathway

as a key regulator of the HPV life cycle [43]. Thus, it ap-

pears to be clear that the ATM/p38MAPK/MK2 path-

ways are required for HPVs to complete normal life

cycle in the host body.

HPV infection, carcinogensis and PI3K/Akt/mTOR
signalling pathway
Active HPV infection which is also known as abortive

infection leads to induction of cancer including benign

and malignant neoplasms [46]. In the case of carcinogen-

esis, viral infection induces the initiation and development

of cervical and other cancers via their interactions with dif-

ferent cellular signalling pathways in host cells [47]. In

addition to the inhibition of p53 and pRb, HPVs also inter-

act with four major upstream pathways (growth factor re-

ceptor, notch receptor, Ras and PI3KCA genes) to stimulate

host cell survival and proliferation, leading to carcinogen-

esis through activation and alteration of the components of

the PI3K/Akt/mTOR pathway [19,48-53] (Figure 1).

PI3K

PI3K modulates different signals to prevent apoptosis and

promote cellular survival and proliferation in a wide variety

of cell types [54,55]. It has been shown that PI3K is ampli-

fied and activated in HPV-induced cervical cancers and

other cancers [56]. For instance, PI3K activity is signifi-

cantly increased in laryngeal papilloma (a hyperplastic

tumor of the respiratory tract induced by HPV 6/11), lead-

ing to upregulation of EGFR and subsequently activation of

MAPK/ERK [57,58]. The activation of MAPK/ERK in turn

alters transcription of multiple genes that are important for
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cell cycle regulation and cell proliferation. Furthermore,

HPV infection causes laryngeal epithelial cells to de-

velop recurrent respiratory papillomas where expression

of keratin-13 (K13), a cell differentiation marker of hu-

man mucosal keratinocytes, is diminished [58]. This is

due to the increased PI3K activity that enhances papillo-

mas cell proliferation and represses terminal differentiation

(and hence the failure to upregulate K13 expression) [58].

Liu et al. reported that BPV-1 L1 and L2 pre-mRNAs

are spliced in keratinocytes, which contain two exonic

splicing enhancers [59]. Each exonic splicing enhancer

has an alternative splicing factor (ASF) and splicing

factor 2 (SF2), which together play an important role

in viral RNA expression and splicing at the proximal

3′ splice site [59]. Depletion of ASF/SF2 from the cells

greatly decreases viral RNA expression and RNA spli-

cing at the proximal 3′ splice site. Activation-rescued

viral RNA expression and splicing in ASF/SF2-depleted

cells are mediated through the PI3K/Akt pathway and

associated with the enhanced expression of other serine/

arginine-rich (SR) proteins [59]. The ASF/SF2 co-operate

with H-Ras to enhance cellular proliferation and protect

cells from apoptosis by upregulating expression of phos-

phorylated SR proteins (SRp30s and SRp40) through the

PI3K/Akt pathway in cervical and other cancers [59,60]. A

published study has also reported that HPV infection-

induced IL-17 expression can stimulate Mcl-1 expression

to promote lung tumor cell progression through the PI3K

pathway [61].

Akt

Akt is a serine/threonine-specific protein kinase, which

plays a key role in multiple cellular processes including

apoptosis and cell proliferation. Phosphorylation and

activation of Akt also play an important role in the ma-

jority of HPV-caused malignancies including anal squa-

mous cell carcinomas (ASCCs) [7]. Sixty six percent (82/

125) of ASCCs show cellular accumulation of p-Akt

associated with nuclear accumulation of MDM2 [7].

Thirty nine out of 46 formalin-fixed cervical neoplastic

Figure 1 HPVs infect host epithelial cells (keratinocytes) by interacting with different cell surface receptors such as integrin and heparan sulfate

proteoglycans (HSPGs). The HPVs replicate themselves using the host cell replication apparatus to express E6/E7/E5 oncoproteins to immortalize

the infected cells not only by inhibiting tumour suppressors p53 and Rb and decreasing apoptosis, but also importantly by activating the PI3K/

Akt/mTOR signalling pathway. All these processes enhance cell proliferation leading to the carcinogenesis. Solid line: stimulatory influence;

Dashed line: inhibitory influence; ⊗: defective process.
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specimens showed p-Akt on serine 473 [62]. Forty-eight

percent (12/25) of cervical cancer patients at stage Ib2-

IIb exhibited Akt activation in cancer cells [63]. The ra-

diation sensitivity of HPV-infected H&N cancers also

correlates to Akt activation [64]. Mechanistically, HPV

infection causes genome instability due to integration of

the viral DNA into the host genome. Thus, mutations of

PIK3CA gene (which encodes PI3K) in HPV-infected

cells and tissues or HPV-DNA transformants may ac-

count for Akt activation present in cervical and other

types of HPV-induced cancers, since PIK3CA shows the

highest frequency of gain-of-function mutations in these

cancers [20,63,65]. Oncogenic mutations and amplifica-

tion of PIK3CA activate PI3K/Akt signalings to drive the

HPV-induced tumorigenesis [19,21,65].

Akt phosphorylation is required for a BRCT (BRCA1

carboxyl-terminal) domain-containing protein TopBP1

to interact with other transcription factors, especially

E2F1. E2F1 functions as a tumor suppressor to induce

apoptosis [66,67]. Phosphorylated Akt (p-Akt) interacts

with E2F1 to repress its proapoptotic activity and induce

oligomerization of TopBP1 [66]. Furthermore, an endo-

somal/lysosomal cysteine protease cathepsin L (Ctsl) has

been reported to act as an anti-tumor protease. Ctsl is

critical for termination of growth factor signalling in the

endosomal/lysosomal compartment of keratinocytes and

has an inhibitory role in Akt activation in HPV-induced

carcinogenesis [68,69]. Therefore, activation of Akt/MAPK

pathway is only upregulated in Ctsl-deficient cells [68].

Additionally, papillomavirus-binding factor (PBF), a tran-

scriptional regulator, controls the promoter activity of HPVs

by binding to the regulatory sequences of certain papillo-

mavirus types and Huntington’s disease binding protein 2

(HDBP2) through the 14-3-3β protein via two motifs

(RSRSLSFSEP and LSKSAP) [70,71]. Activated Akt phos-

phorylates the two motifs, allowing PBF to associate with

14-3-3β to promote cell survival and growth [70]. These

studies suggest that activation of Akt may contribute to the

HPV-induced tumorigenesis. It has been reported that high

levels of p-Akt might be an unfavourable prognostic marker

for relapse-free survival in oropharyngeal cancer [51].

Mammalian genomes contain three Akt genes, Akt1,

Akt2 and Akt3. Akt1 encodes the principal Akt isoform

that regulates apoptosis [72]. HPVs may differentially

affect epithelial Akt activity, as the three Akt isoforms be-

have differently during epidermal tumorigenesis [73,74] .

Cutaneous HPV8 early genes reduce epidermal Akt activ-

ity primarily due to down-regulation of Akt1. In contrast,

Akt activity can be focally stimulated by up-regulation and

phosphorylation of Akt2 in both papillomas and HPV

gene-induced epidermal tumours. In SCC, Akt1 is com-

monly down-regulated consistent with a viral influence,

whereas Akt2 up-regulation is widespread. Activation of

upregulated Akt2 by serine phosphorylation associates

with high-grade tumours, and is characteristic of SCC

associated with malignancy [74]. Interestingly, high level

of Akt2 is often associated with the presence of β-HPV

species (HPV 15) and the up-regulation of p16INK4a

and Akt/PI3K pathways [51]. p-Akt2 is over-expressed

in basal cell carcinoma (BCC) accompanied by up-

regulation of tumor suppressor p16INK4a [51,75]. Over-

expression of p16INK4a is common in cervical cancer

where pRb protein is inactivated by high-risk HPVs.

However, it is still unclear whether p16INK4a overex-

pression can be used as an indicator of pathogenic activ-

ity of high-risk HPVs. Nevertheless, the PI3K/ Akt

/mTOR pathway is associated with the up-regulation of

p16INK4a by HPVs [19,65,75-79]. So far, it remains un-

clear whether and how Akt 3 plays a functional role in

HPV-induced tumorigenesis.

mTOR

mTOR kinase acts as a cellular rheostat that integrates

the signals from a variety of cellular signalling pathways

to sense growth factor, nutrient availability and energy

status. Recently, it has been reported that activation of

Akt /mTOR can be detected within several minutes

following exposure of human keratinocytes to HPV16

pseudovirions [80]. mTOR activation is frequently ob-

served in cervical squamous cell carcinoma, most HPV(+)

head and neck squamous cell carcinomas (HNSCC),

HPV(+) oropharyngeal cancers (OPSCC), cervical cancer

squamous cell carcinomas (CCSCC) lesions and cell lines

[2,17,63,81]. A tissue microarray analysis has shown that

13 cervical cancer patients (52%) express phosphorylated

mTOR (p-mTOR) in the cytoplasm and membrane of

cancer cells [63]. Both p-mTOR expression and distant

metastasis significantly correlate with the response to nu-

cleus accumbens core [63]. Another analysis of 20 samples

each of normal cervix, high-grade squamous intraepithe-

lial lesions (HSIL) and invasive SCCs, derived from a total

of 60 cases of cervical biopsies and cervical conizations,

has revealed an increased nuclear translocation of both p-

mTOR(Ser2448) and p70S6K(Thr389), indicating the constitu-

tive activation and overexpression of the mTOR pathway

in HSIL and SCC [82]. All the studies show that mTOR

activation occurs in at least 60% of the HPV-caused cancer

patients, consistent with the Akt activation data discussed

above, suggesting that mTOR activation may play an im-

portant role in most of the HPV-induced carcinogenesis.

mTOR is a crucial metabolic sensor in the growth factor

receptor (GFR) pathway, which integrates growth factor

signals in cells. The increased nuclear translocation of

p-mTOR(Ser2448) and p70S6K(Thr389) correlates with over-

expression of the upstream signal transducer EGFR, in-

creased cell cycles and mitotic indices [82]. The activated

PI3K/ Akt /mTOR signalling pathway induces phosphor-

ylation of the mTOR complex 1 substrates ,4E-BP1 and
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S6K, which leads to induction of the functional protein

translational machinery and inhibition of autophagy at the

early stages of virus-host cell interaction [80]. All these

events are partially dependent upon activation of EGFR.

Preclinical studies have shown that both the mTOR in-

hibitor (rapamycin) and EGFR-tyrosine kinase inhibitor

(erlotinib) can induce growth delay of xenografted HPV-

containing cervical carcinoma cells [83].

A high level of p-mTOR can serve as an independent

prognostic marker to predict poor response to chemo-

therapy and survival of cervical cancer patients [63].

Concurrent use of mTOR inhibitors such as rapamycin

and RAD001 and standard-of-care cisplatin/radiation

therapy (CRT) has been applied in HPV(+) HNSCC and

CCSCC tumour xenografts and mouse models for evalu-

ating the preclinical efficacy of mTOR inhibition [77,84].

Both inhibitors effectively decrease mTOR activity, lead-

ing to a remarkable decrease in tumor burden [77] and

prolonged survival in immunocompromised mice [84]. It

has also been reported that treatment with PI3K inhibi-

tors combined with NaBT significantly decreases the via-

bility of cervical cancer HeLa cells. Inhibition of PI3K

enhances NaBT-mediated apoptosis through activation

of caspase 3 and caspase 9 and the cleavage of poly

(ADP-ribose) polymerase (PARP) [85]. Taken together,

these studies provide a rationale for the clinical applica-

tion of PI3K/mTOR inhibitors as a molecular targeted

approach for treating HPV-associated cancers.

HPV oncogene-mediated PI3K/Akt/mTOR
signalling pathway
Recently, several review papers have provided compre-

hensive summaries of the biological and biochemical ac-

tivities of three HPV oncoproteins: E6, E7 and E5

[86-88]. Here, we focus on discussing the oncogenic ac-

tivities of HPV E6, E7 and E5 proteins in inducing the

PI3K/Akt/mTOR signalling pathway (Figure 1). Human

keratinocytes, a special type of epithelial cells that have

a finite life span and do not undergo spontaneous

immortalization, are the host cells of HPV infection,

[89]. Following HPV infection, the keratinocytes are im-

mortalized and transformed by the viral oncogenes (E6/E7)

that act on multiple cellular events including inhibition of

p53 and pRb [90-92], altered expression of multiple genes

(approximately 4% of the genes on the array) [26] and

activation of several signalling pathways, especially, the

PI3K/Akt/mTOR signalling pathway [89,93-95]. The

PI3K/Akt/mTOR pathway may in turn mediate multiple

cellular functions necessary for HPV-induced carcinogen-

esis (Figure 1) [96-98].

E6 oncogene

HPV E6 oncoproteins are the key players in HPV-

induced cancers. The E6 oncoproteins from high-risk

mucosotrophic HPVs (α-HPVs) target not only P53, but

also a range of host-cell proteins for proteasome-

mediated degradation, resulting in alteration of multiple

cellular and molecular events [99-101]. A genome-wide

analysis has shown that E6 up-regulates many genes at

the transcript level associated with cancer hallmarks

including cell cycle, migration, PI3K/Akt /mTOR signalling

to mediate cellular transformation [102]. The high-risk

HPV E6 oncoproteins contain a PDZ-binding domain; a

common structural domain of 80–90 amino acids found in

the signalling proteins of multiple organisms [103]. The

PDZ-binding domain plays a key role in HPV-mediated cel-

lular transformation. Through this domain, the E6 targets a

member of the group of PDZ domain-containing molecules

that are mediated by the PI3K/Akt signals [98,102,104]. For

example, HPV 16/18 E6 proteins promote proteasome-

mediated degradation of human disc large (hDlg) tumor

suppressor protein by binding to the second PDZ domain

of the hDlg through their C-terminal xS/TxV/L (where x

represents any amino acid, S/T serine or threonine, and V/

L valine or leucine) motif [2,105]. High-risk HPV E6

oncoproteins efficiently degrade members of the PDZ

domain-containing membrane-associated guanylate kinase

(MAGUK) family and a PDZ protein, Na (+)/H (+) ex-

change regulatory factor 1 (NHERF-1) [103]. E6 degrades

MAGUK by binding to it with inverted domain structure 1

(MAGI-1), which is one of the most strongly bound PDZ

domain-containing substrates of E6. E6 interacts with

MAGI-1 to facilitate the perturbation of tight junctions.

Restoration of MAGI-1 expression in HPV positive tumour

cells induces cell growth arrest and apoptosis [106].

HPV E6 variants (E6*) can act as an adaptor molecule

linking a ubiquitin ligase to target proteins, which contain

class 1 PDZ domains and are involved in cell junction

stability and signalling [100]. E6* proteins differentially

modulate hDlg degradation to rebound the levels of acti-

vated PTEN and Akt and strongly enhance expression of

p-PI3K contributing to activate MAPKs and promote cell

proliferation [2,102]. High-risk HPV E6 can target certain

substrates both directly and indirectly through the E6*

proteins and the two E6 proteins may cooperate in their

degradation [100]. In the absence of full-length HPV-18

E6, HPV-18 E6* expression also downregulates the ex-

pression levels of Akt, Dlg, and Scribble [100]. It has also

been reported that HPV16 E6 and HPV18 E6* oncopro-

teins activate MAPK signalling pathway to promote cell

proliferation by upregulating p-PI3K [102,107]. HPV18

intra-type variations may result in differential abilities to

activate cell-signalling molecules such as Akt and MAPKs,

directly involved in cell survival and proliferation [102].

Functional studies confirm that HPV18 E6 from an

African variant has a major effect on the cellular processes

including cell cycle and migration [108]. A specific E6

(amino acid 83) (E6aa83V) variant is also linked to invasive
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tumours. The E6aa83V variant activates PI3K signalling

pathway and strengthens the possibility of the existence of

Ras-independent mechanisms to recreate signalling

through classical Ras effector pathways [107]. The variant

also enhances MAPK signalling and cooperative trans-

formation with deregulated Notch1 signalling. These stud-

ies suggest that intra-type genome variations of high risk

HPVs may differ in their abilities to mediate Akt /MAPKs

signalling, thus presenting a differential threat to the

development of cervical and other cancers.

E6 proteins of three HPVs (HPV1, 8 and 16), and BPV1

interact with acidic LxxLL motifs of transcriptional core-

gulator MAML1 to target many host proteins such as the

mammalian target of rapamycin complex 1 (mTORC1) to

delay keratinocyte differentiation [109-111]. The inter-

action of HPV-8 E6 with MAML1 causes delay of kera-

tinocyte differentiation [111]. According to the crystal

structure analysis, both BPV1 and HPV16 E6 proteins

contain two zinc-finger domains and a linker helix

[109,110]. Both E6 proteins can bind to LxxLL motifs

of the focal adhesion protein paxillin and the ubiquitin

ligase E6AP, respectively to form a basic-hydrophobic

pocket. The basic-hydrophobic pocket captures the helical

LxxLL motifs to stimulate mTORC1 signalling, and cap-

dependent translation, through activation of the PDK1

and mTORC2 kinases leading to genetic alterations

[109,110]. Such genetic alterations include intra-type gen-

ome variations of the virus and changes in chromatin pro-

teins and histone modifications in host cells during

HPV16-induced carcinogenesis [107]. The integrity of

LxxLL and PDZ protein binding domains is important for

activation of cap-dependent translation by high-risk mu-

cosal HPV E6 proteins [109,110].

Generally, β-HPV E6 proteins interact with fewer cel-

lular proteins as is also observed for the α-HPV E6 [58].

This is because β-HPVs such as HPV5 and HPV8 E6

proteins lack the domains for binding to the LxxLL and

PDZ motifs. An exception is that both α- and β-HPV E6

proteins can directly interact with p300 protein, a tran-

scriptional co-activator. The interaction appears to be

much stronger with β-HPV 5/8 E6 than with α-HPV 16

E6 or β-HPV 38 E6 [58]. Enhanced interaction between

β-HPV 5/8 E6 and p300 leads to p300 degradation and

the blockage of Akt/p300 association in a proteasomal-

dependent but E6AP-independent manner [58]. Decreased

p300 concomitantly affects downstream signalling events

including expression of differentiation markers K1/10 and

involucrin. These results reveal a unique way in which

β-HPV E6 proteins are able to affect host-cell signaling in

a manner distinct from that of the α-HPVs. Furthermore,

HPV16 E6 degrade tuberin, the product of mTOR inhibi-

tor tuberous sclerosis complex 2 (e.g., tumour suppressor

gene TSC2), by binding to the DILG motif and ELVG

motif located in the carboxyl-terminal of Tuberin, which

leads to the phosphorylation of p70 S6 kinase (S6K)

[112-114]. The E6 binding domain interacting with

tuberin is different to that of p53 [113]. The S6K phos-

phorylation is tightly associated with HPV16 infection in

cervical and oesophageal cancers [112]. Immunohisto-

chemical analysis of p-S6K(Thr389) and p-S6(Ser235/236) in

140 cervical cancer and 161 oesophageal cancer speci-

mens has revealed that both p-S6K and p-S6 were

detected significantly more frequently in the HPV16-

infected cervical cancer specimens than those in the

HPV16-negative specimens [112]. HPV16 E6 activates

S6K via Akt signalling, which promotes S6K phosphoryl-

ation and sustains the activity of the mTORC1 and

mTORC2 signalling cascade [112,115]. Alternatively,

HPV16 E6 increases the mTORC1 activity through en-

hanced phosphorylation of mTOR and activation of the

downstream signalling through S6K and eukaryotic initi-

ation factor binding protein 1 (4E-BP1) [116]. HPV16 E6

also causes Akt activation through the upstream kinases

PDK1 and mTORC2 under conditions of nutrient

deprivation. HPV16 E6 increases protein synthesis by

enhancing translation initiation complex assembly at the

5′ mRNA cap. The increase in cap-dependent translation

likely results from HPV16 E6-induced Akt /mTORC1 ac-

tivation, as the assembly of the translation initiation com-

plex and cap-dependent translation are rapamycin

sensitive. HPV16 E6-mediated activation of mTORC1 sig-

nalling and cap-dependent translation may be a mechan-

ism employed by HPV to promote viral replication in

HPV oncoprotein-expressing proliferating cells under

conditions of limited nutrient supply [116].

NHERF-1 is a molecular pathway organizer that plays an

important role in a number of cellular processes including

signal transduction, cellular transformation and recruitment

of membrane, cytoplasmic, and cytoskeletal signalling pro-

teins into functional complexes [117]. HPV16 E6 mediated-

NHERF-1 degradation correlates with the activation of the

PI3K/Akt pathway during carcinogenesis [103]. HPV16 E7

plays a concerted role in E6 mediated NHERF1 degradation

[103]. E7 activates the cyclin-dependent kinase complexes

to promote the accumulation of a phosphorylated form

of NHERF-1 that is preferentially targeted by E6. How-

ever, HPV18 E6 does not degrade NHERF-1, suggesting

that HPV E6-induced NHERF-1 degradation is HPV

type-dependent [103]. In addition, E6-upregulated cIAP2

protein confers resistance to cisplatin in HPV 16/18-

infected lung cancer through EGFR/PI3K/Akt pathway

[118]. Thus, EGFR or PI3K inhibitor combined with cis-

platin may improve the chemotherapeutic efficacy in

HPV-induced cancers [118].

E7 oncogene

HPV E7 protein is responsible for pRb disruption in

HPV-induced carcinogenesis. E7 binds to and inactivates
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pRb to disturb the normal cell division process, allowing

the cells to grow out of control and unhindered and thus

become cancerous. Clinically, decreased Rb expression is

consistently associated with increased CIN grade in the

HPV-infected woman’s cervices. It has been reported

that HPV E7 significantly up-regulates Akt activity in

differentiated keratinocytes, which depends on the ability

of E7 binding to and inactivating the proteins of pRb

family [17] . Up-regulation of AKT activity and loss of

pRb were observed in HPV-positive cervical high-grade

squamous intraepithelial lesions when compared with

normal cervical tissue. Therefore, pRb expression is

inversely correlated with Akt activity in HPV-positive

cervical high-grade squamous intraepithelial lesions [17].

E7 directly activates Akt by phosphorylating it at two

key sites (threonine 308 and serine 473), which subse-

quently leads to phosphorylation of BAD, a downstream

target of Akt [16]. Akt phosphorylation is associated

with activated Notch1 signalling that regulates the PI3K

pathway [27,49]. It has been reported that protein phos-

phatase 2 (PP2 or PP2A), a ubiquitous and conserved

serine/threonine phosphatase, interacts with the 35 kDa

catalytic and 65 kDa structural subunits of p-Akt to de-

phosphorylate Akt [119]. Akt dephosphorylation results

in loss of its activity in preventing cell apoptosis. HPV

E7 binds to the two PP2A subunits to prevent their

interactions with p-Akt, thereby maintaining Akt signal

activation [16].

Through the PI3K/Akt signalling pathway, HPV E7 onco-

protein inhibits the functions of two cyclin-dependent kin-

ase inhibitors, p21Cip1 and p27Kip1 [120,121]. As a tumour

suppressor, p21Cip1 binds to the cyclin E/CDK2 complex to

maintain Rb in a phosphorylated state [76]. In the absence

of immortalizing oncogenes or genetic lesions, activation of

the Raf/Ras pathway results in a p21Cip1-dependent cell

cycle arrest [122]. In contrast, in the E7-transformed

human primary cells, E7 cooperates with Ras to abolish

the p21Cip1-mediated growth arrest [121]. E7 bypasses Raf-

induced arrest and alleviates inhibition of cyclin E-CDK2

without suppressing Raf-specific synthesis of p21Cip1 or

derepressing p21Cip1-associated CDK2 complexes by sus-

taining Akt activity [2,123,124]. P27Kip1 is a marker of

poor prognosis in several forms of cancer when localized to

the cytoplasm and has been implicated as a positive regula-

tor of cellular motility [120]. HPV 16 E7 protein can modu-

late the cytoplasmic localization of p27Kip1 and may in turn

regulate tumor metastasis/aggressiveness through the

PI3K/ Akt pathway [120]. E7 also antagonizes the ability of

p27Kip1 to block cyclin E-associated kinase and to inhibit

transcription of cyclin A in vitro [125].

Apoptosis as a normal process of cellular self-destruction

or suicide is one of the major contributors to the develop-

ment of a normal immune system, which serves a protect-

ive role in our bodies. In response to oncogenic insults,

normal human cells execute a defence response that cul-

minates in apoptosis [126]. In HPV infection, expression

of E6/E7 oncogens induces cellular immortalization and

transformation and carcinogenesis through the immune

evasion or resistance against apoptosis and adaptive

immune surveillance. Several studies have reported that

activation of Akt induced by HPV E7 expression plays a

crucial role in immune resistance [126-128]. Due to

HPV16 E7 expression, activation of Akt in TC-1/PO and

A17 tumours induces an immune resistance against apop-

totic cell death [127]. The E7-induced activation of Akt in

A17 tumor cells also contributes to significantly upregu-

late expression of the key antiapoptotic proteins including

Bcl-2, Bcl-xL, phosporylated Bad (p-Bad), Bcl-w, cIAP-2

and surviving [127]. Treatment of A17 tumor cells with

the Akt inhibitor, API-2, reduces the expression of the

antiapoptotic proteins markedly leading to an increase in

the apoptosis of tumor cells [128]. It has also been re-

ported that overexpression of E6/E7 from the high-risk

HPV16 significantly upregulates expression of cellular in-

hibitor of apoptosis protein 2 (c-IAP2), which is necessary

for the E6/E7-induced resistance to apoptosis and cell sur-

vival in HPV16 E6/E7-immortalized human oral keratino-

cytes [128]. Akt inhibitors markedly abrogate the

antiapoptotic effect of c-IAP2 and some other antiapopto-

tic proteins on different cancer cells [129,130].

Furthermore, normal human diploid fibroblasts ex-

pressing the HPV16 E7 oncoprotein are predisposed to

apoptosis when they are deprived of growth factors such

as IGF-1 in serum-starved medium [126]. The apoptosis

of serum-starved HPV16 E7-expressing cells is directly

associated with low phosphorylation of Akt and highly

activated caspase 3 that plays a central role in the

execution-phase of cell apoptosis. Exogenously added

IGF-1 can partially inhibit the cell death response associ-

ated with upregulated p-Akt in serum-starved E7-

expressing cells [126]. In support of these previous find-

ings, we observed that HPV16 E7 inhibits IFN-γ-mediated

MHC class I antigen presentation and CTL-induced lysis

through blocking interferon regulatory factor-1 (IRF-1)

expression in mouse keratinocytes [131]. IRF-1 is a tumor

suppressor that can regulate gene expression involved

in induction of apoptosis and cell growth control by re-

ducing p-Akt expression [132]. Thus, the activation of

PI3K/Akt pathway induced by HPV E6/E7 oncogenes

may represent a new mechanism of immune escape and

have important implications for developing a novel

strategy in cancer immunotherapy against immune-

resistant tumor cells [127,128].

As mentioned above, keratinocytes are the host cells

of HPV infection. In normal epithelial tissues, cell div-

ision and proliferation of keratinocytes are confined to

the basal layer, where mitogenic signals are balanced by

survival signals transmitted through PI3K/Akt pathway
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[133]. Once in the suprabasal layer, keratinocytes stop

dividing and enter a differentiation program. Primary

keratinocytes in in vitro cultures resemble in vivo epider-

mal development when they enter a differentiation pro-

gram [134]. We and others have previously observed

that both human and mouse primary keratinocytes

grown in vitro proceed to cell differentiation with down-

regulation of proliferation markers including K14 and

K5 and upregulation of differentiation markers such as

involucrin and K10 [36,135,136]. However, expression of

HPV 16 E7 in human foreskin keratinocytes in in vitro

cultures induces phosphorylation of AKT on threonine

308 and serine 473 to significantly inhibit cell differenti-

ation and cause hyperproliferation [16,17]. It has been

reported that a dual epidermal growth factor receptor

(EGFR) and HER2 inhibitor Lapatinib reduces expres-

sion of E6/E7 and Akt phosphorylation to prevent cell

proliferation and induce cell death in HPV-positive cell

lines [137]. The HPV E7-activated Akt also enhances

keratinocyte migration through downregulation of RhoA

activity [120]. Either treatment of PI3K or AKT inhibi-

tors or PIK3CA siRNA transfection results in a signifi-

cant decrease of E7 expression and E7-induced Akt

phosphorylation, consequently, leading to that cellular

viability and migration are dramatically reduced in

HPV16-transfected keratinocytes [65]. The HPV E7-

activated Akt regulates not only tumourigenesis and in-

vasion [138], but also tumor metastasis/aggressiveness

by modulating the cytoplasmic localization of p27 [120].

E5 oncogene

HPV E5 gene encodes an 83-amino acid, membrane-

bound protein, which plays an important role in early

cervical carcinogenesis by regulating several cellular

pathways [139-141]. HPV16 E5 itself cannot immortalize

human or mouse primary cells, but can enhance the

immortalization of keratinocytes by E6/E7[142] and po-

tentiate the transforming activity of E7 in murine fibro-

blasts and activation of EGFR in human keratinocytes

that naturally express high levels of EGFR after EGF

stimulation [104,143-146].

HPV16 E5 induces the anchorage-independent growth

of murine fibroblasts by overexpressing EGFR [147].

HPV16 E5 also induces expression of VEGF, which plays

a central role in switching on angiogenesis during early

cervical carcinogenesis through activation of EGFR and

phosphorylation of Akt and ERK1/2 [148,149]. Thus,

HPV 16 E5 may activate the EGFR/PI3K/Akt/MEK/

ERK1/2 pathway. Recently, it has been reported that

expression of HPV16 E5 in undifferentiated keratino-

cytes alters the key paracrine mediator of epithelial

homeostasis, keratinocyte growth factor receptor (KGFR/

FGFR2b) [146]. KGFR down-modulation, together with

a ligand-dependent decrease of p63, is responsible for a

E5-mediated decrease of the early differentiation marker

K1 and impairment of keratinocyte differentiation [146].

HPV E5 may act as a survival factor as the E5-

expressing cells in human keratinocyte culture exhibit a

significant reduction in UVB-irradiation induced apop-

tosis [145]. A genome-wide microarray assay reveals that

E5 expression significantly alters expression of 179 genes

including upregulation of PI3K and PKCδ and downreg-

ulation of lamin A/C protein, which lead to inhibition of

apoptosis and the establishment of persistent infection

in the epithelium [150]. The E5-mediated protection

against apoptosis can be blocked by two specific inhibi-

tors of the PI3K/MAPK pathways (wortmannin and

PD98059), suggesting that the PI3K/MAPK pathways are

involved in the protection from apoptosis by HPV16 E5

[145]. Inhibition of the PI3K/Akt signalling prevents the

down-regulation of KGFR/p63, supporting an oncogenic

role of E5 through the PI3K/Akt pathway [146]. In addition,

two BPV1 E5 mutants are severely defective for focus

formation, but still competent for enhanced growth

through the PI3K/Akt/cyclin D3 pathway together with a

Grb2-Gab1-SHP2 complex and JNK protein [151,152].

Thus, it appears that HPV E5 oncoprotein can directly or

indirectly target several other substrates to regulate the

PI3K/Akt /mTOR pathway.

HPV pseudovirions and PI3K/Akt /mTOR signals
It is well documented that induction and progression of

tumours by HPV infection are driven by the continuing

expression of E6 and E7 oncogenes that degrade and in-

activate p53 and pRb, respectively [122,153]. However,

two studies have reported that HPV pseudovirions and

virus-like particles (VLPs, or as pseudovirions), which do

not contain E6/E7 genes or their protein products, also

can activate PI3K signalling in human keratinocytes

and epidermoid carcinoma cells through the signals of

growth factor receptor (GFR) [80] and α6β4 integrin re-

ceptor [154]. The pseudovirions-induced PI3K activity

results in efficient activation of its two down streamers

Akt and mTOR and subsequent phosphorylation of the

mTOR complex 1 substrates 4E-BP1 and S6K [80] and

of FKHR and GSK3β (Figure 2) [154]. These events

combined with activation of Ras/MAPK to enhance cell

proliferation and inhibit autophagy [80,154].

Generally, it is impossible that attachment of HPV

pseudovirions and other viruses to the surface of cells

activates the PI3K/Akt signalling pathway leading to the

development of cancerous cells. However, several other

published studies appear to suggest that PI3K signalling

pathway plays a critical role in cellular entry of pseudo-

virions of HPV [155] and other viruses such as Zaire

Ebola virus (ZEBOV) [156], SV 40 [157] and Epstein–

Barr virus (EBV) [158]. Infection with either radiation-

inactivated ZEBOV virus or SV40 VLPs activates PI3K/
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Akt by expression of phosphorylated PI3K/Akt in the in-

fected cells [157,158]. On the other hand, inhibition of

PI3K significantly reduces infection rate of HPV 16

pseudovirions (50–60% reduction) [155] and ZEBOV

VLPs [156]. In addition, EBV latent membrane protein

2A can transform the EBV-infected cells to become can-

cerous through constitutive activation of the PI3K/Akt/

Ras/MAPK pathway [158]. Nontheless, whether the

PI3K/Akt pathway can play a role in HPV-induced car-

cinogenesis independent of E6/E7 proteins remains

questioned. Thus, more detailed studies are required to

improve our current understanding of the full spectrum

of mechanisms underlying HPV-induced carcinogenesis.

Concluding remarks
Recently, the PI3K/Akt/mTOR pathway has been identi-

fied as an important signalling pathway to tightly modu-

late many cellular events including the physiological

activities of mitogenic or oncogenic factors, leading to

the genesis of many human cancers. Published studies

have shown that expression of HPV E6/E7 oncoproteins

induces HPV transformed cells to be cancerous not only

causing degradation and destabilization of p53 and pRb,

but also altering multiple cellular and molecular events

through activation of the PI3K/Akt/mTOR signalling

pathway. The PI3K/Akt/mTOR signalling pathway in

HPV-infected cells is activated through both mutation of

the pathway components and activation of upstream sig-

nalling molecules. Activation of this pathway contributes

to genetic instability, deregulation of proliferation, resist-

ance to apoptosis, and changes in metabolism character-

istics, eventually leading to the malignant transformation

of the infected cells. This signalling pathway may poten-

tially represents both a great therapeutic opportunity

and a practical challenge for treating HPV-induced can-

cers. Thus, further understanding of the molecular

mechanisms by which HPV infection activates the PI3K/

Akt/mTOR signalling pathway and the biological roles

Figure 2 HPV pseudovirions enter the host epithelial cells (keratinocytes) by interacting with α6β4 integrin receptor [154] or growth factor

receptor [80] to enhance cell proliferation through the activation of the PI3K/Akt/mTOR and PI3k signalling pathway. Without the oncogenic roles

of E6/E7E5, it is impossible for HPV pseudovirions to induce formation of cancerous cells by activating the PI3K/Akt signalling pathway.
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of this pathway in HPV-induced carcinogenesis will im-

prove the disease prevention, patient care, and surveil-

lance strategies for HPV-positive cancers. We suggest

that one important research direction will be to devise

the novel biomarker-driven therapeutic strategies to tar-

get the PI3K/Akt/mTOR pathway in HPV-associated

cancers with a specific molecular profile and evaluate

the efficacy of the potential therapeutic agents.
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