
Immunogenetics (2005) 57: 33–41
DOI 10.1007/s00251-005-0781-7

ORIGINAL PAPER

Morten Nielsen . Claus Lundegaard . Ole Lund .
Can Keşmir

The role of the proteasome in generating cytotoxic

T-cell epitopes: insights obtained from improved

predictions of proteasomal cleavage

Received: 15 September 2004 / Revised: 13 January 2005 / Published online: 3 March 2005
# Springer-Verlag 2005

Abstract Cytotoxic T cells (CTLs) perceive the world
through small peptides that are eight to ten amino acids
long. These peptides (epitopes) are initially generated by
the proteasome, a multi-subunit protease that is responsible
for the majority of intra-cellular protein degradation. The
proteasome generates the exact C-terminal of CTL epi-
topes, and the N-terminal with a possible extension. CTL
responses may diminish if the epitopes are destroyed by the
proteasomes. Therefore, the prediction of the proteasome
cleavage sites is important to identify potential immuno-
genic regions in the proteomes of pathogenic microorgan-
isms (or humans). We have recently shown that NetChop,
a neural network-based prediction method, is the best meth-
od available at the moment to do such predictions; however,
its performance is still lower than desired. Here, we use
novel sequence encoding methods and show that the new
version of NetChop predicts approximately 10% more of
the cleavage sites correctly while lowering the number of
false positives with close to 15%. With this more reliable
prediction tool, we study two important questions concern-
ing the function of the proteasome. First, we estimate the N-
terminal extension of epitopes after proteasomal cleavage
and find that the average extension is relatively short. How-
ever, more than 30% of the peptides have N-terminal ex-
tensions of three amino acids or more, and thus, N-terminal
trimming might play an important role in the presentation of

a substantial fraction of the epitopes. Second, we show that
good TAP ligands have an increased chance of being cleaved
by the proteasome, i.e., the specificity of TAP has evolved
to fit the specificity of the proteasome. This evolutionary
relationship allows for a more efficient antigen presentation.

Keywords Proteasomal cleavage . MHC class I epitope .
Neural networks . Sequence encoding . Hidden Markov
models . Evolution of TAP specificity . N-terminal
trimming

Introduction

The MHC class I pathway of antigen processing and pre-
sentation is highly complex and involve many steps that
select the peptides to be presented on the cell surface. The
most selective step is theMHC binding, where only a minor
fraction of the peptide repertoire will bind to a given MHC
molecule. The first step in this pathway, i.e., the cleavage by
the proteasome, also shows some degree of specificity and
some sites in a protein are preferentially cleaved (Eggers
et al. 1995).

Previously, others and we have developed methods to
predict the specificity of the mammalian proteasome
(Holzhutter et al. 1999; Kesmir et al. 2002; Kuttler et al.
2000). Among these, the neural network-based method
NetChop 2.0 of Kesmir et al. (2002) has recently been
shown to be the most accurate of a set of publicly available
cleavage prediction methods (Saxová et al. 2003). How-
ever, the current performance of NetChop is not sufficient to
increase our ability to detect cytotoxic T-cell (CTL) epi-
topes Peters et al. 2003.

Here we present an updated version of NetChop 2.0.
The newmethod consists of a combination of several neural
networks, each trained using a different sequence-encoding
scheme of the data. In this paper, we have a twofold objective.
First, we will demonstrate how the predictive performance
can be improved by use of different neural network-training
strategies and sequence-encoding schemes. For this purpose,
we shall restrict the network training to the data used in the

The new version of NetChop (NetChop 3.0) is available at http://
www.cbs.dtu.dk/services/NetChop-3.0.
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original NetChop publication. In this way, we can directly
point out the source of improvements in the predictive
performance. The second objective of this paper is to develop
the best possible prediction method, and for this purpose, it
is natural to extent the size of the training data sets. We
evaluated the predictive performance of the new method
using the benchmark described by Saxová et al. (2003), and
found that using different sequence-encoding schemes
allows us to achieve a performance that is significantly
higher than that of NetChop 2.0. Specifically, the new
method has a significant increase in the prediction sensitivity
as compared to NetChop 2.0, without lowering the specific-
ity. This means that the new method is capable of correctly
identifying the cleavage sites better than NetChop 2.0. In
addition to the presentation of this new method, we here
address two important questions concerning the function of
the proteasome: (1) How long are N-terminal extensions of
peptides generated by the proteasome? (2) Can one find signs
of adaptation between the specificity of TAP and the
proteasome?

Material and methods

Data

We train two distinct prediction methods. The first method
is trained on MHC ligands as described by Kesmir et al.
(2002). C-termini of known MHC class I epitopes/ligands
are assigned as proteasomal cleavage sites, whereas the po-
sitions within a ligand are assumed to be not likely cleavage
sites and thus are taken as negative sites. For the negative
sites, an additional filtering was made to exclude positions
that carry strong characteristics of a cleavage site (see Kesmir
et al. (2002) for the details of this procedure).

The second method is trained on in vitro degradation
data. We use again the same data as were used by Kesmir
et al. (2002): degradation of yeast enolase and bovine
casein by the human constitutive proteasome. We refer to
Kesmir et al. (2002) for further details and analysis on the
two data sets.

For evaluation of the prediction accuracy of the two
prediction methods, we perform a benchmark calculation
as described by Saxová et al. (2003). The method trained
with epitope data is evaluated on a set of 231 MHC class I
epitopes, and the method trained with in vitro data is
evaluated on digestion data of three proteins. In both cases,
none of the evaluation data are included in the training data.
We refer to Saxová et al. (2003) for a description of the two
evaluation data sets.

Since the development of NetChop 2.0 and NetChop-
20S, more data on both MHC ligands and proteasomal in
vitro digests have become available. To extend our train-
ing sets, we include a set of 150 MHC ligands downloaded
from the SYFPEITHI database (Rammensee et al. 1999).
None of these ligands are included in the original NetChop
training data set, and further, they are not part of the eval-
uation data set described by Saxová et al. (2003). For the in
vitro digest training, we extend the training data and include

constitutive proteasome digest data of the prion protein
(Tenzer et al. 2004).

Table 1 summarizes the different data sets.

Methods

Sequence encoding

We train neural networks using combinations of three dis-
tinct sequence-encoding schemes: (1) conventional sparse
encoding, (2) Blosumencoding, and (3) hiddenMarkovmodel
encoding. In the sparse encoding, an amino acid is rep-
resented as a 20-digit binary number, with 1 at one position
and zeros at the remaining 19 (Baldi and Brunak 2001). The
Blosum encoding scheme makes use of the BLOSUM50
matrix (Henikoff and Henikoff 1992), which is a measure of
how similar/dissimilar amino acids are. An amino acid is
encoded as a vector of 20 BLOSUM50 scores, where each
score corresponds to the penalty of replacing that particular
amino acid with other 20 amino acids. This encoding helps
the neural network to generalize; for instance, if a cleavage
site with a leucine residue is presented to the neural net-
work, the neural network parameters corresponding to sim-
ilar and dissimilar amino acids are adjusted in such a way
that the neural network appears to have seen cleavage sites
with isoleucine, valine, etc. This sequence-encoding scheme
has previously been shown effective when training neural
networks for prediction of T-cell epitopes and protein sec-
ondary structure (Nielsen et al. 2003; Thorne et al. 1996).
Finally, for the hidden Markov model encoding, we con-
struct an un-gapped hidden Markov model (or a weight
matrix) describing the proteasomal cleavage motif, using the
Gibbs sampler approach described by Nielsen et al. (2004).
The weight matrix is constructed from all positive cleavage
sites in the training data sets using sequence weighting and
pseudo-count correction for low count. Using the hidden
Markovmodel, we encode the peptide sequence as the match
scores for the different positions in the cleavage motif
(Nielsen et al. 2003). Thesematch scores are given in addition

Table 1 The different data sets used for training and evaluation of
the cleavage prediction methods

Data setsa N Ncleavage

Train MHC ligands 3,870 746
Extended MHC ligands 5,245 896
Evaluation MHC ligands 231 231
Train in vitro 643 164
Extended train in vitro 853 226
Evaluation in vitro 236 61

(N is the total number of data points in the different sets, Ncleavage is
the total number of cleavage sites)
Train MHC ligands, Extended MHC ligands, and Evaluation MHC
ligands refer to the training, extended training and evaluation data
sets extracted from the SYFPEITHI database, respectively. Train in
vitro, Extended train in vitro, and Evaluation in vitro refer to the in
vitro degradation data sets
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to sparse/Blosum sequence coding. This type of sequence
encoding we refer to as hidden Markov model encoding.

Neural network training

Conventional feed-forward networks with back-propaga-
tion are used in this study. A network consists of three
layers—an input layer, a hidden layer with 2–22 neurons,
and a single neuron output layer. For sparse and Blosum
sequence encoding, the input layer has 20×L neurons,
where L is the window size. When combining with the
hidden Markov model encoding, the input layer has an
extra L neurons, and the total number of neurons in the
input layer thus is (20+1)×L. Following previous optimi-
zations made for NetChop, we use a window size of 17 to
train with MHC ligands, and a window size of 7 for the in
vitro data (Kesmir et al. 2002).

We train the neural networks using a fivefold cross-
validation. The data are randomly split into five orthogonal
sets. In one round of network training, four of the sets are
combined into the training set, and the fifth set is used as
a test set to decide when to terminate the training. Five
rounds of training were performed so that all sets serve as a
test set. The network training is terminated when the error
on the test set is minimal (similar performance was obtained
when stopping the training on maximum Pearson correla-
tion on the test set data). Since the ratio of cleavage to non-
cleavage sites is rather small in our data sets, we train the
networks in a balanced manner, i.e., cleavage and non-
cleavage sites are presented to the network with an equal
frequency (Baldi and Brunak 2001; Nielsen et al. 2003).

For each five train and test data sets, we train a series of
neural networks, varying the number of hidden neurons
between 2 and 22, and select the network with the lowest
test set error. When applying the networks to predict
cleavage sites in an independent data set, the prediction of
cleavage of the central amino acid in the sequence window
is calculated as the simple average over the five individual
neural network predictions. For the combined method
using both sparse and Blosum encoding in combination
with hidden Markov models, the final combined prediction
score is taken as the average of the two individual pre-
dictions. The in vitro cleavage data are of very limited
size, and to limit the risk of over-training the network by
stopping the training on test sets of very limited size, we
select an optimal value for the training cycle number and
number of hidden neurons from the fivefold test perfor-
mance, and repeat the training on the complete data set,
using these optimal values. Using this approach the final
network is trained 20 cycles, using ten hidden neurons.

Performance measurements

To evaluate the cleavage predictions is a difficult task,
because negative cleavage sites (i.e., the sites in a protein
that is not used for proteasomal cleavage) are only avail-
able from in vitro degradation data. Thus, when MHC

ligands or T-cell epitopes are used as test sets, one needs to
define the negative sites. It is erroneous to assign every
internal site within an epitope as a negative site, because
many T-cell epitopes with possible internal cleavage sites
are found (see, e.g., Goldberg et al. 2002). We here adopt
the assumptions of Saxová et al. (2003). The C-terminal of
the epitopes naturally gives the positive set. We assume
that none of the internal cleavages of an epitope can be
more likely than the C-terminal cleavage. These require-
ments impose the following classification scheme:

TP : PC > T FN : PC < T

TN : PI < max PC; Tð Þ FP : PI > max PC; Tð Þ;

where PC is the C-terminal cleavage prediction score, PI

is the maximal internal cleavage prediction score, T is
the threshold value classifying predictions into cleavage
and non-cleavage sites, and max(x,y) defines the maxi-
mum value of x and y. TP is true positives, TN true neg-
atives, FP false positives and FN false negatives. Below
we will use the following performance measures: Sensi-
tivity=TP/(TP+FN), Specificity=TN/(TN+FP), and CC is
the Matthews correlation coefficient. For the neural net-
work predictions, T is set to 0.5.

For the in vitro data set, we have clear assignments of
positive and negative cleavage sites, and no additional
assumptions are necessary. We use the following perfor-
mance measures: CC is the Matthews correlation coeffi-
cient, PCC is the Pearson correlation coefficient, and
AROC is the area under the relative operating characteristic
(ROC) curve (Swets 1988). The two latter measures are
non-parametric, and hence not biased by the threshold
selection implicit in the CC measure.

To address the question of whether the difference in
predictive performance between two different prediction
methods is statistically significant, we perform a bootstrap
experiment (Press et al. 1992). In the bootstrap experi-
ment, we generate a series of data set replica by randomly
drawing n data points with replacement from the original
data set, where n is the size of the original data set. For
each data set, we evaluate the predictive performance of
two methods. The P-value for the hypothesis that method
M1 performs better than method M2 is then estimated
from the simple ratio #(M1<M2)/N, where #(M1<M2) is
the number of experiments where method M2 outper-
forms methodM1, andN the number of bootstrap replica. A
P-value less than 0.05 will indicate that method M1 sig-
nificantly outperforms method M2.

Results and discussion

Before describing the results from the benchmark calcula-
tions comparing the predictive performance of the different
methods, we first give some general comments regarding
the network training with different types of sequence en-
coding. When training a neural network using sparse or
Blosum encoding combined with a hidden Markov model,
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the network training becomes significantly shorter com-
pared to the training of a network using sparse or Blosum
encoding alone. The average training cycle number for
sparse- or Blosum-encoded networks is approximately
300, where the corresponding number for networks trained
including hidden Markov sequence encoding is approxi-
mately 50. This difference is expected, however, since the
hidden Markov model encoding provides the network with
a rough description of the linear information content in the
cleavage motif. On the other hand, the number of training
cycles, the average number of hidden neurons and the
predictive performance between networks trained using
Blosum and sparse sequence encoding is very similar. Even
though the Blosum encoding implicitly provides the neural
network with relevant information about the chemical sim-
ilarities among the different amino acids, this additional
information does not lead to a significant change in neither
network training nor predictive performance.

In Fig. 1, we give the benchmark calculation compar-
ing the predictive performance of FragPredict, PAProC,
NetChop 2.0, and two of the neural network methods de-
veloped in this work (Comb, NetChop 3.0) trained on epi-
tope data, using different types of sequence and hidden
Markov model sequence-encoding schemes. To see the ef-
fect of training strategy only, Comb was trained on the
NetChop 2.0 data set. At the time of writing the manu-
script, we were not able to access the MAPPP prediction
server, and the results for FragPredict were therefore taken
from Saxová et al. (2003). For PAProc, we report the pre-
diction performance for both the older version (PAProcI)
and the updated version (PAProcII). From Fig. 1, it is clear
that the neural network-based methods have a predictive
performance superior to that of both the FragPredict and
the two PAProC methods. Note also that in this benchmark

calculation the updated PAProCII method had a lower
performance than PAProCI. Performing the bootstrap
experiment on the Matthews correlation coefficient values,
we found that the combined method (Comb) had a per-
formance that is significantly higher than that of NetChop
2.0 (P<0.001). There are several reasons for the increase in
predictive performance. First of all, the network training
strategy differs between the NetChop 2.0 and the new
network methods. We here performed a fivefold cross-
validated training, in which each network training was
stopped when the test set error was minimal. This strategy
led to an ensemble of five networks, each with an indi-
vidual prediction bias. The NetChop 2.0 method was
trained to optimize the Matthews correlation coefficient. In
the training of NetChop 2.0, the fivefold training was
performed to estimate optimal parameter settings and the
final NetChop 2.0 network was a single network trained on
all data using these optimal parameter settings. When we
compared the performance of a fivefold cross-validated
sparse-encoded network to that of NetChop 2.0, we found
that the fivefold trained sparse-encoded network out-
performed NetChop2.0 with a P-value of 0.03 (results
not shown). Use of a network ensemble is the only differ-
ence between NetChop 2.0 and the fivefold sparse-encoded
network, and it is thus clear that the strategy of generating a
network ensemble led to a higher predictive performance.
The second difference between NetChop 2.0 and the Comb
method presented here was the use of different sequence-
encoding schemes. Comparing the predictive performance
of the sparse-encoded and the combined neural network, it
is clear that Blosum encoding and the information coming
from the hidden Markov model led further to an increase in
performance.

Next, we trained neural networks, using the extended
epitope data set, and a training strategy similar to that out-
lined for the Comp method described above (referred to as
NetChop 3.0 from now on). The additional data available
for training led to a better identification of non-cleavage
sites: the specificity for the NetChop 3.0 and Comb meth-
ods was 0.48, and 0.46, respectively. The sensitivity was
0.81 for both methods, and the Mathews correlation was
0.31, and 0.29 for the NetChop 3.0 and Comb method,
respectively. Compared to the NetChop 2.0 method, the
NetChop 3.0 method thus had a close to 10% increase in
sensitivity and a 15% increase in specificity. However, the
gain was only marginally significant. Performing a boot-
strap analysis, we found that the gain in sensitivity and
Mathew’s correlation was significant with P-values of 0.1
and 0.2, respectively.

Next, we compared the prediction accuracy of the com-
bined neural network trained on in vitro data to that of
FragPredict, PAProCI, PAProCII, and NetChop-20S. The
results of this benchmark calculation are shown in Fig. 2.

The combined neural network method (NetChop-20S
3.0) had higher predictive performance than the other
methods in the benchmark. The improvement was not as
significant as in the case of NetChop 2.0 (compare Fig. 1
with Fig. 2); however, a direct comparison was difficult,
since we here looked at other performance measures. A
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Fig. 1 Benchmark calculation of cleavage predictions evaluated on
231 MHC ligands. The performance values for FragPredict were
taken from Saxová et al. (2003). PAProCI refers to the old version of
PAProC, and PAProCII refers to the updated version of PAProC,
predicting cleavage of the immunoproteasome. NetChop 2.0 is a
sparse-encoded single neural network (Kesmir et al. 2002), Comb
refers to a combination of two neural network ensembles trained
using sparse and Blosum encoding in combination with the hidden
Markov model, respectively, and NetChop 3.0 is a neural network
ensemble as the Comb method trained on an extended data set. The
performance measures were calculated as described in the text. Sens
Sensitivity, Spec specificity, CC the Mathews correlation coefficient
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detailed comparison of the predictive performance of the
different methods and their statistical significance is given
in Appendix A. One result in Fig. 2 is striking: the signif-
icant drop in predictive performance when including the
prion in vitro digest data (Tenzer et al. 2004) in the network
training (given as Comb-ext in the figure). A bootstrap cal-
culation comparing the predictive performance of the
NetChop-20S 3.0 and Comb-ext methods demonstrated
that the Comb-ext method performed significantly worse
than the NetChop-20S 3.0 method (P<0.001). There might
be several reasons for this at-first odd result. The prion
protein has a highly unusual amino acids composition, with
close to 20% glycines. In general, glycines are poorly
cleaved by the proteasome, e.g., in enolase protein, only 5%
of glycines are found to be cleaved (Toes et al. 2001).
However, in prion protein 27% of glycines are cleaved
(Tenzer et al. 2004). It is very likely that such atypical data
will pollute rather than enrich the network training. More-
over, the prion protein contains repeat regions, which can
again bias the network training. We hence chose not to
include the prion data in the network training.

To be able to analyze more in detail the performance
differences between the NetChop-20S 3.0 and the NetChop
20S, we made ROC curve plots of the two methods (see
Fig. 3). One important difference between the predictive
performance of the combined method compared to that of
NetChop-20Swas the large increase in sensitivity or cor-
rectly predicted cleavage sites proportion, at low value of
the false positive proportion. At a false-positive proportion
value of 0.1, the sensitivity of the NetChop-20S method
was 0.43, corresponding to a correct identification of only
26 of the 61 cleavage sites. For the combined method, the
corresponding sensitivity value was 0.57, and the number
of correctly identified cleavage sites thus 35. A similar
behavior was found for the combined method on epitope

data (see Fig. 1). Thus, the combination of many neural
networks trained on different types and combinations of
sequence encodings led to more accurate prediction algo-
rithms. These results are in agreement with our previous
work, where we have shown that the combined approach
improves the prediction accuracy of MHC binding (Nielsen
et al. 2003).

N-terminal extension of epitopes

The C-terminal of CTL epitopes are generated precisely by
the proteasome and no further trimming is needed (Cascio
et al. 2001). An exact N-terminal cleavage is, however, less
essential, since a precursor peptide may be trimmed at the
N-terminal by other peptidases in the cytosol (Levy et al.
2002; Reits et al. 2003) and after TAP transport into the
endoplasmic reticulum by the aminopeptidase associated
with antigen processing while it binds to the MHC class I
molecule (Saric et al. 2002; Serwold et al. 2002; York et al.
2002). To investigate the length distribution of N-terminal
extensions of CTL epitopes, we located the “host” protein
in the Swiss-Prot database (Bairoch and Apweiler 2000)
for all CTL epitopes in the Saxová et al. (2003) benchmark
data set. Searching the protein sequence, we estimated the
N-terminal extension as the distance to the nearest cleavage
site at the reported N-terminal side of the epitope (i.e., we
did not normalize the natural epitope length to define the
extension). The output from the neural network is related to
the probability of a site being cleaved. The cleavage is,
however, a stochastic process, and not all potential cleav-
age sites are used in a given digest (Nussbaum et al. 1998).
To take this stochasticity into account, we estimated the
transformation from network output to the probability of

Fig. 3 ROC curves comparing the predictive performance of the com-
bined neural network method NetChop-20S 3.0 and NetChop-20S. The
curves were calculated using the bootstrap method described in the text,
andwere averaged over 1,000 bootstrap replications. The corresponding
AROCvalueswere 0.85 and 0.81 for theNetChop-20S 3.0 andNetchop-
20S methods, respectively. The inset to the graph shows the high spec-
ificity part of the ROC curves in detail
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Fig. 2 Benchmark calculation of cleavage predictions evaluated on
in vitro cleavage data. The performance values for FragPredict were
taken from Saxová et al. (2003). Comb-ext is a neural network
ensemble trained as NetChop-20S 3.0 on an extended data set (i.e.,
including the degradation of the prion protein). The performance
measures are: CC Mathews correlation, PCC Pearson correlation,
AROC area under the relative operating characteristic (ROC) curve.
Note that the CC value for NetChop-20S reported here differs from
the value given by Saxová et al. (2003)
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being cleaved in a given digest in two steps. The output
from the neural network is a score between 0 and 1, where a
value close to one indicates strong preference for cleavage,
and vice versa for values close to 0. First, for all residues in
the in vitro digest data set from the Saxová et al. (2003) that
are predicted to be preferred cleavage sites (cleavage scores
between 0.8 and 1.0), we calculated the fraction of the
residue that were actually cleaved in the digest. We found
that in 50% of the cases for the NetChop 3.0 predictions
and 60% of the cases in NetChop-20S 3.0 predictions, a
predicted cleavage site was also observed during one di-
gest. In other words, this means that a likely cleavage site
will be used by the proteasome only in approximately
every second digest. Thus, a scaling factor of 0.5 for the
NetChop 3.0 and 0.6 for NetChop-20S 3.0 allowed us to
correctly model the stochastic nature of the proteasome.
Second, we used 100 simulated digestions to estimate the
average N-terminal extension of an epitope. Figure 4 shows
the N-terminal extension distributions found using the two
prediction methods of NetChop 3.0 and NetChop-20S 3.0
and the above approach to model stochasticity.

Since the NetChop 3.0 network was trained on epitope
data, and hence might have predicted a combined specific-
ity of proteasome, TAP and MHC direct comparison of the
two methods was difficult. However, the results given in
Fig. 4 suggest that a significant proportion of the epitopes
have substantial N-terminal extensions. For the NetChop
3.0 method, we found that close to 45% of the epitopes
have N-terminal extensions of five amino acids or more,
and for the NetChop-20S 3.0 method more than 30% of
the epitopes have N-terminal extension of three amino
acids or more. It is clear that details of these estimates

depend strongly on the rescaling used to transform the
neural network output into cleavage probabilities. For
comparison, we in Fig. 4 include a histogram for N-ter-
minal extensions calculated using the raw NetChop 3.0
output scores as the cleavage probability. Even with this
estimate, a substantial fraction of the epitopes (more than
25%) have an N-terminal extension of three amino acids
or more. The general conclusion is thus clear: even though
some epitopes would be generated by the proteasome
precisely at the N-terminal, the majority of epitopes are
generated with a N-terminal extension, indicating that N-
terminal trimming plays an important role in effective
antigen presentation. It is important to note that this anal-
ysis is restricted to only the epitopes that are generated
by the proteasomes. Other cytosolic peptidases, like TPIII
(Reits et al. 2003, 2004) are also involved in the generation
of CTL epitopes. However, at the moment we have no
prediction tools available to estimate how large N-terminal
extensions would be for these epitopes.

An evolutionary adaptation of the proteasome
and TAP specificities?

We have recently shown that the specificity of human
MHC molecules have evolved to fit the specificity of the
immunoproteasome (Kesmir et al. 2003). Thus, goodMHC
ligands also have a high probability to be generated by the
proteasome. To add TAP into this evolutionary relation
would increase the efficacy of the antigen processing and
the presentation even further.

To investigate the footprints of a possible specificity
adaptation between TAP and the proteasome, we first
analyzed the available experimental data on the specificity
of these molecules. In Fig. 5, we show the preference of
immuno- and constitutive proteasomes at P1 position (the
P1 position used by the proteasome would become the
C-terminal position of TAP ligands) in the form of a se-
quence logo based on the data generated by Toes et al.
(2001). A sequence logo (Schneider and Stephens 1990) is
a clear visualization of (1) to what extent a position in a
sequence is conserved (given by the height of a bar, the
information content) and (2) which amino acids are most
frequently found at a particular position (the height of each
amino acid in the logo is proportional to the frequency of
occurrence in that position). To analyze the specificity of
C-terminal of TAP ligands, TAP-binding peptides were
downloaded from the AntiJen database (http://www.jenner.
ac.uk/AntiJen/). This database contains a set of close to 350
unique peptides with known TAP-binding affinity. Only 63
of these peptides are natural ligands with a host protein in
the SwissProt database and bind to TAP with an efficient
affinity (i.e., affinity <100,000 nM). The C-terminal logo
of these good TAP ligands resembles the immunoprotea-
some more than the constitutive proteasome (see Fig. 5,
given as TAP-Ct). The acidic residues D and E, especially,
are frequently used by the constitutive proteasome, but
hardly by the immunoproteasome and TAP. Finally, we
used the extended MHC ligand data set used to train

Fig. 4 Distribution of N-terminal extensions for the 231 epitopes in
the Saxová et al. (2003) benchmark data set. The N-terminal
extension was calculated as the distance to the nearest cleavage site
at the N-terminal side of the epitope. The stochastic nature of the
proteasomal cleavage was estimated from the network output score
as described in the text. The red and green bars show the N-terminal
extensions predicted using the NetChop 3.0 and NetChop-20S 3.0
methods and correcting the predictions for stochasticity. The black
bars show the N-terminal extensions predicted using the raw
NetChop 3.0 output
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NetChop 3.0 to analyze the preference of class I MHC
molecules at C-terminal of their ligands. This specificity
(given in Fig. 5 as MHC-Ct) is again very similar to TAP
and immunoproteasome specificities. These results suggest
that all main players of MHC class I antigen processing and
presentation pathway have been through an adaptation
process to optimize CTL epitope generation.

To quantify the similarity between TAP and proteasome
specificity, we predict C-terminal cleavage for the above-
mentioned TAP ligands. We have shown that our predictor
trained on epitope data predicts the C-terminal cleavage of
epitopes most correctly (Kesmir et al. 2002). However,
these networks might have learned the specificity of the
TAP molecule, since TAP-binding motifs could be em-
bedded in the epitope data set. Therefore, we use the
NetChop-20S 3.0 predictor to circumvent a possible bias in
the predictions. We predict the average C-terminal cleavage
score of these “natural TAP ligands” and compare that to
the average cleavage score calculated in the set of natural
TAP ligands by shuffling the amino acids in the ligands. For
the TAP ligands, the average cleavage score is 0.607±
0.216, and for the shuffled ligand set the value is 0.427±
0.260. The average cleavage score in TAP ligand data set is
significantly higher than for the shuffled ligands (P<0.001
in a student’s t-test for significantly different means; Press

et al. 1992). Thus, the TAP-binding motif, especially the
preference of C-terminal, allows for a significantly higher
chance of being cleaved by the proteasome. Note that our
NetChop-20S predictor is trained on the constitutive pro-
teasome specificity. Since the immunoproteasome speci-
ficity is much more adapted to TAP specificity (see Fig. 5),
we expect that good TAP ligands be generated by the im-
munoproteasome more frequently than our estimate here.

The TAP ligand data set we use contains many MHC
ligands. Therefore, both analysis presented here might be
showing actually the adaptation between MHC molecules
and the proteasome. To remove this bias, we predict cleav-
age of 500,000 9-meric peptides selected randomly from
proteins in the Swiss-Prot database. In Fig. 6, we plot the
average proteasomal cleavage score for each of the 20
amino acids in this large peptide data set by the NetChop-
20S 3.0 method versus the TAP preference score on the
C-terminal, which is adapted from a method developed by
Peters et al. 2003 to predict peptide-binding affinity to
human TAP molecules. A high proteasomal cleavage score
indicates a high chance of cleavage, and a low (negative)
TAP score indicates a high chance of TAP transport. The
TAP preference score and proteasomal cleavage score is
significantly correlated (Kendall’s τ=−0.44, P=0.007; Press
et al. 1992). This correlation indicates that the TAP spec-
ificity to some degree is adapted so that the peptides gen-
erated by the proteasome are transported efficiently to the
endoplasmic reticulum. While the correlation between the
two scores is not perfect, hardly any amino acids are placed
in the lower left part of the plot (onlyK is marginally present
in this part of the plot). This part of the plot contains amino
acids that are favored by TAP for transport but disfavored
by proteasome for cleavage. The lower right part of the plot

Fig. 5 Sequence logo of experimental data available on the spec-
ificity of the immuno- and constitutive proteasome (taken from Toes
et al. 2001), TAP, andMHCmolecules. Sixty-three good TAP ligands
from the AntiJen database (http://www.jenner.ac.uk/AntiJen/) were
used to generate this logo, while MHC logo was generated by using
896 MHC ligands in our extended MHC ligand data set (see Table 1).
These ligands are restricted to more than 50 human molecules, and
therefore the logo given here resembles the specificity of MHC
molecules at the population level. Amino acids are color-coded
according to their physicochemical characteristics. Green neutral and
polar, blue basic, red acidic, black neutral and hydrophobic

Fig. 6 Evolutionary relationship between the TAP and proteasome
specificities. The average cleavage score (using NetChop-20S 3.0)
was calculated for a set of 500,000 peptides 9-meric randomly
selected from proteins the in Swiss-Prot database. The C-terminal
TAP transport score was adapted from the TAP-binding predictor
developed by Peters et al. (2003). The C-terminal TAP transport
score was plotted as a function of the average proteasome cleavage
score for each of the 20 amino acids. The lines in the plot give a
schematic separation into regions in favor or in disfavor for TAP
binding and proteasomal cleavage
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contains amino acids that favor both proteasomal cleavage
and TAP transport, and the upper left corner of the plot
amino acids that disfavor both proteasomal cleavage and
TAP transport. The amino acids occurring in these two parts
of the figure to a large extent overlap with the amino acids
preferences earlier identified for the proteasome and TAP
(Kesmir et al. 2002; van Endert 1996). The cleavage pre-
dictor used here is trained on the constitutive proteasome
specificity, which has a preference for cleavage after D, E
(see Fig. 5). This preference is not shared by the immuno-
proteasome, and one would thus in this analysis expect an
even stronger correlation between the TAP and proteasomal
specificities when the immunoproteasome is considered.

Concluding remarks

Even though NetChop 2.0 has been shown to have the
highest performance of predicting proteasomal cleavage
sites (Saxová et al. 2003), there is plenty of room for
improvement. Peters et al. (2003) have recently shown that
integrating NetChop-20S predictions with MHC-binding
predictions does not improve the overall performance of
predicting CTL epitopes. The use of NetChop-20S for
such a task is not the optimal choice, as this predictor is
based on solely constitutive proteasome specificity (Kesmir
et al. 2002). However, even integrating NetChop 2.0 with
MHC-binding predictions does not improve “epitope pre-
diction” ability drastically (Børgersen et al., unpublished re-
sults).We here attempt to increase the quality of proteasome
cleavage predictions by using different training strategies
and sequence-encoding schemes. We believe that the new
version of NetChop (Netchop 3.0) with significant increase
in both sensitivity and specificity can be used as a filter to
improve CTL-epitope predictions.

High quality predictions of the proteasome cleavage can
be used to achieve a more quantitative picture of the MHC
class I antigen processing and presentation pathway. Based
on estimates coming from average turnover of proteins in a
cell, Yewdell and colleagues argue that the efficiency of
antigen processing is low, meaning that most of the poten-
tial MHC ligands are destroyed by the proteasome (Yewdell
2001). If this is true, one bottleneck of the antigen presen-
tation lies in the generation by the proteasome, and the
presentation levels of the peptides can depend heavily on
their cleavage probabilities. N-terminal trimming has also
been suggested as a major process that can destroy CTL
epitopes (Stoltze et al. 2000). Our analysis on estimation of
N-terminal trimming indicates that a large fraction of the
epitopes would not be destroyed by N-terminal trimming.
On the contrary, they would need a trimming of three amino
acids or more. However, for other epitopes N-terminal
trimming can be very destructive, because these epitopes
hardly need a trimming, and when exposed to proteases in
the cytoplasm and the endoplasmic reticulum can become
too short to be MHC class I ligands. Thus, N-terminal
trimming plays an important (positive or negative) role in
shaping the fate of CTL epitopes.

Obviously, there has been a large selection pressure on
the adaptive immune system to increase the seemingly
inefficient way of antigen processing. In this paper, we
provide evidence that the specificity of TAP and the
proteasome are adapted to each other. It is very hard to prove
who is adapting whom in co-evolutionary systems. How-
ever, we know that the constitutive proteasome is probably
the oldest molecule in MHC class I processing pathway.
Thus, one can speculate that TAP has evolved to adapt the
specificity of the proteasome, because it seems that TAP has
a preference even for fragments digested by the constitutive
proteasome. This specificity adaptation increases the ef-
ficiency of the translocation of the proteasome products,
which are more likely CTL epitopes than random peptides
(Kesmir et al. 2003). Also, we find a large overlap between
the amino acids that are the favored/disfavored for pro-
teasomal cleavage and the amino acid preference at the C-
terminal end of the TAP transporter-binding motif. An
observation that further indicates an evolutionary relation-
ship between the two specificities.
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Appendix A

The AROC values for the NetChop 20S and the NetChop
20S-3.0 are 0.81 and 0.85, respectively, and the CC and
PCC are 0.41, 0.48 and 0.48, 0.55, respectively. To esti-
mate the statistical significance of the difference in pre-
dictive performance between two methods, we performed
the bootstrap experiment as described above. We found
that the NetChop 20S–3.0 method has a performance that
is significantly higher that that of NetChop 20S in terms of
both the PCC, and the AROC values (P<0.05). The per-
formance difference between the two methods in terms of
the Mathews CC is not significant (P>0.3). That the per-
formance increase is least significant in a fixed cut-off
classification measure (Matthews CC) is not surprising, as
the NetChop 20S method was trained to have an explicit
classification bias around 0.5. This is not the case for any
of the new neural networks.
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