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SUMMARY

Two canonical problems in geostatistics are estimating the parameters in a specified family of
stochastic process models and predicting the process at new locations. We show that asymptotic
results for a Gaussian process over a fixed domain with Matérn covariance function, previously
proven only in the case of a fixed range parameter, can be extended to the case of jointly estimat-
ing the range and the variance of the process. Moreover, we show that intuition and approxima-
tions derived from asymptotics using a fixed range parameter can be problematic when applied
to finite samples, even for large sample sizes. In contrast, we show via simulation that perfor-
mance is improved and asymptotic approximations are applicable for smaller sample sizes when
the parameters are jointly estimated. These effects are particularly apparent when the process is
mean square differentiable or the effective range of spatial correlation is small.

Some key words: Covariance estimation; Gaussian process; Infill asymptotics; Matérn covariance; Spatial statistics.

1. INTRODUCTION

The analysis of point-referenced spatial data relies almost exclusively on a single construct: the
stationary Gaussian process with a parametric mean and covariance. Given its prominent role, it
is perhaps surprising that the theoretical properties of inference under this model remain incom-
pletely understood. Consider a canonical problem in geostatistics, that of predicting the value of
a spatial process with unknown model parameters at locations not contained in the dataset. Stein
(2010) gives an overview of asymptotic issues for both estimation and prediction.

Stein (1999) makes a compelling case for using the Matérn covariance model for the Gaussian
process {Z(s), s ∈ D ⊆ �d}, with

cov{Z(si ), Z(s j )} = σ 2K (si − s j ; ρ, ν) = σ 2(‖si − s j‖/ρ)ν

�(ν)2ν−1
Kν(‖si − s j‖/ρ), (1)

where σ 2, ρ, ν > 0, and Kν is the modified Bessel function of the second kind of order ν

(Abramowitz & Stegun, 1992, § 9.6). The range parameter ρ controls the rate of decay with dis-
tance. This model is particularly attractive because of its flexibility in representing the smooth-
ness of the Gaussian process by varying ν (Stein, 1999).

Zhang (2004) showed that for fixed ν and d � 3, σ 2 and ρ cannot be consistently estimated
under infill or fixed-domain asymptotics, where the sampling domain is fixed as the number of
observations increases to infinity. However, he also showed that if one fixes ρ at an arbitrary
value, then the maximum likelihood estimator for c = σ 2/ρ2ν is consistent. This result follows
from a more fundamental result in Zhang (2004) concerning equivalence, or mutual absolute
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continuity, of Gaussian measures on bounded domains. Stein (1988, 1990, 1993, 1999) provides
conditions under which predictions using a misspecified covariance function are asymptotically
efficient and associated standard errors converge almost surely to their targets under infill asymp-
totics. One such condition is that the misspecified Gaussian measure and the true one are equiv-
alent, providing a link to the results in Zhang (2004).

These results have led to a growing tendency in the applied literature to regard ρ as secondarily
influential. For example, Zhang & Wang (2010) find that fixing ρ at arbitrary large values has
little impact on predictive performance, and Gneiting et al. (2010) argue that specifying a single
ρ for all variables in a multivariate model is not restrictive. Sahu et al. (2007) choose from a
small number of fixed values of ρ, while Anderes et al. (2012) produce predictions without ever
estimating ρ. These authors borrow intuition from the asymptotic results of Stein (1988), Zhang
(2004), and others, and present some variation of the conclusion that fixing ρ at an incorrect value
is asymptotically just as good as using the true value. However, as we will show, this intuition
cannot be transferred so readily to the finite sample case, as ρ can be quite influential even for
large samples. Here, we show that the asymptotics can be extended to joint estimation of σ 2 and
ρ, and we demonstrate via simulation that methods that estimate rather than fix ρ are superior
on a variety of metrics, despite being asymptotically identical.

2. ASYMPTOTIC THEORY FOR ESTIMATION AND PREDICTION

2·1. Preliminaries

Let Z = {Z(s), s ∈ D ⊂ �d} be a stochastic process on a bounded domain D, with d = 1, 2,

or 3. Let G(0, σ 2Kθ ) denote the mean zero stationary Gaussian measure for Z with marginal
variance σ 2 > 0 and correlation function Kθ , depending on parameters θ ∈ � ⊆ �p. For a sam-
pling design Sn = {s1, . . . , sn} ⊂ D, we observe Zn = {Z(s1), . . . Z(sn)}T. Our tasks are to use
Zn to estimate σ 2 and θ and to predict Z(s0) for some location s0 ∈ D, not in Sn . Our results
concern the behaviour of these estimators and predictors under infill asymptotics.

Let G(0, σ 2Kρ,ν) denote a mean zero Gaussian measure with the Matérn covariance function
and known smoothness parameter ν. Our focus is on the role played by the range parameter ρ

in this model, namely to show that several important results that have been provable only in the
case of fixing ρ at an arbitrary value can be extended to the case that ρ is estimated.

The reason that it is justifiable to fix ρ, at least in an asymptotic sense, follows from a result by
Zhang (2004) stating that when d � 3, two Gaussian measures with different values of ρ can be
equivalent. Specifically, Theorem 2 of Zhang (2004) states that for fixed ν > 0, G(0, σ 2

0 Kρ0,ν)

and G(0, σ 2
1 Kρ1,ν) are equivalent on bounded domains if and only if σ 2

0 /ρ2ν
0 = σ 2

1 /ρ2ν
1 .

The parameter c = σ 2/ρ2ν is what Stein (1999) calls a microergodic parameter. Stein (1999,
p. 175) suggests reparameterizing into microergodic and non-microergodic components of the
parameter vector, which we here define as c and ρ, respectively. He conjectures that if all model
parameters are estimated by maximum likelihood, the asymptotic behaviour of the maximum
likelihood estimator for the microergodic parameter is the same as if the non-ergodic component
were known. In the next section, we outline existing results that concern the asymptotic behaviour
for the maximum likelihood estimator for c when ρ is fixed and we extend them to the case that
ρ is estimated, showing that Stein’s conjecture is true for the Matérn model.

2·2. Estimation of covariance parameters

Theorem 2 of Zhang (2004) has an important corollary for estimation, namely that there do
not exist consistent estimators of σ 2 or ρ under infill asymptotics. However, this corollary does
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The range parameter in geostatistics 475

not imply that the data contain no information about σ 2 and ρ individually. Indeed, simulations
show that sampling distributions for the maximum likelihood estimators can in many cases be
quite concentrated about the true values, even though the estimators are not consistent (Zhang,
2004). Some intuition can be given by appealing to the asymptotic framework of increasing the
domain of observations while keeping the density constant. Mardia & Marshall (1984) give reg-
ularity conditions, which hold under an increasing-domain framework, under which the maxi-
mum likelihood estimators for all model parameters are consistent and asymptotically normal.
Any finite set of observation locations could conceivably be a member in a sequence under either
fixed-domain or increasing-domain asymptotics. Because the increasing-domain framework can
be mimicked by fixing the domain but decreasing the range parameter (Zhang & Zimmerman,
2005), it is not surprising that when the true range parameter is small relative to the sampling
domain, it can be well estimated from data.

The likelihood function for σ 2 and ρ under the Matérn model with fixed ν > 0 is

Ln(σ
2, ρ) = (2πσ 2)−n/2|�n(ρ)|−1/2 exp

{
− 1

2σ 2
Z T

n�n(ρ)−1 Zn

}
, (2)

where �n(ρ) is the matrix with entries K (si − s j ; ρ, ν) (i, j = 1, . . . , n) for K defined as in
(1). We consider two types of estimators obtained by maximizing (2). The first fixes ρ̂n = ρ1
for all n and maximizes Ln(σ

2, ρ1). The second maximizes (2) over both σ 2 and ρ. In either
case, we may write σ̂ 2

n (ρ̂n) = arg maxσ 2 Ln(σ
2, ρ̂n) = Z T

n�n(ρ̂n)
−1 Zn/n, where ρ̂n is either ρ1

or the value that maximizes the profile likelihood for ρ, when a unique maximizer exists. In most
cases the latter estimator must be found numerically. We may likewise express the corresponding
estimators of c = σ 2/ρ2ν as a function of ρ̂n , namely

ĉn(ρ̂n) = σ̂ 2
n (ρ̂n)/ρ̂

2ν
n = Z T

n�n(ρ̂n)
−1 Zn/(nρ̂2ν

n ). (3)

The following result defines the asymptotic behaviour of ĉn(ρ1) for an arbitrary fixed value
ρ1 > 0. It combines Theorem 3 of Zhang (2004) and Theorem 3 of Wang & Loh (2011).

THEOREM 1. Let Sn be an increasing sequence of subsets of D. Then under G(0, σ 2
0 Kρ0,ν)

as n → ∞,

(a) ĉn(ρ1) → σ 2
0 /ρ2ν

0 almost surely, and
(b) n1/2{ĉn(ρ1) − σ 2

0 /ρ2ν
0 } → N {0, 2(σ 2

0 /ρ2ν
0 )2} in distribution.

A key contribution of the current paper is to show that Theorem 1 can be used to prove that the
maximum likelihood estimator ĉn(ρ̂n) has the same asymptotic behaviour as does ĉn(ρ1) for any
ρ1, including the true value ρ0. We make use of the following lemma, which shows that ĉn(ρ̂n)

is monotone when viewed as a function of ρ̂n .

LEMMA 1. Let Sn = {s1, . . . , sn ∈ D ⊆ �d} denote any set of locations in any dimension. Fix
ν > 0 and define �n(ρ) to be the matrix with entries K (si − s j ; ρ, ν) as in (1). Define ĉn(ρ) =
Z T

n�n(ρ)−1 Zn/(nρ2ν). Then for any 0 < ρ1 < ρ2, ĉn(ρ2) � ĉn(ρ1) for any vector Zn.

Proof. Let 0 < ρ1 < ρ2. The difference

ĉn(ρ1) − ĉn(ρ2) = Z T
n{ρ−2ν

1 �n(ρ1)
−1 − ρ−2ν

2 �(ρ2)
−1}Zn/n

is nonnegative for any Zn if the matrix A = ρ−2ν
1 �n(ρ1)

−1 − ρ−2ν
2 �n(ρ2)

−1 is positive
semidefinite. By Corollary 7.7.4(a) of Horn & Johnson (1990, p. 473), A is positive semidefinite
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if and only if the matrix B = ρ2ν
2 �n(ρ2) − ρ2ν

1 �n(ρ1) is positive semidefinite. The entries of B
may be expressed in terms of a function K B : �d → �, with

Bi j = K B(si − s j ) = ρ2ν
2 K (‖si − s j‖; ρ2, ν) − ρ2ν

1 K (‖si − s j‖; ρ1, ν),

and B is positive semidefinite if K B is a positive definite function. Define

fB(ω) = 1

(2π)d

∫
�d

e−iωTx K B(x) dx

= 1

(2π)d

{
ρ2ν

2

∫
�d

e−iωTx K (x; ρ2, ν) dx − ρ2ν
1

∫
�d

e−iωTx K (x; ρ1, ν) dx

}
. (4)

Both integrals in (4) are finite, with

1

(2π)d

∫
�d

e−iωTx K (x; ρ, ν) dx = �(ν + d/2)

πd/2�(ν)
ρ−2ν

(
ρ−2 + ‖ω‖2

)−(ν+d/2)

,

the spectral density of the Matérn correlation function. Therefore,

fB(ω) = �(ν + d/2)

2dπ3d/2�(ν)

{(
ρ−2

2 + ‖ω‖2
)−(ν+d/2) −

(
ρ−2

1 + ‖ω‖2
)−(ν+d/2)

}
.

To show that K B is positive definite it suffices to show that fB(ω) is positive for all ω. This is
clear because 0 < ρ1 < ρ2. Therefore ĉn(ρ2) � ĉn(ρ1) for any vector Zn . �

We can now use Theorem 1 to prove a more general result for the maximum likelihood esti-
mator when the parameter space for ρ is a bounded interval. This condition was also used by
Ying (1991), who proved Theorem 2 when D is the unit interval and ν = 1/2. These bounds are
not restrictive in practice, as the interval may be taken to be arbitrarily large.

THEOREM 2. Let Sn be an increasing sequence of subsets of D. Suppose (σ 2
0 , ρ0)

T ∈ (0, ∞) ×
[ρL , ρU ], for any 0 < ρL < ρU < ∞. Let (σ̂ 2

n , ρ̂n)
T maximize (2) over (0, ∞) × [ρL , ρU ]. Then

under G(0, σ 2
0 Kρ0,ν),

(a) σ̂ 2
n /ρ̂2ν

n → σ 2
0 /ρ2ν

0 almost surely, and

(b) n1/2
(
σ̂ 2

n /ρ̂2ν
n − σ 2

0 /ρ2ν
0

) → N
{

0, 2
(
σ 2

0 /ρ2ν
0

)2
}

in distribution.

Proof. By assumption, ρL � ρ̂n � ρU for every n. Define two sequences, ĉn(ρL) and ĉn(ρU ),
according to (3). By Lemma 1, ĉn(ρL) � ĉn(ρ̂n) = σ̂ 2

n /ρ̂2ν
n � ĉn(ρU ) for all n with probability

one. Combining this with Theorem 1 applied to ĉn(ρL) and ĉn(ρU ) implies the result. �

Theorem 2 is useful because it applies to the procedure that is most often adopted in practice,
of allowing the range parameter to be estimated over a bounded interval. In fact, the method of
proof in Theorem 2 works for any bounded sequence ρ̂n , provided that σ̂ 2

n is defined as in (3).
This would include, for example, estimating ρ using the variogram and inserting it into (3),
but not joint estimation of ρ and σ 2 using the variogram. In practice, the bounds for numerical
optimization of ρ can be chosen to be arbitrarily wide, subject to numerical stability.

A similar method of proof can be used to show consistency and asymptotic normality of the
maximum tapered likelihood estimator proposed by Kaufman et al. (2008). The online Supple-
mentary Material contains analogues of Lemma 1 and Theorem 2 for this estimator.

 at Pennsylvania State U
niversity on N

ovem
ber 18, 2013

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/
http://biomet.oxfordjournals.org/


The range parameter in geostatistics 477

Arguments following from Zhang (2004) would suggest that the range parameter may be fixed
in practice. However, as we shall show in § 3, the estimator ĉn(ρ1) can often display sizeable bias,
making the approximation in Theorem 1 quite inaccurate. Confidence intervals constructed using
Theorem 1 can, due to this bias, have empirical coverage probabilities very near to zero in some
cases. In contrast, we will show that confidence intervals for c constructed using Theorem 2 have
close to nominal coverage even for moderate sample sizes.

2·3. Prediction at new locations

We now consider predicting the value of the process at a new location s0 not in Sn . Stein
(1988, 1990, 1993, 1999) has considered this problem when an incorrect model is used. Pre-
dictors under the wrong model can be consistent under relatively weak conditions. Our focus
is therefore on two other desirable properties, asymptotic efficiency and asymptotically correct
estimation of prediction variance. In a seminal paper, Stein (1988) showed that both of these
properties hold when the model used is equivalent to the true measure. In the case of the Matérn
covariance, Theorem 2 of Zhang (2004) indicates that this holds for a model with the correct ν

and microergodic parameter σ 2/ρ2ν . This has led to statements in the literature to the effect that
the parameter c = σ 2/ρ2ν can be consistently estimated, and this is what matters for prediction.
While this statement contains an element of truth, we will argue in this section that it can also be
somewhat misleading, both in an asymptotic sense, as well as in guiding choices for applications.

Define

Ẑn(ρ) = γn(ρ)T�n(ρ)−1 Zn, (5)

where {γn(ρ)}i = K (s0 − si ; ρ, ν) and {�n(ρ)}i j = K (si − s j ; ρ, ν) (i, j = 1, . . . , n). The pre-
dictor Ẑn(ρ) is the best linear unbiased predictor for Z0 = Z(s0) under a presumed model
G(0, σ 2Kρ,ν) for any value of σ 2. This predictor does not depend on σ 2, only on ρ and ν.
Therefore, any intuition that one can fix ρ = ρ1, and that plug-in predictions will improve with
n due in any way to convergence of ĉn(ρ1) with n, is a misunderstanding of asymptotic results.
Equivalence, although sufficient for asymptotic efficiency, is not necessary. The way in which c
is relevant for prediction concerns estimates of the mean squared error of the predictor. Under
model G(0, σ 2

0 Kρ0,ν), this is

varσ 2
0 ,ρ0

{Ẑn(ρ) − Z0} = σ 2
0 {1 − 2γn(ρ)T�n(ρ)−1γn(ρ0)

+ γn(ρ)T�n(ρ)−1�n(ρ0)�n(ρ)−1γn(ρ)}, (6)

where γn(ρ0) and �n(ρ0) are defined analogously to their counterparts using ρ. In the case that
ρ = ρ0, this expression simplifies to

varσ 2
0 ,ρ0

{Ẑn(ρ0) − Z0} = σ 2
0 {1 − γn(ρ0)

T�n(ρ0)
−1γn(ρ0)}. (7)

In practice, it is common to estimate the model parameters and then insert them into (5) and
(7), treating them as known. The asymptotic properties of this procedure, so-called plug-in pre-
diction, are quite difficult to obtain. Instead, most theoretical development has been under a
framework in which plug-in parameters are fixed, rather than being estimated from observations
at an increasing sequence of locations. We will indicate how these results may be extended to
include estimation of the variance parameter σ 2 with a fixed value of ρ, making precise the sense
in which the statement regarding c at the beginning of this section should be interpreted.

The following result is an application of Theorems 1 and 2 of Stein (1993).
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THEOREM 3. Suppose G(0, σ 2
0 Kρ0,ν) and G(0, σ 2

1 Kρ1,ν) are two Gaussian process measures
on D with the same value of ν > 0.

(a) As n → ∞,

varσ 2
0 ,ρ0

{Ẑn(ρ1) − Z0}
varσ 2

0 ,ρ0
{Ẑn(ρ0) − Z0}

→ 1.

(b) Furthermore, if σ 2
0 /ρ2ν

0 = σ 2
1 /ρ2ν

1 , then as n → ∞,

varσ 2
1 ,ρ1

{Ẑn(ρ1) − Z0}
varσ 2

0 ,ρ0
{Ẑn(ρ1) − Z0}

→ 1. (8)

Proof. Let f0 and f1 be the spectral densities corresponding to σ 2
0 Kρ0,ν and σ 2

1 Kρ1,ν . The
result follows from noting that the function f0(ω)‖ω‖2ν+d is bounded away from zero and infin-
ity as ‖ω‖ → ∞ and that

lim
‖ω‖→∞

f1(ω)

f0(ω)
= σ 2

1 /ρ2ν
1

σ 2
0 /ρ2ν

0

.

These two conditions satisfy those needed for Theorems 1 and 2 of Stein (1993). �

The implication of part (a) of Theorem 3 is that if the correct value of ν is used, any value of
ρ will give asymptotic efficiency. The condition σ 2

0 /ρ2ν
0 = σ 2

1 /ρ2ν
1 is not necessary for asymp-

totic efficiency, but it does provide asymptotically correct estimates of mean squared prediction
error. The numerator in (8) is the naive mean squared error for Ẑn(σ

2
1 , ρ1), assuming model

G(0, σ 2
1 Kρ1,ν), whereas the denominator is the true mean squared error for Ẑn(σ

2
1 , ρ1), under

model G(0, σ 2
0 Kρ0,ν). We now show the same convergence happens if ρ is fixed at ρ1 but σ 2 is

estimated via maximum likelihood. This is an extension of part (b) of Theorem 3. Part (a) needs
no extension, since the form of the predictor itself does not depend on σ 2.

THEOREM 4. Suppose G(0, σ 2
0 Kρ0,ν) is a Gaussian process measure on D. Fix ρ1 > 0. For

a sequence of observations Zn on an increasing sequence of subsets Sn of D, define σ̂ 2
n =

Z T
n�n(ρ1)

−1 Zn/n. Then almost surely under G(0, σ 2
0 Kρ0,ν), as n → ∞,

varσ̂ 2
n ,ρ1

{Ẑn(ρ1) − Z0}
varσ 2

0 ,ρ0
{Ẑn(ρ1) − Z0}

→ 1.

Proof. Define σ 2
1 = σ 2

0 (ρ1/ρ0)
2ν . Then write

varσ̂ 2
n ,ρ1

{Ẑn(ρ1) − Z0}
varσ 2

0 ,ρ0
{Ẑn(ρ1) − Z0}

= varσ̂ 2
n ,ρ1

{Ẑn(ρ1) − Z0}
varσ 2

1 ,ρ1
{Ẑn(ρ1) − Z0}

varσ 2
1 ,ρ1

{Ẑn(ρ1) − Z0}
varσ 2

0 ,ρ0
{Ẑn(ρ1) − Z0}

.

By Theorem 3, varσ 2
1 ,ρ1

{Ẑn(ρ1) − Z0}/varσ 2
0 ,ρ0

{Ẑn(ρ1) − Z0} → 1. So we need show only that

varσ̂ 2,ρ1
{Ẑn(ρ1) − Z0}/varσ 2

1 ,ρ1
{Ẑn(ρ1) − Z0} → 1 almost surely under G(0, σ 2

0 Kρ0,ν). By (7),

varσ̂ 2
n ,ρ1

{Ẑn(ρ1) − Z0}/varσ 2
1 ,ρ1

{Ẑn(ρ1) − Z0} = σ̂ 2
n /σ 2

1 . Under G(0, σ 2
1 Kρ1,ν), σ̂ 2

n is equal in
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The range parameter in geostatistics 479

Fig. 1. Simulated random fields on [0, 1]2 under parameter settings used in
the simulation study. The value of the range parameter ρ corresponding to

each ν and effective range combination is also indicated.

distribution to σ 2
1 /n times a χ2 random variable with n degrees of freedom and hence converges

almost surely to σ 2
1 as n → ∞. Because σ 2

0 /ρ2ν
0 = σ 2

1 /ρ2ν
1 , Theorem 2 of Zhang (2004) gives

that G(0, σ 2
0 Kρ0,ν) and G(0, σ 2

1 Kρ1,ν) are equivalent, so that σ̂ 2
n → σ 2

1 almost surely under
G(0, σ 2

0 Kρ0,ν) as well. �

We conjecture that the asymptotic behaviour in part (a) of Theorem 3 and Theorem 4 still
holds if ρ1 is replaced by ρ̂n , the maximum likelihood estimator, although proving this has been
elusive in cases of practical interest (Putter & Young, 2001).

3. SIMULATION STUDY

3·1. Set-up

Fixing the range parameter is supported by asymptotic results, and it is computationally
efficient in practice. However, it is unclear to what degree asymptotic results are appropriate
in guiding our choices for applied problems with finite sample sizes. To systematically explore
this, we simulate data under a mean zero Gaussian process model for a variety of settings chosen
to mimic the range of behaviour we might observe in practice, and we compare the performance
of inference procedures that either fix or estimate the range parameter.

We simulate data in the unit square with ν = 0·5 or 1·5 and σ 2 = 1. We also use three effective
ranges, choosing values of ρ such that the correlation decays to 0·05 at distances of 0·1, 0·3,
or 1. Figure 1 illustrates the effect of these parameter settings. As we shall see, whether a par-
ticular sample size is large enough such that finite sample properties are well approximated by
asymptotic results depends both on ν and on the effective range of the process.

We also vary the sample size in the simulation, taking n = 400, 900, and 1600. To avoid numer-
ical issues, sampling locations are constructed using a perturbed grid. We construct a 67 × 67
regular grid with coordinates from 0·005 to 0·995 in increments of 0·015 in each dimension. To
each gridpoint, we add a uniform [−0·005, 0·005]2 perturbation. Each of the resulting locations is
at least 0·005 units from its nearest neighbour. We then choose random subsets of these locations
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480 C. G. KAUFMAN AND B. A. SHABY

to be our observation locations, with each sample size containing the points from smaller sample
sizes. We predict over a 50 × 50 regular grid of locations over [0, 1]2.

For each parameter setting, we simulate 1000 realizations of the Gaussian process observed
at the union of n = 1600 observation and m = 2500 prediction locations. For each dataset and
sample size, we estimate σ 2 and ρ by numerically maximizing the profile likelihood for ρ and
inserting the result into the corresponding closed-form estimator for σ 2.

We also calculate σ̂ 2
n (ρ1) = Z T

n�n(ρ1)
−1 Zn/n for ρ1 equal to 0·2, 0·5, 1, 2, and 5 times the

true value of ρ. Corresponding to each of these parameter estimates, we also construct 95%
confidence intervals for c = σ 2/ρ2ν using the normal approximation provided by Theorem 1
when ρ is fixed and Theorem 2 when ρ is estimated. Finally, we construct kriging predictors and
estimated standard errors for each of the m = 2500 prediction locations by inserting parameter
estimates into (5) and (7).

Optimization was carried out using the R (R Development Core Team, 2013) function optim
with the L-BFGS-B option, which we restricted to the interval ρ ∈ [ε, 15ρ0], where ε is defined
by machine precision, about 10−16 on our machine. Neither endpoint was ever returned.

Many of the results show a similar pattern, which can be summarized as follows. The perfor-
mance of the maximum likelihood estimator, maximizing over both σ 2 and ρ, is generally very
good, especially for n = 1600. Procedures using a fixed ρ are almost always worse, although
the differences are minimal under certain settings. These tend to be for ν = 1/2, corresponding
to processes that are not mean square differentiable, and a large effective range. In these cases,
particularly when ρ is fixed at something larger than its true value, the estimators and predic-
tors can still perform well. This agrees with some examples in the literature, for which ν = 1/2
and large effective ranges were used (Zhang & Wang, 2010; Wang & Loh, 2011). When the pro-
cess is smooth, with ν = 1·5, and/or the true range of spatial correlation is small, estimation and
prediction are markedly improved by estimating ρ via maximum likelihood.

3·2. Parameter estimation

Given the asymptotic results in Zhang (2004) and Wang & Loh (2011) for ĉn(ρ1) for fixed
ρ1, it is tempting to believe that this estimator can adapt to incorrectly specified values of ρ.
While this is true asymptotically, our simulation results show that in many cases this adaptation
requires a very large value of n; sampling distributions can be highly biased and can approach
the truth very slowly as n increases. Figure 2 illustrates this when ν = 1·5 and the effective range
is 0·3. Sampling distributions for ĉn(ρ1) are noticeably biased. As we expect from Theorem 1,
these biases decrease with n, although even when n = 1600 the true value of c lies far in the tail
of the sampling distribution. In contrast, the sampling distributions for the maximum likelihood
estimator ĉn(ρ̂n) have negligible bias. Indeed, they behave very similarly to those for the estimator
of c that fixes ρ at the truth. Similar effects can be seen for other values of ν and effective
range. See Tables S-1 and S-3 in the Supplementary Material for the relative bias of different
estimators of c.

If Theorem 1 is used to construct confidence intervals and n is not large enough for the normal
approximation to be appropriate, the coverage can be disastrously low. Table 1 shows empirical
coverage rates for confidence intervals constructed as ĉn(ρ̂n) ± 1·96{2ĉn(ρ̂n)

2/n}1/2 for ρ̂n equal
to the maximum likelihood estimator or a fixed ρ1. Theorems 1 and 2 imply that these intervals
are asymptotically valid. Not surprisingly, however, given the large biases observed when ρ is
fixed, the differences in the empirical coverage rates between fixed and estimated ρ are striking,
even when n is large. In many cases the coverage for intervals constructed using ĉn(ρ1) was 0%,
to within Monte Carlo sampling error. Coverage is best when ν is small and effective range is
large. For fixed ρ1, it also appears to be better to choose ρ1 > ρ0 than ρ1 < ρ0.
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Fig. 2. Sampling distributions for ĉn when ν = 1·5 and the effective range is 0·3. The range parameter
is either fixed at the true value (ρ0), estimated via maximum likelihood, or fixed at a multiple of the
truth (0·2ρ0, . . . , 5ρ0). The four boxplots in each group correspond to sample sizes of n = 400, 900, and

1600, reading from left to right. The dashed line indicates the true c.

Table 1. Empirical coverage rates of nominal 95% confidence inter-
vals for c = σ 2/ρ2ν , expressed as percentages. Intervals are constructed
using either the maximum likelihood estimator or estimates of c that fix

ρ̂n at a multiple of the true value of ρ, rounded to the nearest 1%

ν = 0·5 ν = 1·5
ER 0·1 0·3 1 0·1 0·3 1
ρ̂n n

MLE 400 81 92 94 64 87 94
900 89 94 94 74 91 94

1600 90 94 94 81 92 95

0·2 ρ 400 0 0 0 0 0 0
900 0 0 1 0 0 0

1600 0 0 2 0 0 0

0·5 ρ 400 0 4 88 0 0 4
900 0 7 90 0 0 9

1600 0 13 92 0 0 18

2 ρ 400 3 75 93 0 1 83
900 3 82 93 0 9 89

1600 5 84 94 0 17 93

5 ρ 400 0 63 92 0 0 77
900 0 75 93 0 2 86

1600 0 79 93 0 5 90

MLE, maximum likelihood estimator; ER, empirical coverage rate.

3·3. Prediction

The mean squared error of predictor Ẑn(ρ1) may be calculated in closed form using (6). When
the plug-in predictor Ẑn(ρ̂n) is used, we need to integrate over the sampling distribution for ρ̂n ,
which we approximate by averaging over the simulation results from § 3·2. For both fixed and
estimated ρ, we calculate the average mean squared prediction error, averaging over the m = 2500
prediction points. Because prediction varies in difficulty according to ν, n, and effective range,
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Table 2. Percent increase in mean squared prediction error relative to the
optimal mean squared prediction error using the true value of ρ, rounded to

the nearest 0·1%
ν = 0·5 ν = 1·5

ER 0·1 0·3 1 0·1 0·3 1
ρ̂n n

MLE 400 0·2 0·1 0·0 0·2 0·1 0·1
900 0·1 0·0 0·0 0·1 0·0 0·0

1600 0·0 0·0 0·0 0·0 0·0 0·0
0·2 ρ 400 36·6 60·4 6·5 103·1 487·0 165·5

900 56·4 37·5 2·3 218·2 474·1 83·8
1600 66·2 19·2 0·9 351·4 321·5 41·5

0·5 ρ 400 8·7 2·8 0·2 26·9 20·0 2·9
900 7·9 1·1 0·1 32·9 10·2 1·3

1600 5·5 0·4 0·0 29·2 4·7 0·7
2 ρ 400 2·8 0·3 0·0 12·0 2·1 0·3

900 1·3 0·1 0·0 6·8 1·0 0·1
1600 0·6 0·0 0·0 3·4 0·4 0·1

5 ρ 400 5·6 0·6 0·1 27·2 4·2 0·6
900 2·4 0·2 0·0 13·7 1·9 0·2

1600 1·1 0·1 0·0 6·6 0·9 0·1

we report the percent increase in mean squared prediction error relative to the optimal mean
squared prediction error using the true value of ρ, which is calculated from (7).

Table 2 shows that plug-in prediction using the maximum likelihood estimator ρ̂n performs
quite well relative to predicting with the true value of ρ. For n = 900 and 1600, the increase in
mean squared error is less than 0·1 percent in all cases. It is also clear that there are cases in which
it makes little difference if ρ is fixed at an incorrect value. This is true when the effective range
is large and ρ1 is fixed at something larger than the true value. However, there are also cases in
which fixing ρ can lead to quite a large loss of efficiency. These effects are magnified when we
move from ν = 0·5 to ν = 1·5, suggesting that a misspecified value of ρ is more problematic for
smoother processes. This agrees with some earlier cases in the literature in which predictions with
a fixed ρ were still quite accurate. For example, Zhang & Wang (2010) examined precipitation
data using a predictive process model (Banerjee et al., 2008) and concluded that a variety of
prediction metrics did not change when ρ was fixed at values larger than the maximum likelihood
estimator. However, the underlying covariance model for the predictive process was Matérn with
ν = 0·5, corresponding to a process that is not mean square differentiable.

In a similar pattern to what we observe for mean squared error in Table 2, using the maximum
likelihood estimator produces intervals with nominal coverage in nearly all cases, and the esti-
mators fixing ρ at something larger than the true value achieve this rate for n = 900 and 1600
when the effective range is large. However, the intervals tend to be too conservative when the
effective range is large and ρ1 is too small, and they tend to be not conservative enough when the
effective range is small and ρ1 is too big. See the Supplementary Material for full results.

4. DISCUSSION

We have made a number of simplifying assumptions. Considering the ways in which they may
be relaxed provides a rich set of questions for future research. For example, our results concern
only mean zero Gaussian processes, which is equivalent to assuming that the mean of the process
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is known. Results on equivalence of mean zero Gaussian measures such as Theorem 2 of Zhang
(2004) can be used in proving equivalence of Gaussian process measures with different means
(Stein, 1999, Ch. 4, Corollary 5). However, the primary difficulty is in extending estimation
results. Zhang (2004) indicates that his method of proof is not easily extended to the case of
an unknown mean. Asymptotic results for the case ν = 1/2 and d = 1 are given in Theorem 3
of Ying (1991), and it seems plausible that similar results might hold for d = 2 and 3. With an
unknown mean, it might be preferable to use restricted maximum likelihood (Stein, 1999), for
which improved infill asymptotic results should also be sought.

We have also not considered what happens when the observations are not of the process
Z itself, but of Z observed with measurement error. Again, results for equivalence and prediction
can be extended in a relatively straightforward way. We expect something like Theorem 2 should
hold for the case that Z is observed with measurement error. However, in a restricted version of
this problem, the introduction of the error term reduces the rate of convergence of the maximum
likelihood estimator for c from the usual order n−1/2 to order n−1/4 (Chen et al., 2000).

Perhaps the most important restriction, both here and in previous work, is that ν is assumed
to be known. Estimating ν provides desirable flexibility, as this parameter controls the mean
square differentiability of the process. However, we know of no results concerning the maximum
likelihood estimator in this case. Stein (1999, § 6.7) examines a periodic version of the Matérn
model and argues that σ̂ 2

n and ν̂n should have a joint asymptotic normal distribution, but it is an
open question whether a similar result holds for nonperiodic fields.
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