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The Role of the Skeletal Muscle
Secretome in Mediating Endurance
and Resistance Training Adaptations
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Exercise, in the form of endurance or resistance training, leads to specific molecular

and cellular adaptions not only in skeletal muscles, but also in many other organs

such as the brain, liver, fat or bone. In addition to direct effects of exercise on these

organs, the production and release of a plethora of different signaling molecules

from skeletal muscle are a centerpiece of systemic plasticity. Most studies have

so far focused on the regulation and function of such myokines in acute exercise

bouts. In contrast, the secretome of long-term training adaptation remains less

well understood, and the contribution of non-myokine factors, including metabolites,

enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by

other means, is underappreciated. In this review, we therefore provide an overview on

the current knowledge of endurance and resistance exercise-induced factors of the

skeletal muscle secretome that mediate muscular and systemic adaptations to long-

term training. Targeting these factors and leveraging their functions could not only have

broad implications for athletic performance, but also for the prevention and therapy in

diseased and elderly populations.

Keywords: skeletal muscle, exercise, myokines, PGC-1alpha, endurance training, resistance training, secretome

INTRODUCTION

Exercise, in its various forms, provides an array of physiological stimuli that evokes metabolic
and molecular perturbations in skeletal muscle as well as many other organ systems. Training
adaptations are structural and functional changes resulting from repeated exposure to these
exercise-induced stimuli, leading to improved physiological capacity and decreased risk for
morbidity and mortality (Egan and Zierath, 2013). The detailed molecular processes induced by
different exercise stimuli are, however, still poorly characterized. In particular, it is incompletely
understood how the signals induced by acute exercise bouts translate into specific adaptations
following long-term training (Sanford et al., 2020). A sound understanding of the mechanisms
underlying the adaptation to exercise training and the identification of molecular effectors of
the adaptive response is essential—not only for individuals with athletic ambitions, but also to
infer potential clinical implications and to develop novel therapeutic avenues for geriatric and
diseased populations.

Endurance and resistance exercise are the two extremes of a broad continuum of exercise
modalities and elicit distinct but also overlapping training responses (Egan and Zierath, 2013).
Acutely, both endurance and resistance exercise trigger the systemic release of a plethora of

Frontiers in Physiology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 709807

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.709807
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2021.709807
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.709807&domain=pdf&date_stamp=2021-08-12
https://www.frontiersin.org/articles/10.3389/fphys.2021.709807/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Leuchtmann et al. Myokines in Exercise Training Adaptation

bioactivemolecules such as proteins, metabolites andmicroRNAs
(Whitham et al., 2018; Morville et al., 2020; Vechetti et al., 2021).
The major physiological function of this release is thought to be
the maintenance of metabolic homeostasis i.e., the coordination
of nutrient sensing, delivery, uptake and utilization, which
requires an extensive crosstalk between almost every organwithin
the body (Murphy et al., 2020). Since the discovery of myokines,
skeletal muscle has been appreciated as an endocrine organ,
whose secreted factors are strongly involved in coordinating
the metabolic network during acute exercise bouts in order
to optimize energy substrate availability in working muscles
and to sustain force production. Accordingly, during the last
few decades, large efforts have been taken to elucidate the
components of the muscle fiber secretome, with a particular
focus on the regulation of the metabolic homeostasis during
and after acute exercise bouts. In contrast, unraveling which
of the acutely secreted factors are involved in mediating local
and systemic adaptations to long-term training has received
much less attention. In this review, we therefore summarize
the current knowledge about secreted factors stimulated by
endurance and/or resistance exercise that are contributing to
long-term training adaptations (Figure 1).

ENDURANCE TRAINING ADAPTATION

Endurance exercise is the training modality of choice when
aiming for improvements in cardiorespiratory, cardiovascular
and metabolic function (Mcgee and Hargreaves, 2020).
Endurance exercise-induced stresses elicit multiple signaling
events in skeletal muscle, heart and the respiratory system,
which exert their effects on training adaptation in a cell-intrinsic
manner. In addition, components of the skeletal muscle
secretome, the entity of proteins, peptides, metabolites and other
molecules (Weigert et al., 2014; Florin et al., 2020), released upon
acute endurance exercise bouts, may also act as mediators of
training adaptation through autocrine, paracrine and endocrine
mechanisms. Many of the molecular adaptations in endurance
exercise are controlled by the peroxisome proliferator-activated
receptor γ coactivator 1α (PGC-1α). This coregulator protein
is activated by exercise-linked signaling in muscle and in turn
coordinates and orchestrates the transcription of a complex
network encoding several biological programs linked to
endurance training, including mitochondrial function, oxidative
metabolism, calcium homeostasis and contractile properties
of slow muscle fibers, or angiogenesis (Kupr and Handschin,
2015). Intriguingly, many myokines are also under the control of
PGC-1α (Schnyder and Handschin, 2015). In the first part of this
review, we will discuss how signaling factors are regulated and
involved in the control of endurance training adaptation.

MYOKINES

By definition, myokines are peptides that are produced and
secreted by skeletal muscle fibers and subsequently exert auto-,
para- or endocrine effects (Severinsen and Pedersen, 2020). A vast

number of myokines have been described in various systems and
paradigms, but only a subset of these is regulated by exercise
(also called “exerkines”) (Laurens et al., 2020). In the following
sections, the exerkines that are potentially involved in long-term
endurance training adaptation are described.

Interleukin-6
The discovery that skeletal muscle contributes to the exercise-
induced increase in circulating interleukin-6 (IL-6) (Steensberg
et al., 2000) initiated the concept of myokines and muscle as
an endocrine organ. Despite initial skepticism about the muscle
cell origin, there is now good evidence that IL-6 is transcribed,
translated and released from myofibers during exercise (Hiscock
et al., 2004; Whitham et al., 2012). The mechanism of secretion in
contrast has not been entirely elucidated so far, although different
candidate pathways have been proposed (Hojman et al., 2019).
IL-6 serves primarily as a metabolic coordinator during acute
exercise bouts by regulating lipolysis in adipose tissue (Van Hall
et al., 2003) and hepatic glucose production (Febbraio et al., 2004)
coordinated with substrate uptake and utilization in skeletal
muscle (Chowdhury et al., 2020). The secretion of IL-6 is tightly
linked to the metabolic state, e.g., pre-exercise muscle glycogen
content or oral glucose availability (Starkie et al., 2001; Steensberg
et al., 2001).

IL-6-driven lipolysis during acute exercise bouts may lead to
improved body composition following endurance training over
time. In fact, the reduction of visceral and epicardial fat tissue
in response to 12 weeks of high-intensity endurance training
was dependent on intact IL-6 signaling, at least in a cohort of
obese and previously sedentary individuals (Christensen et al.,
2019; Wedell-Neergaard et al., 2019). IL-6 is further known for
its anti-inflammatory effects in both acute exercise bouts and
exercise training. The acute effects are primarily due to the IL-
6-triggered production of the cytokines IL-1 receptor antagonist
and IL-10, which, amongst other exercise-induced factors, create
an anti-inflammatory systemic environment (Pedersen, 2017).
The long-term effects of training, in addition, may be positively
influenced by the above-described reduction in visceral adipose
tissue, a main contributor to the chronic systemic low-grade
inflammatory state observed in the context of obesity (Severinsen
and Pedersen, 2020). IL-6 may further be involved in endurance
training-induced cardiac remodeling, as intact IL-6 signaling
was required for training-linked left ventricle hypertrophy
(Christensen et al., 2019). However, changes in stroke volume
or end-diastolic volume (left ventricular ejection fraction) were
not affected, and VO2peak, a marker for peak endurance capacity,
was similarly ameliorated after endurance training in participants
treated with the IL-6 receptor (IL-6R) antagonist tocilizumab
or placebo (Wedell-Neergaard et al., 2019; Ellingsgaard et al.,
2020). As a caveat: in the IL-6R blocking studies, it is not clear
whether the long-term adaptations are in fact due to muscle-
secreted IL-6 as other organs could contribute to the systemic
increase during exercise. Furthermore, there is no evidence of
sustained or enhanced IL-6 myokine production and release
in endurance-trained muscle, implying that if long-term effects
are mediated by muscle IL-6, they would be the consequences
of repeated acute elevation and related signaling. In fact, the
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acute exercise-induced rise in systemic IL-6 levels and muscular
IL-6 mRNA are diminished by training, although potentially
counteracted by an enhanced muscular expression of the IL-6R
in trained muscle (Severinsen and Pedersen, 2020).

Interleukin-8
IL-8 is primarily known for its angiogenic activity and role as a
chemoattractant in inflammatory processes (Harada et al., 1994;
Keane et al., 1997). IL-8 acting as a potential myokine has been
under investigation since in vitro studies have demonstrated that
it is produced and secreted by muscle cells (De Rossi et al.,
2000). Similar to IL-6, lower muscle glycogen content favors
IL-8 transcription in human skeletal muscle, while changes in
plasma levels due to exercise, conversely, seem to be glycogen-
independent (Nieman et al., 2003; Chan et al., 2004). Moreover, a
substantial increase in plasma IL-8 appears to require prolonged,
potentially damaging muscle actions such as marathon- or
ultramarathon-type of running (Nieman et al., 2002, 2003; Suzuki
et al., 2003) and is less frequently observed or lower in magnitude
following short term (Mucci et al., 2000) or less damaging
muscular activity such as cycling or rowing (Henson et al., 2000;
Chan et al., 2004). Considering the systemic stress and muscle
damage induced by a marathon, the chemoattractant properties
of IL-8 in inflammatory responses and immune cell activation
are likely predominant in this context. Although muscle fiber-
secreted IL-8 cannot be fully precluded to contribute to the
chemoattraction of neutrophils and macrophages recruited for
muscle repair, systemic IL-8 during strenuous exercise might
also be derived from other cell types resident in skeletal
muscle or beyond.

IL-8 signals via the CXC receptor 2 (CXCR2), which is
expressed by endothelial cells (ECs) and affects EC proliferation
and capillary tube organization (Li et al., 2003). Therefore,
a potential role in training-induced capillarization has been
proposed, which is supported by the observation that CXCR2
mRNA and protein levels are upregulated in vascular ECs upon
exercise (Frydelund-Larsen et al., 2007), but conflicting with the
impaired capillary outgrowth in human muscle explants exposed
to higher levels of IL-8 (Amir Levy et al., 2015). The potentially
pro-angiogenic effects of IL-8 on capillarization are likely to
be dose-dependent and perhaps require the pulsatile nature of
exercise training.

Vascular Endothelial Growth Factor
Vascular endothelial growth factor (VEGF) is among the most
important pro-angiogenic factors in many tissues. Accordingly,
VEGF transcription and translation are highly induced in
skeletal muscle upon endurance exercise (Jensen et al., 2004a;
Olfert et al., 2016). Systemic levels of VEGF, on the other
hand, often do not increase strongly during exercise, mainly
because VEGF accumulates in the muscle interstitium acting
on vascular ECs to trigger blood vessel formation (Höffner
et al., 2003; Jensen et al., 2004a; Landers-Ramos et al., 2014).
Because muscle cells can produce and secrete VEGF in response
to electrostimulation (Jensen et al., 2004b), muscle fibers are
thought to autonomously react to the stresses induced by exercise
by secreting VEGF, which leads to enhanced capillarization

following training and thereby facilitated energy substrate and
oxygen supply as well as byproduct removal. Besides ample
post-transcriptional regulation of VEGF stability, in many cell
types VEGF induction is strongly regulated by the canonical
hypoxia response pathway and hypoxia-inducible factor 1 alpha
(HIF-1α)-controlled transcription (Arcondeguy et al., 2013).
However, exercise-induced VEGF expression in skeletal muscle
can be driven by additional, HIF-1α-independent mechanisms,
orchestrated by PGC-1α interacting with the transcription factors
estrogen-related receptor α (ERRα) and activator protein-1 (AP-
1) (Arany et al., 2008; Baresic et al., 2014). In addition, PGC-
1α-controlled angiogenesis may involve enhanced expression
of platelet-derived growth factor (PDGF)-BB and angiopoietin
2 as well as secreted phosphoprotein 1 (SPP1). PDGF-BB
recruits mural cells to support and encase the endothelium
and angiopoietin 2 facilitates sprouting, while SPP1 instructs
macrophages to signal to adjacent ECs, pericytes and smooth
muscle cells thereby orchestrating angiogenesis in concert with
VEGF (Arany et al., 2008; Rowe et al., 2014).

Musclin
Skeletal muscle-derived musclin was first identified by screening
cDNA libraries of mouse skeletal muscle for putative secreted
proteins (Nishizawa et al., 2004). More than a decade later,
Subbotina et al. (2015) established musclin as an exercise-
controlled myokine whose production and systemic release is
driven by Ca2+-dependent activation of Akt and subsequent
nuclear exclusion of forkhead box O1 transcription factor
(FoxO1), a known transcriptional inhibitor of the musclin-
encoding gene osteocrin (Ostn) in skeletal muscle (Yasui et al.,
2007). In sedentary mice, ubiquitous disruption of Ostn leads
to impaired treadmill performance, reduced voluntary wheel
running and lower succinate dehydrogenase activity in skeletal
muscle, but had no effect on oxygen consumption during
exercise or mitochondrial and respiratory complex protein
content in skeletal muscle (Subbotina et al., 2015). In contrast,
when exposed to short-term (5 days) treadmill training, all
variables described above were significantly lower in Ostn-
KO compared to wild-type (WT) animals, indicating impaired
training adaptation in musclin deficient mice. Unfortunately,
however, longer training interventions and pre- vs. post-training
comparisons of running capacity and oxygen consumption were
not performed in this study, which makes it difficult to draw firm
conclusions about the importance of muscle derived musclin in
endurance training adaptation.

The study by Subbotina et al. (2015) furthermore suggested
that musclin acts in concert with atrial natriuretic peptide
(ANP) to co-stimulate cGMP production in skeletal muscle,
which has been linked to PGC-1α-dependent mitochondrial
biogenesis (Nisoli et al., 2004). Exercise-induced increase in
both cGMP and PGC-1α mRNA was blunted in muscles of
Ostn-KOs (Subbotina et al., 2015). As endocrine musclin release
increases systemic levels of various NPs by competing for their
clearance receptor (Kita et al., 2009), exercise-induced musclin
potentially modulates the action of these peptides. NPs have a
wide spectrum of target tissues including skeletal muscle, heart,
bone and kidneys. Thus, the endocrine release of musclin may,
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for example, increase cardiac NPs involved in heart remodeling,
which in addition to the described effects on skeletal muscle could
explain the reduced V̇O2peak observed in endurance-trainedOstn
KO compared to WT animals.

B-Type or Brain Natriuretic Peptide
Brain natriuretic peptide (BNP) is mainly produced by
cardiomyocytes in cardiac ventricles upon stretch to initiate
signaling events that reduce blood pressure and blood volume
(Goetze et al., 2020). As it is able to reduce fibrosis in the liver
(Sonoyama et al., 2009) and potentially in the heart (Wang et al.,
2004), coupled with the described immunomodulatory effect
in macrophages (Chiurchiu et al., 2008), BNP is involved in
inflammatory responses related to tissue repair and regeneration.
In humans, plasma BNP increases in response to exercise (Ohba
et al., 2001; Huang et al., 2002), but the relative contribution
of different tissues to this increase is not exactly known.
Because BNP expression is much higher in cardiac compared to
skeletal muscle, the majority of circulating BNP likely originates
from the heart. Nevertheless, by combining in vitro secretome
analyses with in vivo experiments, BNP has been identified
as a PGC-1α1/ERRα-driven myokine induced upon exhaustive
endurance exercise in mouse skeletal muscle (Furrer et al.,
2017). Together with other exercise and/or PGC-1α-regulated
factors with paracrine immunomodulatory function in skeletal
muscle, BNP may mediate the active engagement of skeletal
muscle resident immune cells e.g., by orchestrating M1 to M2
transition in macrophages (Furrer et al., 2017). Whether and
how the BNP-driven transient activation of macrophages after
acute endurance bouts aids training adaptation in the long-term
remains to be investigated. It seems, however, plausible that BNP-
activated macrophages facilitate muscle repair and regeneration
following acute exercise bouts and/or confer enhanced capacity
to trained muscle to respond to exercise-induced insults by
increasing their resident numbers. While the contribution
of cardiac BNP most likely supersedes that of muscle BNP
systemically, the latter could also have autocrine functions in
skeletal muscle, based on the widely described actions of NPs
on skeletal muscle (Miyashita et al., 2009; Engeli et al., 2012;
Subbotina et al., 2015).

Apelin
Apelin (short for APJ Endogenous Ligand) was first described
as a peptide purified from bovine stomach extracts that binds
to the orphan APJ G protein-coupled receptor (GPCR), now
known as apelin receptor (Tatemoto et al., 1998). Both the
apelin peptide and its receptor are expressed in many tissues
including different brain regions and insulin-responsive tissues
such as adipose tissue, skeletal muscle, heart and liver (Castan-
Laurell et al., 2012). Apelin has long been known for its
adipokine function, induced by insulin and modulating glucose
and lipid metabolism as well as insulin sensitivity, which is
why pharmacological targeting of the apelin receptor gained
much interest for the treatment of type two diabetes (T2D)
and metabolic diseases (Castan-Laurell et al., 2012). However,
skeletal muscle-derived apelin and its responsiveness to exercise
has only recently started to be explored, after a link between

endurance training, muscular apelin expression and increased
plasma apelin levels has been proposed (Besse-Patin et al., 2014;
Fujie et al., 2014). In a comprehensive series of experiments,
Vinel et al. (2018) investigated the muscular contribution
to exercise-induced plasma apelin as well as the resulting
local and systemic effects. In vitro, apelin was found to be
secreted by contracting human myotubes, and in mice, hindlimb
venous-arterial difference of apelin increased following muscle
contractions induced by sciatic nerve stimulation. Moreover,
skeletal muscle-specific knockdown of apelin expression through
viral vectors did not affect resting levels, but impaired exercise-
induced elevation of plasma apelin, reaffirming the strong
contribution of skeletal muscle to plasma apelin during exercise.
The muscle apelin knockdown also led to atrophy and reduced
grip strength, grid-hanging time and treadmill performance,
all of which were rescued with daily apelin treatment. While
apelin supplementation had synergistic effects on endurance
training and further improved fatigue resistance, muscle-specific
overexpression phenocopied the functional effects of exercise
training concomitant with an increased mass of overexpressing
muscles. Regarding potential underlying mechanisms, Vinel
et al. (2018) proposed an autocrine regulatory loop, in which
local apelin production enhances muscular endurance by
increasing intramyofibrillar mitochondrial number and function
in part via AMP-dependent protein kinase (AMPK) activation.
A previous study in insulin-resistant high-fat diet mice had
already suggested a role for the apelin-AMPK axis in skeletal
muscle mitochondrial biogenesis and oxidative capacity, as both
were augmented by apelin treatment in an AMPK-dependent
manner (Attané et al., 2012).

Apelin/apelin receptor signaling plays a key role in the
development and organization of vascular networks, as evidenced
in various in vitro and in vivo models (Masri et al., 2004;
Kasai et al., 2008; Kidoya et al., 2008, 2015; Kunduzova
et al., 2008). In addition, compared to WT animals, apelin-
transgenic mice exhibit increased EC numbers in skeletal muscle
when fed a high-fat diet, while animals on a standard diet
displayed higher oxygen consumption and upregulated mRNA
expression of endothelium-specific receptor tyrosine kinase 1 and
2, which are important for vascular maturation (Yamamoto et al.,
2011). Mechanistically, apelin signaling pushes ECs into a pro-
angiogenic state by enhancing intracellular glycolytic activity,
a process mainly driven by PFKFB3 and c-MYC, two central
regulators of EC metabolism (De Bock et al., 2013; Wilhelm
et al., 2016; Helker et al., 2020). The apelin protein required for
the pro-angiogenic switch, however, may be primarily derived
from tip ECs for autocrine stimulation, as hypoxia can directly
trigger apelin transcription in ECs by activating HIF-1α, which
subsequently binds to hypoxia-responsive elements present in
the apelin gene (Cox et al., 2006; Eyries et al., 2008; Del Toro
et al., 2010). Similarly, during skeletal muscle regeneration,
apelin is secreted together with oncostatin M and periostin
by ECs and myogenic progenitor cells to couple myo- and
angiogenesis (Latroche et al., 2017). However, no study has
so far investigated whether muscle fiber secreted apelin could
mechanistically contribute to the formation of capillaries in
exercise-trained muscle.
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Myonectin
During the characterization of the metabolic function of
complement component 1q/TNF-related protein (CTRP) family
members, CTRP15 (now referred to as myonectin) was identified
as a potential myokine (Seldin et al., 2012). Inmice given access to
running wheels for 2 weeks or subjected to 4 weeks of treadmill
training, circulating myonectin levels as well as skeletal muscle
gene and protein expression increased substantially (Seldin et al.,
2012; Otaka et al., 2018). Furthermore, transcriptional activation
of myonectin is induced by raising intracellular cAMP or Ca2+

levels through either muscular activity or pharmacologic agents
(Seldin et al., 2012). Since myonectin is poorly expressed in
tissues other than skeletal muscle, themain source of the training-
induced increase in circulating levels is considered skeletal
muscle (Seldin et al., 2012; Otaka et al., 2018). In a combination
of in vitro experiments and studies in mice treated with
recombinant protein, systemic myonectin was shown to act on
the liver to increase the uptake of free fatty acids by upregulating
local lipid binding and transport proteins (Seldin et al., 2012)
and to suppress autophagy by activating the mammalian target of
rapamycin complex 1 (mTORC1) pathway (Seldin et al., 2013).

Exercise mitigates ischaemia-reperfusion (IR) injury,
which occurs after acute ischemic events such as myocardial
infarction or suppression of blood flow during cardiac surgery
(Moreira et al., 2020). Besides intracellular stress-defense
mechanisms triggered directly in cardiomyocytes, the protective
effect of exercise on IR injury may additionally be mediated
by the exercise-induced myonectin release from skeletal
muscle. Mice deficient for the myonectin gene displayed
larger myocardial infarct sizes, cardiac dysfunction and more
apoptotic cardiomyocytes compared to WT animals, while
transgenic overexpression further reduced myocardial damage
after IR (Otaka et al., 2018). Intriguingly, endurance training
decreased infarct size after IR in WT, but not in myonectin
KO mice, supporting the notion that the training-induced
elevation of circulating myonectin confers this protective effect
(Otaka et al., 2018).

Regarding human myonectin, there are so far only reports
about plasma levels, and evidence as to the effect of both acute
and chronic exercise is conflicting. In heterogeneous populations,
some studies observed an increase while others reported either
no change or even a decrease in circulating myonectin (Lim et al.,
2012; Pourranjbar et al., 2018; Kamiński et al., 2019; Bahremand
et al., 2020). Thus, more research is required, including studies on
muscle biopsies, to help elucidating the role of human myonectin
in general. Moreover, even though loss of myonectin has no
effect on running performance in untrained mice (Little et al.,
2019), there are no data available on post-training performance
to conclude about potential impairments in training adaptation.

Brain-Derived Neurotrophic Factor and
Neurturin
Brain-derived neurotrophic factor (BDNF) signals via
tropomyosin receptor kinase B (TrkB) and p75NRT receptors
and is a member of the neurotrophin (NT) family, a class of
secretory factors that regulate survival, growth and function

of neuronal cells. Accordingly, BDNF and its receptors are
highly expressed in various brain regions (Huang and Reichardt,
2001). BDNF has been consistently reported to increase in the
circulation in response to exercise [e.g., (Ferris et al., 2007;
Saucedo Marquez et al., 2015)], with the brain or blood platelet
precursors (megakaryocytes) likely to constitute the largest
contributors to this increase (Rasmussen et al., 2009; Chacón-
Fernández et al., 2016). However, both BDNF transcription
and translation are induced in skeletal muscles during exercise,
and the BDNF protein appears to be secreted, although only
in relatively small amounts (Pedersen et al., 2009; Ogborn and
Gardiner, 2010). Therefore, muscle-derived BDNF is thought
to be mostly involved in autocrine and paracrine signaling e.g.,
to promote muscle fiber fat oxidation via AMPK activation
(Matthews et al., 2009) and to regulate muscle development
and regeneration, at least when SC-derived (Mousavi and
Jasmin, 2006; Clow and Jasmin, 2010; Miura et al., 2012). In
addition, a potential trophic action of muscle-derived BDNF
on innervating motor neurons (MNs) via retrograde signaling
has been proposed (Koliatsos et al., 1993). Surprisingly, even
though BDNF induction seems to be a physiological response
to endurance exercise, muscle-specific deletion of the Bdnf
gene increases running performance, at least in part due to a
neuromuscular junction (NMJ) remodeling associated with a
myosin heavy chain (MyHC)-IIB to MyHC-IIX muscle fiber
transition (Delezie et al., 2019). However, the role of BDNF
induction (or repression) in training-induced remodeling of
muscle fibers or their innervating MNs through auto- and
paracrine actions, respectively, remains to be explored.

Many chronic diseases including T2D and cardiovascular
disease, but also neurological disorders such as impaired
cognition, dementia and depression are associated with lower
circulating BDNF levels, and all these diseases can be mitigated
with exercise interventions (Pedersen et al., 2009). Moreover, in
mousemodels, exercise-induced cathepsin B release from skeletal
muscle elevate the abundance of BDNF in the hippocampus,
which was linked to neuroprotection and improved memory
function (Moon et al., 2016). The cathepsin B-mediated muscle-
brain crosstalk is further supported by human data, as training
induced cathepsin B transcription and systemic protein levels
correlated with hippocampus-dependent memory function in
healthy young adults (Moon et al., 2016). For more detailed
information on muscle-brain crosstalk in the context of exercise,
the interested reader is referred to a recent review on the topic
(Delezie and Handschin, 2018).

Neurturin, a member of the glial cell line-derived
neurotrophic factor (GDNF) family, is a PGC-1α1-regulated
myokine and involved in neuromuscular synapse maturation
during development and regeneration (Baudet et al., 2008).
Accordingly, neurturin promotes neuromuscular junction (NMJ)
formation in an in vitro microfluidics cell co-culture system
(Mills et al., 2018b). Moreover, recent evidence indicates that
neurturin could be one of the PGC-1α1 effector myokines that
couples increased muscle oxidative capacity to corresponding
changes in MN properties (Correia et al., 2021). While increased
muscular expression after endurance exercise was detected in
mice and humans (Schlittler et al., 2019; Correia et al., 2021),
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ectopic expression of neurturin in mouse skeletal muscle was
sufficient to induce a shift toward slower MN and NMJ features,
while at the same time, the muscles of these mice displayed a
phenotype similar to PGC-1α1 overexpressing animals. Like
BDNF, muscle-derived neurturin might primarily act in an auto-
and paracrine manner, as it was undetectable in the plasma of
overexpressing mice (Correia et al., 2021).

On the muscle side, neuromuscular adaptations to exercise
training likely reflect the integration of the local relative
abundance of various neurotrophic factors and their receptors.
For example, GDNF is induced by exercise in rat skeletal muscle
and has been implicated in enhanced NMJ endplate area in
various training paradigms (Nguyen et al., 1998; Gyorkos and
Spitsbergen, 2014; Gyorkos et al., 2014). Besides BDNF, other
neurotrophic factors (NTs) such as nerve growth factor (Capsoni
et al., 2000), NT-3 (Ernfors et al., 1994; Klein et al., 1994)
or N-4/5 (Belluardo et al., 2001) are found in skeletal muscle
and exert important functions in neuromuscular physiology.
However, their regulation by exercise as well as their potential
functions in the training response in rodents or humans remain
largely elusive (Lippi et al., 2020). Collectively, however, the
regulation, secretion and function of such factors imply a
surprisingly broad retrograde signaling from skeletal muscle that
leads to a remodeling of the NMJ and potentially MN phenotype,
complementing the top-down control of the muscle phenotype
by MN signaling.

ADIPOSE TISSUE BEIGEING FACTORS

In rodents, endurance exercise stimulates the muscular secretion
of the PGC-1α-controlled factors β-aminoisobutyric acid
(BAIBA) (Roberts et al., 2014), irisin (Boström et al., 2012) and
meteorin-like (Rao et al., 2014), which all have the ability to
promote brown fat activity and/or induce white adipose tissue
beigeing, thereby significantly affecting energy expenditure. At
a first glance, it appears counterintuitive that exercise, which
increases energy demands and boosts heat dissipation, would
induce signaling events that lead to mitochondrial uncoupling
and thus reduced substrate utilization efficiency as well as heat
production. Based on the observation that shivering-induced
irisin secretion is similar in magnitude to the exercise-stimulated
secretion, it has been hypothesized that exercise-induced adipose
tissue browning may have evolved from shivering to aid cold
exposure-induced thermogenesis (Lee et al., 2014). Irisin has
also been linked to remodeling of bone tissue, cardiac protection,
synaptic plasticity and memory, as well as neurogenesis,
neuroinflammation and neurodegeneration in the brain (Ma
and Chen, 2021). However, questions regarding physiological
circulating levels in humans pre- and post-exercise remain to be
addressed (Flori et al., 2021).

Similarly, conflicting reports about plasma levels of human
BAIBA in response to exercise describe either an increase
following an acute bout (Stautemas et al., 2019), while others
failed in this attempt (Morales et al., 2017). The inconsistency
in findings may have several reasons, including a gene
polymorphism of an aminotransferase affecting baseline levels

of total BAIBA or the fact that BAIBA has a chiral center
and therefore two different enantiomers, which may lead to
interindividual differences in their relative distribution and hence
the relative change upon exercise (Stautemas et al., 2019).

Human meteorin-like plasma levels were significantly
increased after exercise in temperate (24–25◦C) and warm
(36.5–37.5◦C) water, but decreased in cold (16.5–17.5◦C) water
in a cohort of overweight women (Saghebjoo et al., 2018).
In mice, a recent study reported that meteorin-like facilitates
skeletal muscle repair by activating signal transducer and
activator of transcription 3 (STAT3) signaling in macrophages
to induce insulin-like growth factor 1 (IGF-1) production,
which in turn had a direct effect on muscle SC proliferation
(Baht et al., 2020). However, in this context, meteorin-like was
released from infiltrating macrophages rather than resident cells
or muscle fibers.

MITOCHONDRIAL-DERIVED PEPTIDES

Mitochondria possess a distinct circular genome that gives rise to
13 oxidative phosphorylation complex subunits. However, short
open reading frames (sORF) have recently been discovered to
encode additional biologically active small peptides (<100 amino
acids), collectively referred to as mitochondrial-derived peptides
(MDPs) (Kim et al., 2017). One of these MDPs, mitochondrial
ORF of the 12S ribosomal RNA type-c (MOTS-c), activates
similar signaling pathways as exercise and, when administered
exogenously, promotes exercise-like adaptations (Lee et al., 2015;
Kim et al., 2018). As a new class of circulating signalingmolecules,
skeletal muscle-produced and -secreted MDPs could potentially
be involved in training adaptation. Indeed, both mice and
human participants showed increased MOTS-c expression in
skeletal muscle as well as increased circulating levels upon acute
endurance exercise (Reynolds et al., 2021; Yang et al., 2021).
Similarly, the MDP humanin increased in muscle and plasma
of healthy young men following acute high-intensity cycling.
This response was preserved, yet tended to be lower following
short-term training (Woodhead et al., 2020). In the same
study, electrical stimulation of isolated mouse muscle rapidly
increased intramuscular humanin levels, supporting the notion
of skeletal muscle being a source of circulating MDPs during
exercise. However, the intracellular mechanisms regulating MDP
production and secretion during exercise are still unknown, even
though a responsiveness to signals associated with cellular energy
stress occurring in exercised muscles is conceivable (Merry et al.,
2020). Moreover, despite the training-like effects of systemic
MOTS-c treatment on endurance performance inmice (Reynolds
et al., 2021), the role and molecular targets of exercise-induced
MDPs as well as their auto-, para- and endocrine relevance
in mediating physiological training adaptation has yet to be
established. Kumagai et al. (2021) suggested that MOTS-c could
act as a myostatin inhibitor by increasing Akt activity via
activation of mTORC2 and inhibition of phosphatase and tensin
homolog (PTEN) through casein kinase 2 (CK2) activation.
However, whether systemically administeredMOTS-cmodulated
mTORC2 and CK2 activity in skeletal muscle by binding to
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an extracellular receptor, through direct interaction or by other
means could not be determined. While putative cell-surface
receptors for humanin have been suggested (Lee et al., 2013),
extracellular receptors for MOTS-c or other MDPs are still
elusive. Although more research has to be conducted, thus far
it seems more likely that intracellular interactions dominate the
effects of MDPs on metabolic homeostasis in the context of
exercise training (Kim et al., 2018).

SUCCINATE

TCA cycle intermediates such as fumarate, malate, citrate and
succinate have long been known to accumulate in skeletal muscle
during exercise (Sahlin et al., 1990; Gibala et al., 1997). Of these,
succinate is further released into the blood stream in substantial
amounts (Hochachka and Dressendorfer, 1976). On target cells,
succinate acts as an extracellular signaling molecule by binding to
the GPCR succinate receptor 1 (SUCNR1) (He et al., 2004; Regard
et al., 2008) and, in muscle fibers, stimulates monocarboxylate
transporter (MCT)1-facilitated, pH-gated release of succinate
(Reddy et al., 2020). A wide array of physiological and
pathological processes have now been described to be, at least
in part, regulated by extracellular succinate and/or SUCNR1
signaling including energy expenditure, inflammation, blood
pressure and ischemia (Tretter et al., 2016; Mills et al., 2018a).

To evaluate the role of succinate signaling in training-
induced muscle remodeling, Reddy et al. (2020) subjected
SUNCR1 KO mice to a progressive resistance wheel-running
regimen. After 3 weeks, SUNCR1 KOs had accumulated larger
running distances compared to WT animals, indicating a
superior endurance training response with impaired succinate
signaling. On the other hand, while there was no difference at
baseline, training-induced gains in grip strength were completely
compromised in SUNCR1 KOs. In line with these observations,
training resulted in increased neural-specific tubulin staining
only in WT mice, while SUNCR1 KOs displayed downregulated
fast MyHC isoforms as well as proteins involved in ECM
organization relevant for force transmission. However, these
results are in conflict with an earlier study, which found succinate
supplementation to increase endurance exercise capacity and
to induce an oxidative (i.e., slow MyHC dominant) fiber type
shift in a SUCNR1-dependent manner (Wang et al., 2019). Of
note, while the effects of dietary succinate were attributed to
myocellular SUCNR1 signaling, Reddy et al. (2020) were unable
to detect SUCNR1 in cultured muscle cells or muscle fibers
in tissue cross-sections, but found it to be highly expressed
in resident stromal, endothelial and satellite cell populations,
suggesting that succinate rather acts in a paracrine manner. The
SUCNR1-dependent transcriptome in isolated cell populations
immediately after an acute treadmill bout revealed decreased
expression of transcripts involved in axon guidance, neuronal
projections and muscle regeneration in SUCNR1 KO mice.
Thus, despite the seemingly favored endurance adaptation,
paracrine succinate signaling appears to be required for ECM
remodeling and adaptions in muscle innervation in response to
training. However, a thorough examination of changes in exercise

performance, muscle function and oxidative capacity in SUCNR1
KOs is required to fully determine the role of succinate signaling
in endurance training adaptation.

MicroRNAs AND EXTRACELLULAR
VESICLES

MicroRNAs (miRNAs) are small non-coding single-stranded
RNA molecules that modulate gene expression at the post-
transcriptional level. Extracellular miRNAs are either bound
to protein complexes associated with high-density lipoproteins
or located inside small extracellular vesicles (EVs). EVs are
generated by most cell types and facilitate the exchange of
miRNAs and other biological components among cells and
tissues (Groot and Lee, 2020). Endurance exercise triggers a
systemic EV release, and the amount as well as the specific
composition of the miRNA cargo appears to be dependent on the
exercise modality and intensity (Vechetti et al., 2021). Vechetti
et al. (2021) further analyzed previously published miRNAs
isolated from plasma EVs after a single bout of exercise and ran a
prediction analysis in order to both determine possible targets of
miRNA carrying EVs and to infer their potential systemic effects.
The top two most significantly enriched biological processes
revealed by gene ontology analysis were the response to reactive
oxygen species and insulin secretion. This is in line with a recent
study in mice showing that miRNA-containing EVs isolated
from high-intensity interval-trained muscles improved glucose
tolerance when administered to sedentary mice (Castaño et al.,
2020). However, due to the inability to label and track EVs
released from specific cells or tissues, the relative contribution
of skeletal muscle to circulating EVs induced by exercise is still
mostly speculative (Nederveen et al., 2020).

Besides the endocrine action of skeletal muscle-derived
miRNAs as circulating EV cargo, in vitro evidence suggests that
myofibers usemiRNA secretion to regulate local processes such as
myogenic differentiation and angiogenesis (Forterre et al., 2014;
De Gasperi et al., 2017; Nie et al., 2019; Mytidou et al., 2021).
Although it appears conceivable that a miRNA-based paracrine
crosstalk could be involved in mediating muscular adaptations
to endurance training (e.g., muscle fiber capillarization or ECM
remodeling), the skeletal muscle miRNA field has only recently
started to develop and hence there are currently very few
studies investigating myofiber miRNA release in the context of
endurance training adaptation.

FACTORS SECRETED BY RESIDENT OR
INFILTRATING CELLS IN SKELETAL
MUSCLE

The complexity of skeletal muscle is often underappreciated and
thus past efforts to identify factors mediating exercise-training
adaptation have mainly focused on the secretome of myofibers.
However, besides syncytial myofibers, skeletal muscle harbors
a variety of mononucleated cell populations such as satellite
cells (SCs), fibro-adipogenic progenitors (FAPs), macrophages,
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neutrophils, ECs, B-, T- and glial cells (Giordani et al., 2019).
Exercise can induce changes in the proportion of these cell
types as well as affect activation, polarization and secretory
profiles (Rubenstein et al., 2020). Muscle-resident mononuclear
cells contribute to the secretome of skeletal muscle and the
adaptation to exercise training may depend on coordinated
communication between the different cell types and muscle
fibers, similar to developmental and regenerative processes. For
example, IL-13 is secreted by type 2 innate lymphoid cells in
endurance exercise, and induces signaling in myofibers that
promotes an oxidative, high-endurance phenotype (Knudsen
et al., 2020). Accordingly, besides reduced treadmill running
capacity at baseline, the training-induced oxidative fiber type
shift, improvements in mitochondrial respiration, endurance
capacity and glucose tolerance were abolished in mice deficient
for the Il13 gene. Moreover, intramuscular delivery of IL-
13 recapitulated the metabolic reprogramming induced by
endurance training and increased exercise performance. Second,
in recent years, histamine has emerged as a potentially important
mediator of the exercise response, in both acute and chronic
settings. In humans, histamine is released locally within exercised
muscles and although not entirely clear, degranulating mast cells
are a likely source of post-exercise histamine (Halliwill et al., 2013;
Romero et al., 2017). Histamine-driven alterations in skeletal
muscle gene expression could make up > 25% of the acute
endurance exercise responsive transcriptome (Romero et al.,
2016). Pharmacological inhibition of the histamine H1 and H2

receptors during 6 weeks of cycling interval training in healthy
males resulted in impaired improvements of exercise capacity,
glycemic control and vascular function (Van Der Stede et al.,
2021). Finally, macrophage-derived growth differentiation factor
3 (GDF3) (Varga et al., 2016) and EC-secreted lactate (Zhang
et al., 2020) help in muscle regeneration upon damage, thereby
potentially contributing to training adaptation.

RESISTANCE TRAINING AND THE
SKELETAL MUSCLE SECRETOME

Increasing or maintaining skeletal muscle mass and strength is
not only essential for athletic performance, but also associated
with increased quality of life, while conversely, a reduction in
muscle mass and strength elevates the risk of (multi-)morbidity
and all-cause mortality (Furrer and Handschin, 2019). Resistance
training, which involves muscle contractions against external
loads of a wide spectrum of ranges over several weeks or a
lifetime, is an effective strategy to elicit substantial gains in, or
to preserve skeletal muscle mass and strength in combination
with adequate nutrition (Morton et al., 2018; Schoenfeld
et al., 2021). Although the classically quantified adaptations
to resistance training such as increased muscle volume, larger
cross-sectional areas of pre-existing myofibers (hypertrophy)
and increased muscle force appear trivial, the spectrum of
structural and functional adaptations, especially those that
underlie improvements in muscle force, is much more diverse.
Neuronal and neuromuscular changes (e.g., motor output),
connective tissue alterations and improved vascularization—to

only name a few—are also elicited by resistance training, in both
young and older individuals (Hughes et al., 2018). Although the
resistance exercise stimuli, their molecular sensors as well as the
downstream signaling events that lead to the above described
phenotypic alterations induced by resistance training are still
poorly characterized (Wackerhage et al., 2019), factors secreted
by skeletal muscle fibers could play a key role in modulating
neuromuscular plasticity in response to resistance training.
Therefore, in the following sections, we provide an overview
on resistance exercise-induced factors of the skeletal muscle
secretome with potential functions in mediating muscular and
systemic adaptations to resistance training through autocrine,
paracrine or endocrine actions.

IGF-1
IGF-1 is an extensively studied regulator of muscle growth,
differentiation and regeneration. Upon binding to its receptor,
IGF-1 induces phosphatidylinositol 3-kinase (PI3K)/Akt-
dependent pathways, which subsequently lead to the activation
of mTORC1 and p70S6 kinase, key regulators of protein synthesis
and muscle growth, at least in certain contexts and paradigms
(Goodman, 2019). Endocrine-acting IGF-1 is primarily secreted
by the liver upon growth hormone (GH) stimulation, while
skeletal muscle expresses the two mainly auto- and paracrine-
acting isoforms IGF-1Ea and mechano-growth factor (MGF, or
IGF-1Eb in rodents and IGF-1Ec in humans), of which MGF is
most responsive to mechanical signals (Goldspink, 2005; Barton,
2006). PGC-1α4, a shorter PGC-1α isoform, which induces
a hypertrophic phenotype when overexpressed in skeletal
muscle of mice, has been proposed to act in part through IGF-1
induction andmyostatin suppression (Ruas et al., 2012). Systemic
IGF-1 administration is sufficient to induce muscle hypertrophy
and resistance training-induced gains can be further potentiated
when combined with IGF-1 treatment (Lee et al., 2004).
However, a functional IGF-1 receptor appears to be dispensable
for muscle hypertrophy to occur in a muscle-overload context
(Spangenburg et al., 2008). Moreover, although acute resistance
exercise increases systemic levels of IGF-1 and other anabolic
hormones in human participants, acute raises in circulating
IGF-1 after resistance exercise bouts neither enhance muscle
protein synthesis nor correlate with skeletal muscle hypertrophy
and strength gains following training (West et al., 2009; Morton
et al., 2016). The relative contribution of skeletal muscle-derived
IGF-1 to the systemic increase in response to resistance exercise,
however, has yet to be assessed. Muscle IGF-1 mRNA and protein
levels increase in response to both long-term resistance training
in humans and in synergist ablation-induced muscle overload
in rats (Adams and Haddad, 1996; Hanssen et al., 2013). Thus,
even if the systemic fluctuations of IGF-1 induced by resistance
exercise are negligible for the training outcome, muscle-derived
IGF-1 may still have local and compared to non-muscle IGF-1,
perhaps diverging effects. For example, muscle IGF-1 may
regulate muscle fiber hypertrophy or repair in a paracrine
manner by stimulating SC proliferation and incorporation into
muscle fibers. Accordingly, increased DNA content was observed
in muscles injected with IGF-1 (Adams and Mccue, 1998)
and IGF-1 co-localization with Pax7, a marker for activated
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FIGURE 1 | Schematic overview of examples of the endurance (left) and resistance (right) exercise-induced muscle secretome and its auto-, para-, and endocrine

actions involved in training adaptation. See text for details. Abbreviations: AMPK, AMP-dependent protein kinase; Apelin, APJ Endogenous Ligand; BAIBA,

β-aminoisobutyric acid; BDNF, Brain-derived neurotrophic factor; BNP, B-type or brain natriuretic peptide; EC, endothelial cell; ECM, Extracellular matrix; GDF3,

macrophage-derived growth differentiation factor 3; GDNF, glial cell line-derived neurotrophic factor, IGF-1, Insulin-like growth factor-1; ILC2, innate lymphoid cells

type 2; IL-6, Interleukin-6; IL-8, Interleukin-8; IL-13, Interleukin-13; LIF, Leukemia inhibitory factor; MOTS-c, mitochondrial ORF of the 12S ribosomal RNA type-c;

MMP2, Matrix metalloproteinase-2; mTORC1, mammalian target of rapamycin complex 1; NMJ, Neuromuscular junction; PGC-1α, peroxisome proliferator-activated

receptor γ coactivator 1α; SPARC, Secreted protein acidic and rich in cysteine; SPP-1, secreted phosphoprotein 1; TF, transcription factor; VEGF, Vascular

endothelial growth factor; YAP1, Yes-associated protein 1.

SCs, was enhanced upon an acute bout of resistance exercise
(Grubb et al., 2014). However, whether SC activating IGF-1 is
myofiber-derived in this context is difficult to estimate, as other
cell types are also likely to be involved. Besides SCs themselves as
a potential source, IGF-1 derived from monocytes/macrophages
is known to be crucial during ECM remodeling and regeneration
from muscle injury (Tonkin et al., 2015). Another layer of

complexity in the regulation of IGF-1 signaling in response to
exercise is added by the array of IGF-1 binding proteins that can
either inhibit or promote IGF-1 bioavailability and physiological
activity (Allard and Duan, 2018).

Finally, as IGF-1 is positively associated with bone
mineralization (Breen et al., 2011), IGF-1 could also be
involved in muscle-bone crosstalk by acting on IGF-1 receptors
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in the periosteum (Rittweger, 2008; Hamrick et al., 2010).
However, even though skeletal muscle-specific overexpression of
IGF-1 results in bigger bones (Banu et al., 2003), and a potential
endocrine action of exercise-induced muscular IGF-1 release is
at least conceivable, a direct link between resistance training and
bone-specific adaptations has yet to be investigated.

VEGF
Following both acute resistance exercise and hypertrophy-
inducing resistance training, VEGF mRNA and protein levels
increase in skeletal muscle, indicating that VEGF plays a
role in the growing muscle (Richardson et al., 2000; Gavin
et al., 2007; Kon et al., 2014). In cultured muscle cells,
VEGF treatment induced myotube hypertrophy, whereas VEGF
inhibitors reduced myotube size (Bryan et al., 2008). Moreover,
in mice, muscle-specific VEGF gene ablation blunts both muscle
hypertrophy and strength gains in a functional overload context
(Huey et al., 2016). Interestingly, the VEGF transcriptional
response after an acute bout of resistance exercise seems to
be attenuated in resistance-trained compared to untrained
muscles (Richardson et al., 2000), which may indicate that
capillarization is substantially stimulated at an early stage
of training to allow subsequent muscle fiber growth, while
the signal flattens out when the hypertrophy rate is slowing
down. However, VEGF induction may also depend on the
exercise protocol as others found non-significant or a similar
increase in acute induction of VEGF pre- and post-resistance
training (Coffey et al., 2006; Trenerry et al., 2011). It is
currently not well understood how skeletal muscle synthesizes
and secretes VEGF in response to hypertrophic stimuli, but
interestingly, in vitro studies found enhanced VEGF synthesis
and secretion by C2C12myotubes upon IGF-1 treatment and Akt
activation (Takahashi et al., 2002; Florin et al., 2020). Similarly,
injection of constitutively active Akt into the M. gastrocnemius
of mice enhanced both circulating and local VEGF levels
(Takahashi et al., 2002). Future studies will have to test
whether IGF-1/Akt-mediated VEGF induction plays a role in
the physiological adaptation to resistance training or whether
the stimuli and pathways leading to VEGF secretion and/or
muscle fiber capillarization in general overlap with those of
endurance exercise.

Myostatin
Myostatin is a highly conserved member of the TGF-β protein
family and is mainly expressed in skeletal muscle (Thomas et al.,
2000). The role of myostatin as a negative regulator of muscle
growth was first discovered in 1997 by Mcpherron et al. (1997),
who observed an approximately twofold increase in muscle
mass in myostatin KO mice. Likewise, antagonism of muscle
myostatin signaling in mice substantially increases muscle mass,
further highlighting the growth-limiting effects of myostatin
(Lee and Mcpherron, 2001; Amthor et al., 2004). Intriguingly,
besides its occurrence in cattle, sheep and dogs, a loss-of-function
mutation in the myostatin gene may also occur spontaneously in
humans, as it happened in a young boy displaying a pronounced
hypertrophic phenotype (Schuelke et al., 2004).

Upon secretion, myostatin binds to the activin receptor
type IIB (ActRIIB) to build a complex with activin receptor-
like kinase 4 or 5 (ALK4/5) on muscle fiber membranes and
SCs, which in turn activates small worm phenotype/mothers
against decapentaplegic (SMAD) transcription factors that both
suppress PI3K/Akt-mediated mTORC1 signaling and induce
FoxO-dependent protein degradation pathways (Han et al.,
2013). However, how mTORC1 is regulated by myostatin
has yet to be determined. The muscle mass increase in
myostatin KO animals results from both hyperplasia and
hypertrophy of muscle fibers. Hyperplasia is primarily driven
during development in utero, while hypertrophy is thought to
be the predominant process responsible for myostatin-related
postnatal muscle growth, at least in rodents and in humans.
Initial studies on how myostatin negatively regulates muscle
mass pointed towards SC regulation, as myostatin KO mice
have an increased rate of SC proliferation and incorporation
into pre-existing myofibers (Mccroskery et al., 2003; Wagner
et al., 2005). However, more recent studies found that SC
activation upon myostatin inhibition does not precede myofiber
hypertrophy and thus concluded that myostatin regulates
hypertrophy also in a SC-independent manner (Lee et al., 2012;
Wang and Mcpherron, 2012). Of note, the larger muscle mass
in myostatin KOs does not translate into increased strength
(Amthor et al., 2007), which might in part explain why
pharmacological inhibition of myostatin signaling largely failed
to mitigate functional impairments in muscle wasting diseases
and sarcopenia (Rooks et al., 2020).

Antagonistic to growth hormones, myostatin contributes
to the determination of a set point of pre-programmed, yet
adaptable level of muscle mass. Inconclusive results have been
reported regarding the regulation of myostatin expression
following chronic resistance exercise and the increase in muscle
mass, and at least in some studies, myostatin expression
even increases after acute exercise bouts (Domin et al.,
2021). It is therefore unclear whether a potential transient or
chronic suppression of post-exercise and post-training levels,
respectively, is part of the training effect. Signals affecting the
myostatin pathway could also be involved in resistance training
adaptation. For example, resistance exercise-induced cleavage
of intracellular notch domains overrides the inhibitory effect
of myostatin by inhibiting SMAD proteins (Mackenzie et al.,
2013). Finally, besides its role in keeping muscle mass in check,
myostatin also suppresses bone development, as evidenced by
increased bone formation in myostatin-deficient mice (Hamrick,
2003; Dankbar et al., 2015). In the bone, the analogous
ActRIIB/SMAD pathway is involved in osteoclastogenesis and
binding of myostatin induces osteoclast formation and thus
bone erosion (Bialek et al., 2014; Dankbar et al., 2015).
Resistance training is a strong stimulus to boost bone mineral
density and counteract osteoporosis, potentially at least in part
mediated by reduced myostatin signaling (Zamoscinska et al.,
2020), even though an ever expanding complex system of
multidirectional signaling between muscle (myokines), bones
(osteokines), liver (hepatokines) and adipose tissue (adipokines)
certainly contributes to this and other organ crosstalk in exercise
(Gonzalez-Gil and Elizondo-Montemayor, 2020).
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Follistatin
Follistatin is a secreted glycoprotein expressed in various
cell types, including skeletal muscle (Görgens et al., 2013).
Endogenous extracellular follistatin binds myostatin, thereby
preventing myostatin-ActRIIB/ALK4/5 receptor interaction, and
consequently inhibiting the anti-anabolic effects of myostatin
(Lee and Mcpherron, 2001). While myostatin loss (Mcpherron
et al., 1997) and muscle-specific follistatin overexpression (Lee
and Mcpherron, 2001) induce significant muscle hypertrophy on
their own, their phenotypes appear to be additive. Myostatin loss
alone increases muscle mass by about twofold, but intriguingly,
combined myostatin KO and follistatin overexpression results in
quadrupling of muscle mass (Lee, 2007), indicating that follistatin
also acts independent of myostatin. In fact, follistatin-induced
inhibition of SMAD3 activity, which leads to induction of protein
synthesis in skeletal muscles via Akt/mTORC1/S6K signaling,
occurs also through inhibition of activin, another follistatin- and
ActRIIB-ligand implicated in both muscle mass and strength loss
in various conditions (Gilson et al., 2009; Winbanks et al., 2012).
Although there are not many human training studies available,
both serum follistatin as well as skeletal muscle follistatin mRNA
levels seem to be upregulated upon long-term resistance training
(Laurentino et al., 2012; Negaresh et al., 2019). The observation
that follistatin is not only elevated in muscle, but also in
the circulation, leads to the question whether muscle-derived
follistatin—besides controlling skeletal muscle adaptation in a
local manner—also operates systemically. However, the bulk of
circulating follistatin is not muscle- but liver-derived, indicating
that endocrine follistatin is rather a hepatokine (Hansen et al.,
2016). In this regard, a potential function of circulating follistatin
in glycemic control by modulating insulin action in skeletal
muscle has recently been proposed (Han et al., 2019).

Decorin
Decorin is an extracellular matrix proteoglycan involved in
the skeletal muscle hypertrophic response. Although in vitro
evidence suggests that decorin is secreted by myotubes andmight
be involved in protein synthesis pathways, partly by inhibiting
myostatin actions similar to follistatin, the influence of a long-
term resistance training program on muscle decorin levels has
not been studied so far (Guiraud et al., 2012; Sun et al., 2013;
Kanzleiter et al., 2014).

Matrix Metalloproteinase-2
Matrix metalloproteinases (MMPs) are a family of enzymes
involved in ECM remodeling (Nagase and Woessner, 1999).
In vitro studies indicate that around 30% of skeletal muscle
MMP-2 are actively secreted into the ECM and that MMP-2 has
an important function in muscular differentiation, regeneration
and repair (Chen and Li, 2009; Ren et al., 2019). Anomalous
ECM remodeling, such as connective tissue accumulation,
affects skeletal muscle function and is often observed in aging
(Wood et al., 2014), while aberrant accumulation of connective
tissue can be effectively prevented with resistance training
(Guzzoni et al., 2018). Moreover, muscle ECM remodeling
is an integral part of the resistance training response that

follows a biphasic course in which initial catabolic processes,
guided by a transient glycoprotein matrix, are followed by
anabolic processes to reinforce the intramuscular connective
tissue structure (Csapo et al., 2020). Evidence further indicates
that long-term resistance training significantly elevates muscle
MMP-2 levels and thus, a potential link between MMP-2
and resistance training-induced ECM remodeling of skeletal
muscle has been suggested (Deus et al., 2012; Shiguemoto
et al., 2012; Souza et al., 2014; De Sousa Neto et al., 2018;
Guzzoni et al., 2018). Significantly reduced ECM remodeling
concomitant with impaired muscle hypertrophy and force
production inMMP-2 KOmice in response to synergist ablation-
induced functional overload further supports the importance
of MMP-2 action during resistance training adaptation (Zhang
et al., 2014). Interestingly, Akt/mTORC1 signaling is unaffected
in MMP2-KO mice, indicating that disruption of the ECM
remodeling alone is sufficient to reduce functional overload-
induced muscle hypertrophy. In addition, skeletal muscle-
secreted MMP-2 is involved in exercise-induced skeletal muscle
angiogenesis and potentially muscle-bone crosstalk, although it
is not entirely clear whether these effects are indeed mediated
by muscle-derived MMP-2 (Haas et al., 2000; Hamrick, 2012;
Chen et al., 2021).

Secreted Protein Acidic and Rich in
Cysteine
Secreted protein acidic and rich in cysteine (SPARC) is a
secretory matricellular protein involved in mediating cell-
ECM interactions (Brekken and Sage, 2000). SPARC expression
has been described in many tissues undergoing repair or
remodeling and accordingly, both SPARC mRNA and protein
expression were elevated in human muscle biopsies after long-
term resistance training (Brekken and Sage, 2000; Norheim et al.,
2011). Interestingly, despite being present in both myofibers
and capillary ECs, training-induced SPARC proteins strongly
accumulate adjacent to the plasma membrane of myofibers,
indicating increased communication between muscle cells and
the ECM in response to resistance training (Norheim et al.,
2011). Although the hypertrophy-promoting signals of SPARC
are not well understood, muscle atrophy, resulting from muscle
specific loss of SPARC, could be due to enhanced TGF-β signaling
(Nakamura et al., 2013). Besides its anti-atrophic effects, studies
in lens ECs provide evidence for an additional hypertrophy-
promoting mechanism of SPARC. In this in vitro system, SPARC
acts on the transmembrane receptor integrin β1, which in
skeletal muscle plays a critical role in myofiber differentiation,
skeletal muscle innervation and sensing of mechanical stimuli
(Schwander et al., 2004; Weaver et al., 2008; Boppart and
Mahmassani, 2019). Thus, it can be speculated that SPARC
induces skeletal muscle hypertrophy in part through autocrine
actions via SPARC/integrin signaling. There are also other para-
and/or endocrine signaling events that have been attributed to
SPARC e.g., in bone homeostasis, adipose tissue turnover and
tumorigenesis (Brekken and Sage, 2000; Nie and Sage, 2009).
However, whether muscle-derived SPARC acts on these cell types
in a para- and/or endocrine manner has yet to be investigated.
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IL-6
Chronically elevated levels of circulating IL-6 or chronic IL-6
administration directly into skeletal muscle lead to substantial
muscle atrophy (Tsujinaka et al., 1996; Haddad et al., 2005).
However, IL-6 expression is increased during recovery from cast-
immobilization induced atrophy in rats (Childs et al., 2003),
and IL-6-deficient mice display prolonged recovery from atrophy
induced by hind limb suspension (Washington et al., 2011). In
the latter study, IL-6 KOs also showed a blunted transcriptional
induction of the myogenesis-regulating transcription factors
MyoD andmyogenin as well as impaired IGF-1 transcription and
Akt/mTORC1 signaling after 1 day of recovery. By comparing
WT and IL-6 KO mice combined with in vitro studies, IL-6 was
shown to control SC proliferation and myonuclear accretion in
functional overload-induced skeletal muscle hypertrophy, most
likely by activating the IL-6 downstream target STAT3 (Serrano
et al., 2008). However, using the same approach, White et al.
(2009) observed similar gains in myofiber cross-sectional area in
WT and IL-6-deficient mice, while the increase in muscle wet
mass was even larger in IL-6 KO animals. Bymeans of histological
analyses, the extra gains in muscle mass could be attributed to
a larger increase in non-contractile tissue. Accordingly, mRNA
levels of procollagen-1, IGF-1, and TGF-β were highly induced
in IL-6-deficient mice, whereas the elevation of MyoD, required
for myogenic differentiation (Yu et al., 2021), was attenuated
compared to WT animals. Collectively, these studies indicate
that IL-6 is important for SC-mediated hypertrophy and may be
involved in intramuscular connective tissue remodeling e.g., to
prevent fibrosis in response to increased mechanical loading.

In the context of resistance exercise, circulating and skeletal
muscle IL-6 concentrations are highly induced by an acute bout
of resistance exercise in recreationally active individuals (Vella
et al., 2012; Benini et al., 2015). Moreover, acute resistance
exercise increases STAT3 activity in skeletal muscle (Trenerry
et al., 2007), a response that seems to be preserved after training
(Trenerry et al., 2011). In ladder climbing rats and resistance
exercising young men, resting IL-6 protein levels are elevated in
skeletal muscle following 10-12 weeks of training (Trenerry et al.,
2011; Begue et al., 2013; Jung et al., 2015). The systemic increase
following acute bouts as well as resting circulating IL-6 levels, on
the other hand, appear to be reduced after long-term resistance
training (Donges et al., 2010; Libardi et al., 2012; Ho et al., 2013;
Azizbeigi et al., 2015; Forti et al., 2017). Although the transient
increase in local IL-6 concentrations following acute resistance
exercise-induced myotrauma is associated with STAT3 and SC
activation (Mckay et al., 2009; Toth et al., 2011), the contribution
of IL-6 to regenerative processes, SC-dependent hypertrophy,
or both, in resistance training adaptation is still incompletely
understood. Moreover, whether IL-6 activates the JAK/STAT3
signaling pathway exclusively in SC or also in muscle fibers in
an autocrine manner remains to be determined.

Leukemia Inhibitory Factor
Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine
superfamily, a group of structurally and functionally related
proteins (also known as neuropoietins or pg130 cytokines), and is

expressed in various tissues including skeletal muscle (Heinrich
et al., 1998; Metcalf, 2003). In human myotubes, production
and secretion of LIF is enhanced upon electrical stimulation,
potentially involving PI3K andAkt/mTORC1 signaling (Broholm
et al., 2011). In rodents, LIF protein levels were upregulated
in the M. plantaris by functional overload-induced hypertrophy
(Sakuma et al., 2000). Moreover, in LIF KO animals, the
hypertrophic response is missing, but can be rescued with
systemic application of LIF, indicating that LIF is required for
hypertrophy in an overload context (Spangenburg and Booth,
2006). Interestingly, LIF-dependent muscle growth may be
fiber type-specific, as hypertrophy of the slow MyHC-dominant
M. soleus is only delayed, but not completely abolished in LIF KO
mice. Systemic LIF administration for 4 weeks increasesM. soleus
mass in rats, whereas hypertrophy in the M. extensor digitorum
longus, a prototypical fast MyHC-muscle, required simultaneous
supplementation with clenbuterol (a β2-adrenoreceptor agonist)
to respond in a significant manner, further supporting the muscle
fiber-type-specific actions of LIF (Gregorevic et al., 2002). In
humans, muscle LIF mRNA is upregulated upon a single bout of
resistance exercise, while circulating LIF levels remain unchanged
(Broholm et al., 2011).

Similar to IL-6, LIF promotes hypertrophy in a paracrine
manner by stimulating SC proliferation through the JAK/STAT3
signaling pathway, as indicated by in vitro studies (Spangenburg
and Booth, 2002). In addition, induction of the transcription
factors JunB and c-Myc may underlie the enhanced myoblast
proliferation triggered by LIF as observed in cultured human
myotubes (Broholm et al., 2011). However, emerging evidence
suggests that LIF regulates skeletal muscle plasticity in a
more complex manner. For example, LIF is essential in the
maintenance of the NMJ, both pre- and post-synaptically, which
raises the possibility that LIF regulates NMJ/MN remodeling
during resistance training adaptation (Hunt and White, 2016).
Furthermore, a designer cytokine with the ability to signal via LIF
receptor/gp130 in an IL-6 receptor-dependent manner was tested
for the treatment of T2D (Findeisen et al., 2019). Intriguingly,
besides the positive effects on all major hallmarks of themetabolic
syndrome in obese mice, the treatment also prevented the loss
of, or even increased skeletal muscle mass at least in part by
activating the transcriptional coactivator and Hippo pathway
effector yes-associated protein 1 (YAP1) in skeletal muscle.
These findings provide an exciting additional and notably SC-
independent mechanism for how IL-6 receptor/gp130 and/or LIF
receptor signaling could potentially mediate muscle hypertrophy
or mitigate muscle loss in various conditions. Clinical trials will
have to reveal the translational potential of these observations as
well as determine the LIF-dependent skeletal muscle adaptations
to resistance training.

IL-8
Besides its proposed role in endurance exercise, IL-8 may also
be involved in mediating muscular adaptations to resistance
training. Both skeletal muscle IL-8 mRNA and protein levels are
enhanced after an acute bout of resistance exercise in human
participants while circulating levels remain unchanged (Buford
et al., 2009; Della Gatta et al., 2014a). Moreover, muscle IL-8
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mRNA and peptide levels are significantly increased following
a long-term resistance-training regimen (Nieman et al., 2004;
Della Gatta et al., 2014b). Interestingly, in contrast to a single
bout of resistance exercise, resistance training also upregulates
circulating IL-8 levels in some studies (Forti et al., 2016, 2017).
However, it remains unsolved whether skeletal muscle fibers are
responsible for the long-term increase in plasma IL-8, or whether
this is due to IL-8 production in other cell types in skeletal muscle
or even in other sites in the body.

Even though the function of muscle-derived IL-8 in the
context of resistance training adaptation is not exactly known,
it is thought that IL-8—similar to its role in endurance
adaptation—promotes angiogenesis in loaded muscles.
Interestingly however, recent in vitro evidence suggests that IL-8
might further regulate muscle miRNAs, particularly miR-338 and
miR-376, which are involved in regulating skeletal muscle growth
in neonatal piglets (Mcdaneld et al., 2009; Milewska et al., 2019).
In addition, when present in the extracellular environment
of rat myoblasts, IL-8 induces myogenic transcription, Akt
phosphorylation and FoxO3 degradation, thereby inhibiting
muscle cell proteolysis (Milewska et al., 2019). However, more
research, in particular in vivo studies, is necessary to confirm the
potential anti-catabolic effects of IL-8 and to further substantiate
the suggested role in angiogenesis.

Other Interleukins
Besides IL-6 and IL-8, other interleukins have been proposed to
be involved in mediating resistance-training adaptation. IL-7 is a
muscle cell-secreted cytokine with potential anabolic functions,
as muscle IL-7 mRNA was upregulated in human M. vastus
lateralis and M. trapezius after a resistance-training program in
young men (Haugen et al., 2010). However, due to the lack
of follow-up studies, the role of IL-7 peptides in mediating
hypertrophy or other types of resistance-training adaptations
remains elusive.

Based on the observation that IL-15 is highly expressed
in skeletal muscle (Grabstein et al., 1994) and experiments
in cultured muscle cell lines (Quinn et al., 2002), IL-15 was
initially believed to act as an anabolic factor for skeletal
muscle. Subsequent studies with either IL-15 administration or
overexpression however, have largely failed to increase muscle
mass in healthy rodents. On the contrary, these interventions
rather seem to promote an oxidative phenotype of skeletal
muscle (Pistilli and Quinn, 2013). Although these experiments
may not mimic the physiological dynamics of IL-15 in vivo,
data from resistance exercising healthy humans so far could
not provide strong evidence to support the notion of IL-15
having anabolic properties (Nielsen et al., 2007; Pérez-López
et al., 2018). Thus, more research is required to determine the
physiological role of IL-15 in skeletal muscle, with particular
focus on its cognate soluble and membrane-bound receptors
(Nadeau and Aguer, 2019).

IL-4 and IL-13 were found to regulate myoblast fusion in
culturedmuscle cells (Horsley et al., 2003; Jacquemin et al., 2007).
In young men, 6 weeks of resistance training increased gene
expression of IL-4 and IL-13 as well as both their receptors in arm
extensor muscles (Prokopchuk et al., 2007). In contrast, resting

peptide levels of muscle IL-4 and IL-13 are unchanged following
resistance training, while IL-4 appears to be induced 2 h after an
acute bout of resistance exercise, following 12 weeks of resistance
training (Prokopchuk et al., 2007; Della Gatta et al., 2014b; Jung
et al., 2015).

In summary, the literature on the interleukins described
above in resistance-training adaptation is still rudimentary and
therefore, further studies are necessary to draw firm conclusions
on their potential functions in this context. Moreover, the
actual source of these cytokines upon resistance exercise
has to be determined, in particular for IL-4 and IL-13, as
they likely originate also from either resident or infiltrating
mononucleated cell types.

miRNAs

Similar to endurance exercise, resistance exercise increases
circulating miRNAs in a protocol-dependent manner (Cui et al.,
2017). Myogenic progenitor cells regulate the muscle ECM by
secreting EVs containing miR-206, which represses ribosomal
binding protein 1 (a master regulator of collagen biosynthesis) in
interstitial fibrogenic cells to prevent excessive ECM deposition
in response to synergist ablation-induced overload of the
M. plantaris (Fry et al., 2017). The miR-199-3p enhances
myogenic differentiation and muscle regeneration, and, when
administrated to aged mice, induced muscle fiber hypertrophy
and delayed loss of muscle strength (Fukuoka et al., 2021).
Moreover, mdx mice, a model of Duchenne muscular dystrophy,
improved muscle strength upon treatment with miR-199 mimics.
As the muscle fiber-derived miRNA field is still emerging, the
future will likely reveal the potential regulatory capacity of
secreted miRNAs in resistance training adaptation.

CONCLUDING REMARKS

Exercise training adaptation is the result of the repeated
application of exercise stimuli that elicit multi-organ responses.
During this process, skeletal muscle, the heart and other organs
integrate signals arising from both cell-intrinsic perturbations
and external cues. While a basic understanding of many
mechanisms that are important in acute exercise bouts exists,
our mechanistic knowledge about chronic training adaptation is
rudimentary, both for endurance as well as resistance exercise.
Along the same lines, most myokines have been identified and
studied in the context of acute, and mostly endurance exercise
bouts. It thus is not surprising that the study of auto-, para-
and endocrine signaling of myokines in training is still in its
infancy. In this review, we have summarized the current data on
myokines and other muscle-derived factors that could potentially
be linked to training adaptation, trying to not only include, but
also contrast the findings in endurance and resistance exercise
paradigms. Notably, for almost all of those, data are scarce, and
it often is not clear whether the relative and absolute levels,
release and elimination kinetics, or other parameters are indeed
changed in response to training in humans. Alternatively, it
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is conceivable that the repeated release of secreted factors and
their downstream signaling over time contribute to training
adaptation in a cumulative manner. Studies in human volunteers
is hampered by the difficulty to track the source of secreted
factors, and thus attribution to myokine action remains elusive
since most of these factors are also produced by other cell types
and tissues. Moreover, circulating concentrations often are very
low, and therefore, conventional detectionmethods, might not be
sufficiently sensitive, produce unspecific and unreliable results, or
might not even exist. Mouse models are more suited for causative
studies of specific factors. However, caution is advised in the use
of pre-/perinatal or juvenile gain- and loss-of-function models.
Inducible mouse models might be compromised by the effect of
tamoxifen or doxycycline on skeletal muscle and the chance of
incomplete transgenesis. Finally, gain-of-function models should
overexpress the gene of interest within a physiological range and
ideally in a transient manner as observed in exercise, to avoid
artificial effects of superphysiological and constitutively elevated
levels. Thus, optimally, the study of the skeletal muscle secretome
in acute exercise, training, as well as pathological settings should
be done in different models and paradigms, and carefully
validated on the mechanistic level. Besides these challenges in
discovery and validation, the potential therapeutic exploitation of
myokines faces several obstacles (Whitham and Febbraio, 2016).

Among those, issues with stability, immunogenicity and toxicity
as well as achieving cell- and/or tissue-specific targeting to avoid
side effects are key limitations. If successfully overcome, however,
myokines have an enormous potential as agents to improve
muscle function in healthy individuals as well as inmany different
diseases (Pedersen and Saltin, 2015; Pedersen, 2019).
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