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Abstract

Population genetic studies of species inhabiting the deepest parts of the oceans are still

scarce and only until recently we started to understand how oceanographic processes and

topography affect dispersal and gene flow patterns. The aim of this study was to investigate

the spatial population genetic structure of the bathyal bony fish Coryphaenoides mediterra-

neus, with a focus on the Atlantic–Mediterranean transition. We used nine nuclear microsat-

ellites and the mitochondrial cytochrome c oxidase I gene from 6 different sampling areas.

No population genetic structure was found within Mediterranean with both marker types

(meanΦST = 0.0960, FST = -0.0003, for both P > 0.05). However, within the Atlantic a con-

trasting pattern of genetic structure was found for the mtDNA and nuclear markers (mean

ΦST = 0.2479, P < 0.001; FST = -0.0001, P > 0.05). When comparing samples from Atlantic

and Mediterranean they exhibited high and significant levels of genetic divergence (mean

ΦST = 0.7171, FST = 0.0245, for both P < 0.001) regardless the genetic marker used.

Furthermore, no shared haplotypes were found between Atlantic and Mediterranean popu-

lations. These results suggest very limited genetic exchange between Atlantic and Mediter-

ranean populations of C.mediterraneus, likely due to the shallow bathymetry of the Strait of

Gibraltar acting as a barrier to gene flow. This physical barrier not only prevents the direct

interactions between the deep-living adults, but also must prevent interchange of pelagic

early life stages between the two basins. According to Bayesian simulations it is likely that

Atlantic and Mediterranean populations of C.mediterraneus were separated during the late

Pleistocene, which is congruent with results for other deep-sea fish from the same region.
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Introduction

Population genetic studies of species inhabiting the deepest parts of the oceans are still scarce

compared to shallow or coastal water relatives. The deep-sea is historically described as a stable

and homogeneous environment where the existence of barriers to dispersal and gene flow

among populations are less evident [1]. Some studies support this pattern since genetic homo-

geneity over large spatial scales of several deep-sea species seems to prevail, for example the

wreckfish (Polyprion americanus [2]), the hydrothermal vent shrimp (Rimicaris exoculata, [3]),

the black scabbardfish (Aphanopus carbo, [4]), the blue hake (Antimora rostrata, [5]) and the

orange roughy (Hoplostethus atlanticus, [6]). Nevertheless, other species such as roundnose

grenadier (Coryphaenoides rupestris, [7]) and the bluemouth rockfish (Helicolenus dactylop-

terus, [8]) show a contrasting genetic pattern exhibiting significant levels of genetic divergence

across their range. The mixed scenario of genetic patterns across deep-sea species is likely to

reflect depth niche, bathyal heterogeneity and ocean currents, as well as differences among

species in life histories and dispersal capabilities.

Although much work is still needed to understand the most important processes and mech-

anisms affecting dispersal and gene flow patterns in the deep sea, the number of studies relat-

ing oceanographic processes and topography with genetic patterns has been increasing in the

last years (i.e. [9, 10, 11]). For some species, topographic features may act as physical barriers

to the individual movements or by diverging water circulation, influencing both dispersal and

gene flow. The Strait of Gibraltar, the shallow ridge that separates the Mediterranean basin

from the Atlantic basins, has been brought to attention as an important phylogeographic bar-

rier (reviewed by [12]). This strait is approximately 12.9 km wide and 284 m deep. At the top,

the Modified Atlantic Water enters the Mediterranean while at deeper layers, the Intermediate

Mediterranean Water (denser and saltier) flows toward the Atlantic [13].

Within the Mediterranean Sea, the Straits of Sicily and Messina may function as barriers

between the western and the eastern Mediterranean which may influence gene flow of sev-

eral marine organisms [14–17]. The Strait of Sicily is located between the island of Sicily

and Tunisia and has approximately 360–430 m depth. The strait of Messina, located

between the eastern tip of Sicily Island and mainland Italy, is a very narrow sill shallower

than the strait of Sicily (3.1 km wide and approximately 80 m deep at the narrowest part

[18]). Concerning oceanographic processes, the Almeria-Oran front (AOF) found between

Spain and Algeria is one of the most studied dynamic systems acting as a barrier to gene

flow in the Mediterranean (reviewed by [12]). The AOF [19] is driven by different water

densities and is located at the eastern end of the Alboran Sea extending down to 300 m

deep. It can severely limit the mixing of the epipelagic eggs and larvae between the Atlantic

and the Mediterranean.

Within the North Atlantic Ocean the most prominent topographical feature is the Mid-

Atlantic Ridge (MAR) located between the Azores and Iceland, rising from abyssal depths to

about 800 m below the sea surface. The MAR is interrupted by a major fracture zone, the Char-

lie–Gibbs Fracture Zone (CGFZ; located about 52˚N) which is the deepest connection between

the north-eastern and north-western Atlantic and influences the pathway of the North Atlantic

Current circulation (NAC, [20]). Due to the sharp changes in bathymetry in the CGFZ area,

the NAC breaks into several branches, one of which forms the Sub-Polar Front (SPF, [21]).

There is evidence that the SPF acts as a biogeographic barrier for zooplankton, and early life

stages of epi- and mesopelagic fish [22–24].

The Mediterranean grenadier, Coryphaenoides mediterraneus (Giglioli, 1893), is a bentho-

pelagic deep-sea macrourid fish that inhabits continental slopes, ocean ridges and seamounts

usually at depths between 1000 m and 3000 m [25, 26], although there are records down to
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4300 m depth [27]. Despite its name, this species is present not only in the Mediterranean Sea

(e.g. [28, 29]), but has a wide distribution in the North Atlantic from Iceland [30] to Maurita-

nia [31], as well as in the Gulf of Mexico [32]. The species feeds mainly on small invertebrates

[33], and different diets for Atlantic and Mediterranean specimens have been described [34,

35]. Although key life history traits for the species have never been investigated, some biologic

information (size and age) may suggest potential segregation between Atlantic and Mediterra-

nean populations. Atlantic specimens can grow to a maximum of 73 cm total length (TL; [30]),

but adult fish from the Mediterranean attain smaller sizes [36]. The species has been aged by

reading of the increments in the sagittal otoliths, but the different methodologies have not

been validated. In the Atlantic the older specimens studied were estimated to be more than 20

years old (max. 27 years old; [37, 38]) while in the Mediterranean adults were estimated to be

maximum 6 years old [39]. Not much is known about the reproduction of this species, besides

being oviparous and releasing eggs in the water column which are likely to be passively dis-

persed by ocean currents [30]. Population mixing in oviparous fishes with external fertilization

can occur through the dispersion of eggs and larvae by ocean currents (e.g. [40– 42]) and/or

through the active movements of juveniles or adult migrants (i.e. [2, 4]). Given that the Strait

of Gibraltar is far shallower than the species’ vertical distribution, restriction of direct gene

exchange between Atlantic and Mediterranean populations may occur. Furthermore, the lack

of information on key aspects of the life history of C.mediterraneus, such as on the species

early life stages, and the uncertainty of how bathymetry and oceanography affects dispersal

potential, greatly limits the knowledge on population connectivity across the species’ range.

Therefore, the aim of this study was to characterize the spatial population genetic structure of

the bathyal bony fish C.mediterraneus, with special emphasis on the transition between Atlan-

tic and Mediterranean Sea.

Material andmethods

Ethics statement

No specific permits were required for the described field studies, since all the specimens used

came from scientific cruises only. All specimens from this deep sea species were already dead

when arrived on board, since they were fished from great depths. C.mediterraneus is neither

an endangered nor a protected species.

Sampling and biological data

Specimens of C.mediterraneus were collected from 3 main geographic areas (Fig 1; Table 1):

Mid-Atlantic Ridge (MAR), Rockall Trough (ROC) and Mediterranean Sea (MED). The Mid-

Atlantic Ridge collection site was further divided in 3 sub-samples along the ridge (MAR1,

MAR2 and MAR3) and the Rockall samples consisted in assemblages from two years (2011

and 2012). The Mediterranean samples include specimens collected in the Western Mediterra-

nean (MED1, fish collected at three main sites; Table 1 and Table A in S1 Appendix) and in

the Eastern Mediterranean (MED2, two collection sites; Table 1 and Table A in S1 Appendix).

All samples were collected using deep-water bottom trawl nets during several scientific cruises

[25, 43, 44]. Small portions of white muscle or gill tissue were collected for genetic analyses,

and preserved in 95% ethanol until DNA extraction.

Length data (pre-anal fin length, PAFL) was collected from a total of 152 specimens in

MAR, 90 in ROC and 121 fromMED. The MED data includes a set of 28 specimens collected

in 2013, which were not included in the genetic screening.
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DNA extraction and amplification

Mitochondrial DNA (mtDNA). Genomic DNA was extracted using the E.Z.N.A.1

(EaZy Nucleic Acid Isolation) Mag-Bind Tissue DNA kit (OMEGA bio-tek, USA) with the

KingFisher mL magnetic particle processor (Thermo—Electron Coorporation, USA), accord-

ing to the manufacturer’s instructions. The mitochondrial cytochrome c oxidase subunit I

(COI) was partial amplified (613 bp) for 193 individuals by polymerase chain reaction (PCR)

using the FishF2 and FishR2 primers [45]. PCR amplification were performed in reactions of

20 μL of volume containing 0,5 μL of each primer (10 μM), 1 μL of DNA template (10–20 ng),

10 μL of PCRMaster Mix (Promega Corporation, USA), 8 μL of dH2O and were conducted

under the following thermal cycle conditions: initial denaturation of 2 min at 94˚C, followed

by 35 cycles of denaturation for 30 s at 94˚C, annealing for 60 s at 55˚C, extension for 1 min 35

s at 72˚C, with a final extension of 7 min at 72˚C. No template controls were included to check

for possible DNA contamination. Electrophoresis of PCR products was performed on a 1%

agarose gel to assure the integrity of the products. Finally, all amplified products were purified

using ExoSAP-IT (USB Corporation, USA) and sequenced commercially at BMR Genomics

Fig 1. Map showing the sampling sites (red dots) of forCoryphaenoidesmediterraneus. Pie charts report the haplotype distributions of the
mtDNA COI, with the proportion of each haplotype within each collection site. Each haplotype is colour coded according to the legend on the right.
Abbreviations of the collection sites are given in Table 1. Dark and dashed lines represent the potential barriers to gene flow: CGFZ—Charlie-Gibbs
fraction zone; SG—Strait of Gibraltar; AOF- Almeria-Oran front; SS—Strait of Sicily; SM—Strait of Messina. Map under a CC BY license, with publish
permission from R. Medeiros.

https://doi.org/10.1371/journal.pone.0174988.g001
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(Padua, Italy). All haplotypes were confirmed by sequencing both the forward and reverse

strand for at least one individual per haplotype.

Nuclear DNA (microsatellites). Genomic DNA was extracted using the E.Z.N.A.1 Tis-

sue DNA Kit (OMEGA bio-tek) according to the manufacturer’s instructions. A total of 375

fish were genotyped for 9 nuclear microsatellite loci developed for other related species

(Table B in S1 Appendix; described in [46–48]). After optimization of the PCR conditions, two

primers (CaraA106a and Mbe03) were run as a duplex, four primers (CaraA10, CaraA102,

CaraB1 and CaraC1) as a multiplex and all the others were run solo (Table B in S1 Appendix).

Microsatellite amplification was performed in 10 μL reaction volumes, each containing 0.15–

0.25 μL of the forward primer (10 μM) with a fluorescent label (VIC, PET, NED or 6-FAM),

0.15–0.25 μL of the reverse primer (10 μM), 1 μL of the DNA template (10–20 ng), 0.10–

0.16 μL of Taq DNA Polymerase (5 U/ μL; Qiagen, Germany), 3 μL of dNTPs (1 mM), 1 μL of

10x PCR Buffer (Qiagen) and dH2O to reach the final volume. Thermal cycling conditions

consisted in an initial denaturation of 4 min at 95˚C, followed by 30–45 cycles of denaturation

for 45 s at 95˚C, 60 s at the corresponding annealing temperature (Table B in S1 Appendix),

extension for 60 s at 72˚C, with a final extension of 15 min at 72˚C. PCR products were run for

fragment analyses on an ABI Prism 3130xl (Life Technologies). All genotypes were scored

independently by two persons using GeneMapper software (version 4.0; Life Technologies).

Statistical analyses

mtDNA sequences. Four mtDNA COI sequences of C.mediterraneus (three fromMAR

and one from Greenland) were available from Barcode of Life Data Systems (BOLD; sample

Table 1. Information on theC.mediterraneus collection sites.

Sampling area Code Coordinates Capture depth (m) SWBT (˚C)

Latitude Longitude

Mid-Atlantic Ridge combined MAR

Northern Mid-Atlantic Ridge MAR1 53˚08’ N 34˚46’ W 2306–2374 2.99

MAR1 52˚58’ N 34˚52’ W 1630–1670 3.13

MAR1 53˚16’ N 35˚31’ W 2522–2567 3.08

Middle Mid-Atlantic Ridge MAR2 51˚45’ N 29˚33’ W 1872–1950 3.43

MAR2 51˚55’ N 30˚25’ W 1872–1959 3.42

Southern Mid-Atlantic Ridge MAR3 42˚48’ N 29˚38’ W 2063–2107 3.93

MAR3 42˚55’ N 29˚32’ W 1702–1767 5.01

MAR3 43˚01’ N 28˚33’ W 2593–2607 3.79

Rockall ROC

Rockall 2011 ROC11 57˚ N 9˚30’ W 1250–1800 3.73–4.97

Rockall 2012 ROC12 57˚ N 9˚30’ W 1500–2012 3.37–4.01

Mediterranean combined MED

Western Mediterranean MED1 41˚03’ N 3˚05’ E 1730–2230 13.00*

MED1 38˚02’ N 1˚54’ E 2000 13.21

MED1 38˚41’ N 5˚41’ E 2800–2850 13.32

Eastern Mediterranean MED2 37˚19’ N 17˚30’ E 1915–3332 13.95

MED2 34˚38’ N 26˚05’ E 2053–2966 13.91

Details on the geographic coordinates, the interval of depth of capture and sea water bottom temperature (SWBT) at each collection site. In bold are major

sampled areas.

* This value is approximate and was retrieved from the literature.

https://doi.org/10.1371/journal.pone.0174988.t001
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ID: ME-9911; ME-11972; ME-13727; GLF011), and were used for comparison in the haplotype

network. All sequences were aligned using SEAVIEW [49] and CLUSTALX (version 1.8.3.;

[50]). A haplotype network was constructed using the Median Joining Network (MJN) method

[51] and the Maximum Parsimony approach [52], with Network software version 4.6.1.0.

(fluxus-engineering.com) using the default parameters.

Genetic diversity indices, including number of haplotypes (Hn), haplotype diversity (Hd)

and nucleotide diversity (π), were calculated for each location. Genetic distance (FST) between

localities was estimated based on the mean number of pairwise differences among sequences

in Arlequin (version 3.5.1.2.; [53]). The neutrality tests of Tajima’s D [54] and Fu’s FS [55]

were conducted based on an infinite-site model without recombination in Arlequin. The anal-

yses were run using 10000 permutations of the data. P-values were interpreted under the False

Discovery Rate approach (FDR; [56]) in multiple testing situations. Ramos-Onsins & Rozas’s

R2 [57] was determined using DnaSP (version 5.1; [58]).

A Principal Component Analyses (PCA) was performed to visualise the genetic structure in

the dataset using Primer software (version 6; [59]) based on the COI haplotype frequencies.

In order to estimate the average evolutionary divergence over sequences, the MEGA soft-

ware (version 6.0 [60]) was used to calculate the average p-distances between Atlantic and

Mediterranean haplo-groups with 10000 bootstrap replications. Such analyses was also per-

formed between C.mediterraneus and four of its closest relatives (C. striaturus, C.murray,

C. carapinus and C. brevibarbis; GenBank accession numbers are KX656427.1, KX656428.1,

KX656411.1, KX656410.1, KX656382.1, KX656381.1, KX656377.1, KX656376.1 and

KX656375.1, respectively) according to mtDNA COI phylogenetic reconstruction [61], for

comparisons purposes. For this analysis a new alignment was created and trimmed, at both 5’

and 3’ ends, to 598 bp in order to fit all sequences.

Microsatellites. Gene diversity in the total sample (HT [62]), observed (HO) and expected

(HE) heterozygosity, observed number of alleles and allelic richness (at each locus and for each

sampling locality) was calculated using FSTAT (version 2.9.3 [63]) and diveRsity R package

[64]. Deviations from the Hardy–Weinberg equilibrium (HWE) expectations were accessed by

estimating genotype proportions within loci by means of the inbreeding coefficient FIS [65],

and tested using two-sided probability exact tests in the GENEPOP software (version 4.6 [66]).

The FDR approach was applied when interpreting the resulting P-values [67]. Micro-Checker

software (version 2.2.3 [68]) was used to check the presence of null alleles. BayeScan [69] and

Lositan [70] were used to look for potential selection signatures between Atlantic and Mediter-

ranean. BayeScan was run using the default parameters (total of 100 000 interactions and 50

000 bun-in). Lositan was run using the recommended options (on for ‘neutral’ mean FST and

force mean FST), the stepwise- mutation model (SMM) and 50 000 simulations.

Genetic differences among localities were quantified by FST estimator [65], over all sam-

pling localities and for pairs of samples. Statistical significance of pairwise FST tests was

assessed by G-test for allele frequency differences in GENEPOP using 10000 dememorizations

and batches, and 10000 iterations per batch. FST was also estimated with Arlequin based on the

pairwise differences using 10000 permutations of the data. P-values were evaluated for signifi-

cance under the FDR approach in multiple tests situations [56]. The genetic structure for the

temporal replicates at ROC were quantified by FST and tested for genetic divergence as

described above, before pooling them together.

Genetic differentiation patterns among samples were visualized by applying a PCA on allele

frequencies using PCA-GEN (version 1.2.1[71]) and significance in each axis was tested using

10000 data randomizations

The BOTTLENECK software (version 1.2.02 [72]) was applied to investigate population

declines, using the SMM and TPMmodel, the later with 70–90% stepwise mutations and 10–
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30 variance, and based on 10000 interactions. The Wilcoxon test was used to check for signifi-

cant heterozygosity excess.

Combined markers. Statistical power of the obtained statistically significant results under

different true levels of FST and FST tests was estimated using POWSIM (version 4.1 [73]),

adjusting the number of generations of drift (t) with an effective population size (Ne) of 3000

to yield the desired level of divergence. This Ne value, was chosen to be above the recom-

mended minimum of 2000 (POWSIMmanual), to minimize loss of alleles and its negative

effect on power estimates. Both markers were tested independently. The percentage of signifi-

cant outcomes (P< 0.05) is interpreted as the power of the data to detect the defined level of

genetic divergence. A sampling scheme corresponding to the empirical data in each marker

was used and the analyses were conducted using 1000 dememorizations, 100 batches and 1000

interactions per batch. Genetic isolation-by-distance (IBD) within the Atlantic was tested for

both markers using ISOLDE as implemented in GENEPOP, using 10000 permutations of the data

for the Mantel tests. FST and FST semi matrices were calculated as specified above and geo-

graphic distances were calculated as the shortest possible oceanic path between sampled loca-

tions using Google Earth (Google Inc.).

Jost’s D statistics [74] was calculated in addition to FST and FST for comparison purposes.

Pairwise Dest values were estimated in GeneALEx [75], using 9999 permutations. P-values in

multiple tests situations were evaluated for significance using the FDR approach.

Population structure was characterized by the hierarchical analysis of molecular variance

(AMOVA) using ARLEQUIN based on pairwise differences and 10000 permutations. Multiple

groupings of samples were tested, based initially on geographical location (e.g. Atlantic and

Mediterranean) and secondly based on PCA and pairwise FST results. The optimal grouping

was selected based on largest FCT (variance between groups/ regions) in relation to FSC (vari-

ance between populations within groups/regions) values.

Spatial population genetic structure was also investigated by the Bayesian clustering algo-

rithm implemented in Geneland (version 4.0.3 [76]) running under the R statistical environ-

ment [77]. Since the presence of null alleles may affect clustering analyses, we used Geneland´s

option for overcoming this problem by using an additional computing step, in which genotype

ambiguity (homozygotes) are accounted for and null alleles frequencies are estimated along

the clustering algorithm. Two runs were performed (microsatellites): first the dataset was ana-

lysed based on the individual genotypes of the nine microsatellite loci using the null alleles

option; a second run was performed by removing the loci displaying potential null alleles

(Crup7 and CaraA10). A separated run was performed for mtDNA COI. Each run consisted of

2500000 interactions, 5000 burn-in and a thinning of 100. The number of genetic populations

was set to 6 (accordingly to sampling areas) with correlated allele frequencies and spatial

model. The number of clusters was inferred from the modal value of K with the highest poste-

rior probability. To obtain a map of population membership and FST values between the clus-

ters, the study area was divided into 10000 rectangles (100 by 100, equivalent to approximate

1250 km2).

Approximate Bayesian Computation (ABC, [78]), implemented in DIYABC (version 2.0

[79]), was used to evaluate the time since population split (t) between Atlantic and Mediterra-

nean and long-term effective population size (Ne) of both populations and for both types of

markers. Because DIYABC requires the same number of end populations in all competing sce-

narios, it is not possible to compare directly scenarios that account for the different genetic

structure found in the Atlantic with the different marker types (see Results section). Therefore,

a subset of samples (ATL =MAR2+MAR3, MED) was used instead of the complete dataset of

C.mediterraneus in order to perform computations using both maker types in the same analy-

ses. A total of four different scenarios were tested (Fig A in S1 Appendix): Scenario 1 –constant
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effective population size for ATL and MED after population split; Scenario 2 –MED population

size changes after population split while ATL population size remains constant over time; Sce-

nario 3 –ATL population size changes after population split while MED population size

remains constant over time; Scenario 4 –both ATL and MED population sizes change after

population split. A total of 6000000 datasets were simulated to build the reference table. Several

run trials were performed in order to choose the range of values that best fitted the observed

data [80] and the final priors intervals were set as follows: NATL = 10–2000000; NMED = 10–

500000; t = 1–70000; t1 = 1–20000, t1<t;NbATL = 1–40000; NbMED = 1–40000. The mean

mutation rate was set between 1.0 x 10−6 and 5.0 x 10−4 for the 9 microsatellites markers leav-

ing the other parameters as default. For mtDNA COI, the most appropriate nucleotide substi-

tution model was selected from the hierarchical series of likelihood ratio test, implemented in

MEGA. The Kimura 2-parameter model (I = 0, G = 0) [81] had the lowest Bayesian Informa-

tion Criterion (BIC [82]) value and was therefore selected. The mutation rate for COI was set

between 1.0 x 10−9 and 8.0 x 10−8 while all other parameters were left as default. The summary

statistics used in the analyses (Table C in S1 Appendix) selected according to the recom-

mended by Cornuet [80, 83]. The posterior probability of each scenario was estimated using

logistic regression [80, 83] on the 1% of simulated datasets closest to the observed dataset and

10 intermediated values. For the chosen scenario, type errors I (probability of being the true

model, but not selected) and II (probability of not being the true model, but it is selected) were

estimated computing 500 datasets for each competing scenarios. The posterior distribution of

the parameters was estimated by the logit transformation and using 10000 selected data.

Finally, a “model check” was performed using all the other summary statistics not used for

building the reference table [80] (Table C in S1 Appendix). The discrepancy between the

model and the observed data was assessed by a PCA using 10000 simulated datasets. Time of

divergence in years was estimated assuming a generation time of 9 years, data retrieved from

FishBase [30].

Results

Genetic variability

For the mtDNA, 193 COI sequences (613 bp) were amplified containing a total of 11 polymor-

phic sites (9 transitions, 2 transversions). From the resulting 10 haplotypes, 3 were singletons.

The estimated haplotype diversity was low for the three main geographic regions, varying

between 0.119 and 0.409, whereas the nucleotide diversity ranged from 0.0002 to 0.0009, for

ROC and MED, respectively (Table 2). Considering only MAR sites, despite the approximately

same number of individuals analysed in the north (MAR1, n = 30) and in the south (MAR3,

n = 38) the haplotype diversity was much lower in the north (Hn = 0.000, as only the H2 haplo-

type was observed at MAR1, see Fig 1) than in the south (Hn = 0.542; Table 2). Estimates of

evolutionary divergence over sequence pairs between groups are presented in Table D in S1

Appendix. Sequences divergence between the two C.mediterraneus haplo-groups (Atlantic

and Mediterranean) was on average of 0.54% ± 0.20% (± SE), and the average p-distances

between C.mediterraneus and other closely related Coryphaenoides species varied between

5.74% ± 0.95% (C. striaturus) and 11.29% ± 1.31% (C. brevibarbis).

Regarding the microsatellites markers, a total of 375 fish were genotyped at 9 loci. No locus

had more than 2% of missing data. The levels of observed (HO) and expected (HE) heterozy-

gosity were generally low, varying between 0.35 (MAR2 and MED1) and 0.45 (ROC12) for the

former, and between 0.37 (MED1) and 0.45 (MAR3) for the later. Allelic richness (Rs) dis-

played a similar pattern for the three main sampled regions, with no statistical difference in the

levels found inside the MED (7.2) compared to ROC (8.9; Mann-Whitney U = 32, P>0.05
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two-tailed) and MAR (9.4; Mann-Whitney U = 35, P>0.05 two-tailed; Table 2). The overall

genetic diversity in the total sample (HT) over the nine loci was low (0.422), however it varied

among loci, from 0.021 (CaraA102) to 0.926 (Crup7). The total number of alleles per locus ran-

ged from 2 (CaraA102) to 35 (Crup7; Table B in S1 Appendix). The two side probability test

found deviations from the HWE for two of the nine loci (Crup7 and CaraA10) in the total

sample, even after FDR correction (Table B in S1 Appendix). Furthermore, MicroChecker

reported the possible existence of null alleles at these two loci. No loci showed evidence of

being under directional selection either with BayeScan or with Lositan. However locus Crup7

was a candidate to balancing selection (α = -1.36, q-value = 0.03) in BayeScan.

Spatial and temporal structure

mtDNA. The spatial genetic patterns were illustrated with a haplotype network for the

mtDNA COI (Fig 2), where no shared haplotypes were found between Atlantic and Mediterra-

nean sites. The Atlantic and Mediterranean haplo-groups were separated by a single mutation

step (a nucleotide transition A‹−›G) at position 91 in the alignment. The haplotype network

consists of two main haplotypes occurring in high frequencies, one in the Atlantic (H2, 82% of

the Atlantic samples) and the other in the Mediterranean (H8, 74% of the Mediterranean sam-

ples), and several other lower frequency derived haplotypes.

Very high and significant pairwise estimates of genetic differentiation between Atlantic and

Mediterranean were found (mean FST = 0.7171, P< 0.001; mean Dest = 1.0000, P< 0.001;

Table 3), even after FDR adjustment for multiple pairwise tests. Within the Mediterranean the

FST pairwise comparisons betweenWestern and Eastern basins came out non-significant

(FST = 0.0960, P> 0.05; Dest = 0.0369, P> 0.05), after applying the FDR adjustment. Within

the Atlantic Ocean, sampling sites exhibit a more complex genetic pattern with low levels of

differentiation observed between MAR1 and ROC (FST = 0.0008, P> 0.05; Dest = 0.0014,

P> 0.05), and also between MAR2 and MAR3 (FST = -0.0567, P> 0.05; Dest = 0.0000,

P> 0.05). However, significant levels of genetic differentiation were found between the two

northern (MAR1/ROC) and the two southern locations (MAR2/MAR3) (MAR1/ROC vs.

Table 2. List of sampling sites with number ofC.mediterraneus specimens collected for genetic analyses (N), and genetic diversity indices for the
microsatellites andmtDNACOI markers.

Sampling area Code Nuclear microsatellites Mitochondrial COI

N Ho HE FIS
1 FIS

2 A Rs N Hn Hd π
Mid-Atlantic Ridge combined MAR 146 0.42 0.43 0.035 -0.014 10.3 (15) 9.4 78 4 (3) 0.394 0.0008

Northern Mid-Atlantic Ridge MAR1 61 0.41 0.42 0.035 0.003 8.7 (7) 4.8 30 1 0.000 0.0000

Middle Mid-Atlantic Ridge MAR2 13 0.35 0.38 0.130 0.080 4.0 3.9 10 3 (1) 0.600 0.0011

Southern Mid-Atlantic Ridge MAR3 72 0.44 0.45 0.017 -0.044 8.7 (4) 4.7 38 3 (2) 0.542 0.0012

Rockall ROC 132 0.43 0.43 0.003 -0.032 9.6 (12) 8.9 49 3 (2) 0.119 0.0002

Rockall 2011 ROC11 90 0.43 0.43 0.018 -0.011 9 (8) 4.6 49 3 (2) 0.119 0.0002

Rockall 2012 ROC12 42 0.45 0.44 -0.029 -0.072 6.4 (2) 4.6 — — — —

Mediterranean combined MED 97 0.36 0.38 0.048 0.012 7.2 (2) 7.2 66 4 (4) 0.409 0.0009

Western Mediterranean MED1 78 0.35 0.37 0.068 0.043 6.4 4.1 48 3 (1) 0.434 0.0008

Eastern Mediterranean MED2 19 0.41 0.39 -0.027 -0.100 4.9 4.2 18 3 (1) 0.307 0.0009

HO, observed heterozygosity; HE, expected heterozygosity; Fis, inbreeding coefficient with 1 nine loci and 2 seven loci (removing Crup7 and CaraA10); no

significant deviations from HWE were found across sampling localities; A, mean number of alleles (number of unique alleles for the sampled location); Rs,

mean allelic richness (minimum sample size of 95 individuals for general areas (MAR, ROC, MED) and 12 individuals for sub-areas); Hn, number of

haplotypes (unique haplotypes); Hd, haplotype diversity; π, nucleotide diversity.

https://doi.org/10.1371/journal.pone.0174988.t002
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MAR2/MAR3: FST = 0.1933 to 0.3617, P< 0.01; Dest = 0.1343 to 0.1686, P< 0.01; Table 3).

The power analyses indicated that our minimum detection limit was a FST = 0.0643

with� 95% confidence. Mantel tests did not support any significant relationship between FST

and geographic distance (a = 0.2599, b = -6.9 × 10−5; P> 0.05) for the Atlantic samples.

The PCA results (Fig 3a) show a separation between Atlantic and Mediterranean samples

along the first axis which explains most of the variation (88%).

AMOVA was performed using multiple grouping criteria in order to investigate the optimal

grouping for the dataset (Table E in S1 Appendix). The best grouping was (MAR1, ROC)

(MAR2, MAR3) (MED1, MED2) since it explains the majority of the variance observed

‘among groups’ (i.e. the largest FCT), and minimizes the ‘within samples’ variation (FSC).

Therefore the best population grouping suggests the separation of the Atlantic and Mediterra-

nean populations. Within the Atlantic MAR1 and ROC are grouped together and are distinct

of MAR2 and MAR3, which also are grouped together. In the same way, Geneland analyses

Fig 2. Median Joining Network from 613 bpmtDNA COI sequences. Size of circles (haplotypes) is proportional to the relative frequencies in the
sample, and colour coded according to sampling locality; abbreviations are given in Table 1. Each branch indicates a single nucleotide substitution,
except when noted. BOLD code represents the four sequences retrieved at Bold Systems for comparison (see Material and methods).

https://doi.org/10.1371/journal.pone.0174988.g002
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revealed three clusters corresponding to MAR1/ROC, MAR2/MAR3 and MED populations

(Fig 4).

Microsatellites. Significant genetic differentiation was found over all sampling localities

and loci (FST = 0.0149, P< 0.001) even when removing the two loci showing HW deviations

and possible presence of null alleles (FST = 0.0116, P< 0.001, Table B in S1 Appendix). How-

ever when looking to each locus separately three of the nine loci did not show significant

genetic differentiation across sampling localities (CaraA109, CaraA10 and CaraA102,

P> 0.05; Table B in S1 Appendix). No deviations from HWE were found across sampling

localities (Table 2).

Regarding the temporal analysis for the ROC samples, no genetic heterogeneity was

detected when comparing 2011 and 2012 samples (FST: 2011 vs. 2012 = -0.0004, P>0.05),

therefore the two samples were pooled together in one ROC sampling for further analyses.

The pairwise comparisons of both FST and Dest showed an identical genetic pattern across

sampled localities (Table 3). FST calculations with both Genepop and Arlequin retrieved

exactly the same genetic pattern across localities, after FDR approach (Table 3 and Table F in

S1 Appendix). Results suggest the existence of a genetic break between Atlantic and Mediterra-

nean since all comparisons resulted in high and significant values (overall FST = 0.0245,

P< 0.001; Dest = 0.0180, P< 0.001). In contrast, for microsatellites we found no significant

genetic structure within the Atlantic (FST from -0.0026 to 0.0025, P> 0.05; Dest from 0.0000 to

0.0017) nor within the Mediterranean (FST = -0.0003, P> 0.05; Dest = 0.0000, P> 0.05;

Table 3). Power analyses indicated that the minimum amount of genetic divergence detectable

from our data is a FST = 0.0028 with a� 95% confidence. The PCA results (Fig 3b) show the

existence of two groups split along the PC1, which explains most of the variation (PC1: FST =

0.0116, 68% of total inertia, P< 0.001). No significant separation along the PC2 was found

(PC2: FST = 0.0019, 11% of total inertia, P = 1.0000). Also, no evidence of isolation-by-distance

within the Atlantic was found (a = 0.0028, b = 2.1 × 10−6; P> 0.05). The best AMOVA group-

ing found was: (MAR1, ROC, MAR2, MAR3) (MED1, MED2), and as the other analyses sug-

gests the separation of the Atlantic and Mediterranean populations (Table E in S1 Appendix).

Table 3. Pairwise comparisons and tests for differentiation between localities for microsatellites (below diagonals) andmtDNA COI (above diago-
nals). Upper table: pairwise FST andΦST; lower table Jost’s D.

FST/ΦST MAR1 MAR2 MAR3 ROC MED1 MED2

MAR1 — 0.3617** 0.1933*** 0.0008 0.7798*** 0.8389***

MAR2 -0.0021 — -0.0567 0.3022** 0.6891*** 0.6524***

MAR3 0.0025 -0.0011 — 0.2117*** 0.6617*** 0.6222***

ROC 0.0008 -0.0026 0.0022 — 0.7800*** 0.8177***

MED1 0.0195*** 0.0414*** 0.0314*** 0.0215*** — 0.096

MED2 0.0239* 0.0427** 0.0364*** 0.0251*** -0.0003 —

Jost’s Dest

MAR1 — 0.1558** 0.1686*** 0.0014 1.0000*** 1.0000***

MAR2 0.0000 — 0.0000 0.1343** 1.0000*** 1.0000***

MAR3 0.0020 0.0000 — 0.1521*** 1.0000*** 1.0000***

ROC 0.0005 0.0000 0.0017 — 1.0000*** 1.0000***

MED1 0.0132*** 0.0256*** 0.0288*** 0.0154*** — 0.0369

MED2 0.0179*** 0.0291** 0.0294*** 0.0195*** 0.0000 —

Significant values are in bold (significant at alpha = *0.05, ** 0.01, *** 0.001), after the FDR adjustment.

Sample site abbreviations are given in Table 2.

https://doi.org/10.1371/journal.pone.0174988.t003
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Fig 3. Principal Component Analyses (PCA). Analyses based on the haplotype frequencies of the mtDNACOI (a) and allele
frequencies of the 9 microsatellite loci (b). Triangles symbols refer to Mediterranean and dots to Atlantic localities. Dashed circles
refer to grouping structure suggested by AMOVA and Geneland (mtDNA), and by PCA, AMOVA and Geneland analyses
(microsatellites). Abbreviations are given in Table 1.

https://doi.org/10.1371/journal.pone.0174988.g003
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Geneland analyses revealed two clusters corresponding to the Atlantic and Mediterranean

populations. The two independent runs performed with 9 and 7 loci, showed the same pattern

with two clusters identified (Fig 4).

Demographic analyses

For mtDNA COI demographic histories were inferred for MAR1/ROC, MAR2/MAR3 and

MED populations independently. No deviations from the neutrality was found using the Taji-

ma’s D for most populations analysed or Fu’s FS (P> 0.05, Table G in S1 Appendix), except

for MAR1/ROC (FS = -2.945, P< 0.01) suggesting population expansion. Small Rozas’s R2 val-

ues were found for MAR1/ROC and MED (0.057 and 0.067, respectively), whereas a higher R2
was resulted for MAR2/MAR3 (0.119).

For ATL and MEDmicrosatellite data, no bottlenecks were detected using the Wilcoxon

tests for heterozygosity excess (P> 0.05). However the Wilcoxon tests for heterozygosity defi-

ciency was significant for the two regions, suggesting population expansion (Table H in S1

Appendix).

In the DIYABC analysis, scenario 4 (both ATL and MED population sizes change after pop-

ulation split) was the best supported with higher posterior probability (mean P = 0.86, 95%

Fig 4. Posterior density distribution of the number of clusters estimated with Geneland. For nuclear microsatellites (on the left) it is shown both
the results for 9 loci using the null alleles option, and using only the 7 loci without null alleles. On the right it is shown the estimated number of clusters
for the mtDNACOI.

https://doi.org/10.1371/journal.pone.0174988.g004
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CI = 0.74–0.89; Table 4; Fig A in S1 Appendix) relatively to other scenarios (between P = 0.00

and 0.19; Table 4; Fig A in S1 Appendix). Based on the logistic estimate, the Type error I esti-

mated for scenario 4 was 4.6 and the Type error II was 0.23. Under scenario 4, the effective

population size estimation of both ATL (NATL) and MED (NMED) did not produce distinct

modes regardless the large priors given. All other estimated parameters showed distinct modes

(Fig C in S1 Appendix). The simulations showed that both populations’ sizes after divergence

(NbATL and NbMED) were large (Table 4; Fig C in S1 Appendix) with modal values of 5370

(95% CI: 1410–36200) and 7480 (95% CI: 1760–37500), respectively. Time since divergence

was estimated in 6690 generations (95% CI: 2210–45100) for scenario 4, which dates the sepa-

ration between ATL and MED populations around 60000 years before present (yBP; 95% CI:

19890–405900). The posterior distributions of the mutation rates suggested that the prior

range selected was appropriate for the analysed data set (Fig C in S1 Appendix). Model check

showed that the observed and the simulated data were similar (Fig C in S1 Appendix), suggest-

ing a good model fit.

Analyses of biological data

The length distributions in the three main areas analysed (MAR, ROC and MED) were statisti-

cally different (Kruskal-Wallis test,H = 78.5, P< 0.001), with Mediterranean specimens

attaining significantly smaller sizes than in Atlantic localities (Fig B in S1 Appendix).

Table 4. Posterior parameters values for each scenario estimated using DIYABC.

Scenario Parameter Mean Median Mode 95% CI P (95% CI)

lower upper

S1 NATL 8.92 x 104 6.92 x 104 5.37 x 104 1.43 x 104 2.77 x 105 0.00 (0.00–0.01)

NMED 1.85 x 105 1.63 x 105 1.04 x 105 3.24 x 104 4.52 x 105

t 9.48 x 103 5.39 x 103 2.40 x 103 6.40 x 102 4.60 x 104

S2 NATL 6.79 x 104 5.66 x 104 3.85 x 104 1.63 x 104 1.80 x 105 0.00 (0.00–0.01)

NMED 3.37 x 105 3.55 x 105 4.97 x 105 8.74 x 104 4.96 x 105

t 1.52 x 104 1.11 x 104 4.83 x 103 2.05 x 103 5.45 x 104

t1 7.10 x 103 5.70 x 103 9.74 x 102 3.60 x 102 1.87 x 104

NbMED 1.59 x 104 1.44 x 104 9.27 x 103 1.43 x 103 3.72 x 104

S3 NATL 9.97 x 105 9.76 x 105 2.66 x 105 9.23 x 104 1.96 x 106 0.14 (0.11–0.26)

NMED 1.65 x 105 1.39 x 105 1.01 x 105 2.84 x 104 4.40 x 105

t 1.37 x 104 1.10 x 104 6.22 x 103 2.13 x 103 4.36 x 104

t1 1.08 x 104 1.06 x 104 7.87 x 103 1.66 x 103 1.96 x 104

NbATL 1.08 x 104 7.89 x 103 2.51 x 103 6.88 x 102 3.49 x 104

S4 NATL 1.18 x 106 1.23 x 106 1.98 x 106 1.74 x 105 1.98 x 106 0.86 (0.74–0.89)

NMED 2.70 x 105 2.68 x 105 1.98 x 105 5.12 x 104 4.89 x 105

t 1.42 x 104 1.12 x 104 6.69 x 103 2.21 x 103 4.51 x 104

t1 7.11 x 103 5.65 x 103 2.07 x 103 6.35 x 102 1.89 x 104

NbATL 1.38 x 104 1.15 x 104 5.37 x 103 1.41 x 103 3.62 x 104

NbMED 1.55 x 104 1.34 x 104 7.48 x 103 1.76 x 103 3.75 x 104

It is presented the mean, median and modal value, the lower and upper 95% credible intervals for each estimated parameter. Also the probability P (95% CI)

of each scenario under consideration is shown and the best supported scenario is emphasized in bold. Contemporary Atlantic and Mediterranean Ne (NATL

and NMED), Atlantic and Mediterranean Ne after divergence (NbATL and NbMED), time since population separation (t) and end of time of populations size

changes (t1). For more details and schematic representation please see Fig A in S1 Appendix. Values are in generation time.

https://doi.org/10.1371/journal.pone.0174988.t004
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Discussion

Atlantic-Mediterranean genetic barrier

The results obtained for the Mediterranean grenadier suggest the existence of a genetic barrier

between Atlantic and Mediterranean populations. This conclusion was sustained by several

analyses performed (PCA, AMOVA, Bayesian clustering and F statistics) with both nuclear

and mitochondrial markers supporting the existence of significant genetic divergence, or a

“genetic break”, between the two basins (FST>0.02, FST>0.62 and Dest>0.01). Together with

the apparent absence of shared mtDNA haplotypes, this suggests highly restricted or no con-

nectivity between populations on either side of the Strait of Gibraltar. Direct exchange across

the Strait of Gibraltar by the active dispersal of the movements of grown fish is improbable

given the species’ deep vertical distribution [26, 28, 29, 84] relatively to the shallow strait’s

bathymetry. It has been shown recently that the shallow depth of the Strait of Gibraltar has a

major effect in restricting dispersal capabilities of other deep-sea species, such as the shark

Centroscymnus coelolepis [11]. Bathymetry is also a major player in shaping the population

connectivity in a close relative of C.mediterraenus, the roundnose grenadier (C. rupestris, [7])

and in other fish species such as the bluemouth rockfish (Helicolenus dactylopterus, [8]) and

tusk (Brosme brosme, [9]). While bathymetry may be an obstacle to active fish dispersal, it is

less clear how gene flow though the transport of pelagic early-life stages is restricted. However,

such gene flow between Atlantic and Mediterranean requires that fertilized eggs and larvae

have the ability of rising in the water column reaching depths shallow enough to be trans-

ported by currents across Gibraltar sill (284 m deep). Lack of knowledge on depth of occur-

rence and duration time of this species early life stages difficult any prediction of gene flow

patterns. Early ontogeny of C.mediterraneus and macrourids in general, is poorly known since

eggs and larvae have been occasionally identified or collected for only a few species [85–92].

Marshall [93] suggested that grenadiers reproduced near the sea floor and that fertilized eggs

float to near the thermocline where they hatch and feed, and subsequently descend to the adult

habitats as they grow up. Although at the time this theory was controversial, recent studies [94,

95] using otoliths microchemistry have confirmed this pattern for the species analysed (C.

rupestris, C. acrolepis and C.marginatus). Although grenadiers seem to exhibit ontogenetic

downward migration, few species have been properly studied and vertical migration distances

and timing seem to vary among species [95]. Currently there is no information on the early

life stages of C.mediterraneus, however larvae from Coryphaenoides sp. were collected from

epipelagic layers (<200 m) from the Aegean Sea (eastern Mediterranean [96, 97]). Since in the

Mediterranean only two species of Coryphaenoides are reported (C.mediterraeus and C.

guentheri), and both species share similar depth of occurrence and population genetic struc-

ture (this study and Catarino et al. in prep.), the early life stages collected at Aegean Sea suggest

that C.mediterraneus larvae may indeed reach the epipelagic layer. However oceanographic

processes, such as upwelling or eddies may also have some role in the transportation of this

early life stages to such shallow layers, since their abundance at collections sites was low [96,

97]. Even if C.mediterraneus early life stages can reach layers shallow enough to cross the Strait

of Gibraltar, those egg/ larvae have to be viable and adapt to the dramatic differences in the

environmental conditions (temperature and salinity) between Mediterranean and Atlantic.

The higher temperatures in the Mediterranean (e.g. [44]) may also accelerate egg incubation

time and larval development, shortening the period of the pelagic life stage and the dispersion

time [85]. The lack of shared haplotypes for C.mediterraneus COI sequences between Atlantic

and Mediterranean samples (see Fig 2) supports the hypothesis of an absence of gene exchange

between the two basins.
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For species with planktonic stages, the AOF [19] has been considered as an important

genetic barrier [98–104], and its effect compared to the Strait of Gibraltar is still under discus-

sion (reviewed by [12]). Although our sampling did not include samples from Alboran Sea, it

is more likely that the Strait of Gibraltar rather than AOF plays a more important role on the

genetic pattern found for C.mediterraneusMediterranean population. The AOF influences

only the top 300 meters depth [19], and even if the eggs and larvae of this species get partly

retained at surface layers, below that depth the movements of plankton and fish should not be

affected. From this perspective, the 1000 m deep dwelling Mediterranean grenadier juveniles

and adults should be able to freely interact beneath the front without any restrictions between

the Alboran Sea and the western Mediterranean basin, as has been reported for other deep-sea

species [105].

Specimens from the Mediterranean attain a smaller average size than those collected in the

Atlantic (Fig B in S1 Appendix). These findings are in accordance with a previous study con-

ducted for C.mediterraneus [36] and reinforce the idea of a segregated Mediterranean popula-

tion. This pattern seems to be a common trend for several other Mediterranean fishes [11, 36,

106], where a combination of factors such as temperature and food availably may have an

important role (see discussion in Massutı́ et al [36] and Catarino et al [11]).

The estimated p-distance values between the two C.mediterraneus haplo-groups found

(Atlantic and Mediterranean) are much lower (0.54% ± 0.20%) than those found between C.

mediterraneus and other closely related Coryphaenoides species analysed (from 5.74% ± 0.95%

to 11.29% ± 1.31%). According to the phylogenetic reconstruction using mtDNA COI region

[61] the closest living relative to C.mediterraneus is C. striaturus. The estimated p-distance val-

ues between these two species are about one order of magnitude higher than those reported

herein between the Atlantic and Mediterranean populations of C.mediterraneus. This suggests

that the Atlantic and Mediterranean populations of C.mediterraneus should be treated as

belonging to the same species. However, the fact that the Mediterranean population appears

isolated, together with the size differences (smaller maximum size, and consequently smaller

first maturity size), suggest that this population may be on its separated evolutionary path.

Genetic pattern within the Mediterranean

Many studies had reported the West–East transition as one of the major biogeographic discon-

tinuities within the Mediterranean Sea for diverse taxa, such as for sea-grass, prawns and fish

[14–17]. In contrast, we found no significant genetic difference of C.mediterraneus from the

Western and Eastern Mediterranean (both types of markers after FDR correction). This find-

ing may be due to the fact that the Strait of Sicily is about 100 meters deeper that the Strait of

Gibraltar which may be enough for the C.mediterraneus early life stages easily overpasses this

potential barrier. Furthermore, local strong and periodical upwelling processes, (e.g. [18]),

bring deep-water to surface layers which may also facilitate the transport of egg/larvae between

the two Mediterranean basins [107]. The exchange of only a limited number of migrant across

the Strait of Sicily and/or Messina may be enough to prevent genetic differentiation between

the Western and Eastern Mediterranean populations. Other deep-sea species such as the

shrimp Aristeus antennatus, exhibit a similar genetic pattern to that found in our studied spe-

cies, also suggesting that the Strait of Sicily and/or Messina has little or no influence restricting

genetic connectivity between west and east basin in deep-sea species with pelagic stages [108].

The lack of genetic differentiation betweenWest and Eastern Mediterranean basins should

not be the result of a poor sampling design, since the results from the power analyses indicated

that our sampling design should be able to detect genetic divergence as low as FST = 0.0643 for

mtDNA and FST = 0.0028 for microsatellites.
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Genetic pattern within Atlantic

While the general genetic pattern across the Atlantic-Mediterranean transition and within the

Mediterranean is quite simple, a more complex genetic pattern was found within the Atlantic.

Microsatellite markers displayed no genetic structure, suggesting a single panmictic popula-

tion within the Atlantic. The lack of genetic heterogeneity found with the nuclear markers is in

accordance with other studies for the same area performed with other Coryphaenoides species,

such as C. armatus and C. brevibarbis [109, 110], suggesting that the CGFZ, the Sub-Polar

Front and the topographic structure of the Mid-Atlantic Ridge have little effect on the genetic

connectivity in this deep-sea species.

However, for the mtDNA COI, genetic differentiation was found across the CGFZ (between

MAR1/ROC and MAR2/MAR3 areas), with a marked higher level of genetic variability at the

southern areas (Table 2). The results showed no signals of recent population contractions that

could justify such a low genetic diversity in the northern areas, however it is feasible that the

tests employed could miss an older bottleneck event [111]. Contrasting patterns of population

structure between mitochondrial and nuclear markers are often ascribed to sex-biased dis-

persal. Since for nuclear markers no genetic structure was found, this would be indicative of

male-mediated gene flow, while females would exhibit philopatric behaviour. Although female

philopatry has been described in deep-sea sharks [112] such behaviour was never described for

any macrourid species and it seems unlikely given the species’s life cycle. The most likely expla-

nation for the contrasting genetic pattern found with the mtDNA and nuclear markers is due

the lower effective population size of the mtDNA compared to the nuclear genome, which

turn it more susceptible to stochastic events [113].

Demographic history and population divergence

No evidences of past population contractions for C.mediterraneus populations were found

with the tests employed both for mtDNA and microsatellites. The best supported scenario cho-

sen by DIYABC showed elevated modal values of Ne after the Atlantic—Mediterranean separa-

tion (NbATL and NbMED, Table 4; Fig C in S1 Appendix) suggesting that no severe reductions

in the populations has occurred. According to the ABC results the separation between Atlantic

and Mediterranean populations (60210 yBP, 95% CI: 19890–405900 yBP) is likely to have

occurred during the last glacial period at the late Pleistocene (110000–12000 yBP [114]). This

estimation is calculated using an assumed generation time of nine years [30], however further

studies are needed in order to produce a more accurate generation length estimate. The rela-

tively wide credible intervals estimated for the split suggest that an earlier separation cannot be

entirely ruled out, however the separation occurred no later than the last glacial period. The

estimated splitting period between the Atlantic/Mediterranean C.mediterraneus is similar to

the one provided for another deep-sea species for the same region (C. coelolepis and Chimaera

monstrosa, [11, Catarino et al. in prep.]. Furthermore, the last glacial period has been earlier

suggested as particular severe for deep-sea species where the contact with the Mediterranean

was thought to be lost or very limited [115].

In summary, the Atlantic and Mediterranean populations of C.mediterraneus are genetically

distinct due to the limited genetic exchange across the Strait of Gibraltar. This physical barrier

prevents the direct interactions of adult fish from the two basins due its shallow bathymetry and

even the pelagic early life stages of this species seems not be able overpass this shallow barrier.
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S1 Appendix. A file containing all tables and figures in supporting information.
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S2 Appendix. Coryphaenoidesmediterraneus alignment haplotypes. This file contains all 10

haplotypes found for mtDNA COI in the studied areas for C.mediterraneus (Cmed). The file is

in fasta format. Haplotypes frequencies: H1-15; H2-108; H3-4; H4-1: H5-2; H6-1; H7-14; H8-

49; H9-1; H10-2.

(FST)

S3 Appendix. Coryphaenoidesmediterraneusmicrosatellites genotypes. This file contains

the microsatellites genotypes for the 375 specimens of C.mediterraneus (Cmed). The file is in

genepop 3 digits format, which is widely used and can be easily converted in other types of

files. It contains the genotypes for the 9 nuclear loci screened in the 8 localities studied:

MAR1- Northern Mid-Atlantic Ridge; MAR2- Middle Mid-Atlantic Ridge; MAR3- Southern

Mid-Atlantic Ridge; ROC- Rockall; MED1- Western Mediterranean; MED2- Eastern Mediter-

ranean.

(TXT)
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